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Abstract

The evaluation of protein antigens as putative serologic biomarkers of infection has increas-

ingly shifted to high-throughput, multiplex approaches such as the protein microarray. In

vitro transcription/translation (IVTT) systems–a similarly high-throughput protein expression

method–are already widely utilised in the production of protein microarrays, though purified

recombinant proteins derived from more traditional whole cell based expression systems

also play an important role in biomarker characterisation. Here we have performed a side-

by-side comparison of antigen-matched protein targets from an IVTT and purified recombi-

nant system, on the same protein microarray. The magnitude and range of antibody

responses to purified recombinants was found to be greater than that of IVTT proteins, and

responses between targets from different expression systems did not clearly correlate.

However, responses between amino acid sequence-matched targets from each expression

system were more closely correlated. Despite the lack of a clear correlation between anti-

gen-matched targets produced in each expression system, our data indicate that protein

microarrays produced using either method can be used confidently, in a context dependent

manner, though care should be taken when comparing data derived from contrasting

approaches.

Introduction

To date, the majority of malaria serologic studies have focussed on antibody responses to a

small number of well-characterised, highly immunogenic Plasmodium falciparum antigens

that have proven to be reliable markers of exposure to infection [1–8]. However, P. falciparum
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expresses more than 5000 proteins, each a potential antibody target [9, 10]. Advances in tech-

nology have led to the development of new assay platforms that allow proteome scale investiga-

tion of antibody responses, such as the protein microarray [11, 12]—boasting significantly

greater experimental throughput than more classical monoplex methods (e.g. ELISA) [13, 14].

The ability to simultaneously interrogate large numbers of putative targets, using low volumes

of sample, significantly increases the rate at which an individual’s antibody responses to anti-

gens can be characterised. As such, protein microarray based approaches to biomarker identi-

fication and humoral response profiling in malaria, and other infectious diseases, have been

increasingly adopted [15–24].

One widely utilised form of the protein microarray is based on an in vitro transcription/

translation (IVTT) system [25]–where protein products are produced through a PCR, in vivo

recombination cloning and an in vitro expression pipeline, before being printed onto arrays

[15]. In principle, whole organism proteome microarrays can be fabricated simply and quickly,

enabling analysis of all potential protein driven immune responses to a pathogen. Cell-free

synthesis (CFS) is a technique first established over 50 years ago as a means to dissect the

molecular mechanisms around protein expression. More recently, the technique has been

used as a high throughput expression platform to explore a number of diverse biological pro-

cesses [26, 27]. At its simplest, the approach utilises the crude extract containing the transcrip-

tion and translation machinery from the cell, performing the process of protein expression

without the constraints of the cell. This allows a wide variety of proteins to be expressed

including those that would be deemed toxic if expression was attempted within the confines of

the cell membrane [28]. CFS systems based on Escherichia coli (E.coli) are among the most

widely used of the IVTT systems [27] and have helped to transform the narrative around a

number of areas including biomarker discovery for infectious diseases [15, 29, 30]. Despite the

widespread uptake of the approach there remain some issues around the technique. This

includes significant heterogeneity of expression, leading some research groups to describe the

mechanisms of the process as a “black box”. Therefore, the inherent heterogeneity between

products is not assessed for every target making it difficult to normalise for reactivity between

protein spots, which represent an impure mix of E. coli and target protein. In addition to the E.

coli cell-free expression platform, other approaches have been employed in the characterisation

of protein targets for immunological assessment. The wheat germ cell-free expression system

in particular has also proven to be an important platform in the advancement of biomarker

discovery and malaria vaccine research [31–34]. This is not the focus of the current study.

In contrast to the IVTT array methodology, the printing of purified proteins is cheaper and

typically more quantifiable. Uniform amounts of product can therefore be incorporated into

arrays, increasing confidence when comparing quantitative antibody responses between anti-

genic targets [35] and assessing relative immunogenicity. The process can be modified to sup-

port the scale up of recombinant proteins, and furthermore, affinity purification of protein

targets reduces the risk of undesired background reactivity due to expression system compo-

nents, and in part truncated proteins. However, the time required to produce panels of puri-

fied proteins is far in excess of the IVTT system, particularly for large numbers of targets,

unless supported by an automated production platform [36–38]. For both the IVTT and puri-

fied protein E. coli systems, although the production of complex conformational proteins is

possible it can sometimes be a challenge [39, 40]. These challenges are in part due to the

expression of proteins foreign to the bacteria, the speed at which bacteria express proteins,

only partially mitigated with a reduction in expression temperature; and the lack of essential

molecular chaperones to aid correct folding/refolding of proteins [41–43].

Here we present a comparison between IVTT based and purified proteins on a single

microarray. For clarity proteins produced using the IVTT system will simply be referred to as
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IVTT proteins, and those produced by conventional E.coli expression will be referred to as

purified proteins. Matched malarial protein targets from each methodology were assessed for

comparative reactivity in serum from Ugandan participant samples (n = 899) [44] to deter-

mine the suitability of each approach in the context of high-throughput profiling of serological

responses to protein antigens.

Material and methods

Ethics statement

All serum samples were collected after written informed consent from the participant or their

parent/guardian. The protocol for sample collection was reviewed and approved by the Maker-

ere University School of Medicine Research and Ethics Committee (#2011–149 and #2011–

167), the London School of Hygiene and Tropical Medicine Ethics Committee (#5943 and

#5944), the Durham University School of Biological and Biomedical Sciences Ethics Commit-

tee, the University of California, San Francisco, Committee on Human Research (#11–05539

and #11–05995) and the Uganda National Council for Science and Technology (#HS-978 and

#HS-1019).

Samples

Sera were originally collected as part of a comprehensive longitudinal surveillance study con-

ducted in three sub-counties in Uganda (Walukuba, Jinja District; Kihihi, Kanungu District,

and Nagongera, Tororo). The study design and methods have been previously reported and

are described in detail elsewhere [44]. A sub-selection of samples (n = 899) was made from

individuals across a breadth of recorded clinical episodes of malaria to ensure a range of sero-

reactivity.

Protein targets

Purified protein expression. Recombinant proteins were generated and expressed in

Escherichia coli as glutathione S-transferase (GST)-tagged fusion proteins using previously

described methods: PfMSP1-19 [45]; MSP1 block 2 [46]; ACS5, ETRAMP4 & HSP40 [19];

ETRAMP5 [19, 47]; EBA181 [48]; MSP4 [49]; MSP5 [50]; MSP7 [51]; and GAMA [52]. The

exception to this was PfAMA1, which was expressed as a histidine tagged protein in Pichia pas-
toris [53]. Purification of the expressed proteins was performed using affinity chromatography

(Glutathione Sepharose 4B (GE Healthcare Life Sciences) or HisPur Ni-NTA (Invitrogen) res-

ins for GST and His tagged proteins, respectively). Protein concentration was assessed using

the Bradford protein assay, with quality, and purity assessed by resolution on a 4–20% gradient

SDS-PAGE.

IVTT protein expression. An IVTT system was used to express proteins of interest as

previously described [15]. Briefly, Plasmodium falciparum DNA (3D7 isolate) coding

sequences were PCR-amplified and cloned into T7 expression vectors via homologous recom-

bination. Target sequences were expressed at 21˚C for 16h in E. coli-based, cell-free transcrip-

tion/translation reactions, and products were printed onto arrays as un-purified, whole

reaction mixtures.

Overview of compared IVTT and purified protein antigens. We assessed antibody

responses to protein targets mapping to eleven antigens (i.e. distinct gene products), each rep-

resented on the array by at least one IVTT and one purified protein target. Full details are in

Table 1 and S1 Table. The number of purified protein targets varied according to availability,

while the number of IVTT targets was dependent on the exon composition of each the gene
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sequence; multiple exon sequences were expressed as multiple protein targets based on exon

delineation. Similarly, single exon gene sequences were generally expressed as a single protein.

As a result, of the 11 antigens investigated, 8 were represented by>1 IVTT or purified protein

target; 5 had >1 IVTT protein target (EBA181, HSP40, MSP1, MSP4 and MSP5) and 5 had >1

purified protein target (ACS5, ETRAMP4, ETRAMP5, HSP40 and MSP1). Near identical

IVTT proteins (1 terminal amino acid difference in length) were produced independently and

printed in parallel for two antigens: MSP4 and MSP5 as expression controls. Sequence infor-

mation used in the design and expression of the purified E.coli proteins were generally smaller

than the equivalent proteins expressed in the IVTT cell-free systems. This was done to limit

the sequence length to below 1kb as expression of proteins larger that 1kb in E.coli can contrib-

ute to poor or failed expression yields [42, 43]. Truncation of target sequences was based on in

Table 1. Description of P.falciparum antigens and their corresponding IVTT and purified protein targets.

Protein Description Full length (amino acids) Protein target/expression system Size (Start amino acid—End amino acid)

ACS5 Acyl CoA synthase 811 IVTT_1 811 (1−811)

Pure_1 117 (294−410)

Pure_2 160 (414−573)

Pure_3 150 (578−727)

AMA1 Apical membrane antigen 1 622 IVTT_1 622 (1−622)

Pure_1 450 (97−546)

EBA181 Erythrocyte binding antigen 181 1567 IVTT_1 754 (1−754)

IVTT_2 752 (737−1488)

Pure_1 585 (755−1339)

ETRAMP4 Early transcribed membrane antigen 4 136 IVTT_1 136 (1−136)

Pure_1 25 (28−52)

Pure_2 61 (76−136)

ETRAMP5 Early transcribed membrane antigen 5 181 IVTT_1 181 (1−181)

Pure_1 86 (26−111)

Pure_2 47 (135−181)

GAMA GPI-anchored membrane antigen 738 IVTT_1 738 (1−738)

Pure_1 99 (68−166)

HSP40 Heat shock protein 40 type II 402 IVTT_1 134 (80–213)

IVTT_2 171 (213–401)

Pure_1 83 (71–153)

Pure_2 189 (214–402)

MSP1 Merozoite surface protein 1 1720 IVTT_1 870 (1–870)

IVTT_2 868 (853–1720)

Pure_1 45 (64–108)

Pure_2 35 (54–63;109–133)

Pure_3 116 (1605–1720)

MSP4 Merozoite surface protein 4 272 IVTT_1 162 (1–162)

IVTT_2 161 (1–161)

IVTT_3 110 (163–272)

Pure_1 65 (43–107)

MSP5 Merozoite surface protein 5 272 IVTT_1 172 (1–172)

IVTT_2 171 (1–171)

Pure_1 61 (147–207)

MSP7 Merozoite surface protein 7 351 IVTT_1 351 (1–351)

Pure_1 175 (177–351)

https://doi.org/10.1371/journal.pone.0273106.t001
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silico mapping of each protein sequence to focus on regions of predicted immunogenicity

based on the in silico analysis. Empty GST vectors were expressed and the purified GST used

in background correction for proteins with this tag. His-tag vector was not expressed as it has

proven impossible to express and purify the 6xhistidine tag in isolation.

Protein microarray

Prior to printing, Tween 20 was added to purified proteins to yield a final concentration of

0.001% Tween 20. Arrays were printed onto nitrocellulose-coated slides (AVID, Grace Bio-

Labs, Inc., Bend, OR, USA) using an Omni Grid Accent microarray printer (Digilabs, Inc.,

Marlborough, MA, USA). Alongside proteins of interest, buffer (PBS) and no-DNA (empty T7

vector reactions) were included as controls to allow for background normalisation of purified

and IVTT proteins respectively.

Sample probing. For analysis of antibody reactivity on the protein microarray, serum

samples were diluted 1:200 in a 3 mg mL-1 E. coli lysate solution in protein arraying buffer

(Maine Manufacturing, Sanford, ME, USA) and incubated at room temperature for 30 min.

Arrays were rehydrated in blocking buffer for 30 min. Blocking buffer was removed, and

arrays were probed with pre-incubated serum samples using sealed, fitted slide chambers to

ensure no cross-contamination of sample between pads. Chips were incubated overnight at

4˚C with agitation. Arrays were washed five times with TBS-0.05% Tween 20, followed by

incubation with biotin-conjugated goat anti-human IgG (Jackson ImmunoResearch, West

Grove, PA, USA) diluted 1:200 in blocking buffer at room temperature. Arrays were washed

three times with TBS-0.05% Tween 20, followed by incubation with streptavidin-conjugated

SureLight P-3 (Columbia Biosciences, Frederick, MD, USA) at room temperature protected

from light. Arrays were washed three times with TBS-0.05% Tween 20, three times with TBS,

and once with water. Arrays were air dried by centrifugation at 500 x g for 5 min and scanned

on a GenePix 4300A High-Resolution Microarray Scanner (Molecular Devices, Sunnyvale,

CA, USA). Target and background intensities were measured using an annotated grid file (.

GAL).

Data normalisation. Microarray spot foreground and local background fluorescence data

were imported into R (Foundation for Statistical Computing, Vienna, Austria) for correction,

normalisation and analysis. Local background intensities were subtracted from foreground

using the backgroundCorrect function of the limma package [54]. The backgroundCorrect

function was then further applied to GST-tagged purified proteins, whereby background-cor-

rected GST fluorescence was subtracted from background-corrected target fluorescence to

account for any GST-specific reactivity in samples. All data were then Log2 transformed and

the mean signal intensity of buffer and no-DNA control spots were subtracted from purified

and IVTT proteins respectively to give a relative measure of reactivity to targets over back-

ground (S1 Fig) [20].

Results

Table 1 summarises the purified and IVTT protein targets for each antigen, with further detail

in S1 Table. In brief, we assessed IgG antibody responses to 35 antigenic targets, derived from

11 well-characterised P. falciparum protein antigens (distinct gene products). Each antigen

was represented by at least one IVTT and one purified protein target.

Magnitude of responses between expression systems

The magnitude of response to all protein targets was compared by antigen to evaluate differ-

ences in seroreactivity between IVTT derived and purified protein targets. As expected,
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responses varied significantly between antigens and between the protein targets mapping to

each antigen.

Mean responses to all targets were compared by expression system (Fig 1) revealing a

greater range of response to purified proteins (IQR Log2MFI = 3.88–6.40) than IVTT proteins

(IQR Log2MFI 0.46–1.68), and a greater magnitude of response to purified than IVTT targets

(p =<0.001). Similarly, the range and median intensity of individual antibody responses was

found to be greater for purified proteins than their IVTT counterparts (e.g. AMA1—IVTT_1,

median [IQR] Log2MFI = 1.66 [0.80–2.53]; Pure_1, median [IQR] Log2MFI = 7.92 [6.16–

8.52]) for all targets (p =<0.001) except MSP1 Pure_2, which more closely reflected the level

of reactivity to the two MSP1 IVTT targets (Fig 2).

Correlation of responses between antigen matched targets

Considering all at least partially sequence matched IVTT and purified protein targets (i.e.

excluding pairwise comparisons where purified protein sequence were completely non-over-

lapping with IVTT sequence for the same antigen) there was no evidence for a general correla-

tion in mean response between expression platforms (Spearman’s rho (rs) = 0.279, p = 0.23).

Antibody responses to all protein targets for each antigen were therefore compared
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Fig 1. Mean magnitude of antibody responses to targets. The mean magnitude of response of each protein target

stratified by expression system, presented with median and interquartile range of all mean responses.

https://doi.org/10.1371/journal.pone.0273106.g001
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individually (representative example in Fig 3 and all antigens in S2 Fig). This allowed for com-

parison between sequence matching IVTT and purified protein targets (e.g. HSP40 IVTT 2 vs.

HSP40 Pure 2), non-matching IVTT and purified protein targets (e.g. HSP40 IVTT 2 vs.

HSP40 Pure 1), and matching or non-matching targets produced in the same system (e.g.

HSP40 IVTT 1 vs. HSP40 IVTT 2). Correlations were highly variable (rs = 1.00 to -0.045)

though all but one (GAMA; rs = -0.045, p = 0.17) demonstrated a degree of positive, if not

always statistically significant, association.

Multiple IVTT targets were produced for EBA181, HSP40, MSP1, MSP4 and MSP5. For all

other than MSP5, non-sequence matching IVTTs were produced; correlation co-efficient for

these targets were between 0.37 and 0.73 (S2 Fig). For EBA181 and MSP1, IVTT targets

Fig 2. Magnitude and range of response to IVTT and purified proteins. All sample responses (n = 899) to all protein targets grouped by antigen, presented with

median and interquartile range.

https://doi.org/10.1371/journal.pone.0273106.g002
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overlap by 17 amino acids–equivalent to a small peptide in terminal regions unlikely to cover

immunogenic epitopes. As such, these targets were considered non-overlapping. For MSP4

and MSP5, duplicate IVTT protein products were generated for each gene, with each duplicate

protein identical to the other except for the omission of one [N- or C-] terminal amino acid.

These respective targets resulted in near perfect correlation of antibody responses (MSP4 rs =

1.00, p =<0.001; MSP5 rs = 0.94, p =<0.001). Multiple purified protein targets were produced

for ACS5, ETRAMP4, ETRAMP5, HSP40 and MSP1—none of which overlap. Correlation

between these purified protein targets in each antigen varied between 0.31 and 0.59 (S2 Fig).

For the 8 antigens with >1 IVTT or purified protein target, the greatest level of correlation

was found between an IVTT and purified target in 4/8 instances; between two IVTT targets

(IVTT-IVTT) in 3/8 instances; and between two purified targets (purified-purified) in 1/8

instances (S2 Table). Comparing correlations between antigen-matched IVTT and purified

proteins only, overlapping targets correlate more highly than non-overlapping targets. Sample

sizes were too low to test the significance of this trend within antigens (Fig 4).

Discussion

Protein microarrays are a practical approach to the serological screening of large numbers of

putative malaria antigen biomarkers. The throughput and flexibility of the microarray plat-

form presents an opportunity to interrogate malarial antibody responses at a scale far exceed-

ing traditional mono- or multiplex approaches, agnostic of predicted immunological targets.

Here we have evaluated matched antigenic targets produced using two E. coli-based expression
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Fig 3. Correlation of antibody responses and sequence mapping. A representative example correlogram of multiple antigen-matched targets (left).

Spearman’s rank correlation reported (rs) and increasing blue colour scale indicates relative strength of correlation based on calculated correlations for

all proteins included in this analysis. Protein schematic (right) represents amino-acid aligned representation of IVTT (green) and purified (orange)

proteins to the full-length native protein (grey). Proteins in the correlogram and schematic are correspondingly aligned. Corresponding axes are

adjacently below or to the left of each protein.

https://doi.org/10.1371/journal.pone.0273106.g003

PLOS ONE Microarray comparison of two protein production methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0273106 August 29, 2022 8 / 17

https://doi.org/10.1371/journal.pone.0273106.g003
https://doi.org/10.1371/journal.pone.0273106


techniques–in vitro transcription/translation (IVTT), and purified, whole-cell recombinants–

in the context of a protein microarray. We found that the magnitude of antibody responses to

purified protein targets was generally higher than for their IVTT counterparts, and that corre-

lation between protein target pairs at the individual serum sample level was variable and

related to degree of sequence homogeneity between targets. Our findings warn against direct

comparisons of microarray data from proteins produced in different expression platforms

without careful cross-validation of sequences and allelic types. However, our data do provide

support for the use of both IVTT and purified protein microarray platforms in the context of

early-stage antigen biomarker identification to feed into experimental pipelines where candi-

date proteins may be interrogated by methods providing higher resolution analysis.

In building this study, we predicted that the magnitude of responses to IVTT products–

which tended to be longer, often representing single exon sequences and therefore potentially

containing more epitopes–would be greater than purified targets truncated based on species-

specificity or domain boundaries which potentially represented fewer epitopes. Contrary to

this prediction, we found that purified proteins captured a greater range and magnitude of

responses (Purified, IQR Log2MFI = 3.88–6.40; IVTT, IQR Log2MFI 0.46–1.68; p =<0.001).

The greater level of reactivity to purified targets may relate to differences in the amount of pro-

tein deposited on the array, where consistent and defined amounts of purified protein are spot-

ted in contrast to the unquantified, and likely variable IVTT products. These findings

recommend a degree of caution in interpretation of array data from two different platforms,

for example: MSP5 showed the second highest mean MFI for any purified protein, but showed

among the lowest mean MFI of any IVTT protein.

In addition to differences in the magnitude of mean responses to targets stratified by

expression system, we observed a greater range of individual sample responses, stratified by

antigen, to purified proteins than in sequence matched IVTT-expressed targets (e.g. AMA1—

IVTT_1, median [IQR] Log2MFI = 1.66 [0.80–2.53]; Pure_1 (Pichia pastoris produced),

median [IQR] Log2MFI = 7.92 [6.16–8.52]; p =<0.001). The P. pastoris AMA1 was included

as a control for the evaluation of the production of a conformational protein. AMA1 is a com-

plex structure comprised of three domains defined by three disulphide bonds. Production of

AMA1 in P. pastoris has been fully characterised in terms of correct folding of the purified
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protein [53, 55] and this observation is likely a reflection of antibody reactivity to correctly

folded (P. pastoris) and incorrectly folded AMA1 (IVTT). We acknowledge that a lack of cor-

rect folding in other purified and IVTT products may impact on epitope recognition by anti-

bodies raised to native protein during infection. However, human antibody responses are

composed of a polyclonal response to each antigen, which will include both confirmation and

linear epitopes. Whilst questions remain about the appropriateness of using unfolded protein

fragments in serological screens, such reagents remain the most widely utilised and efficient

approach in this context at present.

Considering all antigenic targets together, we found no evidence of correlation in mean

reactivity to sequence matched targets between expression systems (rs = 0.28, p = 0.23). In the

context of this study, this was not unexpected taking into account the differences observed in

magnitude of response between IVTT and purified proteins, and that the length of native pro-

tein sequence coverage between IVTT and purified targets was highly variable. More broadly, it

is perhaps less reassuring that matched targets derived from different expression systems lack

more obvious relationships in antibody response than have been demonstrated in other studies

[17, 56], though Kobayashi et al. report relatively similar results for a smaller number of targets

expressed in E. coli (purified proteins) and IVTT systems specifically [30]. It is likely that protein

concentration disparities between the two approaches are one of the drivers of this heterogene-

ity. However, without attempting to quantify the exact amount of protein generated in the small

volume of IVTT reactions we are unable to address this here. Although in this current study tar-

gets grouped by antigen displayed highly variable correlations of response, it is encouraging

that sequence matched proteins did generally display stronger correlations of response than

non-sequence matched targets. Further, this may indicate the importance of capturing specific

epitopes within expression sequences when producing antigens by either expression method.

Despite the lack of a clearly defined relationship between antigen-matched targets from the

evaluated expression systems, we remain confident that microarrays utilising IVTT or purified

recombinant proteins are able to produce compelling and biologically relevant data. Indeed,

our data show age-dependent trends in antibody responses (typical of highly endemic popula-

tions) [1–3] irrespective of expression system (S3 Fig), lending weight to the applicability of

either methodology in serological assays [57–70].

The IVTT system lends itself to microarray applications, as vast numbers of proteins, or

even entire proteomes, may be produced at scale relatively quickly. However, for application

to serology there is concern that expressed proteins are not quantified before printing, and

that expression levels of product may vary considerably; product yield in bacterial-based IVTT

systems is generally considered to be lower (typically ~1 mg mL-1 or less) though higher pro-

tein yields have been reported [71, 72]. This has been shown to be due to an inherent heteroge-

neity with IVTT components, although this weakness is an area of active research [26, 73].

Similarly, it is important to acknowledge that the un-purified nature of printed reaction mix-

tures may mask, or otherwise adversely affect, the detection of antibody reactivity in a sample;

Davies et al. report IVTT reaction compositions of 99% E. coli lysate to 1% target protein [15],

though this will vary considerably, at scale, in practice.

In contrast to IVTT-based microarrays, printing purified protein allows a highly quantifi-

able approach to be taken. Affinity purification and dialysis of expression products substan-

tially reduces the risk of background reactivity to bacterial components, and the simple

determination of target protein concentrations allows defined quantities of product to be spot-

ted, providing much greater confidence when comparing reactivity between targets. However,

these advantages come at a substantial cost; the need for in silico analysis to design vectors,

transfection procedures, expression and purification drastically slows the rate at which puta-

tive targets can be produced and screened. Shorter, epitope specific sequences may in theory
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be transposed from IVTT systems with a view to generating more granular serological screens,

though we accept that truncated protein targets will in some cases favour linear B cell epitopes,

while missing conformational epitopes. However, for measuring exposure to infection there is

less importance on the targeting of confirmation epitopes than would be required for protec-

tive epitopes [57].

The primary benefit of the microarray platform is the ability to screen orders of magnitude

more targets simultaneously than more standard serological assays. Our analysis shows that

both IVTT and purified proteins can be successfully used to capture malarial protein-antigen

specific antibody responses on a protein microarray. Although correlations of response

between expression systems are not as strong as may have been expected, a number of

acknowledged technical differences in the methods of protein production may account for this

finding. In addition to the E. coli in vivo and IVTT systems utilised here, high-throughput

wheat germ cell free systems have been successfully used to conduct large scale serological

screens of putative antigen biomarkers [74, 75], alongside chemically synthesised peptide

arrays [57, 62]. High-throughput mammalian and baculovirus expression systems have also

been pioneered for the production of recombinant proteins [36, 76]. Differences in expression

efficiency and the homology to native epitopes achieved by the assortment of available

approaches likely have considerable impact on the capture of antibody from sample. This vari-

ability should be accounted for both in terms of choosing an experimental approach and com-

parative analysis between different methods. We suggest that further investigation of

differences in seroreactivity to sequence-matched proteins derived from contrasting expres-

sion systems is needed to shed light on the parity between such data that is already widely pub-

lished. It should also be noted that it is unlikely that any single expression platform will satisfy

the demands of all recombinant expression projects due to varying importance such as protein

folding, proteins activity (e.g. enzymes) and glycosylation. In addition, E. coli expression has

the advantage of low cost, flexibility and easy scale-up.

Considering the data presented here more broadly, observed trends lend support to the uti-

lisation of both IVTT and purified arrays depending on the objectives and context of hypothe-

ses to be investigated. The strengths and weaknesses of each expression system should dictate

the chosen approach on a case-by-case basis. For example, very high-density proteome level

screening to identify ‘shortlists’ of candidate markers based on binary categorisation of sero-

positivity may be best achieved using IVTT systems. In contrast, smaller numbers of ‘short-

listed’ targets expressed as purified proteins may allow for more nuanced characterisation of

antibody responses on a more continuous scale. As already described, the key limitation in the

production of purified recombinants in our current expression pipeline is throughput. The

adaption of our methods to increase the capacity of protein production would improve our

ability to more widely mine the biomarker information derived from the IVTT platform. As

such, we are currently exploring a number of existing approaches to address this methodologi-

cal bottleneck [38, 77].

In summary, the IVTT protein microarray approach has proven to be a powerful, high-

throughput, biomarker discovery platform with applicability across a range of infectious dis-

eases. When combined with a cheap, scalable and flexible protein expression platform such as

the E. coli in vivo expression platform we have the ability to mine potential diagnostic and vac-

cine related targets.

Supporting information

S1 Fig. Data normalisation processes for IVTT and purified protein spots. After local back-

ground correction using the backgroundCorrect function from the limma package, purified
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protein spots were additionally corrected for possible GST reactivity by subtracting GST reac-

tivity using the same function. After Log2 transformation, IVTT and purified proteins were

normalised to background control spots of empty T7 vector and PBS buffer control spots

respectively.

(PDF)

S2 Fig. Correlogram of multiple antigen-matched targets (left). Spearman’s rank correlation

reported (rs) and increasing blue colour scale indicates relative strength of correlation based

on calculated correlations for all proteins included in this analysis. Protein schematic (right)

represents amino-acid aligned representation of IVTT (green) and purified (orange) proteins

to the full-length native protein (grey). Proteins in the correlogram and schematic are corre-

spondingly aligned.

(PDF)

S3 Fig. Magnitude and range of response to IVTT and purified proteins, stratified by age.

All sample responses (n = 899) to all protein targets grouped by antigen, presented with

median and interquartile range.

(PDF)

S1 Table. Detail of expressed protein targets. A key to the simplified nomenclature used for

specific proteins in text is provided.

(XLSX)

S2 Table. Correlation coefficient results for all protein pairs. Protein targets are grouped by

antigen, and all possible combinations within each antigen group are shown.

(XLSX)
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as tool for studies at the host-pathogen interface. J Proteomics. 2013; 94: 387–400. https://doi.org/10.

1016/j.jprot.2013.10.010 PMID: 24140974

13. Adu B, Issahaque Q-A, Sarkodie-Addo T, Kumordjie S, Kyei-Baafour E, Sinclear CK, et al. Microscopic

and Submicroscopic Asymptomatic Plasmodium falciparum Infections in Ghanaian Children and Pro-

tection against Febrile Malaria. Infect Immun. 2020;88. https://doi.org/10.1128/IAI.00125-20 PMID:

32719157

14. Ondigo BN, Hamre KES, Frosch AEP, Ayodo G, White MT, John CC. Antibody Profiles to P. falciparum

Antigens Over Time Characterize Acute and Long-Term Malaria Exposure in an Area of Low and Unsta-

ble Transmission. Am J Trop Med Hyg. 2020. https://doi.org/10.4269/ajtmh.19-0480 PMID: 33124539

15. Davies DH, Liang XW, Hernandez JE, Randall A, Hirst S, Mu YX, et al. Profiling the humoral immune

response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen

PLOS ONE Microarray comparison of two protein production methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0273106 August 29, 2022 13 / 17

https://doi.org/10.1016/j.pt.2007.08.023
http://www.ncbi.nlm.nih.gov/pubmed/17988945
https://doi.org/10.1073/pnas.0408725102
http://www.ncbi.nlm.nih.gov/pubmed/15792998
https://doi.org/10.1371/journal.pone.0006083
https://doi.org/10.1371/journal.pone.0006083
http://www.ncbi.nlm.nih.gov/pubmed/19562032
https://doi.org/10.3201/eid1603.090732
https://doi.org/10.3201/eid1603.090732
http://www.ncbi.nlm.nih.gov/pubmed/20202412
https://doi.org/10.1128/cdli.2.1.30-34.1995
http://www.ncbi.nlm.nih.gov/pubmed/7719909
https://doi.org/10.1046/j.1365-3024.1997.d01-182.x
http://www.ncbi.nlm.nih.gov/pubmed/9076807
https://doi.org/10.1006/expr.1998.4315
http://www.ncbi.nlm.nih.gov/pubmed/9769246
https://doi.org/10.1128/cdli.10.5.973-976.2003
https://doi.org/10.1128/cdli.10.5.973-976.2003
http://www.ncbi.nlm.nih.gov/pubmed/12965937
https://doi.org/10.1038/nature01097
https://doi.org/10.1038/nature01097
http://www.ncbi.nlm.nih.gov/pubmed/12368864
https://doi.org/10.1038/nature01107
http://www.ncbi.nlm.nih.gov/pubmed/12368866
https://doi.org/10.1586/erv.10.50
https://doi.org/10.1586/erv.10.50
http://www.ncbi.nlm.nih.gov/pubmed/20518713
https://doi.org/10.1016/j.jprot.2013.10.010
https://doi.org/10.1016/j.jprot.2013.10.010
http://www.ncbi.nlm.nih.gov/pubmed/24140974
https://doi.org/10.1128/IAI.00125-20
http://www.ncbi.nlm.nih.gov/pubmed/32719157
https://doi.org/10.4269/ajtmh.19-0480
http://www.ncbi.nlm.nih.gov/pubmed/33124539
https://doi.org/10.1371/journal.pone.0273106


discovery. Proc Natl Acad Sci U S A. 2005; 102: 547–552. https://doi.org/10.1073/pnas.0408782102

PMID: 15647345

16. Arevalo-Herrera M, Lopez-Perez M, Dotsey E, Jain A, Rubiano K, Felgner PL, et al. Antibody Profiling

in Naive and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites.

PLoS Negl Trop Dis. 2016; 10: e0004563. https://doi.org/10.1371/journal.pntd.0004563 PMID:

27014875

17. Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A, Weiss GE, et al. A prospective analysis

of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray.

Proc Natl Acad Sci U S A. 2010; 107: 6958–6963. https://doi.org/10.1073/pnas.1001323107 PMID:

20351286

18. Sundaresh S, Randall A, Unal B, Petersen JM, Belisle JT, Hartley MG, et al. From protein microarrays

to diagnostic antigen discovery: a study of the pathogen Francisella tularensis. Bioinformatics. 2007;

23: I508–I518. https://doi.org/10.1093/bioinformatics/btm207 PMID: 17646338

19. Helb DA, Tetteh KKA, Felgner PL, Skinner J, Hubbard A, Arinaitwe E, et al. Novel serologic biomarkers

provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities.

Proc Natl Acad Sci. 2015; 112: E4438–E4447. https://doi.org/10.1073/pnas.1501705112 PMID:

26216993
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