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Abstract

Forecasts based on epidemiological modelling have played an important role in shaping

public policy throughout the COVID-19 pandemic. This modelling combines knowledge

about infectious disease dynamics with the subjective opinion of the researcher who devel-

ops and refines the model and often also adjusts model outputs. Developing a forecast

model is difficult, resource- and time-consuming. It is therefore worth asking what modelling

is able to add beyond the subjective opinion of the researcher alone. To investigate this, we

analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany

and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We

compared crowd forecasts elicited from researchers and volunteers, against a) forecasts

from two semi-mechanistic models based on common epidemiological assumptions and b)

the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts,

despite being overconfident, to outperform all other methods across all forecast horizons

when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks

ahead: 0.89). Forecasts based on computational models performed comparably better

when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and

human judgement can complement each other in important ways.

Author Summary

Mathematical models of COVID-19 have played a key role in informing governments

across the world. While mathematical models are informed by our knowledge of infec-

tious disease dynamics, they are ultimately developed and iteratively adjusted by the

researchers and shaped by their subjective opinions. To investigate what modelling is able

to add beyond the subjective opinion of the researcher alone, we compared human fore-

casts with model-based predictions of COVID-19 cases and deaths submitted to the so-
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called German/Polish Forecast Hub (which collates a variety of models from a range of

teams). We found that our human forecasts consistently outperformed an aggregate of all

available model-based forecasts when predicting cases, but not when predicting deaths.

Our findings suggest that human insight may be most valuable when forecasting highly

uncertain quantities, which depend on many factors that are hard to model using equa-

tions, while mathematical models may be most useful in settings like predicting deaths,

where leading indicators with a clear connection to the target variable are available. This

potentially has very relevant policy implications, as agencies informing policy-makers

could benefit from routinely eliciting human forecasts in addition to model-based predic-

tions to inform policies.

Introduction

Infectious disease modelling has a long tradition and has helped inform public health decisions

both through scenario modelling, as well as actual forecasts of (among others) influenza [e.g.

1,2–4], dengue fever [e.g. 5,6,7], ebola [e.g. 8,9], chikungunya [e.g. 10,11] and now COVID-19

[e.g. 12,13–17]. Applications of epidemiological models differ in the way they make statements

about the future. Forecasts aim to predict the future as it will occur, while scenario modelling

and projections aim to represent what the future could look like under certain scenario

assumptions or if conditions stayed the same as they were in the past. Forecasts can be judged

by comparing them against observed data. Since it is much harder to fairly assess the accuracy

and usefulness of projections and scenario modelling in the same way, this work focuses on

forecasts, which represent only a subset of all epidemiological modelling.

Since March 2020, forecasts of COVID-19 from multiple teams have been collected, aggre-

gated and compared by Forecast Hubs such as the US Forecast Hub [13, 14], the German and

Polish Forecast Hub [15, 16] and the European Forecast Hub [17]. Often, different individual

forecasts are combined into a single forecast, e.g. by taking the mean or median of all forecasts.

These ensemble forecasts usually tend to perform better and more consistently than individual

forecasts (see e.g. [6]; [18]).

Individual computational models usually rely to varying degrees on mechanistic assump-

tions about infectious disease dynamics (such as SIR-type compartmental models that aim to

represent how individuals move from being susceptible to infected and then recovered or

dead). Some are more statistical in nature (such as time series models that detect statistical pat-

terns without explicitly modelling disease dynamics). How exactly such a mathematical or

computational model is constructed and which assumptions are made depends on subjective

opinion and judgement of the researcher who develops and refines the model. Models are

commonly adjusted and improved based on whether the model output looks plausible to the

researchers involved.

The process of model construction and refinement is laborious and time-consuming, and it

is therefore worth asking what modelling can add beyond the subjective judgment of the

researcher alone. In this work, we ask this question specifically in the context of predictive per-

formance, and set aside other advantages of epidemiological modelling (such as reproducibil-

ity or the ability to obtain a deeper fundamental understanding of how diseases spread). One

natural way to do this is to compare the predictive performance of forecasts based on compu-

tational models (“model-based forecasts”) against forecasts made by individual humans with-

out explicit use of a computer model (“direct human forecasts”) or a combination of multiple

such forecasts (“crowd forecasts”).
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Previous work has examined such direct human forecasts in various contexts, such as geo-

politics [19, 20], meta-science [21, 22], sports [23] and epidemiology [11, 24, 25]. Several pre-

diction platforms [26–28] and prediction markets [29] have been created to collate expert and

non-expert predictions. However, with the notable exception of [11], these forecasts were not

designed to be evaluated alongside model-based forecasts and usually follow their own (often

binary) prediction formats. Direct human forecasts may be able to take into account insights

and relationships between variables which are hard to specify using epidemiological models.

However, it is not entirely clear in which situations human forecasts perform well or badly.

For example, [11] found that humans could outperform computer models at predicting the

2014/15 and 2015/16 flu season in the US, a setting where the disease was well known and

information about previous seasons was available. However, humans tended to do slightly

worse at predicting the 2014/15 outbreak of chikungunya in the Americas, a disease previously

largely unobserved and unknown in these regions at the time.

In this study, we analyse the performance of direct human forecasts relative to model-based

forecasts and discuss the added benefit of epidemiological modelling over human judgement

alone. As a case study, we use different forecasts, involving varying degrees of human interven-

tion, which we submitted in real time to the German and Polish Forecast Hub. In contrast to

[11] we elicited not only point predictions, but full predictive distributions (“probabilistic fore-

casts”, see e.g. [30]) from participants. This allows us to compare not only predictive accuracy,

but also how well human forecasters and model-based forecasts were able to quantify forecast

uncertainty.

Methods

Ethics statement

This study has been approved by the London School of Hygiene & Tropical Medicine Research

Ethics Committee (reference number 22290). Consent from participants was obtained in writ-

ten form.

Overview

We created and submitted the following forecasts to the German and Polish Forecast Hub: 1) a

direct human forecast (henceforth called “crowd forecast”), elicited from participants through

a web application [31] and 2) two semi-mechanistic model-based forecasts (“renewal model”

and “convolution model”) informed by basic assumptions about COVID-19 epidemiology.

While the two semi-mechanistic forecasts were necessarily shaped by our implicit assumptions

and decisions, they were designed such as to minimise the amount of human intervention

involved. For example, we refrained from adjusting model outputs or refining the models

based on past performance. Forecasts were created in real time over a period of 21 weeks from

October 12th 2020 until March 1st 2021 and submitted to the German and Polish Forecast

hub [15, 16]. All code and tools necessary to generate the forecasts and make a forecast submis-

sion are available in the covid.german.forecasts R package [32]. This repository also

contains a record of all forecasts submitted to the German and Polish Forecast Hub. Forecasts

were evaluated using a variety of scoring metrics and compared among each other and against

an ensemble of all other models submitted to the German and Polish Forecast Hub.

Forecast targets and interaction with the German and Polish Forecast Hub

The German and Polish Forecast Hub (now mostly merged into the European Forecast Hub

[17]) elicits predictions for various COVID-19 related forecast targets from different research
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groups every week. Forecasts had to be made every Monday (with submissions allowed until

Tuesday 3pm) and were permitted to use any data that was available by Monday 11.59pm. We

submitted forecasts for incident and cumulative weekly reported numbers of cases of and

deaths from COVID-19 on a national level in Germany and Poland over a one to four week

forecast horizon. Forecasts were submitted on Mondays, but weeks were defined as ending on

a Saturday (and starting on Sunday), meaning that forecast horizons were in fact 5, 12, 19 and

26 days. Submissions were required in a quantile-based format with 23 quantiles of each out-

put measure at levels 0.01, 0.025, 0.05, 0.10, 0.15,. . ., 0.95, 0.975, 0.99. Forecasts submitted to

the Forecast Hub were combined into different ensembles every week, with the median ensem-

ble (i.e., the α-quantile of the ensemble is given by the median of all submitted α-quantiles)

being the default ensemble shown on all official Forecast hub visualisations (https://

kitmetricslab.github.io/forecasthub/forecast).

Data on daily reported test positive cases and deaths linked to COVID-19 were provided by

the organisers of the German and Polish Forecast hub. Until December 14th, 2020, these data

were sourced from the European Centre for Disease Control [33]. After ECDC stopped pub-

lishing daily data, observations were sourced from the Robert Koch Institute (RKI) and the

Polish Ministry of Health for the remainder of the submission period [34]. These data are sub-

ject to reporting artefacts, (such as for example delayed case reporting in Poland on the 24th

November, [35]), changes in reporting over time, and variation in testing regimes (for example

in Germany from the 11th of November on, [36]). The ECDC data as well as the data pub-

lished by the Polish Ministry of Health were also subject to data revisions, although most of

them (with a notable exception of a data update for October 12 2020 in Germany) only affected

daily, not weekly data (see S7 and S8 Figs).

Crowd forecasts

Our crowd forecasts were created as an ensemble of forecasts made by individual participants

every week through a web application (https://cmmid-lshtm.shinyapps.io/crowd-forecast/).

Weekly forecasts had to be submitted before Tuesday 12pm every week, but participants were

asked to only use any information or data that was already available by Monday night. The

application was built using the shiny and golem R packages [37, 38] and is available in the

crowdforecastr R package [31]. To make a forecast in the application participants could

select a predictive distribution (with the default being log-normal) to represent the probability

that the forecasted quantity took certain values. Median and width of the uncertainty could be

adjusted by either interacting with a figure showing their forecast or providing numerical val-

ues (see screenshot in S1 Fig). The default shown was a repetition of the last known observa-

tion with constant uncertainty around it computed as the standard deviation of the last four

changes in weekly log observed forecasts (i.e. as σ(log(value4) − log(value3), log(value3) − log
(value2), . . .)). A comparison of the crowd forecasts against the default baseline shown in the

application is displayed in S25 Fig. Our interface also allowed participants to view past obser-

vations based on the hub data, as well as their forecasts, on a logarithmic scale and presented

additional contextual COVID-19 data sourced from [39]. These data included, for example,

notifications of both test positive COVID-19 cases and COVID-19 linked deaths and the num-

ber of COVID-19 tests conducted over time. From November 26 2020 on we displayed weekly

small reports with a visualisation of past forecasts and scores on our website, epiforecasts.io.

Forecasts were stored in a Google Sheet and downloaded, cleaned and processed every

week for submission to the Forecast Hub. If a forecaster had submitted multiple predictions

for a single target, only the latest submission was kept. Information on the chosen distribution

as well as the parameters for median and width were used to obtain the required set of 23
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quantiles from that distribution. Forecasts from all forecasters were then aggregated using an

unweighted quantile-wise mean (i.e., the α-quantile of the ensemble is given by the mean of all

submitted α-quantiles). To avoid issues with users trying out the app and submitting a random

forecast, we required that a forecaster needed to make a forecast for at least two targets for a

given forecast in order to be included in the crowd forecast ensemble. On a few occasions we

deleted forecasts that were clearly the result of a user or software error (such as for example

forecasts that were zero everywhere).

Participants were recruited mostly within the Centre of Mathematical Modeling of Infec-

tious Diseases at the London School of Hygiene & Tropical Medicine, but participants were

also invited personally or via social media to submit predictions. Depending on whether they

had a background in either statistics, forecasting or epidemiology, participants were asked to

self-identify as ‘experts’ or ‘non-experts’.

Model-based forecasts

We used two Bayesian semi-mechanistic models from the EpiNow2 R package (version 1.3.3)

as our model-based forecasts [40]. The first of these models, here called “renewal model”, used

the renewal equation [41] to predict reported cases and deaths (see details in S1 Text). It esti-

mated the effective reproduction number Rt (the average number of people each person

infected at time t is expected to infect in turn) and modelled future infections as a weighted

sum of past infection multiplied by Rt. Rt was assumed to stay constant beyond the forecast

date, roughly corresponding to continuing the latest exponential trend in infections. On the

9th of November we altered the date when Rt was assumed to be constant from two weeks

prior to the date of the forecast to the forecast date, which we found to yield a more stable Rt

estimate. Reported case and death notifications were obtained by convolving predicted infec-

tions over data-based delay distributions [40, 42–44] to model the time between infection and

report date. The renewal model was used to predict cases as well as deaths with forecasts being

generated for each target separately. Death forecasts from the renewal model were therefore

not informed by past cases. One submission of the renewal model on December 28th 2020 was

delayed and therefore not included in the official Forecast hub ensemble.

The second model (“convolution model”, see details in S1 Text). was only used to forecast

deaths and was added later, starting December 7th 2020 (with the first forecast from December

7th suffering from a software bug and therefore disregarded in all further analyses). The con-

volution model was submitted, but never included in the official Forecast hub ensemble due to

concerns that it could be too similar to the renewal model. The convolution model predicted

deaths as a fraction of infected people who would die with some delay, by using a convolution

of reported cases with a distribution that described the delay from case report to death and a

scaling factor (the case-fatality ratio). Both the renewal and the convolution model used daily

observations and assumed a negative binomial observation model with a multiplicative day-of-

the-week effect [40].

Line list data used to inform the prior for the delay from symptom onset to test positive

case report or death in the model-based forecasts was sourced from [45] with data available up

to the 1st of August. All model fitting was done using Markov-chain Monte Carlo (MCMC) in

stan [46] with each location and forecast target being fitted separately.

Analysis

For the main analysis we focused mostly on two week ahead forecasts, as COVID-19 forecasts,

especially for cases, were in the past found to have poor predictive performance beyond this

horizon [15]. Forecasts for cases were scored using the full period from October 2020 until
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March 2021. To ensure comparability between models, all death forecasts were scored using

only the period from December 14th on, where all models including the convolution model

were available. To ensure robustness of our results we conducted a sensitivity analysis where

all forecasts (including cases) were scored only over the later period for which all forecasts

were available (see S22 Fig and S8 and S9 Tables). Results remained broadly unchanged.

Forecasts were analysed using the following scoring metrics: The weighted interval score

(WIS) [47], the absolute error, relative bias, and empirical coverage of the 50% and 90% pre-

diction intervals. The WIS is a proper scoring rule [48], meaning that in expectation the score

is optimised by reporting a predictive distribution that is identical to the true data-generating

distribution. Forecasters are therefore incentivised to report their true belief about the future.

The WIS can be understood as a generalisation of the absolute error to quantile-based forecasts

(also meaning that smaller values are better) and can be decomposed into three separate penal-

ties: forecast spread (i.e. uncertainty of forecasts), over-prediction and under-prediction.

While the over- and under-prediction components of the WIS capture the amount of over-

prediction and under-prediction in absolute terms, we also look at a relative tendency to make

biased forecasts. The bias metric [9] we use captures how much probability mass of the forecast

was above or below the true value (mapped to values between -1 and 1) and therefore repre-

sents a general tendency to over- or under-predict in relative terms. A value of -1 implies that

all quantiles of the predictive distribution are below the observed value and a value of 1 that all

quantiles are above the observed value. Empirical coverage is the percentage of observed values

that fall inside a given prediction interval (e.g. how many observed values fall inside all 50%

prediction intervals). Scoring metrics are explained in more detail in S1 Table. All scores were

calculated using the scoringutils R package [49].

At all stages of the evaluation our forecasts were compared to the median ensemble of all

other models submitted to the German and Polish Forecast Hub (“Hub ensemble”). This “Hub

ensemble” was retrospectively computed and excludes all our models, leaving on average five

ensemble member models (see S10 Table and S24 Fig). What we call “Hub ensemble” in this

article therefore differs from the “official Hub ensemble” (here called “hub-ensemble-real-

ised”) which included crowd forecasts as well as renewal model forecasts. To enhance

interpretability of scores we mainly report WIS relative to the Hub ensemble in the main text,

i.e. we divided the average scores for a given model by the average score achieved by the Hub

ensemble on the same set of forecasts (with values>1 implying worse and values <1 implying

better performance than the Hub ensemble). In addition to comparing our forecasts against

the hub ensemble excluding our models, we also assessed the impact of our forecasts on the

performance of the forecasting hub by recalculating separate versions of the Hub ensemble

with only some (or all) of our forecasts included. Versions that included either all of our mod-

els (“hub-ensemble-with-all”) or only one of them (“hub-ensemble-with-X”) were computed

retrospectively.

Results

Crowd forecast participation

A total number of 32 participants submitted forecasts, 17 of those self-identified as ‘expert’ in

either forecasting or epidemiology. The median number of forecasters for any given forecast

target was 6, the minimum 2 and the maximum 10. The mean number of submissions from an

individual forecaster was 4.7 but the median number was only one—most participants

dropped out after their first submission. Only two participants submitted a forecast every sin-

gle week, both of whom are authors on this study.
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Case forecasts

For cases, crowd forecasts had a lower mean weighted interval score (WIS, lower values indi-

cate better performance) than both the renewal model and the Hub ensemble across all fore-

cast horizons (Fig 1A) and locations (S5(A) Fig). For two week ahead forecasts, mean WIS

relative to the Hub ensemble (= 1) was 0.89 for crowd forecasts and 1.40 for the renewal model

(S2 Table). Across all forecasting approaches, locations and forecast horizons, the distribution

of WIS values was very right-skewed, and average performance was heavily influenced by out-

liers (see Fig 2). Overall, low variance in forecast performance was closely linked with good

Fig 1. Visualisation of aggregate performance metrics for forecasts one to four weeks into the future. A, B: mean weighted interval score (WIS,

lower indicates better performance) across horizons. WIS is decomposed into its components dispersion, over-prediction and under-prediction. C:

Empirical coverage of the 50% prediction intervals (50% coverage is perfect). D: Empirical coverage of the 90% prediction intervals. E: Dispersion (same

as in panel A, B). Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative) tendency to

over- or underpredict. Values are between -1 (complete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the

median forecast (lower is better). H. Standard deviation of all WIS values for different horizons.

https://doi.org/10.1371/journal.pcbi.1010405.g001
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mean performance (Fig 1H and 1A), suggesting that the ability to avoid large errors was an

important factor in determining overall performance. The impact of outlier values was espe-

cially pronounced for the renewal model, which had more outliers, as well as the highest stan-

dard deviation of WIS values (standard deviation of the WIS relative to the WIS sd of the Hub

ensemble was 1.54 at the two weeks ahead horizon), while the ensemble of crowd forecasts

(rel. WIS sd 0.76) and the Hub ensemble (= 1) showed more stable performance.

To varying degrees, all forecasts exhibited trend-following behaviour and were rarely able

to predict a change in trend before it had happened. For example, all forecasts failed to predict

the change in trend from increase to decrease that happened in November in Germany and

severely overshot reported cases (Fig 3A). This was most striking for the renewal model, which

extrapolated unconstrained exponential growth based on the recent past of observations. The

Hub ensemble and the crowd forecast, which had both been under-predicting throughout

October, also failed to predict the change in trend after cases peaked, but less severely so.

Human forecasters, possibly aware of the semi-lockdown announced on November 2nd 2020

[50] and the change in the testing regime (with stricter test criteria) on November 11th 2020

[36], were fastest to adapt to the new trend, and the Hub ensemble slowest. In December, cases

rose again in Germany, with all models under-predicting this growth to varying extents. As in

October, the renewal model captured the phase of exponential growth in cases slightly better

than other approaches, but again overshot when reported case numbers fell over Christmas.

Fig 2. Two week ahead forecasts and corresponding scores. A, C: Visualisation of 50% prediction intervals of two week ahead forecasts against the

reported values. Forecasts that were not scored (because there was no complete set of death forecasts available) are greyed out. B, D: Visualisation of

corresponding WIS.

https://doi.org/10.1371/journal.pcbi.1010405.g002
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The large variance in predictions in January in Germany (severe under-prediction followed by

severe over-prediction) may in part be caused by the fact that the renewal model operated on

daily data and therefore was susceptible to fluctuations in daily reporting around Christmas

that would not have influenced on weekly reporting. Similar trends in performance were

Fig 3. Distribution of scores. A: Distribution of weighted interval scores for two week ahead forecasts of the different models and forecast targets.

Points denote single forecasts scores, while the shaded area shows an estimated probability density. B: Distribution of WIS separate by country. Black

squares indicate median and black circles mean scores.

https://doi.org/10.1371/journal.pcbi.1010405.g003
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evident in Poland, with the crowd forecast quickest at adapting to the change in trend in

November. In general, there were fewer large outlier forecasts in Poland and in particular the

renewal model performed more in line with other forecasts there.

All forecasting approaches, including the Hub ensemble, were overconfident, i.e. they

showed lower than nominal coverage (meaning that 50% (90%) prediction intervals generally

covered less than 50% (90%) of the actually observed values) (Fig 1C and 1D). Coverage for all

forecasts deteriorated with increasing forecast horizon, indicating that all forecasting

approaches struggled to quantify uncertainty appropriately for case forecasts. This was espe-

cially an issue for crowd forecasts, which had markedly shorter prediction intervals (i.e., nar-

rower and more confident predictive distributions) than other approaches (Fig 1E) and only

showed a small increase in uncertainty across forecast horizons. The crowd forecasts predic-

tion intervals were also noticeably narrower than the default baseline shown to forecasters in

the application (see S25 Fig).

In spite of good performance in terms of the absolute error (Fig 1G), the narrow forecast

intervals led to forecasts which were severely overconfident (covering only 36% and 55% of all

observations with the 50% and 90% prediction intervals of all forecasts made at a two week

forecast horizon, and only 5% and 38% four weeks ahead) (Fig 1C and 1D as well as S2 and S3

Tables). Despite worse performance in terms of absolute error (Fig 1G), the renewal model

achieved better calibration (comparable to the Hub ensemble), as uncertainty increased rap-

idly across forecast horizons. The crowd forecasts, on the other hand, showed a smaller bias

than the renewal model, but were overconfident.

The renewal model exhibited a noticeable tendency towards over-predicting reported cases

across all horizons. The crowd forecast tended to over-predict at longer forecast horizons,

whereas the Hub ensemble showed no systematic bias (Fig 1F). Regardless of a general relative

tendency to over-predict, all forecasting approaches incurred larger absolute penalties from

over- than from under-prediction (see decomposition of the WIS into absolute penalties for

over-prediction, under-prediction and dispersion in Fig 1A and 1B, as well as S2 and S3 Tables).

Generally, trends in overall performance were broadly similar across locations (S4 and S5

Figs). Due to the differing population sizes and numbers of notifications in Germany and

Poland absolute scores were difficult to compare directly. However, relative to the Hub ensem-

ble, the crowd forecasts performed noticeably better in Germany than in Poland and the

renewal model better in Poland than in Germany (S5(A), S5(G), S2 and S3 Figs).

Death forecasts

For deaths, the Hub ensemble outperformed the crowd forecasts as well as our model-based

approaches across all forecast horizons and locations (Fig 1B and S4(B) Fig). Relative WIS

values for the models two weeks ahead were 1.22 (convolution model), 1.26 (crowd forecast),

1 (Hub ensemble) and 1.79 (renewal model). The crowd forecasts performed better than the

renewal model across all forecast horizons and locations (Fig 1B and S4(B) Fig), and also

better than the convolution model three and four weeks ahead. Poor performance of the

renewal model, especially at longer horizons, indicates that an approach that does not know

about past cases, but instead estimates and projects a separate Rt trace from deaths, does not

use the available information efficiently. The convolution model was able to outperform

both the renewal model and the crowd forecasts at shorter forecast horizons (where the

delay between cases and deaths means that future deaths are largely informed by present

cases), but saw performance deteriorate at three and four weeks ahead (where case predic-

tions from the renewal model were increasingly used to inform death predictions) (Fig 1B,

S3 Table).
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As past cases and hospitalisations can be used as predictors, predicting a change in trend

may be easier for deaths than for cases. Even though all forecasts generally struggled with this,

there were some instances where changing trends were well captured or even anticipated. In

Poland, for example, the Hub ensemble was able to capture or even anticipate the peak in

deaths in December quite well (whereas the renewal model and crowd forecast did not). The

renewal model, which mostly exhibited trend-following behaviour, correctly predicted another

increase in weekly deaths in mid-January (potentially based on changes in daily deaths, as the

renewal model did not know about past cases). In Germany in early January, all models pre-

dicted a decrease in deaths two to three weeks before it actually happened. Predictions from

the renewal model at that time were likely strongly influenced by an unexpected drop in

reported deaths in December. The other forecasting approaches and in particular, the convolu-

tion model may have been affected by potentially under-reported case numbers around Christ-

mas. When the decrease that all models had predicted to happen in early January failed to

materialise, the renewal model and the crowd forecast noticeably over-corrected and over-pre-

dicted deaths in the following weeks, while the Hub ensemble, and to a slightly lesser degree,

the convolution model were able to capture the downturn well when it finally happened at the

end of January.

Death forecasts, generally, showed greater coverage of the 50% and 90% prediction intervals

than case forecasts and no decrease in coverage across forecast horizons, indicating that it

might be easier to appropriately quantify uncertainty for death forecasts. The Hub ensemble

had the greatest coverage, with empirical coverage of the 50% and 90% prediction intervals

exceeding 50%, and 90%, respectively, across all forecast horizons. Coverage for the crowd

forecasts and our model-based approaches was generally lower than that of the Hub ensemble

and mostly slightly lower than nominal coverage (Fig 1C and 1D). As for cases, the crowd fore-

cast tended to have the narrowest prediction intervals and uncertainty increased most slowly

across forecast horizons, and the renewal model forecasts generally were widest. The convolu-

tion model had relatively narrow prediction intervals for short forecast horizons, but had rap-

idly (and non-linearly) increasing uncertainty for longer forecast horizons, driven by

increasing uncertainty in the underlying case forecasts.

For deaths, the ensemble of crowd forecasts had a consistent tendency to over-predict (see

Fig 1F). The convolution model had a strong tendency to under-predict, with the magnitude

of under-prediction steadily decreasing for longer forecast horizons. The renewal model

(which over-predicted for cases) and the Hub ensemble slightly tended towards under-predic-

tion. For deaths, absolute over- and under-prediction penalties were more in line with a gen-

eral relative tendency to over- or under-predict than for cases (Fig 1A and 1B, as well as S2 and

S3 Tables).

Contribution to the forecast Hub

Of our three models, only the renewal model and the crowd forecast were included in the offi-

cial Forecast Hub median ensemble (“hub-ensemble-realised”), while the convolution model

was never included as it was deemed too similar to the existing renewal model. In the official

Hub ensemble, there were on average 7.1 models included (including our own), with a median

of 7, a minimum of 4 (on 28 December 2020 over the Christmas period) and a maximum of

10. Versions that included either all of our models (“hub-ensemble-with-all”) or only one of

them (“hub-ensemble-with-X”) were computed retrospectively. An overview of all models and

ensemble versions is shown in S10 Table.

For cases, our contributions (compared to the Hub ensemble without our contributions)

consistently improved performance across all forecasting horizons (rel. WIS 0.9 two weeks

PLOS COMPUTATIONAL BIOLOGY Comparing human and model-based forecasts of COVID-19

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010405 September 19, 2022 11 / 24

https://doi.org/10.1371/journal.pcbi.1010405


ahead, see S4 Table). Contributions from the crowd forecasts alone also improved perfor-

mance of the Hub ensemble across all forecast horizons, while contributions from the renewal

model had a negative effect for longer horizons (rel. WIS 1.02 three weeks ahead, 1.06 four

weeks ahead). The realised ensemble including both models performed better or equal com-

pared to all versions with only one model included for up to three weeks ahead, suggesting

synergistic effects. Only for predictions four weeks ahead would removing the renewal model

have improved performance (S5 Table). The realised ensemble performed comparably to the

crowd forecasts for predictions one to two weeks ahead, and worse for greater forecast

horizons.

For deaths, contributions from the renewal model and crowd forecast together improved

performance only for one week ahead predictions and showed an increasingly negative impact

on performance for longer horizons (rel. WIS of the Hub-ensemble-realised 1.01 two weeks

ahead, 1.05 four weeks ahead, S4 and S5 Tables). Individual contributions from both the

renewal model and the crowd forecast were largely negative, while a version of the Hub ensem-

ble with only the convolution model included would have performed consistently better across

all forecast horizons (with the positive impact increasing for longer horizons). This is especially

interesting as the convolution model performed consistently worse than the pre-existing Hub

ensemble (Fig 1) and especially worse for longer horizons.

We also considered the impact of our contributions on a version of the Hub ensemble con-

structed by taking the quantile-wise mean, rather than the median. General trends were simi-

lar, with the notable exception of the convolution model, which had a consistently positive

impact on the median ensemble, but a mixed and mostly slightly negative impact on the mean

ensemble (Fig 4B and S21(B) Fig). This may happen if a model is more correct directionally

relative to the pre-existing ensemble, but overshoots in absolute terms, thereby moving the

ensemble too far. For both the mean and the median ensemble, changes in performance from

adding or removing models were of a similar order of magnitude, suggesting that at least in

this instance, with a relatively small ensemble size, the median ensemble was not necessarily

more ‘robust’ to changes than the mean ensemble. However, the ensemble version with all our

forecasts included (“hub-ensemble-with-all”) tended to perform relatively better for the

median ensemble than the mean ensemble, suggesting that adding more models may be more

beneficial or ‘safer’ for the median than for the mean ensemble as directional errors can more

easily cancel out than errors in absolute terms.

Discussion

Epidemiological forecasting modelling combines knowledge about infectious disease dynam-

ics with the subjective opinion of the researcher who develops and refines the model. In this

study, we compared forecasts of cases of and deaths from COVID-19 in Germany and Poland

based purely on human judgement and elicited from a crowd of researchers and volunteers

against forecasts from two semi-mechanistic epidemiological models. In spite of the small

number of participants and a general tendency to be overconfident, crowd forecasts consis-

tently outperformed our epidemiological models as well as the Hub ensemble when forecasting

cases but not when forecasting deaths. This suggests that humans might be relatively good at

foreseeing trends that are hard to model but may struggle to form an intuition for the exact

relationship between cases and deaths.

Past studies have evaluated the performance of model-based forecasting approaches as well

as human experts and non-experts in various contexts. However, most of these studies either

focused only on the evaluation of (expert-tuned) model-based approaches [e.g. 12,13,14], or

exclusively on human forecasts [19, 20, 24, 25]. In contrast, we directly compared human and
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model-based forecasts. This is similar to the approach taken by [11], but extends it in several

ways. While Farrow et al. only asked for point predictions and constructed a predictive distri-

bution from these, we asked participants to provide a full predictive distribution, allowing us

to compare human forecasts and models without any further assumptions, as well as to analyse

how humans quantified their uncertainty. In addition, we compared crowd forecasts to two

semi-mechanistic models informed by basic epidemiological knowledge of COVID-19, allow-

ing us to assess not only relative performance but also to analyse qualitative differences

Fig 4. Relative aggregate performance metrics across forecast horizons for different versions of the Hub median ensemble. “Hub-ensemble”

excludes all our models, Hub-ensemble-all includes all of our models, “Hub-ensemble-realised” is the actual hub-ensemble observed in reality, which

includes the renewal model and the crowd forecasts, but not the convolution model. A, B: mean weighted interval score (WIS) across horizons relative

to the Hub ensemble (lower values indicate better performance). C, D: Empirical coverage of the 50% and 90% prediction intervals minus empirical

coverage observed for the Hub ensemble. E: Dispersion relative to the dispersion of the Hub ensemble. Higher values mean greater dispersion of the

forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative) tendency to over- orunderpredict. Values are between -1 (complete

under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast relative to the Hub ensemble. H. Standard

deviation of all WIS values for different horizons relative to the Hub ensemble.

https://doi.org/10.1371/journal.pcbi.1010405.g004
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between human judgement and model-based insight. In terms of interpretability of the results,

exact knowledge of our two models, as well as focus on a limited set of targets and locations

was a major advantage of our study compared to larger studies conducted by the Forecast

Hubs [12–15, 17].

The strong performance of crowd forecasts in our study is in line with results from Farrow

et al. who also report strong performance of human predictions in past Flu challenges despite

difficulties to recruit a large number of participants. The advantage of crowd forecasts we

observed over our semi-mechanistic models is likely in part explained by the fact that we com-

pared an ensemble of crowd forecasts with single models. However, this probably explains

only part of the difference, and performance relative to the Hub ensemble strongly suggests

that human insight is valuable when forecasting highly volatile and potentially hard-to-predict

quantities such as case numbers. One potential explanation is that humans can have access to

data that is not available to or hard to integrate into model-based forecasts. Relatively good

performance of our semi-mechanistic models short-term, but not longer-term, suggests that

model-based forecasts are helpful to extrapolate from current conditions, but require some

form of human intervention or additional assumptions to inform forecasts when conditions

change over time. This human intervention may be particularly important when dealing with

artefacts in reporting and data anomalies (and especially when using daily, rather than weekly

data). The large variance in predictions in January in Germany for example (severe under-pre-

diction followed by severe over-prediction, see Fig 3A), may in part be caused by the fact that

the renewal model operated on daily data and therefore was susceptible to fluctuations in daily

reporting which have less of an influence on weekly reporting.

Our results suggest that human intervention may be less beneficial when forecasting deaths

(especially at shorter horizons, when deaths are largely dependent on already observed cases),

which benefits from the ability to model the delays and exact epidemiological relationships

between different leading and lagged indicators. Relatively good performance of the convolu-

tion model, especially compared to the poor performance of the renewal model on deaths

(which used only deaths to estimate and predict the effective reproduction number) underlines

the importance of including leading indicators such as cases as a predictor for deaths.

Given the low number of participants in our study, it is difficult to generalise conclusions

about crowd predictions to other settings. Using R shiny as a platform for the web application

arguably created some limits to user experience and performance, influencing the number of

participants and potentially creating a self-selection effect. Motivating forecasters to contribute

regularly proved challenging, especially given that the majority of our participants were from

the UK and may not have been familiar with all relevant details of the situation in Germany

and Poland. On the other hand, R shiny facilitated quick development and allowed us to pro-

vide our crowd forecasting tooling as an open source R package, meaning that it is available

for others to use, for example in settings like early-stage outbreaks where model-based fore-

casts are not available. In light of the relatively small number of Hub ensemble models, perfor-

mance of the Hub ensemble is also difficult to generalise. More research is needed to replicate

these findings and investigate how crowd forecasts compare against the types of models and

model ensembles policy makers use to inform their decisions.

Our work suggests that crowd forecasts and model-based forecasts could have different

strengths and may be able to complement each other. When choosing a suitable approach for

a given task it is important to take into account how the output will be used. In this work we

focused on forecasts (which aim to predict future data points whilst accounting for all factors

that might influence them), whereas policy makers might be more interested in projections

(which show what would happen in the absence of any events that could change the trend) or

scenario modelling. Forecasts may not be a suitable basis for informing policy decisions, if
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forecasters already have factored in the expectation of a future intervention. Model-based

approaches can be either forecasts or projections depending on the assumptions, whereas elic-

iting projections that are not influenced by implicit assumptions about the future from

humans may be harder.

Further work should explore the effects of humans refining their mathematical models or

changing model outputs in more detail. Model-based forecasts could be used as an input to

human judgement, with researchers adjusting predictions generated by models. Seeing a

model-based forecast could help humans calibrate uncertainty better, while allowing for man-

ual intervention to adapt spurious trend predictions. Tools need to be developed to facilitate

this process at a larger scale. Human insight could also be used as an input to models. Such a

‘hybrid’ forecasting approach could for example ask humans to predict the trend of the effec-

tive reproduction number Rt or the doubling rate (i.e. how the epidemic evolves) into the

future and use this to estimate the exact number of cases, hospitalisations or deaths this would

imply. In light of severe overconfidence, yet good performance in terms of the absolute error,

post-processing of human forecasts to adjust and widen prediction intervals may be another

promising approach. Crowd forecasting in general could benefit greatly from the availability

of tools suitable to appeal to a greater audience. Given the good performance we and previous

authors observed in spite of the limited resources available and the small number of partici-

pants, this seems worthwhile to further develop and explore.
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the mean ensemble of all other models submitted to the German and Polish Forecast Hub,
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to three significant digits and rounded. In the original analysis, cases and deaths were scored

on different periods, as the convolution model was only added later. This table shows perfor-

mance of all models restricted to the period from December 14 2020 until March 1st 2021

where all models were available. Numbers in brackets show the metrics relative to the Hub

ensemble (i.e. the median ensemble of all other models submitted to the German and Polish

Forecast Hub, excluding our contributions). WIS is the mean weighted interval score (lower

values are better), WIS—sd is the standard deviation of all scores achieved by a model. Disper-

sion, over-prediction and under-prediction together sum up to the weighted interval score.

Bias (between -1 and 1, 0 is ideal) represents the general average tendency of a model to over-

or underpredict. 50% and 90%-coverage are the percentage of observed values that fell within

the 50% and 90% prediction intervals of a model.

(PDF)

S9 Table. Scores for three and four week ahead forecasts (sensitivity analysis). Scores are

cut to three significant digits and rounded. In the original analysis, cases and deaths were

scored on different periods, as the convolution model was only added later. This table shows

performance of all models restricted to the period from December 14 2020 until March 1st

2021 where all models were available. Numbers in brackets show the metrics relative to the

Hub ensemble (i.e. the median ensemble of all other models submitted to the German and Pol-

ish Forecast Hub, excluding our contributions). WIS is the mean weighted interval score

(lower values are better), WIS—sd is the standard deviation of all scores achieved by a model.

Dispersion, over-prediction and under-prediction together sum up to the weighted interval

score. Bias (between -1 and 1, 0 is ideal) represents the general average tendency of a model to

over- or underpredict. 50% and 90%-coverage are the percentage of observed values that fell

within the 50% and 90% prediction intervals of a model.

(PDF)

S10 Table. Overview of the models and ensembles used.

(PDF)

S1 Fig. Screenshot of the crowdforecasting app used to elicit predictions (made in June

2021).

(TIF)

S2 Fig. Visualisation of aggregate performance metrics for forecasts one to four weeks into

the future in Germany. A, B: mean weighted interval score (WIS, lower indicates better per-

formance) across horizons. WIS is decomposed into its components dispersion, over-predic-

tion and under-prediction. C: Empirical coverage of the 50% prediction intervals (50%

coverage is perfect). D: Empirical coverage of the 90% prediction intervals. E: Dispersion

(same as in panel A, B). Higher values mean greater dispersion of the forecast and imply ceteris

paribus a worse score. F: Bias, i.e. general (relative) tendency to over- or underpredict. Values
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are between -1 (complete under-prediction) and 1 (complete over-prediction) and 0 ideally. G:

Absolute error of the median forecast (lower is better). H. Standard deviation of all WIS values

for different horizons

(TIF)

S3 Fig. Visualisation of aggregate performance metrics for forecasts one to four weeks into

the future in Poland. A, B: mean weighted interval score (WIS, lower indicates better perfor-

mance) across horizons. WIS is decomposed into its components dispersion, over-prediction

and under-prediction. C: Empirical coverage of the 50% prediction intervals (50% coverage is

perfect). D: Empirical coverage of the 90% prediction intervals. E: Dispersion (same as in

panel A, B). Higher values mean greater dispersion of the forecast and imply ceteris paribus a

worse score. F: Bias, i.e. general (relative) tendency to over- or underpredict. Values are

between -1 (complete under-prediction) and 1 (complete over-prediction) and 0 ideally. G:

Absolute error of the median forecast (lower is better). H. Standard deviation of all WIS values

for different horizons.

(TIF)

S4 Fig. Visualisation of aggregate performance metrics across locations. A, B: mean

weighted interval score (WIS, lower indicates better performance) across horizons. WIS is

decomposed into its components dispersion, over-prediction and under-prediction. C: Empir-

ical coverage of the 50% prediction intervals (50% coverage is perfect). D: Empirical coverage

of the 90% prediction intervals. E: Dispersion (same as in panel A, B). Higher values mean

greater dispersion of the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general

(relative) tendency to over- or underpredict. Values are between -1 (complete under-predic-

tion) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast

(lower is better). H. Standard deviation of WIS values.

(TIF)

S5 Fig. Visualisation of aggregate performance metrics across locations in relative terms.

A, B: mean weighted interval score (WIS) across locations (lower values indicate better perfor-

mance). C, D: Empirical coverage of the 50% and 90% prediction intervals. E: Dispersion.

Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score.

F: Bias, i.e. general (relative) tendency to over- orunderpredict. Values are between -1 (com-

plete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of

the median forecast. H. Standard deviation of WIS values.

(TIF)

S6 Fig. Visualisation of daily report data. The black line represents weekly data divided by

seven. Data were last accessed through the German and Polish Forecast Hub on August 21

2021.

(TIF)

S7 Fig. Visualisation of the absolute difference between the daily report data at the time

and the data now. In Germany, there were zero cases and deaths reported on 2020–10-12, and

only later 2467 cases and 6 deaths were added. Data were last accessed through the German

and Polish Forecast Hub on May 10 2022.

(TIF)

S8 Fig. Visualisation of the relative difference between the weekly report data at the time

and the data now. Apart from the data that was retrospectively added on 2020–10-12, data

updates did not have a noticeable effect on weekly data (as shown in the forecasting
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application). Data were last accessed through the German and Polish Forecast Hub on May

10 2022.

(TIF)

S9 Fig. Visualisation of forecasts and scores for one week ahead forecasts. A, C: Visualisa-

tion of 50% prediction intervals of one week ahead forecasts against the reported values. Fore-

casts that were not scored (because there was no complete set of death forecasts available) are

greyed out. B, D: Visualisation of corresponding WIS.

(TIF)

S10 Fig. Visualisation of forecasts and scores for three week ahead forecasts. A, C: Visuali-

sation of 50% prediction intervals of three week ahead forecasts against the reported values.

Forecasts that were not scored (because there was no complete set of death forecasts available)

are greyed out. B, D: Visualisation of corresponding WIS.

(TIF)

S11 Fig. Visualisation of forecasts and scores for three week ahead forecasts. A, C: Visuali-

sation of 50% prediction intervals of four week ahead forecasts against the reported values.

Forecasts that were not scored (because there was no complete set of death forecasts available)

are greyed out. B, D: Visualisation of corresponding WIS.

(TIF)

S12 Fig. Distribution of weighted interval scores for one week ahead forecasts. A: Distribu-

tion of weighted interval scores for one week ahead forecasts of the different models and fore-

cast targets pooled across locations. B: Distribution of WIS separate by country.

(TIF)

S13 Fig. Distribution of weighted interval scores for three week ahead forecasts. A:

Distribution of weighted interval scores for three week ahead forecasts of the different

models and forecast targets pooled across locations. B: Distribution of WIS separate by

country.

(TIF)

S14 Fig. Distribution of weighted interval scores for four week ahead forecasts. A: Distribu-

tion of weighted interval scores for four week ahead forecasts of the different models and fore-

cast targets pooled across locations. B: Distribution of WIS separate by country.

(TIF)

S15 Fig. Distribution of model ranks (in terms of WIS) for one week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for one week ahead fore-

casts of the different models and forecast targets, pooled across locations. B: Distribution of

ranks separate by country.

(TIF)

S16 Fig. Distribution of model ranks (in terms of WIS) for two week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for two week ahead fore-

casts of the different models and forecast targets, pooled across locations. B: Distribution of

ranks separate by country.

(TIF)

S17 Fig. Distribution of model ranks (in terms of WIS) for three week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for three week ahead
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forecasts of the different models and forecast targets, pooled across locations. B: Distribution

of ranks separate by country.

(TIF)

S18 Fig. Distribution of model ranks (in terms of WIS) for four week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for four week ahead fore-

casts of the different models and forecast targets, pooled across locations. B: Distribution of

ranks separate by country.

(TIF)

S19 Fig. Difference in WIS between the Crowd forecast and the Hub ensemble for

two week ahead forecasts. Values below zero mean better performance of the Crowd fore-

casts.

(TIF)

S20 Fig. Difference in WIS between the Crowd forecast and the Renewal model for two

week ahead forecasts. Values below zero mean better performance of the Crowd forecasts.

(TIF)

S21 Fig. Visualisation of aggregate performance metrics across forecast horizons for the

different versions of the Hub mean ensemble. “Hub-ensemble” excludes all our models,

Hub-ensemble-all includes all of our models, “Hub-ensemble-realised” is the actual hub-

ensemble observed in reality, which includes the renewal model and the crowd forecasts, but

ont the convolution model. Values (except for Bias) are computed as differences to the Hub

ensemble which excludes our contributions. For Coverage, this is an absolute difference, for

other metrics this is a percentage difference. A, B: mean weighted interval score (WIS) across

horizons relative to the Hub ensemble (lower values indicate better performance). C, D:

Empirical coverage of the 50% and 90% prediction intervals minus empirical coverage

observed for the Hub ensemble. E: Dispersion relative to the dispersion of the Hub ensemble.

Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score.

F: Bias, i.e. general (relative) tendency to over- orunderpredict. Values are between -1 (com-

plete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of

the median forecast relative to the Hub ensemble. H. Standard deviation of all WIS values for

different horizons relative to the Hub ensemble.

(TIF)

S22 Fig. Visualisation of aggregate performance metrics across forecast horizons (period

from December 14th 2020 on). From December 14th 2020 on, all models were available. In

the original analysis, cases and deaths were scored on different periods, as the convolution

model was only added later. This sensitivity analysis shows performance of all models

restricted to the period from December 14 2020 until March 1st 2021 where all models were

available. A, B: mean weighted interval score (WIS, lower indicates better performance) across

horizons. WIS is decomposed into its components dispersion, over-prediction and under-pre-

diction. C: Empirical coverage of the 50% prediction intervals (50% coverage is perfect). D:

Empirical coverage of the 90% prediction intervals. E: Dispersion (same as in panel A, B).

Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score.

F: Bias, i.e. general (relative) tendency to over- or underpredict. Values are between -1 (com-

plete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of

the median forecast (lower is better). H. Standard deviation of all WIS values for different hori-

zons

(TIF)
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S23 Fig. Number of participants who submitted a forecast over time.

(TIF)

S24 Fig. Number of member models in the official Hub ensemble. This includes our crowd

forecasts and the renewal model. Note that the renewal model was not included in the ensem-

ble on December 28th 2020.

(TIF)

S25 Fig. Crowd forecasts and baseline shown in the application for a two week horizon.

Shown are the median, as well as the 50% and 90% prediction intervals (in order of decreasing

opacity). For any given point in time, the baseline shown in red is what forecasters saw when

they opened the app (the baseline shown was constant across all forecast horizons).

(TIF)

S1 Acknowledgements. Members of the CMMID COVID-19 working group.

(PDF)
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