
Mathematical models of infectious disease trans-
mission are widely used to help develop infec-

tious disease policy, estimate the potential effect of in-
terventions, and provide insight into disease dynamics 
and natural history. Many models incorporate patterns 
of mixing between different sections of the popula-
tion, most commonly between different age groups.  

Simulated mixing patterns can have a considerable effect 
on model dynamics (1), underscoring the importance of 
simulating realistic mixing patterns. Mixing patterns are 
frequently shaped by social contact data (i.e., empirical 
data collected from respondents about the persons with 
whom they had contact during a set period) (2).

Most social contact data collection has focused on 
close contacts, using a definition of contacts that re-
quired a 2-way face-to-face conversation of >3 words, 
close proximity (e.g., within 2 meters), physical con-
tact, or some combination of those criteria (2). Those 
types of contact may approximate reasonably well 
the types of contact that are relevant for infections 
that are transmitted primarily through direct contact, 
short range aerosols, droplets, or some combination 
of these modes. For obligate, preferential, or oppor-
tunistic airborne infections such as measles, Myco-
bacterium tuberculosis, and SARS-CoV-2, however, 
this definition probably excludes many potentially 
effective contacts because transmission of airborne 
infections can occur between anybody sharing air in 
inadequately ventilated indoor spaces, regardless of 
whether conversation occurs, and over distances >2 
meters (3). For airborne infections, estimates of casual 
contact time may therefore be more appropriate, cal-
culated as the time spent in indoor locations multi-
plied by the number of other persons present.

Tuberculosis also differs from most respiratory 
infections in terms of the long periods during which 
persons are potentially infectious; an estimated 9–36 
months elapses between disease development and 
diagnosis (or notification) in 11 countries with high 
tuberculosis incidences (4). Therefore, transmission 
to repeated contacts can partially saturate (even  
allowing for reinfection), making the relationship be-
tween contact time and infection risk nonlinear (5). 
This effect is most pronounced for contact between 
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Data on social contact patterns are widely used to param-
eterize age-mixing matrices in mathematical models of 
infectious diseases. Most studies focus on close contacts 
only (i.e., persons spoken with face-to-face). This focus 
may be appropriate for studies of droplet and short-range 
aerosol transmission but neglects casual or shared air con-
tacts, who may be at risk from airborne transmission. Using 
data from 2 provinces in South Africa, we estimated age 
mixing patterns relevant for droplet transmission, nonsatu-
rating airborne transmission, and Mycobacterium tubercu-
losis transmission, an airborne infection where saturation 
of household contacts occurs. Estimated contact patterns 
by age did not vary greatly between the infection types, 
indicating that widespread use of close contact data may 
not be resulting in major inaccuracies. However, contact in 
persons >50 years of age was lower when we considered 
casual contacts, and therefore the contribution of older age 
groups to airborne transmission may be overestimated.
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household members (5). Household membership 
and repeated contacts are rarely explicitly simulated 
in mathematical models, and therefore the effects of 
contact saturation need to be incorporated into the 
mixing matrices used to parameterize the models.

In this article, we describe methods for estimating 
age-mixing patterns relevant for nonsaturating air-
borne transmission and M. tuberculosis transmission 
by using a novel weighted approach to incorporate 
the effects of household contact saturation into our 
estimates for M. tuberculosis. We generate estimates 
of age mixing using data on close and casual contacts 
from 2 communities in South Africa and compare the 
estimated mixing patterns with those typically used 
in mathematical modeling studies (i.e., generated 
using close contact numbers, and more suitable for 
droplet or short range aerosol transmission).

Methods
We collected social contact data in 2 study communi-
ties in South Africa: 1 in KwaZulu-Natal Province and 
1 in Western Cape Province. Both communities have 
high rates of unemployment, high prevalence of HIV, 
and high incidence of tuberculosis compared with the 
other provinces as a whole. The study community in 
KwaZulu-Natal consisted of a population of ≈46,000, 
living in the predominantly rural and peri-urban ar-
eas in the catchment areas of 2 primary care clinics 
and within a demographic surveillance area (DSA). 
The study community in Western Cape was a peri-
urban community of ≈27,000 and was an established 
research site with biennial censuses.

Data Collection
We collected the KwaZulu-Natal data during March–
December 2019. We sampled 3,093 adults (>18 years 
of age) at random from an estimated population of 
33,288, stratified by residential area (small-scale divi-
sions with ≈350 households per area) and with prob-
ability proportional to the number of eligible persons 
in each area, based on the most recent DSA census 
conducted before area entry. We made up to 3 at-
tempts to contact sampled persons.

We collected the Western Cape data during May–
October 2019. In total, we selected 1,530 adults (>15 
years of age) from an estimated population of 20,633, 
by using age- and sex-stratified random sampling, 
based on a census conducted in the study popula-
tion in February and March 2019. We made up to 5 
attempts to contact selected persons on different days 
of the week (including weekends).

For both surveys, we conducted interviews face-
to-face at the respondents’ homes, by using interview  

administered questionnaires on tablet computers. We 
conducted interviews in isiZulu in KwaZulu-Natal 
and in English or isiXhosa in Western Cape. We asked 
respondents about their movements on a randomly 
assigned day during the preceding week in KwaZulu-
Natal, and on the day before the interview in Western 
Cape. To allow casual contact time (defined as time 
spent “sharing air” indoors or on transport) to be esti-
mated, we asked respondents to list the places they had 
visited (including their own home) and transport they 
had used. For each location, questions asked included:

• What type of location was it? (Appendix 
Figure 5, https://wwwnc.cdc.gov/EID/
article/28/10/21-2567-App1.pdf) 

• How long did you spend there? (recorded in 
hours and minutes)

• How many persons were there halfway 
through the time you were there?

We did not ask respondents for the ages of per-
sons present because it was thought that respondents 
would not be able to accurately remember and es-
timate the ages of all persons present in all indoor 
locations visited and transport used. We also asked 
respondents about their close contacts, defined as 
persons with whom the respondent had a face-to-face 
conversation. We first asked respondents to make a 
numbered list of all their contacts, with help from the 
interviewer. We then asked respondents questions 
about 10 contacts (selected at random by number by 
the tablet computers) or all of their contacts if they 
reported <10. Questions included:

• Is this contact a member of your household?
• How old do you think they are?
• How much time did you spend with them  

in total?

We also collected respondents’ basic demograph-
ic information. For the KwaZulu-Natal community, 
we obtained data on household size and residency 
(i.e., urban, peri-urban, or rural) from the most recent 
DSA census. We collected all other data directly from 
the respondents.

Data Analysis
We estimated close contact numbers and times by 
using data on persons with whom the respondents 
reported having a face-to-face conversation. We gen-
erated 95% plausible intervals for the age-mixing ma-
trices by using bootstrapping.

We estimated casual contact time in a loca-
tion as the duration of time the respondent reported  
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spending there multiplied by the reported number of 
persons present. We generated central estimates for 
casual contact time age-mixing matrices by using the 
method outlined in McCreesh et al (6). In brief, because 
data were collected on numbers of total persons and 
children present in indoor locations only, and not the 
ages of adults, we need to estimate the age distribution 
of adult casual contacts. We therefore assumed that the 
age distribution of adult contacts in each location type 
matched the weighted age distribution of respondents 
who reported visiting locations of that type. Again, we 
generated 95% plausible ranges by using bootstrapping.

We adjusted the age-mixing matrices to be 
symmetric by using the study community age 
structures. We used data on adult contact numbers 
and time with children to estimate child contact 
numbers and time with adults, assuming that over-
all contact numbers and time between children and 
adults in each age group is equal to overall con-
tact numbers and time between adults in each age 
group and children. To enable comparison between 
the 2 study communities, the lowest respondent 
age group was set at 15–19 years for both surveys. 
Because persons 15–17 years of age were not inter-
viewed in KwaZulu-Natal, we assumed that con-
tact patterns in persons 18–19 years of age were 
representative of contact patterns in all persons 
15–19 years of age (Appendix).

Generating Age-Mixing Matrices for Droplet  
and Nonsaturating Airborne Transmission and  
Mycobacteria tuberculosis
We set age-mixing matrices relevant for droplet 
transmission to be equal to age-mixing matrices  

calculated using close contact numbers (Figure 1). We 
set age-mixing matrices relevant for nonsaturating 
airborne transmission to be equal to the unweighted 
sum of the household close contact time matrices and 
the nonhousehold casual contact time matrices. We 
used close contact time between household members 
for household estimates, as opposed to casual con-
tact time occurring in households. We did so because 
most contact between household members is likely to 
meet the definition of close contact, and because this 
approach enabled the age structures of households 
to be more accurately reflected in the age-mixing 
matrices. We set age-mixing matrices relevant for 
M. tuberculosis transmission to be equal to the sum 
of the household close contact number matrices and 
the nonhousehold casual contact time matrices. We 
weighted these matrices to reflect empirical estimates 
of the proportion of tuberculosis that results from 
household transmission (central estimate 12% [range 
8%–16%]) (5).

To enable direct comparisons to be made be-
tween the different age-mixing matrices, we adjusted 
the matrices for nonsaturating airborne transmission 
and M. tuberculosis transmission to give the same 
mean contact intensity between adults as the matrices 
for droplet transmission. We used bootstrapping to 
generate plausible ranges (Appendix). 

Results

Recruitment
Of the 3,093 persons sampled in KwaZulu-Natal, 
1,723 (56%) were successfully contacted, 299 (10%) 
were dead or reported to have out-migrated, and 
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Figure 1. Summary of data 
used to estimate age-mixing 
matrices for a study of social 
contact patterns for airborne 
transmission of respiratory 
pathogens, KwaZulu Natal and 
Western Cape Provinces, South 
Africa, 2019. Diagram showing 
how age-mixing matrices 
relevant for the transmission 
of droplet infections, airborne 
infections, and Mycobacterium 
tuberculosis were estimated 
using empirical data on close 
contact numbers, close contact 
time, and casual contact time.
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1,071 (35%) could not be contacted. Of those success-
fully contacted, 1,704 (99%) completed an interview.

Of the 1,530 persons sampled in Western Cape, 
1,214 (93%) were successfully contacted, 117 (8%) had 
moved or died, 193 (13%) had had incorrect informa-
tion listed in the census, and 6 were uncontactable. 
Of the 1,214 persons contacted, 77 (6%) refused to be 
interviewed and 14 were ineligible (because of dis-
ability or lack of fluency with English and isiXhosa). 
Of 1,123 persons interviewed, unexplained technical 
issues meant that data from 8 interviews were lost be-
tween collection and transfer to the database, leaving 
1,115 (92%) completed interviews.

For both populations, the recruited sample was 
a reasonable match to the target population in terms 

of sex, age, and residence type (urban, peri-urban, or 
rural) (Table). Respondents in Kwa-Zulu-Natal also 
were a close match to the target population in terms 
of employment status (Appendix). No data on em-
ployment status for the target population were avail-
able for Western Cape.

Contact Numbers and Time
We stratified household and nonhousehold close 
contact numbers and time and casual contact time 
in KwaZulu-Natal and Western Cape, by sex, age, 
and household size (Figure 2, 3; Appendix Tables 
1–6). Overall, close contact numbers and time, as 
well as casual contact time, were higher for women 
than for men in both communities; however, the 
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Table. Characteristics of respondents and target population for study of social contact patterns for airborne transmission of respiratory 
pathogens, KwaZulu Natal and Western Cape Provinces, South Africa, 2019 

Characteristic 
KwaZulu Natal  Western Cape 

Sample, no. (%) Target population, %* Sample, no. (%) Target population, %* 
Sex      
 M 751 (44) 41  553 (50) 52 
 F 953 (56) 59  562 (50) 48 
Age group, y      
 15–17 0 9.1  56 (5) 4.5 
 18–19 118 (6.9) 5.6  84 (7.5) 4.5 
 20–29 495 (29) 26  412 (37) 33 
 30–39 308 (18) 21  358 (32) 37 
 40–49 227 (13) 13  142 (13) 15 
 >50 556 (33) 25  63 (5.7) 6.5 
Residence      
 Rural 867 (51) 59  0 0 
 Peri-urban 716 (42) 33  1,115 (100) 100 
 Urban 121 (7.1) 8  0 0 
Monthly household income, South African rands 
 <1,000 416 (24)   111 (10)  
 1,000–2,500 785 (46)   261 (23)  
 2,500–5,000 302 (18)   374 (34)  
 5,000–10,000 125 (7.3)   179 (16)  
 >10,000 65 (3.8)   61 (5.5)  
 Unknown/missing 11 (0.65)   129 (12)  
Employment      
 Full-time 329 (19)   403 (36)  
 Part-time/casual 68 (4)   213 (19)  
 None 1299 (76)   492 (44)  
 Missing 8 (0.5)   7 (0.6)  
Household size      
 1 115 (6.7) 4.1  203 (18) 19 
 2–4 287 (17) 26  683 (61) 66 
 5–7 488 (29) 33  195 (17) 13 
 8–10 375 (22) 20  26 (2.3) 1.6 
 >11 439 (26) 17  8 (0.72) 0.4 
Day reported      
 Monday 239 (14)   203 (18)  
 Tuesday 242 (14)   202 (18)  
 Wednesday 239 (14)   187 (17)  
 Thursday 251 (15)   138 (12)  
 Friday 261 (15)   80 (7.2)  
 Saturday 245 (14)   98 (8.8)  
 Sunday 227 (13)   207 (19)  
Total 1,704 33,288  1,115 20,633 
*Target population refers to persons in the populations >15 years of age. 
†In KwaZulu-Natal, urban is defined as KwaMsane Municipality, peri-urban as other areas with a population density >400/km2, and rural as areas with a 
population density <400/km2. 
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differences were generally not large (close contact 
time 46% higher for women in KwaZulu-Natal and 
8%–22% higher for other contact measures and set-
tings) and not significant for close contact numbers 
or casual contact time in Western Cape. We observed 
a tendency for casual contact time to decrease slight-
ly with age in both communities, and close contact 
numbers and time were substantially higher in per-
sons 15–19 years of age than in older age groups in 
Western Cape only (Western Cape close contact num-
bers: 11 in persons 15–19 years of age, 7.7–8.7 in older 
age groups [p<0.001]; close contact time: 80 hours in 
persons 15–19 years of age, 49–63 in older age groups 
[p<0.001]). Close contact numbers and time, as well 
as casual contact time, increased with increasing  

household size in both communities, driven by in-
creases in contact with household members. Con-
tact between household members made up a higher 
proportion of total contact in KwaZulu-Natal than in 
Western Cape for all types of contact (close contact 
numbers: 62% in KwaZulu-Natal, 27% in Western 
Cape; close contact time: 79% in KwaZulu-Natal, 60% 
in Western Cape; casual contact time: 55% in KwaZu-
lu-Natal, 31% in Western Cape).

Age Mixing
We generated estimated age-mixing matrices for 
droplet transmission non-saturating airborne trans-
mission, and M. tuberculosis transmission for Kwa-
Zulu-Natal and Western Cape (Figure 4, 5). We also 
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Figure 2. Household and nonhousehold close contact numbers (A), close contact time (B), and casual contact time (C) for study of 
social contact patterns for airborne transmission of respiratory pathogens, KwaZulu-Natal Province, South Africa, by sex, age group, and 
household size. Error bars show 95% CIs for total contact numbers or time. For KwaZulu-Natal, household size data were taken from 
census data and did not always correspond exactly with respondents’ views of who they considered to be household members. For this 
reason, some contact with household members was reported by respondents who we recorded as having a household size of 1.
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generated 95% plausible ranges for these matrices 
(Appendix Figure 1, 2).

Estimated contact patterns by age did not vary 
greatly between the infection types in either com-
munity. However, age-mixing patterns were less 
assortative in the nonsaturating airborne and M. tu-
berculosis matrices compared with the droplet matri-
ces in both communities (Appendix). The exception 
to this pattern was contact between persons 15–19 
years of age in KwaZulu-Natal, which was more 
intense in the nonsaturating airborne and M. tuber-
culosis matrices than the droplet matrices. In both 
communities, relative to other adult age groups, 
overall contact intensities were lower in persons >50 
years of age when considering contact relevant for  

nonsaturating airborne transmission or the trans-
mission of M. tuberculosis compared with contact 
relevant for droplet transmission.

Discussion
Using data from 2 provinces in South Africa, we es-
timated contact and age-mixing patterns relevant for 
the transmission of droplet infections, nonsaturat-
ing airborne infections, and M. tuberculosis. In our 
communities, contact patterns did not vary greatly 
between contacts relevant for droplet infections and 
those relevant for nonsaturating airborne or M. tu-
berculosis transmission. However, using close contact 
data in models of the transmission of M. tuberculosis 
or other airborne infections in our study communities 
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Figure 3. Household and nonhousehold close contact numbers (A), close contact time (B), and casual contact time (C) in Western Cape 
Province, South Africa, by sex, age, and household size, for study of social contact patterns for airborne transmission of respiratory 
pathogens. Error bars show 95% CIs for total contact numbers or time. In Western Cape, contact with household members was reported 
by a small proportion of respondents who had reported having no household members, most likely reflecting errors in the data.
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may mean that the importance of adults >50 years of 
age to transmission is overestimated.

Very few data are available on casual contact pat-
terns from any setting. Previous studies in the same 
community in Western Cape have found greater 
drops in casual contact time than in close contact 

numbers in older age groups (6) and decreases in in-
door casual contact numbers with age (7). Another 
study in the same community found high levels of 
age-assortative mixing with respect to casual contact 
time in schools and workplaces (8). More data are 
needed on casual contact patterns, and age-mixing 
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Figure 4. Age-mixing matrices relevant for droplet transmission (A, B), nonsaturating airborne transmission (C, D), and Mycobacterium 
tuberculosis transmission (F, G) for study of social contact patterns for airborne transmission of respiratory pathogens, KwaZulu-Natal 
Province, South Africa. Panels A, C, and F show absolute contact intensities between respondents and contacts in each age group; 
panels B, D, and G show intensities of contact between each member of each age group; panels E and H show intensities for airborne 
infections and M. tuberculosis compared with intensities for droplet infections, respectively. Numbers shown in panel A are the mean 
number of contacts respondents in each age group have with contacts in each age group per day. Numbers shown in panel B are the 
rate of contact between each person in the population per day, expressed as rates × 105. Numbers and rates in panels C, D, F, and G 
are standardized so that the mean overall contact intensity by reported by adult respondents is the same as the mean number of overall 
close contacts reported by adult respondents (panel A). Contact numbers between child respondents and contacts in each age group 
were estimated from data on contact between adult respondents and child contacts.
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patterns in particular, to determine whether the find-
ings of this study are generalizable to other settings 
and to improve the predictions from mathematical 
models of the transmission of M. tuberculosis and oth-
er airborne infections.

Our approaches to generating the separate drop-
let and airborne transmission matrices are necessarily 

simplifications, and many infections will not fit neat-
ly into these 2 categories. In addition, considerable 
uncertainty exists about the role of different trans-
mission routes to the spread of many infections. 
Droplets have traditionally been considered to be the 
main transmission route for most respiratory viruses; 
however, there is evidence that airborne transmission 
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Figure 5. Age-mixing matrices relevant for droplet transmission (A, B), nonsaturating airborne transmission (C, D), and Mycobacterium 
tuberculosis transmission (F,G) for study of social contact patterns for airborne transmission of respiratory pathogens, Western Cape 
Province, South Africa. Panels A, C, and F show absolute contact intensities between respondents and contacts in each age group; 
panels B, D, and G show intensities of contact between each member of each age group; panels E and H show intensities for airborne 
infections and Mycobacterium tuberculosis compared with intensities for droplet infections, respectively. Numbers shown in panel A are 
the mean number of contacts respondents in each age group have with contacts in each age group per day. Numbers shown in panel B 
are the rate of contact between each person in the population per day, expressed as rates × 105. Numbers and rates in panels C, D, F, 
and G are standardized so that the mean overall contact intensity by reported by adult respondents is the same as the mean number of 
overall close contacts reported by adult respondents (panel A). Contact numbers between child respondents and contacts in each age 
group were estimated from data on contact between adult respondents and child contacts.
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can occur for a wide range of pathogens, including 
influenza, respiratory syncytial virus, Middle East 
respiratory syndrome coronavirus, and SARS-CoV-2 
(9). One model using data on household transmis-
sion of influenza A suggested that airborne trans-
mission was responsible for about half of infections 
(10). For infections where both airborne and droplet 
or short range aerosol transmission are thought to 
play an important role in transmission, an interme-
diate matrix may be preferable.

There are 2 main differences between our droplet 
and airborne or M. tuberculosis age-mixing matrices. 
The first is the type of nonhousehold contacts con-
sidered: close (face-to-face conversation) or casual 
(sharing space indoors). The second is that the air-
borne and (nonhousehold component of the) M. tu-
berculosis matrices are based on contact time, rather 
than unique contact numbers. The primary reason for 
using contact time for casual contacts is that respon-
dents are unlikely to be able to estimate unique casual 
contact numbers for many locations they visit, neces-
sitating the use of contact time or assumptions about 
the rate of turnover of unique persons in a location. 
For our droplet transmission matrices, we chose to 
use unique contact numbers in a 24-hour period be-
cause that is the most commonly used method (2) and 
therefore enables comparisons to be made with what 
is typically done. However, we should note that both 
the choice of a 24-hour time period and the lack of any 
weighting or restrictions by contact duration or other 
measures of closeness are relatively arbitrary choices.

Robust evidence as to the types of contact most 
relevant to transmission are limited for respiratory 
infections. Several studies have compared the fit to 
data on varicella, parvovirus B19, or influenza A sero-
prevalence by age of models parameterized by using 
contact patterns generated from close contact data in 
a range of different ways (11–13). Overall, those stud-
ies suggest that analysis methods that give greater 
weight to more intimate contacts may be preferable 
in some circumstances; for instance, restricting what 
counts as a contact to those involving physical touch 
or a minimum contact duration or using contact time 
rather than contact numbers. Approaches based on 
contact numbers may be more suitable for more high-
ly transmissible infections such as measles, where 
only a short duration of contact is needed for trans-
mission, whereas approaches based on contact time 
may be more suitable for less transmissible infections, 
where repeated or longer contacts are needed (14).

Fewer studies have considered expanding the 
pool of contacts beyond close contacts only, to also 
include casual contacts. However, a study that had 

paired individual-level contact data and pandemic 
influenza A serologic data found that models that in-
cluded a variable for number of locations visited were 
strongly supported over those that only included 
variables for age and close contact numbers (15). This 
finding suggests that airborne transmission may play 
a role in the spread of influenza A, or that the stan-
dard close contact definition misses a substantial pro-
portion of contacts at risk for droplet transmission.

Other factors may also influence airborne and M. 
tuberculosis transmission risk, which are not account-
ed for in the analyses. Ventilation rates play a large 
role in determining airborne infection risk (16), and 
giving less weight to contact occurring in better ven-
tilated settings would improve our airborne and M. 
tuberculosis matrices. Unfortunately, few data on ven-
tilation rates by location type are available, and they 
show large amounts of variation between locations 
and between the same location on different days (17). 
Saturation of contacts may occur for infections other 
than M. tuberculosis, particularly highly transmissible 
pathogens such as measles virus. An approach based 
on casual contact numbers may be preferable for 
these infections but would be highly dependent on 
assumptions made about how unique contact num-
bers are related to estimates of cross-sectional num-
bers of persons present.

There are several limitations when using casual 
contact data to estimate mixing patterns. First, esti-
mates of contact time in places where large numbers 
of persons are present are likely to be less reliable be-
cause a person’s estimates of the number of persons 
present are likely to be poor and because the assump-
tion that a risk for transmission exists between all per-
sons present in the space may not be true in larger 
spaces. Estimates may be poorer when asking about 
a random day in the past week (as we did in KwaZu-
lu-Natal) than when asking about the day before the 
interview (as we did in Western Cape). In our main 
analysis, when estimating contact time, we cap the 
number of persons at risk for transmission at 100. In 
our sensitivity analyses, we show that using a cap of 
20 persons or not capping the numbers of persons has 
a moderate effect on casual contact time age-mixing 
matrices (Appendix). Conducting similar sensitivity 
analyses may be necessary when using age-mixing 
matrices calculated using casual contact time in math-
ematical models.

A second limitation is that the approach we use 
to determining the ages of adults present in locations 
other than respondents’ own homes is indirect and 
relies on the assumption that the age distribution of 
adults present in a location type reflects the duration 
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of time respondents of different ages reported spend-
ing in that location type. This assumption may not 
always be reasonable if different age groups tend to 
visit different locations of the same type (or at differ-
ent times) or substantial mixing occurs with persons 
from outside the study community. These issues are 
discussed further in McCreesh et al. (6).

An additional limitation of our estimates for 
KwaZulu-Natal only is that we did not recruit per-
sons 15–17 years of age and instead assumed in the 
analysis that contact by persons 18–19 years of age 
was representative of contact by all persons 15–19 
years of age. This assumption is unlikely to be true 
given that contacts by persons 15–17 and 18–19 years 
of age differ greatly in Western Cape (Appendix Fig-
ure 9). For this reason, our estimates for persons 15–
19 years of age in KwaZulu-Natal should be treated 
with caution. 

To conclude, our estimated age-mixing matri-
ces for droplet transmission, nonsaturating airborne 
transmission, and M. tuberculosis transmission were 
not substantially different from each other for either 
community. This finding provides some reassur-
ance that the widespread use of close contact data to 
parameterize age-mixing matrices for transmission 
models of airborne infections may not be resulting in 
major inaccuracies. Some differences were observed, 
however, particularly in the oldest age group, and 
our data were from 2 communities in South Africa 
only. We recommend that future social contact sur-
veys collect data on casual contacts as well as close 
contacts to determine whether the similarity between 
different types of contact pattern is true across other 
settings. We would also urge mathematical modelers 
to consider whether unique close contact numbers 
in a 24-hour period are the most appropriate con-
tacts for the infection and scenario they are simulat-
ing and to consider performing sensitivity analyses 
when uncertainty exists as to the most appropriate 
contact definition.
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Since the 2015 Zika virus outbreak in the Americas, transmission 
of this vectorborne disease has substantially decreased.  

But Zika virus doesn’t spread only through mosquito bites…it  
also spreads through sexual transmission, blood transfusions,  
breastfeeding, and even needlestick injuries in laboratories.

Stringent safety protocols minimize the risk of laboratory- 
associated exposures. But on rare occasions, researchers are  
accidentally exposed to the disease they are trying to solve.

 In this EID podcast, Dr. Susan Hills, a medical epidemiologist at 
CDC in Fort Collins, Colorado, describes the biosafety lessons  

exemplified by four cases of laboratory-associated Zika infection.
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Visit our website to listen: 
https://go.usa.gov/xFZU2  


