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Abstract

Typhoid fever epidemiology was investigated rigorously in Santiago, Chile during the 1980s,

when Salmonella enterica serovar Typhi (S. Typhi) caused seasonal, hyperendemic dis-

ease. Targeted interventions reduced the annual typhoid incidence rates from 128–220

cases/105 population occurring between 1977–1984 to <8 cases/105 from 1992 onwards.

As such, Santiago represents a contemporary example of the epidemiologic transition of an

industrialized city from amplified hyperendemic typhoid fever to a period when typhoid is no

longer endemic. We used whole genome sequencing (WGS) and phylogenetic analysis to

compare the genotypes of S. Typhi cultured from acute cases of typhoid fever occurring in

Santiago during the hyperendemic period of the 1980s (n = 74) versus the nonendemic

2010s (n = 80) when typhoid fever was rare. The genotype distribution between “historical”

(1980s) isolates and “modern” (2011–2016) isolates was similar, with genotypes 3.5 and 2

comprising the majority of isolations, and 73/80 (91.3%) of modern isolates matching a

genotype detected in the 1980s. Additionally, phylogenomically ‘ancient’ genotypes 1.1 and

1.2.1, uncommon in the global collections, were also detected in both eras, with a notable

rise amongst the modern isolates. Thus, genotypes of S. Typhi causing acute illness in the

modern nonendemic era match the genotypes circulating during the hyperendemic 1980s.
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The persistence of historical genotypes may be explained by chronic typhoid carriers origi-

nally infected during or before the 1980s.

Author summary

Studies of Salmonella Typhi (the cause of typhoid fever) rarely include isolates collected

both before and after the interruption of hyperendemic transmission because this typically

occurred decades before modern bacteria preservation methods. After substantial reduc-

tion in disease, it was assumed that sporadic cases and infrequent outbreaks were due to

either chronic biliary carriers or importations, but this was difficult to characterize with

low resolution bacterial typing methods. In Santiago, Chile, typhoid fever persisted at

hyperendemic levels through the 1980s until organized control efforts in the 1980s and

changes to wastewater policy in 1991 caused annual typhoid incidence to plummet.
In this study, we used whole genome sequencing (WGS) to investigate whether recent

sporadic cases occurring in Santiago in the 2010s were genomically similar to S. Typhi cir-

culating in the 1980s, or dissimilar, possibly representing importations of S. Typhi from

outside of Chile. We found concordance amongst S. Typhi genotypes between the 1980s

and 2010s, and differences from genotypes circulating in Southeast Asia and Africa where

typhoid remains hyperendemic. Our findings suggest that a proportion of modern, rare

typhoid cases in Santiago are autochthonous, and that chronic carriers or another

unknown reservoir likely contribute. Broadly, our findings corroborate the epidemiologic

importance of long-term reservoirs of typhoid fever decades after typhoid elimination.

Introduction

Typhoid fever is a systemic infection, caused by the bacterium Salmonella enterica subspecies

enterica serovar Typhi (S. Typhi), which is spread through ingestion of food and water contami-

nated with human faeces containing S. Typhi. Typhoid fever in Santiago, Chile rose to hyper-

endemic levels in the mid-1970s with a striking annual incidence of 177–220 cases per 105 popula-

tion per year from 1977–1983, partially declined during the years 1984–1991 (51–128 cases/105

per year), and finally plummeted below 8 cases/105 per year after 1991, reaching nonendemic lev-

els of ~0.5/105 in 2012 [1]. During the hyperendemic years, the highest incidence rate was

observed in school age children, and case numbers peaked in the rainless summer months [2]. To

address this public health issue, in 1979 the Ministry of Health of Chile implemented a Typhoid

Fever Control Program involving strategic preventive interventions including large-scale field tri-

als of live oral typhoid vaccine Ty21a in>500,000 schoolchildren [3–6], and identification and

treatment of chronic carriers among food handlers [7]. Collectively, these interventions led to a

steady decline in typhoid cases between 1983 and 1990 [3–6,8].

Epidemiologic and environmental bacteriology studies in the 1980s undertaken by the Chilean

Typhoid Fever Control Program also implicated the use of raw untreated sewage water for irriga-

tion of vegetable crops during the rainless summer months as a key risk factor responsible for

amplified transmission of S. Typhi in Santiago [8,9]. In April 1991, the government of Chile

abruptly prohibited the practice of irrigating crops with untreated sewage wastewater in Santiago

[1,8,10,11]. This action was taken following the explosive epidemics of El Tor cholera in 1991 that

occurred in neighbouring countries to the North, including in Peru, beginning in late January

[12,13], followed by Ecuador in February [13], and Colombia in March [13]. The pivotal stimulus
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for the intervention was a small outbreak of cholera in Santiago, Chile, in April, 1991 [1,8,10,11].

Following imposition and strict enforcement of the prohibition of use of untreated sewage water

for irrigation, the Santiago cholera epidemic quickly came to an end [10,11], and the incidence of

typhoid dropped precipitously in subsequent years [1,8,10]. From 2000–2014, the annual inci-

dence of confirmed typhoid fever in Santiago has ranged from 0.20–1.18 cases/105 population.

The current rare sporadic cases of typhoid in Santiago include illnesses among: travellers who

visit countries with high incidence rates of typhoid; immigrants from typhoid-endemic countries;

and transmission from Chilean chronic carriers who were originally infected decades earlier (pre-

1991) during the era of hyperendemic transmission.

Phylogenetic analysis of whole genome sequencing (WGS) data has become the gold stan-

dard for inferring relatedness between S. Typhi isolates [14]. WGS can also be used to assign

genotypes, identify and characterize plasmids, compare gene content and homology, and iden-

tify molecular determinants of antibiotic resistance and virulence [15,16]. Whereas WGS data

from many global isolates are available, few bacterial collections include isolates from both

before and after the interruption of amplified hyperendemic typhoid fever. Also, WGS-derived

information concerning the genotypes isolated from typhoid fever cases in South American

countries is scarce. The majority of publicly available sequenced isolates come from hyperen-

demic regions in South Asia and East Africa where H58 (4.3.1) genotypes dominate [17].

Herein we describe a genomic analysis of S. Typhi isolates from Santiago, Chile from two

distinct epidemiologic periods: the early 1980s (N = 74), when typhoid was hyperendemic, and

from 2010–2016 (N = 80), a quarter century after the interruption of amplified transmission of

S. Typhi in Santiago. We show that the genotypic composition of the population structure is

similar between these two periods, even though the local epidemiology has changed drastically.

In addition, we describe a potential carrier-related cluster of the “ancient” 1.1 clade, and the

identification of a new variant of plasmid pHCM2 carried by 2 isolates of another ancient

genotype (1.2.1).

Material and methods

Study design

In total, 74 “historical” isolates of S. Typhi from cases of acute typhoid fever in Santiago, Chile

in the period 1981 to 1986, during the era of hyperendemic typhoid, were obtained from the

culture collection of the Center for Vaccine Development and Global Health of the University

of Maryland, Baltimore. “Modern” S. Typhi isolates (n = 80) were strains collected from acute

cases of typhoid fever and referred to the Instituto de Salud Pública de Chile (ISP, Institute of

Public Health) by clinical microbiology laboratories from 2011–2016; these referred strains

were generally accompanied by only limited demographic and clinical information.

DNA extraction and sequencing

DNA was isolated from the 154 S. Typhi isolates using the Norgen DNA extraction kit as per

the manufacturer’s instructions. Genomic DNA was sequenced by Illumina HiSeq at the Well-

come Sanger Institute, generating 125 bp paired reads. Raw read data were deposited in the

European Nucleotide Archive and individual accession numbers are listed in S1 Table.

Assembly, mapping, SNP-calling and genotype assignment

Raw Illumina reads were assembled using Velvet v1.2 via the Wellcome Sanger Institute auto-

mated analysis pipeline [18]. Sequenced reads were mapped and annotated, single nucleotide

polymorphisms (SNPs) were called against the S. Typhi CT18 reference genome [19] using
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SMALT v0.7.4 and subsequent variant calling was carried out as previously described [20].

Genotypes were assigned using GenoTyphi (v1.9.0) [14,16].

Phylogenetic analysis

Previously defined [21–23] recombinant regions such as prophages and plasmids were excluded

manually, and any remaining recombinant regions were filtered using Gubbins (v2.5.0) [24]. The

resultant core genome alignment was used to infer Maximum Likelihood (ML) phylogenies using

RAxML (v8.2.8) [25], specifying a generalized time-reversible model and a gamma distribution to

model site-specific rate variation (GTR+ Γ substitution model; GTRGAMMA in RAxML) with

100 bootstrap pseudoreplicates used to assess branch support. SNP distances for the core genome

alignment of all the strains have also been calculated from this alignment using snp-dists package

(available at: https://github.com/tseemann/snp-dists). Resulting phylogenies were visualized with

iTOL [26] and are available for interactive inspection on Microreact [27] (https://microreact.org/

project/j25cGgoVX8ixQCRstPVhgo-chile-1980-2010).

Molecular determination of AMR, plasmids and virulence genes

Raw read data were screened using SRST2 v0.2.0 [15] with the ARG-ANNOT [28], PlasmidFinder

[29], and Salmonella Virulence Factor DB databases [30] to detect known and putative antimicro-

bial resistance (AMR) genes, known plasmid replicons, and known virulence-associated genes,

respectively. Homology cutoffs of 90% nucleotide similarity were used for all SRST2 screens.

Plasmid pHCM2 sequences were assembled with Unicycler [31], and the circularised

sequences extracted from de bruijn assembly graphs with Bandage (v0.8.1) [32]. These were

then compared with the pHCM2 reference sequence (accession no: AL513384) using Artemis-

ACT [33] and visualized with EasyFig [34].

Results

S. Typhi genotypes in Santiago, Chile

Genotypic analysis indicated that most of the isolates from Santiago in this study belonged to

genotypes 2 (n = 43, 27.9%), 3.5 (n = 51, 33.1%) and 1.1 (n = 22, 14.3%) (Table 1). While these

Table 1. S. Typhi genotypes detected in isolates from acute clinical cases in Santiago, Chile during the hyperen-

demic 1980s versus the nonendemic 2010s.

1983–1986 2011–2016 TOTAL

1.1 2 (2.7%) 20 (25%) 22 (14.3%)

1.2.1 1 (1.4%) 5 (6.3%) 6 (3.9%)

2 30 (40.5%) 13 (16.3%) 43 (27.9%)

2.0.2 11 (14.9%) 5 (6.3%) 16 (10.4%)

2.2 - 3 (3.8%) 3 (1.9%)

2.3.2 1 (1.4%) 1 (1.3%) 2 (1.3%)

2.3.3 1 (1.4%) 1 (1.3%) 2 (1.3%)

2.3.4 1 (1.4%) - 1 (0.6%)

3.1 1 (1.4%) - 1 (0.6%)

3.3 - 1 (1.3%) 1 (0.6%)

3.5 25 (33.8%) 26 (32.5%) 51 (33.1%)

4.1 1 (1.4%) 2 (2.5%) 3 (1.9%)

4.3.1.1 - 2 (2.5%) 2 (1.3%)

4.3.1.2 - 1 (1.3%) 1 (0.6%)

TOTAL 74 80 154

https://doi.org/10.1371/journal.pntd.0010178.t001
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three genotypes were the most prevalent, we also detected 11 additional distinct genotypes

across the two time periods. These include three previously described importations of isolates

belonging to H58 genotypes 4.3.1.1 and 4.3.1.2 [35].

The genomic population structure of S. Typhi in Santiago appeared highly consistent

between the hyperendemic and post-hyperendemic eras (Fig 1). Both rare “ancient” genotypes

1.1 and 1.2.1, as well as more commonly found genotypes 2 and 3.5, were frequently present

across both study periods. Despite several decades having passed since the cessation of the era

of hyperendemic transmission, most of the post-2010 sporadic S. Typhi isolates shared boot-

strap-supported phylogenetic clusters with the 1980 hyperendemic isolates. Only within geno-

type 1.1 did recent and historical sequences form independent clusters. The intermingling of

historical and recent sequences suggests that the 2010s isolates originated from progenitors

within the same pool of S. Typhi circulating in the 1980s.

Amongst the 151 non-H58 isolates, few antimicrobial resistance mechanisms were

detected. One genotype 2.0.0 isolate carried a tetB gene, known to encode a mechanism of

resistance to tetracyclines (albeit not an antibiotic of clinical relevance for treatment of typhoid

fever). Two genotype 2.2 isolates and one genotype 4.1 isolate had single non-synonymous

point mutations in the Quinolone Resistance Determining Region (QRDR) of genes gyrA and

gyrB, associated with reduced susceptibility to fluoroquinolones [36]; in the late 1980s, cipro-

floxacin was the antibiotic of choice for treating patients with typhoid fever. Only 17 candidate

plasmids were detected across all the isolates, including a Colicin plasmid, three related to plas-

mid pHCM2 and 13 of incompatibility type IncX1 (Fig 1).

Global transmission dynamics

To better understand how this local population structure fits into the global context of S.

Typhi, a maximum likelihood phylogenetic tree was generated using a total of 2,013 non-H58

S. Typhi genomes from approximately 70 countries (Fig 2). The S. Typhi isolates from Santiago

of genotypes 3.5, 2, 1.1 and 1.2.1 clustered together and were genetically distinct from those

sequenced previously from other countries. The other genotypes present in Santiago were

mostly found on long branches, indicating significant differentiation from their closest rela-

tives in the global context phylogeny.

“Ancient” S. Typhi clades endemic to Chile

Two of the clades common in our dataset, 1.1 and 1.2, are found closer to the root of the global

S. Typhi tree and thus can be considered “ancient” clades, which are detected with very low

global frequency. Of the 1.1 isolates (n = 22), two were from the 1980s collection (Fig 3). Only

six other isolates, 0.3% of the global collection described by Wong et al [14], belonged to clade

1.1. Interestingly, a cluster of closely related genotype 1.1 S. Typhi isolates was detected in the

years 2011 (1 isolate) and 2012 (19 isolates). These isolates also exhibit lower genetic variation

(median SNP distance of 8) than those observed among the two 1980s 1.1 isolates (119 SNPs).

The smallest SNP distance between a 1980s 1.1 isolate and a 2010s 1.1 isolate was 79 SNPs.

This suggests the 2011–2012 isolates have a recent common ancestor.

We sought to determine if there was a specific virulence gene associated with the 2011–

2012 genotype 1.1 cluster, using SRST2 with the Salmonella VFDB. Although there were no

additional or missing virulence factor-associated genes detected, this screening did reveal that

all of the genotype 1.1 isolates from 2011–2012 cluster harboured a SNP in the ssrA gene. The

alignment of this gene revealed the same missense mutation (G to A at position 1648968 of

CT18, causing a glycine to glutamic acid amino acid change) in the ssrA gene (ssrA-G639E),

(Fig 3).
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Fig 1. Genotypes and molecular determinates of AMR and plasmids in the Santiago collection. SNP based

maximum likelihood core genome phylogeny indicating the genotypes of all the Santiago S. Typhi isolates is shown by

the branch colour as per the inset legend. A diverse range of 14 genotypes were detected including 1.1, 1.2.1, 2, 2.0.2,

2.2, 2.3.2, 2.3.3, 2.3.4, 3.1, 3.3, 3.5, 4.1, 4.3.1.1, 4.3.1.2. Most of the isolates belonged to genotype 1.1, 2 and 3.5. Year of

isolation, SNPs in the QRDR region associated with reduced susceptibility to fluoroquinolones as well as plasmids and

detected resistance genes are shown in the columns adjacent to the tree. Bootstrap confidence of 80 or above is

indicated with a black circle on the branch.

https://doi.org/10.1371/journal.pntd.0010178.g001
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The other ancient clade present amongst the Santiago isolates was genotype 1.2.1. This was

the only clade in our datasets (except from one recently imported H58 isolate) in which isolates

harboured pHCM2 plasmids. pHCM2 plasmids are found in ~15% of S. Typhi and are

Fig 2. A global context maximum likelihood core genome phylogeny incorporating publicly available non-H58

and Santiago S. Typhi isolates. SNP based core genome maximum likelihood tree of 2013 global isolates, branches are

coloured by genotype as per the inset legend; the ring indicates country of isolation as per the inset legend; Santiago

isolates are highlighted in black and the Colombian isolates in red.

https://doi.org/10.1371/journal.pntd.0010178.g002

Fig 3. S. Typhi clade 1.1 phylogeny showing sequences carrying ssrA mutation (ssrA-G639E). Phylogenetic core

genome analysis of all S. Typhi isolates of genotype 1.1 identified from the global collection. The majority of these

isolates were collected in Santiago (black bar); two isolates belonged to the 1980s collection appearing ancestral to the

2010s collection. The twenty isolates from 2011–2012 showed an interesting cluster with a median SNP distance of 8

SNPs which is unlikely to have evolved among acute cases, where the mutation rate is calculated to be< 1 SNP/

genome/year, in one year. Also shown is an alignment of a section of the ssrA gene, showing the conserved SNP at

position 1648986 of the S. Typhi CT18 reference genome. � the precise isolation year of one of the 1980s isolates was

unclear.

https://doi.org/10.1371/journal.pntd.0010178.g003
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generally highly conserved (Fig 4A). To our knowledge, based on the data available in the S.

Typhi public collection on Pathogenwatch: (https://pathogen.watch/collection/1y3cdsjq55hf-

public-genomes- accessed Dec 2021), pHCM2 plasmids have not been detected in ancient

clades 0.0 to 1.2 previously. Two pHCM2 plasmids were found among our isolates from geno-

type 1.2.1; one in a 1984 isolate (ERR2710544) and the other from 2013 (ERR4289185). These

plasmids were highly similar to each other, but significantly different from the pHCM2 found

on S. Typhi reference CT18 (accession no: AL513384), and from another novel pHCM2 found

in a 1973 isolate from Thailand [37]. The pHCM2 sequences described here differed by>2000

SNPs (98.4% nucleotide identity, 89% coverage) from the reference (Fig 4).

Discussion

This study utilizes WGS analyses to compare S. Typhi isolates from patients who developed

acute typhoid fever in Santiago during the modern era (i.e., 2011–2016, decades post-interrup-

tion of amplified typhoid transmission in 1991) with isolates from acute cases during the

hyper-endemic era of the 1980s. Using phylogenetics and genome-wide screening, we com-

pared the genotypes, AMR determinants and plasmid content of S. Typhi isolates between

these two time periods. Whilst comparisons of isolates from the 1980’s with isolates from 1990

(post vaccinating interventions-but pre-irrigation ban, when incidences were still high 47

cases /105 [1]) have been undertaken previously with pulse field gel electrophoresis (PFGE)

[38], to our knowledge, this is the first WGS-based analysis comparing S. Typhi collected dur-

ing a period of hyper-endemicity and decades after typhoid control.

The observation that the 1980s and 2010s collections of S. Typhi isolates do not cluster

independently within our commonly found genotypes (2, 3.5 and 1.2.1) suggests that many of

the sporadic cases detected in the 2010s share common ancestry with S. Typhi cases from the

1980s. These may, in turn, be linked to shedding of S. Typhi from chronic typhoid carriers.

This is expected decades after hyper-endemic typhoid is controlled, as chronic carriers will

continue to shed sporadically until they are treated or die out of the population [39].

Although there have been several detected introductions of the globally dominant H58 S.

Typhi clade (4.3.1) into Santiago, as occurs with most industrialized countries in North Amer-

ica, Europe, and Australia, this was not a frequent genotype found in the sporadic modern

Chilean cases. This is distinct from countries such as the United Kingdom where imported

Fig 4. Genetic comparison of cryptic plasmid pHCM2-like sequences. Global representative collection of pHCM2 aligned

to the reference pHCM2 from CT18. (A) Presence and absence of genes located on pHCM2. Red indicates presence of the

genes located on the reference pHCM2 sequence from CT18, while blue indicates absence of the genes compared to the

reference. Nucleotide BLAST comparison of the 2 Chilean assembled pHCM2-like plasmids (ERR271054, ERR4289185)

against the reference pHCM2 plasmid from S. Typhi CT18 (accession no:AL513384) (B). Gene annotations are shown for the

reference pHCM2 from CT18, with the shading intensity indicating percent nucleotide homology between the plasmid

sequences.

https://doi.org/10.1371/journal.pntd.0010178.g004
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cases of H58 S. Typhi have become common among travel-associated typhoid cases in recent

years [40,41].

S. Typhi WGS data from a recent study in Colombia found genotypes 2, 2.5 and 3.5 to be

the local endemic genotypes [42]. Genotype 2.5 was not detected among the Santiago isolates;

however, genotype 3.5 and 2 were detected in Santiago, and were the nearest genomic neigh-

bours of the Colombian isolates on the global tree. Even though the sequenced isolates from

Colombia and Santiago, Chile both contained isolates from the 2010s and historical isolates,

they clustered separately on the global tree, suggesting that there has not been obvious trans-

mission between the two countries. More representative WGS data from other Central and

South American countries are needed to determine if this is the case with other unsampled

potentially endemic countries in the area.

One of the more interesting findings from this dataset was the cluster of 20 highly related

strains of genotype 1.1 in 2011–2012. These isolates differed by a median of 8 SNPs in the core

genome. For context, the average core genome mutation rate in S. Typhi is approximately 1

substitution/genome/year every year [21,43–45]. As such, it is unlikely that these isolates origi-

nated from a clonal source and sequentially acquired this genetic variation in<2 years. Con-

versely, these strains are clearly highly related and were all collected during a short time span.

A potential explanation to account for this cluster is that it was an outbreak caused by bacteria

shed from a long-term carrier. S. Typhi colonizing the gallbladder or other long-term physio-

logic niche of a chronic typhoid carrier may evolve and mutate over time into a heterogeneous,

yet closely related, community of bacteria [46]. Thus, the closely related nature of these isolates

occurring mainly over a single year and during a period when typhoid was no longer hyperen-

demic in Santiago could be explained by an outbreak instigated by a chronic carrier who was

shedding multiple highly related strains. If this hypothetical carrier was working as a food han-

dler, intermittently contaminating food or water consumed by subjects during 2011–12, this

could result in the cluster of closely related isolates we observe. The cessation of cases could

then be explained by a change of employment or residence, a cholecystectomy procedure, a

course of antibiotics that concentrate in the gallbladder (e.g., ciprofloxacin) prescribed for

another infection or surgery, or death of the hypothetical carrier at the end of 2012.

Notably, the only detectable difference in virulence factor-associated genes from this poten-

tial carrier-related 2011–2012 cluster is the ssrA missense mutation. The ssrA/B two compo-

nent response regulator is a principle regulator of Salmonella pathogenicity island-2 (SPI-2)

[47,48]. SPI-2 has been shown to be insignificant in S. Typhi macrophage survival capability

and S. Typhi’s infection efficiency of humanized mice [49,50]. The ssrA gene has been linked

to biofilm formation in Salmonella and persistence on gallstones [51,52]. This observation

may be worth additional investigation to investigate the role of SPI-2 and ssrA in Typhoid

carriage.

Our analysis identified a novel variant of cryptic plasmid pHCM2 in two sequences from

genotype 1.2.1. A pHCM2 type plasmid was present in the S. Typhi reference isolate CT18

from Vietnam [19] and the plasmid family was described in some detail [53]. Interestingly,

any role for pHCM2 in S. Typhi biology remains elusive. We know that almost all of the

pHCM2 plasmids in the global S. Typhi collection are highly conserved in terms of overall

nucleotide diversity. However, the Chilean pHCM2 from clade 1.2.1 is substantially different

from most other family members. The only other reported pHCM2 plasmid with a similar

level of variation is harboured in a S. Typhi Thailand isolate from 1973 [37].

The main limitation of this study is the limited sample size of S. Typhi genomes from both

the historical hyperendemic and modern nonendemic periods in Santiago, Chile. Although

not all isolates were stored during the hyperendemic period more than 40 years ago, we incor-

porated all available stored isolates from acute cases. For the modern time period we used a
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similar number of available isolates exclusively from acute cases to represent circulating infec-

tion. Among the approximately 7 million inhabitants in Santiago, Chile, few blood culture iso-

lates from acute cases of typhoid fever were recorded in the 2010s, (<0.5/105 cases per year)

and not all isolates are sent to the ISP; thus, only a limited number of S. Typhi isolates were

available for sequencing. Nevertheless, the study design, based on S. Typhi causing acute dis-

ease between epidemiologically-distinct eras, lends support to our primary finding: the same

genotypes circulating in the hyperendemic 1980s are found circulating in the modern 2010s

period.

There are especially limited genomic data available for S. Typhi circulating in neighbouring

countries, presenting another limitation of this study. Nevertheless, efforts to foster sequencing

infrastructure and data generated in South America through the PAHO regional networks

have accelerated during the Covid-19 pandemic. It is expected that whole genome sequencing

of other pathogens, like S. Typhi, will follow in this region.

In conclusion, this genomics analysis suggests that asymptomatic typhoid carriers (or other

unknown reservoirs) are likely responsible for continuing sporadic typhoid cases in Chile. The

ancient clades present in the country have persisted. We recommend that all sporadic typhoid

cases and clusters should be evaluated using epidemiological outbreak investigations and WGS

as routine surveillance. This will help ensure the detection of any potential introduction or

development of drug-resistant S. Typhi and may lead to the identification and treatment of

carriers, which would further limit ongoing disease transmission.

Supporting information

S1 Table. S1 Table includes from left to right: Id, lane accession, __latitude, __longitude,

genotype, Ampicillin resistance, Cephalexin resistance, Chloramphenicol resistance, Cip-

rofloxacin resistance, Nalidixic acid resistance, Sulfamethoxazole resistance, Trimetho-

prim resistance, Trimethoprim/Sulfamethoxazole resistance, Tetracycline resistance,

Azithromycin resistance, Colistin resistance, Meropenem resistance, gyrA_D87N muta-

tion, gyrB_S464F mutation, parC_S80I mutation, perE_A364V mutation, presence of tetA
(B) gene, presence of tetR (B) gene, presence of pHCM2 plasmid (any variant), year of iso-

lation, ssrA_G639E mutation, presence of pHCM2 Chile variant.
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