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Abstract

Nested case-control and case-cohort studies are useful for studying associations be-

tween covariates and time-to-event when some covariates are expensive to measure.

Full covariate information is collected in the nested case-control or case-cohort sample

only, while cheaply measured covariates are often observed for the full cohort. Stan-

dard analysis of such case-control samples ignores any full cohort data. Previous work

has shown how data for the full cohort can be used efficiently by multiple imputation

of the expensive covariate(s), followed by a full-cohort analysis. For large cohorts this

is computationally expensive or even infeasible. An alternative is to supplement the

case-control samples with additional controls on which cheaply measured covariates

are observed. We show how multiple imputation can be used for analysis of such

supersampled data. Simulations show that this brings efficiency gains relative to a

traditional analysis and that the efficiency loss relative to using the full cohort data

is not substantial.

Keywords: case-cohort, Cox regression, expensive covariates, large cohorts, missing
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1 Introduction

Large cohort studies are widely used in epidemiology to investigate the effect of risk

factors and other covariates on the time to an event of interest, like disease diagnosis or

death. Cox regression is commonly used to analyse data from such studies. Estimation for

Cox’s model requires information on risk factors and other covariates for all individuals

in the cohort, also for rare diseases where most individuals will not experience the event

of interest. To avoid the collection of expensive covariate information, such as biological

measurements, for all individuals in the cohort, it may be advantageous to adopt a cohort

sampling design. For these designs, information on risk factors and other covariates are

recorded for all individuals who experience the event of interest (“cases”), but only for a

sample of the individuals who do not experience the event (“controls”).

There are two main types of cohort sampling designs: nested case-control studies and

case-cohort studies. The two types of cohort sampling designs differ in the way controls

are selected. For nested case-control sampling (Thomas, 1977), one for each case selects at

random a small number of controls from those at risk at the case’s event time, and a new

sample of controls is selected for each case. For case-cohort sampling (Prentice, 1986), a

subcohort is selected at random from the full cohort at the outset of the study, and the

individuals in the subcohort are used as controls at all event times when they are at risk.

As described in Section 2, the traditional analyses of nested case-control and case-

cohort data only use information for individuals in the case-control sample, i.e., for the

cases and controls/subcohort. However, while expensive covariate measurements may be

available only for the case-control sample, there may be other cheaply measured covariates

that are available for all individuals in the full cohort. The traditional analyses of sampled

cohort data ignore this information. The sampled cohort plus the additional data available

on the remainder of the full cohort may be viewed as a full cohort study with a large

missing data problem, in which the expensive covariate measurements are missing by

design for individuals outside the case-control sample. One approach for handling this

missing data problem, is maximum likelihood estimation for the full cohort; see, e.g.,

Scheike & Martinussen (2004), Scheike & Juul (2004), Saarela et al. (2008), and Zeng

& Lin (2014, 2018). The paper by Kulathinal & Arjas (2006) is also worth mentioning.

They consider a Bayesian analysis of case-cohort data using the full cohort likelihood
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and Bayesian data augmentation. Another popular approach for handling missing data

problems, is multiple imputation (MI), which essentially is an approximation to a full

Bayesian analysis. MI has good frequentist properties, and it is easier to implement than

a full Bayesian analysis. In the context of Cox regression for sampled cohort data, MI has

been studied by Keogh & White (2013) and Keogh et al. (2018); see also the review by

Keogh (2018).

In studies with very large cohorts, maximum likelihood estimation or the use of MI for

the entire cohort may be computationally very demanding or even infeasible. Focusing on

MI, we in this paper investigate a middle way between a traditional sampled cohort study

and a sampled cohort study with MI for the full cohort. The idea is to select a supersample

of the sampled cohort by adding more controls to a nested case-control study and enlarging

the subcohort for a case-cohort study. The expensive covariate measurements are imputed

for the individuals in the supersample who are not in the original case-control sample, but

not for the other individuals in the full cohort. The data for the imputed supersample

may then be analysed using the traditional methods for analysing sampled cohort data.

The outline of the paper is as follows. In Section 2 we briefly describe Cox’s regression

model for the full cohort, and review the traditional ways of analysing sampled cohort

data using this model. MI in Cox regression with cohort data and sampled cohort data

is reviewed in Section 3, and in Section 4 we describe how MI may be modified when

imputation is only performed for individuals in the supersample. In Section 5 we present

a simulation study that illustrates how MI for the supersample compares with MI for

the full cohort and the traditional methods for analysing sampled cohort data. Finally,

in Section 6, we discuss our results and point out some directions for further research.

Some simulation results that supplement those of Section 5 are given as online supporting

material on the journal’s web page.

2 Traditional analysis of sampled cohort data

We start out with a review of the traditional ways of analysing sampled cohort data. For

ease of presentation, we assume that there is a single covariate X that is expensive to

measure, while Z is a vector of cheaply measured covariates. The situation with more

than one expensive covariate is briefly discussed in Section 6. The hazard rate for an
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individual with covariate values X = x and Z = z is denoted h(t |x, z). The time variable

t may be age, time since the onset of a disease, or some other time scale relevant to the

problem at hand. We assume that the covariates are related to the hazard rate by Cox’s

proportional hazards model

h(t |x, z) = h0(t) exp
(
xβ + zTγ

)
. (1)

Here β and γ are regression coefficients that describe the effects of the covariates on the

hazard, while the baseline hazard h0(t) corresponds to the hazard of an individual with

all covariates equal to zero.

We consider a cohort C = {1, 2, . . . , N} of N independent individuals, and suppose

for a moment that both X and Z are observed for the full cohort. The values of (X,Z)

for individual i are denoted (xi, zi). We do not observe the event of interest for all

individuals. Due to censoring, we for each individual i ∈ C only observe (Ti, Di), where

Ti is the minimum of an event time and a censoring time, and Di = 1 if the event is

observed, and Di = 0 otherwise. The values of Ti and Di are denoted ti and di. We

assume throughout that the censoring and event times for individual i are independent

given Xi,Zi, and that the censoring time and Xi are independent given Zi. The latter

assumption is not required for the methods in this section, but it is needed when using

MI in Sections 3 and 4.

Then for the full cohort, the regression coefficients β and γ in (1) are estimated by the

values β̂ and γ̂ that maximize Cox’s partial likelihood

Lcoh(β,γ) =
∏
i∈E

exp
(
xiβ + zTi γ

)∑
j∈R(ti)

exp
(
xjβ + zTj γ

) . (2)

Here R(t) = {j | tj ≥ t} is the risk set at time t, and E = {j | dj = 1} is the set of all cases.

Further the Breslow estimator of the cumulative baseline hazard H0(t) =
∫ t
0 h0(u)du may

be given as Ĥ0,coh(t; β̂, γ̂), where

Ĥ0,coh(t;β,γ) =
∑
ti≤t

di∑
j∈R(ti)

exp
(
xjβ + zTj γ

) . (3)

It is well known that the maximum partial likelihood estimators for the full cohort have
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similar properties as ordinary maximum likelihood estimators (Andersen & Gill, 1982). In

particular, standard errors of the parameter estimates may be obtained from the observed

information matrix.

As described below, nested case-control and case-cohort data are traditionally analysed

using modified versions of Cox’s partial likelihood and the Breslow estimator.

2.1 Nested case-control studies

The controls in a nested case-control study are selected as follows. If the event of interest is

observed for an individual i at time ti, one selects at random a small number m of controls

from R(ti)\{i}, i.e., the risk set with the case excluded. The set of size m+1 that consists

of the case and the sampled controls is denoted a sampled risk set and denoted R̃(ti). The

expensive covariate is measured for the individuals in the sampled risk sets, but it is not

needed for the other individuals in the full cohort.

Traditionally, estimation of the regression coefficients in a nested case-control study is

based on the partial likelihood

Lncc(β,γ) =
∏
i∈E

exp
(
xiβ + zTi γ

)∑
j∈R̃(ti)

exp
(
xjβ + zTj γ

) . (4)

Note that (4) is similar to the full cohort partial likelihood (2), except that the sum in

the denominator is only over individuals in a sampled risk set. For computing one may

use standard software for Cox regression, like coxph in the survival library in R, formally

treating the label of the sampled risk sets as a stratification variable in the Cox regression.

The cumulative baseline hazard may be estimated by a Breslow-type estimator given

as Ĥ0,ncc(t; β̂, γ̂), where

Ĥ0,ncc(t;β,γ) =
∑
ti≤t

di∑
j∈R̃(ti)

w(ti) exp
(
xjβ + zTj γ

) , (5)

and β̂ and γ̂ are obtained by maximizing (4). In (5), the weights are w(ti) = N(ti)/(m+1),

where N(t) = |R(t)| is the number of individuals at risk at time t.

The maximum partial likelihood estimators β̂ and γ̂ obtained by maximizing (4) enjoy

similar large sample properties as ordinary maximum likelihood estimators (Goldstein &
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Langholz, 1992; Borgan et al., 1995).

2.2 Case-cohort studies

For the case-cohort design, a subcohort C̃ of size n is selected at random from the full

cohort at the outset of the study. The individuals in the subcohort are used as controls

at all event times when they are at risk. The expensive covariate is measured for all

individuals in the subcohort as well as for cases occurring outside the subcohort, but it is

not needed for the other individuals in the full cohort.

Different methods have been suggested for estimating the regression coefficients for

case-cohort data. The methods are based on weighted pseudo-likelihoods of the form

Lcch(β,γ) =
∏
i∈E

exp
(
xiβ + zTi γ

)∑
j∈S̃(ti)wj exp

(
xjβ + zTj γ

) , (6)

but the methods differ in the choice of weights wj and sampled risk sets S̃(ti).

For Prentice’s original pseudo-likelihood, all weights are one and S̃(ti) = S(ti) ∪ {i},

where S(ti) = {j | tj ≥ ti, j ∈ C̃} is the set of all subcohort individuals at risk at time ti.

Self & Prentice (1988) considered the modification where S̃(ti) = S(ti) also when the case

is not in the subcohort.

In Prentice’s pseudo-likelihood, a case outside the subcohort only makes a contribution

at its event time. In order to make use of the information from the cases at all times when

they are at risk, we may adopt an inverse probability weighted (IPW) pseudo-likelihood

(Kalbfleisch & Lawless, 1988). Then we let S̃(ti) = {j | tj ≥ ti, j ∈ C̃ ∪ E}, where E is

the set of all cases. So now S̃(ti) consists of all subcohort individuals at risk at time ti

together with all cases who are at risk at that time. The weights are given as wj = 1/pj ,

where pj is the probability that individual j is included in the case-control sample. The

cases are included with probability one, so the weights are wj = 1 for all cases (whether

they are in the subcohort or not). We let N (0) and n(0) be the number of individuals in the

cohort and subcohort, respectively, who do not experience the event of interest. Then an

individual who is not a case, is included in the subcohort with probability pj = n(0)/N (0),

and hence may be given the weight wj = N (0)/n(0).

Pseudo-likelihoods of the form (6) are not partial likelihoods, so the maximum pseudo-
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likelihood estimators do not enjoy similar large sample properties as ordinary maximum

likelihood estimators. In particular, standard errors cannot be computed directly from the

observed pseudo-information matrix. But it has been shown that the maximum pseudo-

likelihood estimators are approximately multivariate normally distributed, and estimators

for their variance-covariance matrices have been worked out; see, e.g., Self & Prentice

(1988); Therneau & Li (1999); Borgan et al. (2000), and Samuelsen et al. (2007). The

estimators based on (6) may be computed using the cch-command in the survival package

in R. Here method=”Prentice”, method=”SelfPrentice”, and method =”LinYing” give the

three estimators mentioned above.

For case-cohort data we may estimate the cumulative baseline hazard by a Breslow-

type estimator given as Ĥ0,cch(t; β̂, γ̂), where

Ĥ0,cch(t;β,γ) =
∑
ti≤t

di∑
j∈S̃(ti) w̃j exp

(
xjβ + zTj γ

) , (7)

and β̂ and γ̂ are obtained by maximizing (6). For the IPW estimator, the sampled risk

sets S̃(ti) and weights in (7) are as given above, so w̃j = 1 for cases and w̃j = N (0)/n(0)

for non-cases. For the Prentice estimator, we may use w̃j = N/n for all individuals in the

subcohort and let S̃(ti) = S(ti) (Prentice, 1986, p. 6).

3 Multiple imputation (MI) in Cox regression

In this section we outline methods for MI of missing covariate data in Cox regression in

analysis of cohort data, and their extension to sampled cohort data in which an expensive

covariate is missing for everyone outside the case-control sample. We assume data are

missing at random (MAR), which can be expressed as the assumption that the probability

of missingness in a given variable is independent of missing data conditional on observed

data (Rubin, 1987; Carpenter & Kenward, 2013, Chapter 1).

3.1 MI in full cohort studies

We refer to the book of Carpenter & Kenward (2013), for example, for an overview of the

theory of MI, and here focus on its use when the analysis model is a Cox regression. In

brief, the MI procedure involves imputing missing values in covariates by taking a random
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draw from the estimated posterior distribution of the missing data given the observed data

(including the outcome). This is repeated K times to give K ‘complete’ imputed data sets

in which missing values in covariates are filled in. The analysis model, in our case a Cox

regression, is then fitted to each of the K imputed data sets to give K estimates of the

regression coefficients. Pooled estimates and a corresponding variance-covariance matrix

are then obtained using ‘Rubin’s rules’ (e.g., Carpenter & Kenward, 2013, p. 45-46).

First consider a full cohort study in which a single covariate X has missing data, and

Z denotes a vector of fully observed covariates. It is assumed that outcome information

(T,D) is observed for all individuals in the cohort. The aim in MI is therefore to impute

missing values of X from the conditional distribution of X given Z = z, T = t and

D = d. It has been shown that when the analysis model is a Cox regression, as in (1), this

conditional distribution is not of any standard form, such as a normal distribution, which

presents a challenge for obtaining imputations. To address this, two main approaches have

been described for imputation of missing data on covariates in Cox regression.

The first is that of White & Royston (2009) who derived an approximate form for

the imputation model, which is a regression of X on z, d, and Ĥ(t), where Ĥ(t) denotes

the Nelson-Aalen estimate of the cumulative hazard at the individual’s event or censoring

time t. We refer to this approach as MI-Approx.

The second approach, described by Bartlett et al. (2015), uses rejection sampling and

an iterative procedure to impute missing values of X from the conditional distribution

that is compatible with the outcome (or ‘substantive’) model, which here is a Cox pro-

portional hazards model. The basis of the method of Bartlett et al. (2015) is that we,

for each iteration, draw a potential value for X from a ‘proposal distribution’, and then

use a ‘rejection rule’ to decide whether to accept the potential value as a draw from the

distribution of interest, i.e., the conditional distribution of X given Z = z, T = t and

D = d. In a given iteration, the rejection rule is to accept a potential value x∗ as an

imputed value for a missing value of X if

U ≤ exp{−H∗0 (t)ex
∗β∗+zTγ∗} if d = 0,

U ≤ H∗0 (t) exp{1 + x∗β∗ + γ(k)Tz −H∗0 (t)ex
∗β∗+zTγ∗} if d = 1.

(8)

Here U denotes a random draw from a standard uniform distribution, β∗,γ∗ denote pos-
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terior draws of the model parameters, obtained after fitting the Cox regression analysis

model to the current imputed data, and H∗0 (t) = Ĥ0,coh(t;β∗,γ∗) denotes the cumulative

baseline hazard obtained using these parameter draws; cf. formula (3). This approach is

referred to as the ‘substantive model compatible full conditional specification’ (SMC-FCS)

method. Following earlier work, we refer to it as MI-SMC.

MI-Approx involves specification of the model for each covariate with missingness

given the other covariates and the outcome, which in our context is f(X|Z, T,D). For

continuous X a conditional normal distribution is often assumed as an approximation.

This approximation is derived from assuming X is normally distributed conditional on Z,

in the case of continuous X. MI-SMC requires specification of the model f(X|Z), which

typically takes a more standard form than f(X|Z, T,D). For a continuous X it is common

to assumes that f(X|Z) is a normal distribution. Because MI-SMC accommodates non-

linear terms in the Cox regression model, it is possible under this approach to instead

specify a distribution for a transformation g(X) (e.g. g(X) = logX) given Z, with the

imputations of g(X) then being back-transformed for use in the Cox regression including

X and Z. We refer to Bartlett et al. (2015) for a detailed discussion of compatibility of

models used in MI and imputation model mis-specification, including extensions to the

situation in which there is more than one covariate with missingness.

For overviews of the MI-Approx and MI-SMC methods in the content of Cox regression,

see Carpenter & Kenward (2013, Chapter 8), Keogh et al. (2018), and Keogh (2018).

The MI-Approx method has been found to perform well in a range of circumstances,

in particular for rare events. But it does not apply when there are non-linear terms

involving the missing covariate X in the proportional hazards model, including interactions

between X and Z. MI-SMC accommodates non-linear terms (including interactions)

because it obtains draws of X in such as way that they are drawn from a distribution that

is compatible with the proportional hazards model. MI-approx can be implemented using

the mice package in R and MI-SMC using the smcfcs package.

3.2 MI in sampled cohort studies

Nested case-control and case-cohort studies can be viewed as full cohort studies with

data missing for the expensive covariate X. The methods for MI in a full cohort study

9

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.

 14679469, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12624 by T

est, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



outlined in the preceding Section 3.1 can be applied directly to impute missing values

of X for individuals in the full cohort who were not sampled to the nested case-control

or case-cohort study. The use of MI in this way for both nested case-control and case-

cohort studies was described by Keogh & White (2013), who assessed the two imputation

approaches using simulation studies.

There are two main ways in which the use of MI in this setting differs from its use

in a more standard missing data setting. Firstly, for sampled cohort data the expensive

covariate is typically unmeasured for a very large proportion of the full cohort. This ap-

proach therefore involves imputing a large proportion of values for the expensive covariate,

and one might expect that the consequences of mis-specifying the imputation model could

be severe in this situation. Secondly, in the standard MI setting, the assumption that

data are missing at random (MAR) is a crucial assumption that we cannot be certain is

met. However, the MAR assumption for sampled cohort data follows by the design of the

studies, and in this sense the use of MI in this situation is ‘safer’ than in the standard

setting.

4 Supersampling of sampled cohorts

We now describe more in detail how we obtain a supersample for nested case-control and

case-cohort data, and how we may use MI to impute missing covariate values for the

supersample. In general, a supersampled nested case-control study is a standard nested

case-control study augmented with additional controls for each case, and a supersampled

case-cohort study is a standard case-cohort study augmented with an additional random

subcohort. In both types of study, the expensive covariate X is observed only for in-

dividuals in the original case-control sample, whereas Z, T , and D are observed for all

individuals in the supersample. The analysis makes use of the individuals in supersample,

but it does not use the remaining individuals in the full cohort. We start out by consid-

ering a supersampled case-cohort study since imputation is more straightforward for this

design than for the nested case-control design.
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4.1 Supersampling for case-cohort data

For a case-cohort study, we have a subcohort C̃ of size n selected by simple random

sampling from the full cohort C. The expensive covariate is measured for individuals in

the case-control sample C̃ ∪ {j | dj = 1}, but not for the remaining individuals in the

cohort. We now select another random sample C∗ of size n∗ from C \ C̃, i.e., from the

individuals in the cohort who are not in the original subcohort. In this way we obtain a

supersampled case-cohort study with subcohort C̃ ∪ C∗ of size n + n∗. Note that for the

supersampled case-cohort data, the expensive covariate X is not measured for individuals

in C∗ ∩ {j | dj = 0}, i.e., for individuals in the supersample who are not in the original

case-cohort sample. The inexpensive covariate, Z, is observed for all individuals in the

supersample. Because X is missing for individuals in C∗∩{j | dj = 0} we use MI to impute

it.

In Section 3.2 we outlined how a case-cohort study within a full cohort may be viewed

as a full cohort study with missing data, and imputation methods for full cohort data

can therefore be used. The supersampled case-cohort data is not a full cohort study, and

therefore a modified approach is needed to perform the imputation. Keogh et al. (2018)

have discussed how the MI-Approx and MI-SMC methods can be used for imputing missing

data on covariates within a case-cohort sample, assuming missingness is at random. The

supersampled case-cohort study represents a similar situation, except that the data on X

are missing by design and therefore the missingness in X is at random. Hence we may use

the imputation methods described by Keogh et al. (2018) as summarized in the following

paragraphs.

In MI-Approx the imputation model is a regression of X on z, d, and Ĥ(t). Here

Ĥ(t) is the Nelson-Aalen estimate of the cumulative hazard at the individual’s event or

censoring time t. Since the Nelson-Aalen estimate only depends on the Ti’s and Di’s, it

may be computed from the available data for the full cohort, and it is not computationally

intensive to obtain for large cohorts. The MI-Approx method can then be applied directly

in a supersampled case-cohort study, by fitting the imputation model using all individuals

in the supersampled data.

The MI-SMC approach requires an estimate H∗0 (t) of the cumulative baseline hazard

at each person’s event or censoring time; cf. formula (8). As outlined in Section 2.2, the
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cumulative baseline hazard can be estimated from a case-cohort study using Ĥ0,cch(t;β,γ)

as given in equation (7). This estimator can also be applied to the supersampled case-

cohort data. For the MI-SMC approach we then use H∗0 (t) = Ĥ0,cch(t;β∗,γ∗) computed

at each iteration of the MI-SMC procedure using posterior draws β∗, γ∗ of the model

parameters and the most recent set of imputed values of X. The MI-SMC approach also

involves estimating the distribution of X|Z, as draws of X from this distribution are used

as potential imputed values in the rejection sampling. The parameters of the distribution

of X|Z can be estimated from the supersampled subcohort, which is a random sample

from the full cohort.

After obtaining imputed values of X for individuals in the supersample using MI-

Approx or MI-SMC, a standard case-cohort analysis is applied to each imputed data set

and the parameter estimates and their standard errors combined using Rubin’s rules.

4.2 Supersampling for nested case-control data

In a nested case-control study, we for each i ∈ E select at random m controls from R(ti) \

{i}. The sampled risk set R̃(ti) consists of the case i and its sampled controls. The

expensive covariate is measured for individuals in the case-control sample ∪i∈ER̃(ti), but

not for the remaining individuals in the cohort. For each i ∈ E we now add more controls by

selecting at random m∗ individuals from R(ti)\R̃(ti). The set of these additional controls

is denoted R∗(ti). In this way we obtain a supersampled nested case-control study with

sampled risk sets R̃(ti) ∪ R∗(ti) of size m + m∗. Note that for the supersampled nested

case-control data, the expensive covariate is not measured for individuals in (∪i∈ER∗(ti))∩

{j | dj = 0}, i.e., for individuals in the supersample who are not in the original case-control

sample.

As described in Section 3.1, the aim of MI for cohort data is to impute a missing

value of X from the conditional distribution of X given the observed data Z = z, T = t

and D = d, and this may be achieved using the exact or an approximate conditional

distribution. As the extended subcohort C̃ ∪ C∗ for supersampled case-cohort data is a

random sample from the full cohort, this also applies (with d = 0) for supersampled case-

cohort data (Section 4.1). However, the controls in a supersampled nested case-control

study are not a random sample from the full cohort. Rather, if an event occurs at time s,
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all individuals with T > s are potential controls, including individuals who later become

a case. Therefore, in a supersampled nested case-control study, the missing value of X for

a control at time s should be imputed from the conditional distribution of X given Z = z

and T > s.

To see how this imputation model relates to the one for the full cohort and super-

sampled case-cohort data, we may for an individual with T > s introduce T (s) = s and

D(s) = 0, corresponding to the censored event time and event indicator we would have

if the individual had been censored at time s. Then the imputation model for a control

at time s may be given as the conditional distribution of X given Z = z, T (s) = s and

D(s) = 0. This is similar to the imputation model for the full cohort and supersampled

case-cohort data, but we condition on T (s) = s and D(s) = 0 rather than T = t and D = d.

Thus, for MI-Approx, we should use the Nelson-Aalen estimate evaluated at the time of

the case to which a control is matched, and not the control’s own censoring time.

To apply MI-SMC in a supersampled nested case-control study, we can use the cu-

mulative baseline hazard estimator (5). To obtain imputations for control individuals it

is appropriate to use the estimate H∗0 (s) = Ĥ0,ncc(s;β
∗,γ∗) obtained at the event time s

of the case to which the control is matched. We also require estimates of the parameters

of the distribution of X|Z, which can be obtained from a regression of X on Z in the

controls.

Some individuals can feature as controls for more than one case, and in both MI-

approx and MI-SMC we then obtain a new imputed value for each duplicate. After

obtaining imputed values of X for individuals in the supersample, a standard nested case-

control analysis is applied to each imputed data set and the parameter estimates and their

standard errors combined using Rubin’s rules.

5 Simulation study

5.1 Simulation aims and implementation

We use a simulation study to illustrate the methods described above and to assess their

performance. The simulation study is structured following the guidance by Morris et al.

(2019).
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Aims

The aims of the simulation study are to illustrate the proposed multiple imputation meth-

ods for analysis of supersampled nested case-control and case-cohort studies. Specifically

we wish to check that the methods give approximately unbiased estimates of the param-

eters of interest where expected, and to investigate the efficiency gains from the use of

supersampled data compared with the original study data. We also wish to check that

the standard errors obtained by Rubin’s rules are approximately unbiased, and that the

estimates have good coverage.

Data-generating mechanisms

Data are generated for a full cohort of N individuals. Three covariates, (X,Z1, Z2), are

generated for each individual. X is the expensive covariate, which we will later assume

is observed only in the nested case-control or case-cohort study, and (Z1, Z2) are cheaply

measured covariates. We generated Z1 from a standard normal distribution, and indepen-

dently Z2 from a Bernoulli distribution with probability 0.5. The expensive covariate X

was generated by

X = 0.25Z1 + 0.25Z2 + ε (9)

where ε, independent of Z1 and Z2, is a random variable with mean 0 and variance 1. The

distribution of ε was assumed to follow a normal distribution or a log-normal distribution

(shifted to have mean 0). The latter was generated as ε = eY −eσ2/2, where Y is N(0, σ2)-

distributed with σ = 0.694. Event times TE were generated from the Weibull hazard

model

h(t|x, z1, z2) = λEκt
κ−1eβXx+βZ1z1+βZ2z2+βXZ1xz1 .

We used shape parameter κ = 4 and values of the scale parameter λE as described below,

and considered a scenario with no interaction between X and Z1 using βX = 1, βZ1 = 0.5,

βZ2 = 1, βXZ1 = 0, and a scenario with an interaction between X and Z1 using βX = 1,

βZ1 = 0.5, βZ2 = 1, βXZ1 = 0.5. The scenario with interaction was only considered when

ε in (9) was normally distributed. Censoring times TC were generated from a Weibull

hazard model using shape and scale parameter values κ = 4 and λC , and independent of

14

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.

 14679469, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12624 by T

est, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the covariates. Administrative censoring was imposed at time 15 years. The observed time

for each individual is therefore T = min(TE , TC , 15) and D denotes the event indicator.

We consider two sample sizes for the cohort of N = 5000 and N = 25000. For all

six scenarios (two sample sizes, two distributions of X without interaction with Z1, one

distribution of X with interaction with Z1), the values of λE and λC were chosen to give

approximately 250 cases in the cohort (5% of individuals having the event when N = 5000

and 1% having the event when N = 25000) and approximately 35% of the individuals

administratively censored at time 15 years. Values used for λE and λC are shown in

Supplementary Table S1.

A nested case-control sample was obtained within the full cohort using all cases and

one control per case. A case-cohort sample was obtained by including all cases and a

random subcohort of 5% of the individuals when N = 5000 and 1% when N = 25000,

resulting in the subcohort being approximately the same size as the number of controls in

the nested case-control sample.

For both study designs we obtained a small superset sample and a large superset

sample. For the nested case-control study we obtained a small superset sample by selecting

3 additional controls for each case, giving 4 controls per case in total. For the large

superset sample we selected an additional 11 controls for each case, giving 12 controls per

case in total. For the case-cohort study we obtained a small superset sample by adding an

additional random subcohort of 15% of the individuals when N = 5000 and an additional

random subcohort of 3% of the individuals when N = 25000, both of which correspond to

a four-fold increase in the size of the subcohort. The large superset sample was obtained

by increasing the size of the subcohort 12 fold, corresponding to an additional 55% of

individuals when N = 5000 and an additional 11% of individuals when N = 25000.

In each simulated cohort, the covariate X was set to be missing for individuals not

in the original nested case-control or case-cohort data sets, except for when a full-cohort

analysis is being performed.

Target of analysis

The estimands of interest for the simulation study are the log hazard ratios (log HRs)

βX , βZ1, βZ2, and βXZ1 (in scenarios with the interaction), and their standard errors.
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Methods

For each simulated full cohort we performed the following analyses:

(i) a full cohort analysis assuming X,Z1, Z2 are fully observed on all individuals;

(ii) a traditional analysis of the nested case-control study and of the case-cohort study,

excluding individuals outside the case-control sample;

(iii) an analysis of the nested case-control or case-cohort sample in addition to the rest

of the cohort, assuming X is observed only in the nested case-control or case-cohort

sample and imputing X for individuals in the remainder of the full cohort using the

methods described in Section 3.2;

(iv) an analysis of the supersampled nested case-control or case-cohort study using a

small superset, assuming X is missing for the individuals in the superset who are

not in the original nested case-control or case-cohort study, and using the imputation

methods described in Section 4;

(v) as in (iv) but using the large superset.

In (iii) (Z1, Z2) are fully observed for individuals in the full cohort who are not in the

nested case-control or case-cohort study. In (iv) and (v) (Z1, Z2) are fully observed in

the supersampled nested case-control or case-cohort study. In all MI analyses we use 10

imputed data sets. In the MI-SMC analyses we used 500 iterations, and found that using

a lower number (200 iterations for example) could lead to bias; in particular for situation

(iii) with cohort size N = 25000. In the case-cohort study analyses we obtained estimates

using both the Prentice and IPW estimators. When the Prentice estimator was used in

the analysis, we also used the Prentice method to obtain the cumulative baseline hazard

estimates in MI-SMC, and similarly for the IPW estimator; see the final paragraph of

Section 2.2.

Performance measures

We generated nsim = 1000 data sets for each of the six full cohort scenarios. In each anal-

ysis we obtain estimates of the log HRs βX , βZ1, βZ2, and βXZ1 (in scenarios including
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the interaction term), and their model-based standard errors and 95% confidence inter-

vals (CIs). For each log HR we obtain an estimate of the bias n−1sim

∑nsim
j=1 (β̂j − β) and the

empirical standard deviation (‘Emp SE’)
√

(nsim − 1)−1
∑nsim

j=1 (β̂j − ¯̂
β)2, where β̂j denotes

the estimate from the jth simulated data set, β denotes the true value, and
¯̂
β denotes the

average of the nsim estimates. We also obtained the average of the model-based estimates

of the standard errors (‘Model SE’) of the log HR estimates, and the 95% coverage, mean-

ing the percentage of the nsim 95% CIs that contain the true value. A well-performing

method would have bias close to zero, Emp SE similar to Model SE, and coverage close

to the nominal level of 95%. To ease the comparison of the analysis methods, we for each

method also report the root mean squared error (‘RMSE’) and the relative efficiency (‘Rel

Eff’) of the log HR estimates relative to a full cohort analysis. RMSE is given as the square

root of the sum of the squared bias and Emp SE2, and it provides information about the

bias-variance trade-off for a method. Rel Eff is defined as the empirical variance from a

full cohort analysis (Emp SE2) divided by the empirical variance from a given analysis

method. For methods that are approximately unbiased, Rel Eff informs us how a method

compares to a full cohort analysis. For each performance measure we estimated the Monte

Carlo standard errors (Morris et al., 2019).

Software

The simulation was conducted in R and code enabling the simulation to be replicated are

provided at https://github.com/ruthkeogh/supersampling. We used the survival pack-

age, including the cch function for analysis of case-cohort studies. The multiple imputation

for the MI-Approx method was implemented using mice. For the MI-SMC imputation ap-

proach we used a modified version of the smcfcs function. For use with a case-cohort

study (standard or supersampled) modifications were made to smcfcs to allow an analysis

using the Prentice or IPW estimators. For use with a nested case-control study (standard

or supersampled) modifications were made to smcfcs so that potential imputations of X

considered in the rejection sampling are obtained from a regression of X on (Z1, Z2) using

data from the controls (which includes some cases) instead of non-cases. A further modi-

fication is that the cumulative baseline hazard estimate used in the imputation procedure

is obtained at the event time of the case in each individual’s matched set, rather than at
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their own censoring time. The modified version of smcfcs also restricts the function to

those components required for the analyses performed in this simulation, which can help

others to more easily follow the code to gain a better understanding of the analysis.

5.2 Simulation results

Tables 1 and 2 show the results for the full cohort of size 25000 for the nested case-control

study for the situations without the X × Z1 interaction and with the X × Z1 interaction

when ε in (9) is normally distributed. The results when there is no interaction and ε

follows a lognormal distribution (shifted to have mean zero) are given in Table 3. Note

that for the situations of Tables 1 and 2, the imputation model is correctly specified,

while it is mis-specified for the situation of Table 3. Tables 4–6 show the corresponding

results for the case-cohort setting using a full cohort of size 25000. In the main text we

show results from case-cohort analyses obtained using the IPW estimator. Results using

the Prentice estimator were also obtained and are shown in Supplementary Tables S2–S4.

Results for the full cohort of size 5000 are shown in Supplementary Tables S5–S7 for nested

case-control and S8–S10 for case-cohort.

As we expect, the full cohort analysis gives unbiased log HR estimates, correct standard

errors (comparing Emp SE with Model SE) and coverage at the nominal level.

[Insert Table 1 about here]

5.2.1 Nested case-control results

We first consider the situation without interaction (Table 1) when the imputation model

is correctly specified. Here a traditional nested case-control analysis gives a minor bias

in the estimates for all parameters. But the root mean square errors are very close to

the empirical SEs, so the bias is of little importance compared to the variability of the

estimates. The averages of the model-based SEs (‘Model SE’) are close to the empirical

standard deviations of the estimates (‘Emp SE’), and the method has coverage around

95%. The relative efficiency of the log HR estimates relative to the full cohort estimates

is somewhat below 20% for β̂X and β̂Z1 and somewhat below 30% for β̂Z2.

Method (iii), which uses the full cohort with X imputed for the individuals who are
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not in the nested case-control sample, gives unbiased log HR estimates, correct SEs and

fairly good coverage. The results are very similar using MI-Approx and MI-SMC. Method

(iii) results in substantial gains in efficiency relative to the traditional analysis; the relative

efficiencies are about 30% for β̂X and about 70% for β̂Z1 and β̂Z2. Thus, as known from

earlier work, the gain in efficiency is largest for the coefficients of Z1 and Z2 which are

assumed observed in the full cohort.

The methods using a supersampled nested case-control study perform well using both

MI-Approx and MI-SMC, giving approximately unbiased log HR estimates both for a

small and a large superset. The SEs are mainly correct and the coverage is close to 95%.

An exception is the MI-SMC estimate of βX , where the empirical SE is somewhat larger

than the model-based SE and the coverage is 90%.

As may be expected, the efficiencies for the supersampled nested case-control studies

relative to a full cohort analysis are between the relative efficiencies for the traditional

nested case-control analysis and method (iii) with imputation for the full cohort. More

specifically, we find that MI-Approx with a small/large superset was 79/82% efficient for

estimation of βX relative to method (iii). For βZ1 the corresponding relative efficiencies

were 57/76%, and for βZ2 they were 80/92%. This shows that a large part of the in-

formation contained in the full cohort may be extracted by using a supersample. Not

surprisingly, using a large superset typically results in smaller SEs and higher relative

efficiencies, especially for the coefficients of Z1 and Z2, though the gains in efficiency are

not substantial. Again an exception is the MI-SMC estimate of βX , where the empirical

SE is slightly larger for the large superset than the small superset.

[Insert Table 2 about here]

We then consider the situation with interaction (Table 2). Here a traditional nested

case-control analysis gives somewhat biased estimates for all parameters, except for the

interaction parameter βXZ1. But the root mean square errors are fairly close to the

empirical SEs, so the biases are clearly of less importance than the variability of the

estimates. The model SEs tend to be slightly too small, but coverage is close to 95%.

The relative efficiency of the log HR estimates relative to the full cohort estimates are all

between 8% and 17%.
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As noted in the last paragraph of Section 3.1, MI-approx does not apply for the in-

teraction model. This is the reason why this imputation method gives substantial bias in

parameter estimates (for the full cohort and the supersamples) for all parameters except

βZ2. But MI-SMC performs well for the interaction model. Method (iii) with MI-SMC

imputation for the full cohort gives unbiased estimates, correct SEs and good coverage.

Further, there is a huge gain in efficiency relative to the traditional analysis; the relative

efficiencies are around 60% for β̂X and β̂Z2, and around 90% for β̂Z1 and β̂XZ1.

The supersampled nested case-control studies perform fairly well for the interaction

model when using MI-SMC. There is a small bias in the estimates of βX , βZ1 and βXZ1,

and the model SEs tend to be slightly too large for the small superset. The coverage

is fairly close to 95% for all parameters, but a bit higher for the small than the large

superset. The relative efficiencies for the small superset are about 30% for β̂X and β̂Z2,

40% for β̂Z1, and 20% for β̂XZ1. For the large superset the corresponding values are about

40%, 50%, and 25%. These relative efficiencies are clearly lower than those of method (iii).

But the relative efficiencies for the small superset are about 2.5 times higher than those

of the traditional nested case-control analysis, while they are at least 3 times higher for

the large superset. So there is a lot to gain by using a supersampled nested case-control

study compared to a traditional analysis.

[Insert Table 3 about here]

Finally, we consider the situation where there is no interaction, but the imputation

model is mis-specified (Table 3). Here a full cohort analysis gives similar results as for the

correctly specified imputation model, except that the estimate of βX has clearly lower SE

than in Table 1. Also a traditional nested case-control analysis gives similar results as for

the correctly specified imputation model, but the estimates are a bit more biased and the

SEs are somewhat larger than in Table 1. Imputation using MI-Approx gives substantial

bias for all parameter estimates both when X is imputed for the full cohort [method (iii)]

and when imputation is restricted to a supersample [methods (iv) and (v)]. Method (iii)

with MI-SMC imputation for the full cohort also gives a substantial bias. But method (iv),

which uses MI-SMC imputation with a small superset, gives almost unbiased estimates,

correct SEs, and coverage close to 95%. Further, the relative efficiencies of method (iv) are
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more than twice those of the traditional nested case-control analysis. MI-SMC imputation

with the large superset [method (v)] gives somewhat larger biases, and the model SE for

the estimate of βX is too low, which results in poor coverage for this parameter.

For the situation without interaction, the results for cohort size 5000 (Supplementary

Table S5) are quite similar to those obtained with cohort size 25000. For the situation with

interaction, the broad picture for cohort size 5000 (Supplementary Table S6) is similar to

that for cohort size 25000. But the traditional method has slightly less bias for cohort

size 5000 and most SEs are a bit smaller. The relative efficiencies of the supersampling

methods using MI-SMC are similar or larger for cohort size 5000 compared to cohort size

25000. Finally, when the imputation model is mis-specified, the results for cohort size 5000

(Supplementary Table S7) are broadly speaking similar to those obtained with cohort size

25000. But using MI-SMC with a large superset results in a larger bias for estimation of

βX and a smaller bias for estimation of βZ2.

5.2.2 Case-cohort results

We first consider the situation without interaction (Table 4). Here the traditional IPW

estimator for case-cohort data gives a fairly large bias in the estimate of βX and some bias

in the estimate of βZ1. The model SEs tend to be too small, and coverage is too low, in

particular for βX and βZ1.

[Insert Table 4 about here]

Method (iii), which uses the full cohort with X imputed for the individuals who are not

in the case-cohort sample, gives result which are close to those obtained with method (iii)

for nested case-control data (Table 1). Thus, both for MI-Approx and MI-SMC, we obtain

unbiased log HR estimates, correct SEs and good coverage. Also the relative efficiencies

are close to those obtained with method (iii) for nested case-control data.

The methods using supersampled case-cohort data give approximately unbiased esti-

mates for all parameters. For estimation of βZ1 and βZ2, the empirical SEs are fairly close

to those obtained for the supersampled nested case-control studies. But the model SEs

are slightly larger, and as a consequence of this the coverages are a bit higher than 95%.

For estimation of βX , the empirical SEs are higher for MI-SMC than MI-Approx, but the
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model SEs are quite similar.

[Insert Table 5 about here]

For the situation with interaction (Table 5), the traditional IPW estimator gives a

fairly large bias in the estimates of βX and βZ1, and the model SEs are too small for

all estimates. As for nested case-control studies, MI-Approx gives substantial bias for

the interaction model. But MI-SMC performs well, and for method (iii) with MI-SMC

imputation for the full cohort we obtain results that are close to those obtained with nested

case-control data. For supersampled case-cohort data using MI-SMC, the model SEs tend

to be somewhat too large and coverage too high. The empirical SEs are about the same as

those obtained with supersampled nested case-control data, except for estimation of the

interaction parameter βXZ1 where the empirical SEs for supersampled nested case-control

data are about 50% larger than for supersampled case-cohort data.

[Insert Table 6 about here]

The results when there is no interaction, but the imputation model is mis-specified

(Table 6), are fairly similar to those for nested case-control sampling. But the classical

method for case-cohort has lower SEs for estimation of βX than nested case-control, and

the supersampled case-cohort data give a substantial bias in the estimate of βZ2 both for

a small and a large superset.

For cohort size 5000 and no interaction (Supplementary Table S8), the traditional

IPW estimator typically gives less biased estimates with smaller SEs compared to the

results for cohort size 25000. However, the estimates for the supersampling methods tend

to be slightly more biased when N = 5000 than for N = 25000. But also for these

estimates, the SEs tend to be somewhat smaller for N = 5000 than for N = 25000. For

the situation with interaction (Supplementary Table S9), both the traditional estimates

and the supersampling estimates tend to be somewhat less biased and have smaller SEs for

cohort size 5000 than for cohorts size 25000. The relative efficiencies of the supersampling

methods using MI-SMC are somewhat larger for cohort size 5000 compared to cohort size

25000.
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Supplementary Tables S2-S4 show results from case-cohort analyses using the Prentice

estimator. These show that typically the traditional Prentice estimator gives less bias,

but larger SEs than the IPW estimator. For supersampled data there is no systematic

difference in the biases of the two methods, but the IPW estimator gives clearly lower SEs

than Prentice’s estimator.

6 Discussion

In this paper we have proposed a supersampling approach for nested case-control and

case-cohort studies, in which a nested case-control or case-cohort sample is supplemented

with additional controls. An expensive covariate is assumed to be measured only on the

original nested case-control or case-cohort sample, but cheaply measured covariates are

measured for all individuals in the supersample.

We outlined a method for analysis of supersampled data, which involves imputing

missing data on the expensive covariate for the individuals in the supersample who are

not in the original nested case-control or case-cohort sample. Our focus was on two MI

methods, one using an approximate imputation model (MI-Approx) and one that uses

rejection sampling to obtain draws of the missing covariate from a posterior distribution

that is compatible with the Cox proportional hazards model used for the main analysis

(MI-SMC). Both imputation approaches were originally proposed to enable imputation of

missing covariate data in Cox regression analyses based on full cohorts under a missing at

random assumption (White & Royston, 2009; Bartlett et al., 2015), before being modified

for use in nested case-control and case-cohort samples with missing data (Keogh et al.,

2018). The supersampled nested case-control or case-cohort study can be considered as a

nested case-control or case-cohort study with a larger number of controls and with missing

data on the expensive covariate. Hence the MI-Approx and MI-SMC methods described

by Keogh et al. (2018) can be applied. However, when imputing in a supersampled nested

case-control study, one should use the time of the case to which a control is matched and

not the control’s own censoring time.

We used a simulation study to assess the proposed imputation methods for analysis of

supersampled nested case-control and case-cohort studies, focusing on a large underlying

cohort with a low event rate, which is realistic for situations in which these study designs
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are likely to be used. Small and large supersets were considered, in which the number

of controls per case (nested case-control study) or the size of the subcohort (case-cohort

study) was increased 4 fold or 12 fold compared with the original sample. We compared

analyses of supersampled data using MI-Approx and MI-SMC with a full cohort analysis,

with a traditional analysis of the original nested case-control or case-cohort data, and

with an MI analysis of the nested case-control or case-cohort data where the expensive

covariate is imputed for all individuals in the cohort who are not in the original nested

case-control or case-cohort data sample. The supersampled data sets with small and large

supersets can be viewed as lying in between the extremes of using the original sample with

no information from the rest of the cohort, and using all available information from the

rest of the cohort.

In the absence of an interaction term in the analysis model the MI-Approx and MI-

SMC analyses of the supersampled studies both perform well when the imputation model

is correctly specified, giving approximately unbiased estimates of association and approx-

imately correct standard errors and coverage. This was true for both nested case-control

and case-cohort studies. The good performance of MI-Approx in these situations could

be expected, since we consider a situation with a low event rate. We showed substantial

gains in efficiency in the supersample analyses compared with the traditional analyses of

nested case-control and case-cohort data. These gains were greater for the fully observed

covariates compared to the covariate missing by design and imputed for the individuals in

the supersample who were not in the original nested case-control or case-cohort sample.

Our simulation results for a correctly specified imputation model further showed that

when the analysis model includes an interaction between the covariate with missingness

and another covariate, MI-Approx gives biased estimates while MI-SMC gives approxi-

mately unbiased estimates. This was expected and has been shown in other studies using

the two methods. Theory shows the MI-Approx method does not work well in combina-

tion with non-linear terms in the analysis model, whereas MI-SMC handles this situation

because the imputations are drawn from a distribution that is compatible with the anal-

ysis model. MI-Approx also gives biased estimates in the absence of an interaction term

when the imputation model is mis-specified. For this situation also MI-SMC imputation

for the full cohort gives a substantial bias. This illustrates that the consequences of mis-
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specifying the imputation model may be severe when imputing the X-values for a large

cohort. But MI-SMC imputation for supersampled data gives quite good results, in partic-

ular for nested case-control for the small superset. Thus one advantage of supersampling

compared with using information from the full cohort, is that the impact of a mis-specified

imputation model will be less severe as a lower proportion of the data is imputed.

When the distribution of X given Z is skewed, as is the case for our mis-specified

imputation model scenario, in additional investigations we explored whether the perfor-

mance of MI-SMC imputation may be improved by assuming logX |Z to be normally

distributed when performing the imputations, which approximately matches the data gen-

erating distribution for X. Then, as shown in Supplementary Tables S11 and S12, results

from MI-SMC imputation are improved for full cohort imputation method for both nested

case-control and case-cohort studies. However, the estimates obtained for the supersam-

pled data when using this model in the MI-SMC imputation tend to have more bias. We

note that the true distribution of X|Z differs in the full cohort and in the supersampled

data. These findings demonstrate the importance of checking that the assumed imputation

model is approximately correctly specified.

The MI-SMC approach required a large number of iterations, and it is considerably

more computationally intensive than MI-Approx; see Supplementary Table S13 for an

example of computing times for the various methods. Thus computational efficiency is an

advantage of the MI-Approx method when there are no interactions (or other non-linear

terms). We used 500 iterations for the MI-SMC method, which is considerably larger than

the standard 10 iterations that are typically used in MI in a general context. Nevertheless,

small biases from the MI-SMC approach may be attributed to minor lack of convergence.

It would be advantageous if the software could be extended to incorporate straightforward

ways of assessing convergence in MI-SMC. When using MI-SMC we recommend using

imputed values from MI-Approx as starting values for the iterative procedure.

In our description of the methods and in the simulation study we focused on a setting

in which there is a single expensive covariate, X, that is observed only in the original

nested case-control or case-cohort sample. The imputation methods used therefore only

needed to impute a single covariate. In general there may be more than one covariate that

can only be observed on the original sample. Both imputation methods used (MI-Approx
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and MI-SMC) extend easily to allow several covariates to be imputed, and both do this

using the chained equations approach (White et al., 2011; Carpenter & Kenward, 2013).

There are a number of further investigations that would be of interest to consider in

future work. We did not consider auxiliary variables that are correlated with the expensive

missing covariate, but which are not of independent interest as covariates in the analysis

model. Inclusion of such auxiliary variables in the imputation model has previously been

found to improve efficiency of estimates of the coefficient for the expensive covariate, and

would be of interest to consider in further work in the supersampling context. Further,

we have only considered the classical versions of the nested case-control and case-cohort

designs, where the controls/subcohort are selected by simple random sampling (Thomas,

1977; Prentice, 1986). Langholz & Borgan (1995) and Borgan et al. (2000) have developed

stratified versions of the cohort sampling designs that make it possible to incorporate

information on auxillary variabes into the sampling process in order to obtain more in-

formative samples of controls/subcohort. One then classifies the cohort individuals into a

number of strata according to their values of the auxilary variables, and selects the con-

trols/subcohort by stratified random sampling. In this way, one may increase the variation

of the expensive covariate in the case-control sample, and thereby achieve a more efficient

estimation of the effect of this covariate. It would be of interest to study the use of MI for

supersampled cohort data, where the original sample and/or the supersample is selected

by stratified random sampling.

To enable efficient use of data in supersampled nested case-control and case-cohort

studies we focused on the use of MI. Alternative methods of analysis for supersampled

studies would be of interest to consider. The supersampling approach could be viewed as

a two-stage design in which a nested case-control or case-cohort sample is obtained (Phase

I sample) and then certain information is only obtained in a Phase II sample, and one

possible alternative analysis approach would be to use inverse probability weighting.

In summary, use of supersampling in nested case-control and case-cohort studies, com-

bined with an MI analysis, can enable gains in efficiency over traditional analyses of these

sampled cohort studies, which ignore information available on individuals in the cohort

but not in the case-control sample. In many situations the cohort underlying a nested

case-control or case-cohort sample is very large. Making use of data for the full cohort
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on cheaply measured covariates using MI may be extremely computationally expensive

or even infeasible in this case. It may also result in bias if the imputation model is mis-

specified. Supersampling provides a practical alternative which combines computational

feasibility and robustness for mis-specified imputation models with good efficiency relative

to using the full cohort information.

Supporting information

Additional information for this article is available online.
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Table 1: Nested case-control: Results for scenario with full cohort size N = 25000 and
no interaction between X and Z1. SS: supersampled. MC errors were: ≤ 0.009 for Bias,
≤ 0.006 for EmpSE, ≤ 0.005 for Model SE, ≤ 0.009 for Coverage, ≤ 0.046 for Rel Eff.

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE

Results for βX
Full cohort - 0.002 0.060 0.059 0.943 1.000 0.060
Traditional NCC - 0.029 0.152 0.148 0.945 0.155 0.154
NCC within full cohort MI approx -0.012 0.105 0.105 0.931 0.323 0.105
NCC within full cohort MI SMC 0.004 0.108 0.104 0.926 0.304 0.108
SS NCC, small superset MI approx 0.017 0.119 0.122 0.954 0.251 0.120
SS NCC, small superset MI SMC 0.010 0.125 0.125 0.950 0.229 0.125
SS NCC, large superset MI approx 0.010 0.116 0.112 0.931 0.265 0.116
SS NCC, large superset MI SMC -0.002 0.132 0.117 0.901 0.205 0.132

Results for βZ1

Full cohort - -0.000 0.059 0.060 0.946 1.000 0.059
Traditional NCC - 0.010 0.139 0.135 0.944 0.180 0.140
NCC within full cohort MI approx -0.009 0.069 0.073 0.957 0.726 0.070
NCC within full cohort MI SMC 0.002 0.071 0.073 0.956 0.704 0.071
SS NCC, small superset MI approx 0.004 0.091 0.094 0.950 0.420 0.091
SS NCC, small superset MI SMC 0.004 0.092 0.096 0.949 0.415 0.092
SS NCC, large superset MI approx 0.001 0.079 0.081 0.960 0.557 0.079
SS NCC, large superset MI SMC 0.003 0.084 0.084 0.949 0.493 0.084

Results for βZ2

Full cohort - 0.005 0.153 0.151 0.942 1.000 0.153
Traditional NCC - 0.015 0.282 0.280 0.955 0.293 0.282
NCC within full cohort MI approx -0.011 0.182 0.177 0.938 0.706 0.182
NCC within full cohort MI SMC 0.000 0.183 0.177 0.939 0.693 0.183
SS NCC, small superset MI approx -0.002 0.204 0.206 0.953 0.561 0.204
SS NCC, small superset MI SMC 0.002 0.209 0.209 0.953 0.535 0.209
SS NCC, large superset MI approx -0.007 0.190 0.185 0.940 0.648 0.190
SS NCC, large superset MI SMC -0.002 0.197 0.193 0.944 0.604 0.197
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Table 2: Nested case-control: Results for scenario with full cohort size N = 25000 and
interaction between X and Z1. SS: supersampled. MC errors were: ≤ 0.014 for Bias,
≤ 0.010 for EmpSE, ≤ 0.007 for Model SE, ≤ 0.015 for Coverage, ≤ 0.076 for Rel Eff.

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE

Results for βX
Full cohort - 0.009 0.093 0.091 0.946 1.000 0.094
Traditional NCC - 0.081 0.262 0.240 0.953 0.127 0.274
NCC within full cohort MI approx 0.254 0.146 0.152 0.623 0.409 0.292
NCC within full cohort MI SMC 0.011 0.115 0.116 0.951 0.652 0.116
SS NCC, small superset MI approx 0.096 0.174 0.182 0.955 0.286 0.199
SS NCC, small superset MI SMC 0.037 0.166 0.179 0.964 0.313 0.170
SS NCC, large superset MI approx 0.133 0.164 0.156 0.872 0.321 0.212
SS NCC, large superset MI SMC 0.028 0.151 0.152 0.945 0.381 0.153

Results for βZ1

Full cohort - 0.014 0.119 0.121 0.957 1.000 0.119
Traditional NCC - 0.070 0.291 0.278 0.947 0.166 0.300
NCC within full cohort MI approx 0.453 0.125 0.191 0.267 0.896 0.470
NCC within full cohort MI SMC 0.015 0.124 0.126 0.963 0.922 0.125
SS NCC, small superset MI approx 0.097 0.186 0.208 0.962 0.407 0.210
SS NCC, small superset MI SMC 0.058 0.186 0.199 0.966 0.406 0.195
SS NCC, large superset MI approx 0.153 0.159 0.184 0.922 0.554 0.221
SS NCC, large superset MI SMC 0.073 0.167 0.171 0.945 0.506 0.182

Results for βZ2

Full cohort - 0.006 0.147 0.146 0.953 1.000 0.147
Traditional NCC - 0.057 0.431 0.412 0.954 0.116 0.434
NCC within full cohort MI approx -0.051 0.180 0.192 0.943 0.664 0.187
NCC within full cohort MI SMC 0.000 0.195 0.190 0.945 0.565 0.195
SS NCC, small superset MI approx 0.025 0.260 0.277 0.971 0.319 0.261
SS NCC, small superset MI SMC 0.010 0.267 0.284 0.970 0.303 0.267
SS NCC, large superset MI approx 0.012 0.221 0.226 0.952 0.440 0.222
SS NCC, large superset MI SMC -0.010 0.229 0.239 0.955 0.410 0.229

Results for βXZ1

Full cohort - -0.005 0.062 0.062 0.954 1.000 0.063
Traditional NCC - -0.000 0.219 0.212 0.951 0.081 0.219
NCC within full cohort MI approx -0.422 0.057 0.115 0.006 1.196 0.426
NCC within full cohort MI SMC -0.006 0.068 0.069 0.956 0.843 0.068
SS NCC, small superset MI approx -0.116 0.118 0.159 0.943 0.278 0.166
SS NCC, small superset MI SMC -0.032 0.139 0.155 0.962 0.201 0.143
SS NCC, large superset MI approx -0.184 0.094 0.129 0.753 0.440 0.207
SS NCC, large superset MI SMC -0.054 0.123 0.126 0.928 0.256 0.134
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Table 3: Nested case-control: Results for scenario with N = 25000 and no interaction
between X and Z1, when X|Z1, Z2 has a non-normal distribution. MI-Approx assumes a
normal distribution for X|Z1, Z2, Ĥ0(s) and MI-SMC assumes a normal distribution for
X|Z1, Z2. SS: supersampled.

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE

Results for βX
Full cohort - 0.002 0.027 0.026 0.945 1.000 0.027
Traditional NCC - 0.052 0.172 0.160 0.950 0.025 0.179
NCC within full cohort MI approx -0.311 0.064 0.054 0.000 0.180 0.317
NCC within full cohort MI SMC -0.260 0.058 0.047 0.000 0.220 0.266
SS NCC, small superset MI approx -0.332 0.061 0.073 0.008 0.197 0.337
SS NCC, small superset MI SMC 0.020 0.110 0.102 0.937 0.061 0.112
SS NCC, large superset MI approx -0.365 0.059 0.055 0.001 0.213 0.369
SS NCC, large superset MI SMC -0.038 0.101 0.072 0.784 0.072 0.108

Results for βZ1

Full cohort - -0.001 0.060 0.060 0.952 1.000 0.060
Traditional NCC - 0.028 0.184 0.175 0.955 0.108 0.186
NCC within full cohort MI approx 0.120 0.083 0.088 0.733 0.527 0.146
NCC within full cohort MI SMC 0.171 0.088 0.089 0.526 0.469 0.193
SS NCC, small superset MI approx 0.154 0.104 0.112 0.762 0.339 0.186
SS NCC, small superset MI SMC -0.003 0.113 0.117 0.956 0.287 0.113
SS NCC, large superset MI approx 0.165 0.092 0.093 0.592 0.434 0.189
SS NCC, large superset MI SMC -0.024 0.098 0.099 0.937 0.379 0.101

Results for βZ2

Full cohort - 0.006 0.138 0.140 0.960 1.000 0.138
Traditional NCC - 0.037 0.377 0.364 0.955 0.134 0.378
NCC within full cohort MI approx 0.197 0.189 0.196 0.843 0.531 0.273
NCC within full cohort MI SMC 0.290 0.205 0.200 0.698 0.449 0.355
SS NCC, small superset MI approx 0.294 0.239 0.242 0.809 0.331 0.379
SS NCC, small superset MI SMC -0.028 0.252 0.255 0.945 0.299 0.254
SS NCC, large superset MI approx 0.297 0.220 0.206 0.708 0.393 0.370
SS NCC, large superset MI SMC -0.088 0.221 0.218 0.932 0.387 0.238
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Table 4: Case-cohort with IPW estimator: Results for scenario with full cohort size
N = 25000 and no interaction between X and Z1. SS: supersampled. MC errors were:
≤ 0.011 for Bias, ≤ 0.008 for EmpSE, ≤ 0.005 for Model SE, ≤ 0.012 for Coverage, ≤ 0.040
for Rel Eff.

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE

Results for βX
Full cohort - 0.002 0.060 0.059 0.943 1.000 0.060
Traditional case-cohort - 0.081 0.209 0.159 0.821 0.082 0.224
Case-cohort within full cohort MI approx -0.012 0.107 0.111 0.931 0.309 0.108
Case-cohort within full cohort MI SMC 0.004 0.109 0.110 0.931 0.301 0.109
SS case-cohort, small superset MI approx 0.015 0.121 0.160 0.988 0.242 0.122
SS case-cohort, small superset MI SMC 0.031 0.156 0.163 0.934 0.147 0.159
SS case-cohort, large superset MI approx -0.004 0.111 0.133 0.968 0.286 0.111
SS case-cohort, large superset MI SMC 0.005 0.153 0.142 0.901 0.153 0.153

Results for βZ1

Full cohort - -0.000 0.059 0.060 0.946 1.000 0.059
Traditional case-cohort - 0.036 0.191 0.158 0.877 0.096 0.194
Case-cohort within full cohort MI approx -0.009 0.074 0.074 0.940 0.635 0.075
Case-cohort within full cohort MI SMC 0.002 0.075 0.074 0.948 0.623 0.075
SS case-cohort, small superset MI approx 0.007 0.105 0.121 0.978 0.321 0.105
SS case-cohort, small superset MI SMC 0.014 0.113 0.123 0.957 0.274 0.114
SS case-cohort, large superset MI approx -0.005 0.083 0.094 0.970 0.509 0.083
SS case-cohort, large superset MI SMC 0.005 0.092 0.099 0.961 0.413 0.092

Results for βZ2

Full cohort - 0.005 0.153 0.151 0.942 1.000 0.153
Traditional case-cohort - 0.021 0.340 0.306 0.926 0.202 0.340
Case-cohort within full cohort MI approx -0.006 0.185 0.180 0.935 0.681 0.185
Case-cohort within full cohort MI SMC 0.007 0.183 0.181 0.943 0.698 0.183
SS case-cohort, small superset MI approx 0.003 0.211 0.236 0.961 0.526 0.211
SS case-cohort, small superset MI SMC 0.015 0.227 0.245 0.969 0.451 0.228
SS case-cohort, large superset MI approx -0.005 0.191 0.200 0.956 0.639 0.191
SS case-cohort, large superset MI SMC 0.011 0.209 0.213 0.950 0.535 0.209
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Table 5: Case-cohort with IPW estimator: Results for scenario with full cohort size
N = 25000 and interaction between X and Z1. SS: supersampled. MC errors were:
≤ 0.015 for Bias, ≤ 0.011 for EmpSE, ≤ 0.007 for Model SE, ≤ 0.016 for Coverage,
≤ 0.053 for Rel Eff.

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for βX
Full cohort - 0.009 0.093 0.091 0.946 1.000 0.094
Traditional case-cohort - 0.106 0.276 0.210 0.822 0.114 0.296
Case-cohort within full cohort MI approx 0.270 0.153 0.156 0.584 0.369 0.310
Case-cohort within full cohort MI SMC 0.009 0.121 0.120 0.951 0.596 0.121
SS case-cohort, small superset MI approx 0.160 0.186 0.265 0.976 0.250 0.245
SS case-cohort, small superset MI SMC 0.035 0.182 0.211 0.970 0.263 0.185
SS case-cohort, large superset MI approx 0.212 0.163 0.227 0.926 0.327 0.267
SS case-cohort, large superset MI SMC -0.008 0.160 0.176 0.963 0.340 0.160

Results for βZ1

Full cohort - 0.014 0.119 0.122 0.957 1.000 0.120
Traditional case-cohort - 0.112 0.308 0.256 0.890 0.150 0.328
Case-cohort within full cohort MI approx 0.452 0.130 0.192 0.271 0.845 0.470
Case-cohort within full cohort MI SMC 0.016 0.125 0.127 0.957 0.914 0.126
SS case-cohort, small superset MI approx 0.233 0.176 0.358 0.984 0.460 0.292
SS case-cohort, small superset MI SMC 0.066 0.177 0.217 0.971 0.452 0.189
SS case-cohort, large superset MI approx 0.334 0.148 0.313 0.961 0.649 0.365
SS case-cohort, large superset MI SMC 0.052 0.145 0.179 0.984 0.673 0.154

Results for βZ2

Full cohort - 0.006 0.147 0.147 0.953 1.000 0.147
Traditional case-cohort - 0.002 0.490 0.384 0.854 0.091 0.489
Case-cohort within full cohort MI approx -0.037 0.190 0.198 0.952 0.604 0.193
Case-cohort within full cohort MI SMC 0.007 0.200 0.194 0.943 0.544 0.200
SS case-cohort, small superset MI approx -0.005 0.269 0.399 0.994 0.299 0.269
SS case-cohort, small superset MI SMC 0.008 0.281 0.372 0.990 0.275 0.281
SS case-cohort, large superset MI approx -0.025 0.221 0.298 0.988 0.447 0.222
SS case-cohort, large superset MI SMC 0.005 0.237 0.294 0.985 0.387 0.237

Results for βXZ1

Full cohort - -0.005 0.063 0.062 0.954 1.000 0.063
Traditional case-cohort - -0.021 0.148 0.122 0.894 0.180 0.149
Case-cohort within full cohort MI approx -0.426 0.058 0.115 0.005 1.149 0.430
Case-cohort within full cohort MI SMC -0.005 0.070 0.070 0.950 0.794 0.070
SS case-cohort, small superset MI approx -0.217 0.104 0.250 0.994 0.364 0.241
SS case-cohort, small superset MI SMC -0.025 0.091 0.128 0.992 0.475 0.094
SS case-cohort, large superset MI approx -0.329 0.087 0.215 0.821 0.522 0.340
SS case-cohort, large superset MI SMC -0.032 0.084 0.110 0.989 0.553 0.090
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Table 6: Case-cohort: Results for scenario with N = 25000 and no interaction between
X and Z1, when X|Z1, Z2 has a non-normal distribution. MI-Approx assumes a normal
distribution for X|Z1, Z2, Ĥ(t) and MI-SMC assumes a normal distribution for X|Z1, Z2.
SS: supersampled.

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for βX
Full cohort - 0.002 0.027 0.026 0.944 1.000 0.027
Traditional case-cohort - 0.040 0.069 0.046 0.642 0.157 0.079
Case-cohort within full cohort MI approx -0.340 0.065 0.055 0.000 0.175 0.346
Case-cohort within full cohort MI SMC -0.276 0.060 0.049 0.000 0.206 0.283
SS case-cohort, small superset MI approx -0.260 0.071 0.103 0.229 0.147 0.269
SS case-cohort, small superset MI SMC 0.052 0.053 0.043 0.637 0.264 0.074
SS case-cohort, large superset MI approx -0.314 0.068 0.078 0.015 0.161 0.321
SS case-cohort, large superset MI SMC -0.025 0.079 0.050 0.824 0.118 0.083

Results for βZ1

Full cohort - -0.001 0.061 0.060 0.951 1.000 0.061
Traditional case-cohort - 0.020 0.192 0.147 0.858 0.099 0.193
Case-cohort within full cohort MI approx 0.131 0.087 0.090 0.705 0.489 0.157
Case-cohort within full cohort MI SMC 0.187 0.092 0.091 0.455 0.433 0.209
SS case-cohort, small superset MI approx 0.141 0.109 0.175 0.963 0.309 0.178
SS case-cohort, small superset MI SMC -0.050 0.113 0.126 0.945 0.289 0.123
SS case-cohort, large superset MI approx 0.134 0.095 0.128 0.887 0.406 0.165
SS case-cohort, large superset MI SMC -0.049 0.104 0.118 0.939 0.339 0.115

Results for βZ2

Full cohort - 0.006 0.138 0.140 0.960 1.000 0.138
Traditional case-cohort - 0.006 0.446 0.330 0.852 0.096 0.446
Case-cohort within full cohort MI approx 0.225 0.195 0.197 0.802 0.503 0.297
Case-cohort within full cohort MI SMC 0.328 0.215 0.205 0.635 0.413 0.393
SS case-cohort, small superset MI approx 0.220 0.228 0.359 0.986 0.367 0.317
SS case-cohort, small superset MI SMC -0.126 0.239 0.249 0.922 0.334 0.270
SS case-cohort, large superset MI approx 0.225 0.205 0.260 0.923 0.456 0.304
SS case-cohort, large superset MI SMC -0.144 0.219 0.239 0.902 0.397 0.262
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