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Reproducibility of real-world evidence
studies using clinical practice data to
inform regulatory and coverage decisions
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Studies that generate real-world evidence on the effects of medical products
through analysis of digital data collected in clinical practice provide key
insights for regulators, payers, andother healthcare decision-makers. Ensuring
reproducibility of such findings is fundamental to effective evidence-based
decision-making. We reproduce results for 150 studies published in peer-
reviewed journals using the same healthcare databases as original investiga-
tors and evaluate the completeness of reporting for 250. Original and repro-
duction effect sizes were positively correlated (Pearson’s correlation = 0.85), a
strong relationship with some room for improvement. The median and
interquartile range for the relativemagnitudeof effect (e.g., hazard ratiooriginal/
hazard ratioreproduction) is 1.0 [0.9, 1.1], range [0.3, 2.1]. While the majority of
results are closely reproduced, a subset are not. The latter can be explained by
incomplete reporting and updated data. Greatermethodological transparency
aligned with new guidance may further improve reproducibility and validity
assessment, thus facilitating evidence-based decision-making. Study registra-
tion number: EUPAS19636.

The vast amount of digital information produced in healthcare is
increasingly transformed into real-world evidence (RWE) on the safety
and effectiveness ofmedical products in clinical practice, andplaying a
critical role in decision-making for regulators, payers and physicians1–4.
Advances in the understanding of valid study design and analysis of
longitudinal healthcare data for causal inference5–8 have made it pos-
sible for database studies to both reproduce9–12 and predict13–16 results
from randomized clinical trials (RCT), as well as provide evidence
that changed clinical practice in situations where trials were not
feasible17–19.

The need for timely, high-quality clinical evidence from data
generated in clinical practice has become urgent during the COVID-19
pandemic20. However, an influx of high-profile RWE studies with
methodological shortcomings, some of which have been published
and retracted21,22, has contributed to negative generalizations about
the credibility of RWE rather than focusing on distinguishing valid and

robust methodology from that which is less reliable23,24. This, coupled
with the lack of clarity in reporting on study implementation, which
has been one of themost frequentlymentioned barriers for healthcare
decision-makers against use of RWE25, has reduced stakeholders’
confidence in study findings26,27.

Actionable scientific evidence in medicine should be internally
valid, reproducible, and replicable. Reproducibility is the ability to
obtain the same results when reanalyzing the original data, following
the original analysis strategy. Replicability is the ability to confirm
findings in different data and populations. In principle, all reported
findings should be perfectly reproducible28. A finding can be repro-
ducible but invalid because of problems in sampling, study design,
measurement, or statistical inference. But, if a finding is not repro-
ducible, there is little basis for evaluating its validity or replicability.
Therefore, achieving reproducibility is a fundamental step for research
credibility.
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Computational reproducibility needs only two ingredients—
shared data and analysis programming code. While very useful, it can
be difficult to ascertain intended scientific decisions from program-
ming code alone, much less evaluate the validity of those decisions.
This is because extracting an appropriately temporally anchored ana-
lytic study cohort from longitudinal source data tables can involve
thousands of lines of code28, making it challenging for even experi-
enced programmers and data scientists to parse and identify themany
relevant scientific design and analytic decisions that were imple-
mented to minimize bias.

While computational reproducibility will allow reproduction of
the same exact result to the nth decimal place, independent repro-
ducibility focuses on effective communication of critical design and
analytic choices (with the potential to affect the validity, relevance or
interpretation of results). This clarity is necessary for assessment of
potential sources of bias (e.g., confounding, misclassification, selec-
tion bias) as well as to facilitate replication of findings with data that is
stored in a different data model. Thus, independent reproducibility is
critically important because it reflects the clarity of communication of
key study design and analytic parameters, regardless of whether
shared data and analysis code are available.

Previous pilot work evaluated the independent reproducibility
of a small, non-systematic sample of RWE studies29. The challenges
with reproducing the studies in the convenience sample motivated
this project, which involved the systematic identification of a large
random sample of RWE studies fitting pre-specified parameters.
Similar to large scale evaluation of research reproducibility in
other disciplines30–32, we sought to (1) describe the frequency of
reporting key parameters about data transformations, study design
choices and statistical analysis needed to ensure independent
reproducibility33 and (2) evaluate the independent reproducibility of
results from 150 published RWE studies using the same healthcare
databases and applying the same reported methods as original
authors. For each study, we independently attempted to reproduce
the study population and primary outcome findings by conducting
the analyses as described in the original papers, appendices and
other publicmaterial, and bymaking informed assumptions on study
parameters that were not reported, while being blinded to the study
findings.

In this systematic, descriptive review, we show strong correlation
in results between the original and reproduced RWE studies and pro-
vide insights on how to further improve reproducibility for the subset
where results diverged.

Results
Study sample
The sampled studies are described in the Supplementarymaterials and
methods.

Clarity of reporting
We evaluated clarity of reporting for 250 identified studies based on
key study parameters identified in a reporting consensus document33.
An attrition table or flow diagram showing counts as inclusion-
exclusion criteria were applied was provided in 54% of the sampled
studies. Design diagrams to communicate key aspects of study design
were provided in 8%. The proportion of studies clearly reporting study
implementation parameters varied depending on the parameter
(Supplementary Table 1). For example, the criterion to define the
cohort entry date (e.g., the index date for subjects entering the study
population), was reported in 89%of the sample. In contrast, for studies
involving measurement of the duration of exposure, the algorithms
used to operationally define duration frequently were not provided
(≤55% reported). Such algorithmscould include thoseused to calculate
duration in situations when the data indicate that there were early

refills (resulting in overlapping days supply), or algorithms used to
extend the definition of exposure beyond days supply dispensed (to
allow for non-adherence or capture the hypothesized window of bio-
logic effect). Out of 6 categories for comparative studies (each cate-
gory combining multiple study parameters used to define index date,
inclusion-exclusion criteria, exposure, outcome, follow-up, covari-
ates), the median and interquartile range for the number of categories
where the reproduction teammade assumptions was 4 [3, 5]. Out of 5
categories for descriptive studies (where no specific exposure was
studied) the median and interquartile range for the number of cate-
gories where the reproduction team made assumptions was 3 [2, 4]
(Supplementary Table 1). Only 3 out of 250 studies did not require an
assumption in any of these categories. Analytic code in the form of
macros, other open-source code, or specific procedures was refer-
enced in 7% of reproduced studies. However, the exact software ver-
sion or selected options that were used to run the code for these
studies were only partially provided. Operational algorithms to mea-
sure outcomes, including clinical codes (e.g., International Classifica-
tions of Diseases), care setting (e.g., inpatient versus outpatient) and
diagnosis position (e.g., primary versus secondary), were more fre-
quently provided than algorithms for inclusion-exclusion criteria and
covariates across the sampled studies (Supplementary Table 2).

Reproduction of population size
The median and interquartile range (IQR) for the relative sample size
(original/reproduction) of study reproductions compared to the ori-
ginal studies was 0.9 [0.7, 1.3] and 0.9 [0.7, 1.0] for comparative and
descriptive studies respectively (Fig. 1). For 21% of reproduced studies,
the reproduction study size was less than half ormore than 2 times the
original.

Anecdote 1—Difficulty reproducing study size: Ambiguous tem-
porality around study entry date
A study conducted in patients with chronic obstructive pulmonary
disease (COPD) had an inclusion criterion that requiredmore than one
test result confirming COPD, but was unclear about when those
disease-confirming tests were required to be recorded before and/or
after the COPD diagnosis that defined the study entry date34. The Read
codes (standard clinical coding system used in primary care in the
United Kingdom) used to define COPD diagnosis were not specified,
therefore the reproduction team assumed that a Read code algorithm
from the National Health Service Quality and Outcomes Framework
was used. These factors, plus other ambiguities in the inclusion-
exclusion criteria, such as whether they were applied before or after
selection of the study entry date contributed to a 26% difference in
sample size between the original study cohort and the reproduction
cohort.

Reproduction of baseline characteristics of the study
population
The median and IQR for the difference in prevalence (original—
reproduction) of baseline characteristics reported in the original
publications compared to the reproductions was 0.0% [−1.7%, 2.6%]
(Fig. 2). The absolute difference between the original publication
reported and the reproduced baseline characteristic prevalence was
>10% for 17% of the reproduced characteristics across all studies.
Whether the individual codes for a particular covariate algorithmwere
provided did not explain the ability to reproduce a covariate pre-
valence (difference <10%), highlighting the influence that lack of clarity
on other aspects of covariate measurement (e.g., care setting and
assessment window), and ambiguity in the algorithms used for
inclusion-exclusion criteria can have on the reproducibility of baseline
study characteristics. The distribution of differences was similar for
descriptive versus comparative study types aswell as for studieswhere
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therewere small,mediumor large differences sample size between the
original and the reproduction (Supplementary Fig. 2).

Anecdote 2−Difficulty reproducing baseline characteristics:
Missing details
In a study conducted in patients with breast cancer, the authors
reported using a modified Charlson comorbidity score as a baseline
characteristic,measured in the 3months before the cohort entry date35.
One of the components of the published score is tumor/malignancy,
with a weight of 2 for patients with the characteristic. The score is the
sum of the weights for all components. The original study reported the
proportion of patients with a score of 0 vs 1+, with 97% of patients
reported to have a comorbidity score of 0. In our study reproduction,
only 12% of included patients had a score of 0 (these were patients who
met the breast cancer criteria on the cohort entry date but had no
cancer codes in the3months prior). Itwasnot clear to the reproduction
team what modifications were made to the comorbidity score. In the
absence of that information, and blind to the results, the reproduction
team assumed that a standard operational definition was used. Spec-
ulating that the authors could have modified the score to remove the
weights for tumor/malignancy, in post hoc exploration, we observed
that 74% of patients in our reproduced cohort had a score of 0 if the
tumor/malignancy component was removed.

Reproduction of outcome risks and rates
The median and IQR for the difference in outcome risks and rates
(original—reproduction) reported in the original publications
compared to the reproductions were 0.0% [−1.5%, 2.0%] and −0.0
[−0.39, 0.45] per 100 person-years (Fig. 3) (stratified by exposure
in comparative studies, overall in descriptive studies). Outcome
risks differed by >10 percentage points between the original and
the reproduction for 11% of reproduced outcome risks. Similarly,
7% of reproduced outcome rates differed by more than 10 per
100 person-years. The funnel shape of Bland-Altman plots show
larger reproduction differences when the averaged risk or rate
from the original and reproduction was larger (Supplemen-
tary Fig. 4A).

Anecdote 3—Difficulty reproducing outcome risks and rates:
Shifts in underlying longitudinal source data in different data
versions
We reproduced a study evaluating the risk of all-cause death with the
use of benzodiazepines36. The reproduced analytic cohort was larger,
older, and sicker than the original analytic cohort. The rate of death
was higher by 13–16 per 100 person-years. After investigation, we
found that shifts in the underlying data in different data versions
played a large role in these differences. Although the data used by the
original and reproduction investigative teams were covered by the
same data license, the data provider retroactively updated historical
years of data in the newer data version used by the reproduction team.
This updated data version included a larger sampleof patients covered
byMedicare Advantage programs (anolder and sicker population than
the commercially insured) and more death information.

Reproduction of measures of association (hazard ratio, risk
ratio, odds ratio) in comparative studies
The median and IQR for the relative magnitude of measures of asso-
ciation (e.g., hazard ratiooriginal/hazard ratioreproduction) was 1.0 [0.9, 1.1]
(Fig. 4). The full range in relative magnitude was from 0.3 to 2.1. Dif-
ferent statistics indicated strong correlation between the original and
reproduced measures of associations (Fig. 5). The unweighted and
inverse variance weighted Pearson’s correlation coefficient between
the original and reproduced measures of association were 0.85 and
0.79, respectively. The unweighted and inverse variance weighted
Spearman’s Rank Correlation were 0.82 and 0.87. The intraclass cor-
relation coefficient and 95% Confidence Interval was 0.85 (0.79, 0.89).
The distribution in the relative magnitude of measures of association
was similar regardless of whether there were small, medium, or large
differences in the original and reproduced study sample sizes. (Sup-
plementary Fig. 3). A Bland-Altman plot did not show a clear rela-
tionship between effect size and reproducibility (Fig. 6).

The absolute difference in the coefficients for the measure of
association produced by the original and reproduction (e.g., | log(ha-
zard ratiooriginal)–log(hazard ratioreproduction) |) was ≤0.1 for 36% and
≤0.2 for 62% of reproduced comparative studies. The reproduction
estimate was closer to the null than the original publication estimate
52% of the time, suggesting that the original publication measures of
associationwere not systematically larger than the reproductions. The
point estimates of the original and reproduction measures of asso-
ciation were on the same side of null 82% of the time. The point esti-
mates for themeasures of association and the 95% confidence intervals
were on the same side of null 61% of the time. When studies had point
estimates on the same side of null, the median and interquartile range
for the difference in p-values between the original and reproduced
studies was 0.00 [−0.05, 0.00]. When the estimates were on opposite
sides of null, the average absolute difference in the coefficients was
0.4, compared to 0.2when the estimateswere on the same side of null.
There was overlap in the 95% confidence intervals for the publication
and the reproduction 86% of the time. In 16% of studies, the p-value for

Fig. 2 | Difference in prevalence of baseline characteristics (original−repro-
duction). Each column represents covariates from a different study. Each point
represents the difference in corresponding cell values from tables describing
characteristics of the cohort in the original paper and the reproduction. Dashed
horizontal gray line at 0.0 reflects no difference in prevalence of baseline char-
acteristic between original and reproduction cohorts. Source data are provided as a
Source Data file.

Fig. 1 | Relative magnitude of sample size (original/reproduction). Study sizes
summed across compared exposure groups for both the original and replication
cohorts. Y-axis ticks on log scale, axis labels reflect actual value. Dashed horizontal
gray line at 1.0 reflects equal sample size in original and reproduction cohorts.
Boxplot elements: center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers. N = 118 comparative, N = 32
descriptive studies. Source data are provided as a Source Data file.
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the study reproduction was greater than 0.05 (an arbitrary threshold
for failing to reject the null hypothesis) while the p-value for the ori-
ginal study was less than or equal to 0.01 (a more stringent threshold
for rejecting the null) or vice versa.

Anecdote 4—Difficulty reproducing measures of association:
Error in reporting?
A study in patients with atrial fibrillation was closely reproduced in
terms of study size and baseline cohort characteristics (differences

largely <10%), however the outcome rates were substantially different
(e.g., 3-fold higher incidence rate for the reference group in the ori-
ginal compared to the reproduction). It was clearly stated in the
manuscript that the outcome algorithm involved relevant clinical
codes from an inpatient setting in the primary discharge diagnosis
position. However, the authors also provided a citation to a validation
study for which the outcome algorithm used codes in any diagnosis
position37. In our reproduction attempt, we assumed that the authors
used inpatient primary diagnoses as described in themethods section.
In post hoc exploration,we used inpatient diagnoses in anyposition, as
described in the cited reference. The point estimate for the original
study’s hazard ratio was 0.6 times the reproduction estimate when
using inpatient primary diagnosis to define the outcome and 1.4 times
the reproduction estimate using inpatient diagnoses in any diagnosis
position, leaving it unclear whether either corresponded with the
parameters used by the original investigators.

Fig. 4 | Distribution of relativemagnitude of hazard ratio, risk ratio, odds ratio
(original/reproduction).X-axis ticks on log scale, labels reflect relativemagnitude.
Dashed vertical gray line marks the point at which equal effect sizes were obtained
in the original and reproduction. Source data are provided as a Source Data file.

Fig. 5 | Calibrationplot of the logarithmsof the hazard ratio, risk ratio, or odds
ratio in the reproduction versus the original with correlation coefficient. Red
points reflect the 10 most extreme outliers based on difference between log(effect
size) for the original and reproduction. A summary of assumptions for these 10
outliers are in Supplementary Table 4. Error bars reflect the 95% confidence
intervals for the original study and the reproduction. Horizontal and vertical
dashed gray lines indicate where the original and reproduction effect sizes were
null, respectively. The diagonal black dashed line reflects the perfect calibration
line where original and reproduced effect sizes would be equal. Source data are
provided as a Source Data file.

Fig. 6 | Bland-Altman plot showing the relationship between effect size and
reproducibility (difference between original and reproduced coefficients). The
blue horizontal line marks the average difference in log effect size between the
original and reproduction. The red horizontal lines mark ±2 times the standard
deviation of the difference in log effect size. The circles reflect the values for the
difference between the original and reproduction estimates (on the y-axis) and the
average of the original and the reproduction estimates (on the x-axis). Source data
are provided as a Source Data file.

Fig. 3 | Calibration in risksor ratesofoutcomebetween theoriginalpublication
versus the reproduction (original – reproduction). A Risks Dashed diagonal gray
line reflects equal outcome risk identified in original and reproduction cohorts.
BRates Dashed diagonal gray line reflects equal outcome rates identified in original
and reproduction cohorts. Source data are provided as a Source Data file.
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Responsiveness of corresponding authors
Out of 150 authors of the reproduced studieswhowere contacted, 53%
responded, 33%didnot respond after 3 attempts at contact, and 13%of
the e-mails to corresponding authors were undeliverable. Among 81
responders, 32% (n = 26) provided helpful clarification or stated that
they were comfortable with our assumptions, 32% (n = 26) provided
somewhat helpful feedback that did not address all of the assump-
tions, 27% (n = 22) provided responses that did not address the
assumptions, and 12% (n = 6) declined to discuss their study, citing lack
of interest or time.

Exploring variation in reproducibility of comparative studies
We found little evidence that the average reproducibility (e.g., |
log(HRoriginal)–log(HRreproduction)|) formeasures of association differed
based on clarity of reporting for any single study parameter (Supple-
mentary Table 3). Similarly, the average reproducibility did not
meaningfully vary by study characteristics such as whether an author
was responsive to our queries, study funding source, study data
source, journal impact factor, author citation index, year of publica-
tion, orwhether the studywasoriginally conducted bymembers of the
same research group that implemented the study reproductions. The
differences between the original and reproduced effect sizes were
larger on average for studies with larger published effect sizes than
studies with smaller published effect sizes (p <0.01). However, this
could be an artifact driven by studies with few outcomes that pro-
duced highly variable but large effect sizes, or, given the multiple
factors explored, a chance finding.

Reasons for irreproducibility
We summarize assumptions made in the reproduction attempt due to
lack of reporting for the 10 studies with the most extreme differences
in the coefficients between the original and reproduced measures of
association (Supplementary Table 4).

For these 10 outliers, we observed 3 underlying reasons for diffi-
culty reproducing study results.

First, we struggled when there was incomplete information on
details of the design and analysis parameters. For some of the more
extreme outliers, we particularly noted lack of clarity regarding the
temporality of when study parameters were measured relative to the
study entry date, as well as absence of detailed algorithms for study
parameters.

Second, we observed internally inconsistent information between
the text, attrition tables, design diagrams and appendices. Dis-
crepancies forced the reproduction team to make assumptions about
which scientific parameters were actually implemented.

Third, shifts in results may have been driven by incomplete
information about the source data version. Although we tried to use
the same years of data from the same healthcare databases as the
original authors, some data sources retroactively update historical
years of data, resulting in shifts in the underlying population as well as
how certain variables are populated. For example, one of the data
sources changed how death was captured in different updates due to
privacy concerns. Additionally, reproducibility of studies in some data
sources can be further complicated when researchers access is limited
to customized subsets rather than full access to the source data.
However, information to allow identification of data version is rarely, if
ever reported. This may be in part due to the absence of a harmonized
system for versioning the semi-fluid data contained in a research
healthcare database.

Discussion
The analysis of massive amounts of individual-level longitudinal
healthcare data is becoming more and more common. It can produce
evidence on the effectiveness of medical interventions in clinical
practice, which in turn informs decision in the healthcare systems that

produced the data. Reproducibility of findings derived from such
analyses is essential to have confidence in decisionmaking. In 150RWE
studies we showed that the resulting effect sizes were strongly corre-
lated between the original publications and study reproductions in the
same data sources and developed insights on where there was room
for improvement. While our reproduced estimates were relatively
close to the original estimates from themajority of studies, therewas a
subset of findings that the study team was unable to closely recreate,
even though we applied the reported methods to the same healthcare
data sources as the original authors.

Our findings are an important calibration metric. This was the
largest and most systematic evaluation of reproducibility and
reporting-transparency for RWE studies ever conducted. Additional
strengths are that the reproduction teamwas able to acquire access to
the same data sources and years of data as reported by the original
investigators to independently implement the methods reported in
their publications. The reproduction team was blinded to the original
study results, so reproductions were implemented based on the
methods described, without influence from the published results and
the team documented the assumptions and key scientific decisions
made for each of the study reproductions. After exhausting publicly
provided information to complete the independent study reproduc-
tions, the reproduction team approached the original investigative
team to clarify ambiguities and omissions in reporting of the original
study methods.

Any single metric to characterize reproducibility is imperfect38.
For example, the proportion of studies where the effect estimate
was on the same side of null can mislead in RWE studies with small
effect sizes as small implementation differences could conceivably
result in enough change to result in an effect estimate on the other
side of null in a reproduction attempt. Further, the reproduction
effort is focused on US and UK data sources frequently used in
research and the generalizability may be limited to well-established
and curated research databases that are accessible to independent
researchers.

Decision-makers seeking to synthesize RWE to inform their reg-
ulatory, policy, or coverage decisionsmust devote substantial effort to
parsing and evaluating the validity of the science behind the results.No
specific study parameter stood out as being strongly associated with
reproducibility in our univariate descriptive analyses, highlighting the
fact that independent reproducibility is multi-factorial. We noted that
even studies thatwere closely reproduced often required considerable
discussion within the team, sometimes with many assumptions about
the original implementation decisions due to ambiguity in the meth-
ods description. The prevalence of studies that could not be closely
reproduced speaks to the need for higher levels of transparency and
expectations when communicating critical details of RWE study
design, analysis, and implementation in protocols, publications and
reports. Examining the details of these studies suggested that the
divergence was often multi-factorial. Because we observed that the
reproduction of most studies required the team to make assumptions
on at least one key parameter from a consensus document33 that
outlined elements needed for reproducibility and validity assessment
(the basis of our 54-item extraction form), aiming to meet at least this
level of detail in reporting on future studieswould be a substantial step
forward.

Other studies have described the prevalence of issues that bias
RWE studies6,39–43 and we focused on reproducibility without sys-
tematic evaluation of the appropriateness of design or analytic choi-
ces. While close independent reproducibility of a study is a marker for
completeness of reporting on study design and analysis methods,
reproducibility is not itself an indicator of high study validity. Indeed,
clear reporting in studies with methodological problems enabled our
team to closely reproduce results that suffered from the same
limitations.

Article https://doi.org/10.1038/s41467-022-32310-3

Nature Communications |         (2022) 13:5126 5



Expanding interest in the use of RWE studies to support health-
care decision-making coupled with recognition that ambiguity in
reporting limits the utility of such evidence has led to international
efforts to develop standards and templates to improve RWE trans-
parency, including clarity in data provenance and processing, exact
description of study design choices, details of measurement algo-
rithms and details of statistical analysis44–51. These parallel require-
ments for detailed protocols and statistical analysis plans for
randomized clinical trials. For RWE studies, part of transparency on
methods to enable independent reproducibility is communicating
sufficient detail to allow identification of the relevant data or data
version. While many updates to data may have negligible effect on
research findings, if there are substantial changes to the contents of
the data resources, this may affect the assessment of the fitness of the
data resource for the research question.

The need for internationally accepted guidelines to increase the
utility of RWE studies for decision-making has led the International
Council for Harmonization (ICH) to set as a short-term goal the har-
monization of the structure and format of protocols and reporting
documents in regulatory submissions52. A push to streamline pro-
cesses that support routine registration of hypothesis-evaluating RWE
studies similar to the public registration requirement for trials, is
supported by multiple professional organizations45,53. Our study fills a
critical knowledge gap by providing empirical evidence on the current
clarity of RWE study reporting and reproducibility.

Unambiguous communication about the complex data proces-
sing, design and analytic choices involved in RWE studies improves
understanding of the methodology supporting study findings, the
reproducibility of evidence, and the ability to evaluate validity and
relevance for healthcare policy decisions. There is always room for
improvement and this project has provided insights on how to
improve transparency and reproducibility. With coordinated effort
from key stakeholders, standards for clear and reproducible RWE
studies canbe set higher to facilitate efficient evaluation of validity and
effective, evidence-based decision-making.

Methods
Protocol registration, data, and approvals
The study protocol was reviewed and approved by the Institutional
Review Board at Brigham and Women’s Hospital. A study protocol
was registered at ENCePP prior to selection of the study sample
(registration number: EUPAS19636). Each Clinical Practice
Research Datalink (CPRD) study reproduction had a study specific
protocol approved by an Independent Scientific Advisory Com-
mittee (ISAC) prior to implementation of the reproduction. An
amendment was filed prior to completing revisions based on
reviewer comments.

The use of patient data for this project was authorized by licensed
access or data use agreements for 3 administrative healthcare claims
and 1 primary care based electronic health record database, each of
which is frequently used for research: de-identified Optum Clinfor-
matics claims data, IBM MarketScan Research Database claims data,
Medicare fee-for-service claims data, and CPRD electronic health
records to conduct study reproductions.

De-identified Optum Clinformatics databases (2004–2017) and
IBMMarketScan Research Database (2003–2017) and include national
United States claims from employer-sponsored insurance plans for
active employees and dependents, early retirees not yet eligible for
Medicare, and Medicare-eligible retirees with employer-sponsored
non-HMO Medicare Supplementary plans54,55.

TheMedicare fee-for-service data included claims fromparts A, B,
and D for United States Medicare fee-for-service insurance enrollees
over the age of 65. The data included patients with use of antic-
oagulants (2009-2017), diabetes diagnosis or treatment (2007–2017),
and rheumatoid arthritis diagnosis (2006–2017).

Each of these United States administrative claims-based data
sources includes diagnosis and procedure codes for billed inpatient
and outpatient services, outpatient prescription drug fills, dates of
service, and longitudinal health insurance enrollment status.

CPRD data includes de-identified electronic health record data
from primary care practices across the UK56. The data includes infor-
mation on patient vitals, signs, symptoms, health related behaviors,
diagnoses, immunizations, prescriptions, referrals, and other clinical
details. The data also includes information on practices and periods of
time during which data collection is considered “up-to-research”
standard for practices and patients.

Scientific Advisory Board
We engaged a Scientific Advisory Board comprised of interna-

tional stakeholders invested in understanding the reproducibility of
real-world evidence studies. This group included regulators, health
technology assessors, payers, academia, industry, contract research
organizations, journal editors, professional research societies, and
patients. The Scientific Advisory Board convened 5 times over the
course of the project, in early meetings focused on developing the
overall study design and analysis plan, and in later meetings focused
on framing and interpretation of findings.

Identification of the published studies for reproduction
Our team conducted systematic searches for peer-reviewed database
studies published between Jan 1, 2011 and Jun 30, 2017. Eligible studies
were required to have been conducted using one of the four data
sources that our team had access to, and the years of data used by
original investigators were required to match the years of data avail-
able to the study team.

We performed a series of systematic searches using Google
Scholar.We chose to useGoogleScholarbecausewewere interested in
studies that were conducted using the specific databases for which we
had access. This information is often not provided in the title and
abstract of manuscripts. Unlike PubMed and Web of Science, Google
Scholar searches the full text when available. The initial search inclu-
ded journals that were (1) highly ranked according to the h-5 index in
the Health & Medical Sciences or Epidemiology subcategories in
Google Scholar or (2) affiliated with the International Society of Phar-
macoepidemiology or the International Society for Pharmacoeco-
nomics and Outcomes Research.

For each journal of interest, we search for results that included the
words “cohort” AND “claims,” with at least one of the following words
contained anywhere within the article: “Optum”, “UnitedHealth”,
“Marketscan,” “Truven”, “GPRD”, “CPRD”, “Medicare.” The search was
limited to results published between Jan 1, 2011–Jun 30, 2017.

In order to boost the sample size of comparative studies, we
conducted secondary searches using Google Scholar for com-
parative cohort studies with restrictions based on publication year
and data source. The secondary searches were not restricted by
journal.

• Truven MarketScan
Search google scholar “comparative” AND “cohort” AND “Truven
MarketScan”

• Optum Clinformatics
Search google scholar “comparative” AND “cohort” AND
(“Optum Research Database” OR “OptumInsight” OR “Innovus”
OR “Optum Lab”)

• Medicare Search
Search google scholar “comparative” AND “cohort” AND
“Medicare” AND (“diabetes” OR “rheumatoid arthritis” OR
“anticoagulant”)

• CPRD
We reviewed the CPRD bibliography (https://www.cprd.com/
bibliography) for publications of comparative studies within the
eligible time frame.
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The sets of search results were reviewed by a member of the
research team todeterminewhether each article qualified for inclusion
in our study. Studies were excluded based on:

• Data source mismatch: The included studies must have been
conducted using a source database for which we had a data use
agreement/license. These included Medicare, MarketScan,
Optum, CPRD and any combination of these databases if the
results were reported separately for each data source. Studies
that used other healthcare databases or involved primary data
collection (e.g., a randomized clinical trial or animal study), were
excluded. If the study used Supplementary linkage of one of
these data sources to a database, registry, or electronic health
records from a source that was not publicly available, it was
excluded.

• Data source calendar time range: We excluded published studies
that were conducted using years of data that were not included
in our license/data use agreement.

• Full article unavailable: Studies were excluded if the search
result referred to a poster, a conference abstract, pre-print, or
members of the review team were unable to access a PDF for a
full manuscript.

• Not a descriptive or comparative safety/effectiveness cohort study:
We required that articles included in the sample were either a
descriptive study or had a comparative safety/effectiveness
analysis. These were defined as studies that evaluated risk/rate/
incidence/prevalence (or comparative risk/rate/incidence/pre-
valence) of a health outcome for medical health interventions.
We excluded articles that did not fall into those categories,
including:

Cost effectiveness analyses.
Methods papers (e.g., chart review validation, simulation,
machine learning algorithm development).
Review/Meta-Analysis/Letter/Commentary/Editorial/Guidelines.
Comparison of non-medical interventions (e.g., effect of geo-
graphy on risk of stroke).

After title and abstract review to identify eligible studies, we
ordered studies by publication date, and included the most recent
studies that met our criteria. Our target was to evaluate clarity of
reporting on 250 studies and to independently reproduce 150 studies.
The target was for 80% (120) of the sampled studies for reproduction
to focus on a comparative safety or effectiveness question, however,
due to an error in categorization early in the reproduction pipeline,
only 118 comparative studies were reproduced and an extra 2
descriptive studies were included. The studies were selected from the
pool of eligible studies based on reverse date of publication. Over the
course of reproduction of some studies, it became apparent that they
did not meet the eligibility criteria. When this occurred, we excluded
the study and added the next most recently published study that met
our criteria. The target sample size for this descriptive characterization
of reproducibility was chosen based on estimates for the largest fea-
sible number of studies that could be evaluated within the project
time frame.

We reviewed 4,133 abstracts from publications between January 1,
2011 and June 30, 2017 (see supplement materials and Supplementary
Fig. 1). Of these, 44.8% were excluded because the data source or date
ranges of data available did not match one of the four longitudinal
claims or electronic health record databases available for study
reproduction, 36.7% were excluded because they were neither
descriptive incidenceor prevalence studies or comparative studies of a
medical intervention (drug, vaccine or device), 12.3% of abstracts were
excluded because a full article was not available (e.g., conference
abstracts or the article was not in English). This left 6.2% (N = 258) of
reviewed abstracts eligible for inclusion. Our reproduction sample
consisted of 150 of the most recently published papers that met

inclusion criteria, with sampling stratified by comparative versus
descriptive studies such that 80% of the sampled studies for repro-
duction focused on a comparative safety or effectiveness question.
Clarity of reporting was evaluated for these 150 studies plus an addi-
tional 100 studies, which were included based on recency of publica-
tion date. Eight of the selected studies were published by members of
the same research department as members of the reproduction team.
In these cases, the paperwas assigned to research staff and facultywho
were not involved with the original publication. The results that are
reported reflect independent attempts to reproduce the original
publication results, prior to reaching out to the original
investigative team.

Evaluation of reporting clarity of 250 published studies
There were 6 reproduction teams working in parallel on evaluation of
reporting clarity and study reproduction. These teamswerecomprised
of at least one faculty member, one masters’ or PhD level research
scientist, one bachelors level research assistant, and a statistical pro-
grammer as needed.

Evaluation of the clarity in reporting of 250 study implementa-
tions was based on a standardized extraction form covering 54 items
corresponding to elements of a consensus document cataloguing
study parameters necessary for reproducibility and validity
assessment33 (Supplementary Data 1). Two members of each repro-
duction team independently evaluated each paper, with adjudication
by a third (senior) team member.

Empirical reproduction of 150 published studies
For each paper included in the 150 studies sampled for empirical
reproduction from the 250 studies described above, the teams
focused on reproducing a single study question. One team member
redacted pdfs of study materials, including entries of tables, results
and discussion sections that provided quantitative information about
the cohort characteristics or measure of association. This information
was redacted so that the reproduction teams could carry out inde-
pendent reproductions, without influence from knowledge of the
original study result.

The teams reproduced the primary study outcome if it was
clearly stated, otherwise, they focused on reproducing the first
reported descriptive or comparative result in the abstract. Descrip-
tive results included outcome risk, rate, incidence, or prevalence.
Comparative results included effect estimates for comparisons of
medical interventions. The reproduction teams implemented design,
analysis, and implementation parameters that were reported in the
paper, appendices, or citations. However, when parameters were
unclear, the team made assumptions. A set of default assumptions
was created for study parameters that were frequently ambiguous
from publications (Supplementary Data S2). If there was no relevant
default assumption and a study parameter was unclear, the
assumptionwas based on the best interpretation of the reproduction
team given the context provided in the paper. Each paper had at least
2 research staff and one faculty member involved in the reproduc-
tion. The research staff proposed assumptions tomake and reviewed
these assumptions with the faculty member that they were teamed
with. If the team was not able to come to agreement, another faculty
member was involved. After discussion, the assumptions made dur-
ing reproduction were documented. All study reproductions were
implemented based on publicly available information for the studies.
After independently attempting to directly reproduce the sampled
studies, the team reached out to the corresponding authors of the
original papers to discuss how the assumptions regarding study
implementation in the reproduction may have differed from the
original (author contact protocol available in Supplementary Data 3,
author contact files with detailed assumptions Supplementary
Data 4). To facilitate discussion, we sent corresponding authors a file

Article https://doi.org/10.1038/s41467-022-32310-3

Nature Communications |         (2022) 13:5126 7



that detailed study reproduction assumptions, a summary of the
reproduction protocol and results of the reproduction next to their
original study results.

We used transparent processes and software to conduct the
reproductions of 150 empirical database studies over the course of 3
years. The reproductions were primarily conducted using the Aetion
Evidence Platform® (2021) v4.2 software for real-world data analysis,
complemented by SAS 9.4, STATA 14, and Cran R version 3.6.1 when
needed. The Aetion platform automatically produced detailed doc-
umentation and audit trails of how each study reproduction was
implemented, including details of design decisions such as temporal
anchors and all code algorithms. The team maintained similar doc-
umentation in protocols for studies that were implemented by pro-
grammers with SAS, STATA and R. A list of reproduced studies is
available in Supplementary Data 5.

Descriptive measures and statistical analysis
Wedescribe the frequency of reporting of specific types of parameters
listed in the consensus document on reporting for RWE study repro-
ducibility, compare characteristics from the reproduction versus the
original cohorts, as well as the degree of concordance between mea-
sures of association.

The reproducibility of population sample size was measured by
dividing the sample size of the original study by the reproduction. For
comparative studies, the sample size was determined as the sumof the
sample sizes in the compared exposure groups.

We evaluated the reproducibility of baseline characteristics
reported in an original manuscript table describing the cohort char-
acteristics. The reproducibility of binary and categorical baseline
characteristics of the study population was measured by taking the
prevalence of the characteristic reported in the original publication
(within each exposure group if there was more than one) and sub-
tracting the prevalence obtained in the reproduction.

The reproducibility of outcome risks and rates was measured
by taking the reported outcome risk or rate in the original pub-
lication and subtracting the risk or rate obtained in the reproduc-
tion. For descriptive studies, the overall risk or rate was reproduced.
For comparative studies, the risk or rate was reproduced for each
compared group. Rates were converted to reflect events per 100
person-years.

The primary reproducibility metrics for measures of associations
of interest were the relative magnitude of the original effect size (e.g.,
hazard ratio, relative risk, odds ratio) compared to the reproduction
effect size (e.g., hazard ratiooriginal/hazard ratioreproduction) and the
Pearson’s correlation coefficient between the reproduced and original
effect sizes (both unweighted and inverse variance weighted). Other
descriptive metrics included the proportion of studies where the
absolute difference in the coefficients for the measure of association
differed by ≤0.1 or ≤0.2 (e.g., | log(hazard ratiooriginal)–log(hazard
ratioreproduction) |), the proportion of comparative studies where the
reproducedmeasure of associationwas closer to null than the original,
the proportion where the measures were on the same side of null, and
the proportion with any overlap in 95% confidence intervals.

We pre-specified measures for study reproducibility men-
tioned above and show their absolute values in plots or standard
descriptive statistics such as means and medians. Arbitrary cutoffs
were also used to describe the distribution of these metrics in the
manuscript. These cutoffs were not pre-specified. In response to
reviewer comments, we computed additional descriptive measures
such as the Spearman’s rank correlation, the intraclass correlation
coefficient, and changes in p-value between the original and
reproduced studies.

In addition to characterizing how closely measures of associa-
tion are reproduced, we explored how characteristics of the

sampled studies relate to the absolute magnitude of the difference
in the coefficients for measures of association in the original study
and the reproduction, without multiple-testing adjustment. We
analyzed variance in means related to reporting clarity, size of the
original effect estimate, data source, funding source, journal type,
author experience (proxy measured by first author citation index),
calendar year of publication, whether the original study was con-
ducted by investigators in the same research group as the repro-
duction team, and author responsiveness to questions from the
reproduction team.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are providedwith this paper. Sourcedata used to generate
tables and figures for this paper are available are provided in a Source
Data File using the format requested by the journal. Additionally, the
source data are provided in Supplementary Data 6 in a format com-
patible with the RMarkdown code that has been shared (see code
availability below) to reproduce figures and tables. These files have
been deposited in the Open Science Framework under accession code
https://osf.io/my5gn/. The rawdata used to generate the studydata are
available under restricted access only. Members of the reproduction
teamwere permitted to access the raw data provided by third parties.
The raw data are protected and are not publicly available due to data
privacy laws and data use agreements. The processed data used to
generate tables and figures are available in the Open Science Frame-
work repository (https://doi.org/10.17605/OSF.IO/MY5GN). Our data
use agreements for MarketScan, Optum, CPRD and Medicare do not
permit us to share source data or data derivatives with individuals and
institutions not covered under the agreements. These data sources
may be accessed by other investigators through their own data use
agreements. The administrative and clinical researchdatabases used in
the study reproductions are accessible to other researchers by con-
tacting the data owner/vendors and acquiring data use agreements
and/or data licenses. The research data and data derivatives cannot be
shared outside of the terms of these agreements. It is our experience
that the data vendors we used are very responsive to requests for
contracting use of their patient data resources. However, the cost,
timeframe, and process for completing the contract for authorized use
of these data varies. Contacts and information on how to acquire
access to source data: Medicare resdac@umn.edu https://resdac.org/
research-identifiable-files-rif-requests Optum Clinformatics con-
nected@optum.com https://www.optum.com/business/solutions/life-
sciences/real-world-data/claims-data.html IBM MarketScan https://
www.ibm.com/products/marketscan-research-databases/databases
CPRD rdg@cprd.com https://www.cprd.com/research-applications
The remaining data are available within the Article or from the
authors upon request. Source data are provided with this paper.

Code availability
Analysis code used to generate tables and figures for this paper are
available in Supplementary Data 6, located at: https://osf.io/my5gn/,
https://doi.org/10.17605/OSF.IO/MY5GN57.
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