Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic.

Caspar J Van Lissa ; Wolfgang Stroebe ; Michelle R vanDellen ; N Pontus Leander ; Maximilian Agostini ; Tim Draws ; Andrii Grygoryshyn ; Ben Gützgow ; Jannis Kreienkamp ; Clara S Vetter ; +95 more... Georgios Abakoumkin ; Jamilah Hanum Abdul Khaiyom ; Vjolica Ahmedi ; Handan Akkas ; Carlos A Almenara ; Mohsin Atta ; Sabahat Cigdem Bagci ; Sima Basel ; Edona Berisha Kida ; Allan BI Bernardo ; Nicholas R Buttrick ; Phatthanakit Chobthamkit ; Hoon-Seok Choi ; Mioara Cristea ; Sára Csaba ; Kaja Damnjanović ; Ivan Danyliuk ; Arobindu Dash ; Daniela Di Santo ; Karen M Douglas ; Violeta Enea ; Daiane Gracieli Faller ; Gavan J Fitzsimons ; Alexandra Gheorghiu ; Ángel Gómez ; Ali Hamaidia ; Qing Han ; Mai Helmy ; Joevarian Hudiyana ; Bertus F Jeronimus ; Ding-Yu Jiang ; Veljko Jovanović ; Željka Kamenov ; Anna Kende ; Shian-Ling Keng ; Tra Thi Thanh Kieu ; Yasin Koc ; Kamila Kovyazina ; Inna Kozytska ; Joshua Krause ; Arie W Kruglanksi ; Anton Kurapov ; Maja Kutlaca ; Nóra Anna Lantos ; Edward P Lemay ; Cokorda Bagus Jaya Lesmana ; Winnifred R Louis ; Adrian Lueders ; Najma Iqbal Malik ; Anton P Martinez ; Kira O McCabe ; Jasmina Mehulić ; Mirra Noor Milla ; Idris Mohammed ; Erica Molinario ; Manuel Moyano ; Hayat Muhammad ; Silvana Mula ; Hamdi Muluk ; Solomiia Myroniuk ; Reza Najafi ; Claudia F Nisa ; Boglárka Nyúl ; Paul A O'Keefe ; Jose Javier Olivas Osuna ; Evgeny N Osin ; Joonha Park ; Gennaro Pica ; Antonio Pierro ; Jonas H Rees ; Anne Margit Reitsema ; Elena Resta ; Marika Rullo ; Michelle K Ryan ; Adil Samekin ; Pekka Santtila ; Edyta M Sasin ; Birga M Schumpe ; Heyla A Selim ; Michael Vicente Stanton ; Samiah Sultana ; Robbie M Sutton ; Eleftheria Tseliou ; Akira Utsugi ; Jolien Anne van Breen ; Kees Van Veen ; Alexandra Vázquez ; Robin Wollast ; Victoria Wai-Lan Yeung ; Somayeh Zand ; Iris Lav Žeželj ; Bang Zheng ORCID logo ; Andreas Zick ; Claudia Zúñiga ; Jocelyn J Bélanger ; (2022) Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic. Patterns, 3 (4). 100482-. ISSN 2666-3899 DOI: 10.1016/j.patter.2022.100482
Copy

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample-exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior-and some theoretically derived predictors were relatively unimportant.


picture_as_pdf
1-s2.0-S2666389922000678-main.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads