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Abstract The pathogenesis and host- viral interactions of the Crimean–Congo hemorrhagic 
fever orthonairovirus (CCHFV) are convoluted and not well evaluated. Application of the multi- 
omics system biology approaches, including biological network analysis in elucidating the complex 
host- viral response, interrogates the viral pathogenesis. The present study aimed to fingerprint the 
system- level alterations during acute CCHFV- infection and the cellular immune responses during 
productive CCHFV- replication in vitro. We used system- wide network- based system biology anal-
ysis of peripheral blood mononuclear cells (PBMCs) from a longitudinal cohort of CCHF patients 
during the acute phase of infection and after one year of recovery (convalescent phase) followed 
by untargeted quantitative proteomics analysis of the most permissive CCHFV- infected Huh7 and 
SW13 cells. In the RNAseq analysis of the PBMCs, comparing the acute and convalescent- phase, 
we observed system- level host’s metabolic reprogramming towards central carbon and energy 
metabolism (CCEM) with distinct upregulation of oxidative phosphorylation (OXPHOS) during 
CCHFV- infection. Upon application of network- based system biology methods, negative coordina-
tion of the biological signaling systems like FOXO/Notch axis and Akt/mTOR/HIF- 1 signaling with 

RESEARCH ARTICLE

*For correspondence: 
ujjwal.neogi@ki.se (UN); 
ali.mirazimi@ 
folkhalsomyndigheten.se (AM)
†These authors contributed 
equally to this work

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 17

Preprinted: 11 December 2020
Received: 03 December 2021
Accepted: 15 March 2022
Published: 19 April 2022

Reviewing Editor: David W 
Hawman, National Institute of 
Allergy and Infectious Diseases, 
United States

   Copyright Neogi et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.76071
mailto:ujjwal.neogi@ki.se
mailto:ali.mirazimi@folkhalsomyndigheten.se
mailto:ali.mirazimi@folkhalsomyndigheten.se
https://doi.org/10.1101/2020.12.10.419697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Immunology and Inflammation | Microbiology and Infectious Disease

Neogi, Elaldi, et al. eLife 2022;11:e76071. DOI: https://doi.org/10.7554/eLife.76071  2 of 22

metabolic pathways during CCHFV- infection were observed. The temporal quantitative proteomics 
in Huh7 showed a dynamic change in the CCEM over time and concordant with the cross- sectional 
proteomics in SW13 cells. By blocking the two key CCEM pathways, glycolysis and glutaminolysis, 
viral replication was inhibited in vitro. Activation of key interferon stimulating genes during infection 
suggested the role of type I and II interferon- mediated antiviral mechanisms both at the system level 
and during progressive replication.

Editor's evaluation
The data presented here provide novel insight into the host response to CCHFV infection. These 
data further our understanding of how CCHFV causes disease in humans and will support the devel-
opment of therapeutics to address the significant morbidity and mortality caused by this virus.

Introduction
Crimean–Congo hemorrhagic fever orthonairovirus (CCHFV), a negative- sense RNA virus belonging 
to the Nairoviridae family, is a major emerging pathogen with an increasing number of outbreaks all 
over the world. Causing a mild- to- severe viral hemorrhagic fever (CCHF; Crimean–Congo hemor-
rhagic fever) poses a substantial threat to public health due to its high mortality rate in humans 
(3–40%), modes of transmission (tick- to- human/animal, animal- to- human, and human- to- human) and 
geographical distribution. CCHF is endemic in almost 30 countries in sub- Saharan Africa, South- 
Eastern Europe, the Middle East, and Central Asia (Bente et al., 2013; Zivcec et al., 2016). The 
ixodid ticks, especially those of the genus Hyalomma, are both a vector and a reservoir for CCHFV 
and are highly ubiquitous with their presence in more than 40 countries (Gargili et al., 2017). In recent 
years, CCHFV outbreaks have become more frequent and expanded to new geographical areas. This 
has been attributed to climate change and the spread of infected ticks by birds and the livestock 
trade. The presence of the CCHFV tick vector in Portugal, Spain, Germany, and even Sweden (Grandi 
et al., 2020) and England (McGinley et al., 2021) highlights the need for stricter surveillance due 
to the possibility of a future intrusion (Estrada- Peña et al., 2012). Turkey has reported the highest 
number of laboratory- confirmed CCHF cases and is one of the worst affected countries in the world 
(Monsalve- Arteaga et al., 2020). Since the first identification in 2002 up till the end of 2019, a total of 
11,780 confirmed CCHF cases have been reported with a case- fatality rate of 4.7% (unpublished data 
by the Turkish Ministry of Health). There were nearly 500 cases every year, reported mainly during the 
summer months May- July (Ak et al., 2020).

Because of the sporadic nature of CCHF outbreaks in humans in the endemic regions, a lack of 
infrastructure, and the absence of systematic studies, little is known about the pathogenesis and host- 
virus interactions during the acute phase of CCHF disease and associated sequelae after recovery. An 
in- depth understanding of host responses to CCHFV is necessary to design better therapeutic and 
containment strategies for CCHF. The systems biology studies using -omics approaches on patient 
material and infected cells can elucidate potential host immune response mechanisms and disease 
pathogenesis. Application of the multi- omics system biological methods can also distinguish disease 
severity as reported recently in 16 viruses, including severe acute respiratory syndrome coronavirus 2 
(SARS- CoV- 2), Chikungunya, Zika, Ebola, Influenza viruses (Appelberg et al., 2020; Krishnan et al., 
2021; Zheng et al., 2021). However, no studies elucidating the host viral response using advanced 
system biological methods were reported for CCHFV infection.

Here, we have applied global blood transcriptomics in longitudinal samples collected during 
the acute phase of CCHFV- infection and the convalescent phase (nearly after a year of recovery) 
to measure the system- wide changes during the CCHFV- infection in patients from Turkey. We also 
performed temporal quantitative proteomics analysis to understand the cellular alterations during 
the productive CCHFV- infection in two different cell lines, human adrenal carcinoma cell line, SW13, 
and human liver cell line Huh7 that were reported to be the most permissive cell lines for CCHFV (Dai 
et al., 2021). Using the newly gained insights, we then modulated the critical pathways by drugs to 
halt the productive CCHFV- replication in in vitro infection models. Our study thus provides a compre-
hensive, system- level picture of the regulation of cellular and metabolic pathways during productive 
CCHFV- infection that can aid in identifying novel therapeutic targets and strategies.

https://doi.org/10.7554/eLife.76071
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Results
Samples and clinical data
In this study, 18 samples were collected during the acute phase of the disease with a median time of 
4 days (range 1–6 days) after the onset of symptoms. We used the severity grading scores (SGS) to 
define the CCHF severity that calculated using age, clinical findings (bleeding, hepatomegaly, organ 
failure), routine laboratory parameters (blood levels of liver enzymes and lactate dehydrogenase, 
blood platelet, and leucocyte counts, blood coagulation tests [prothrombin time, D- dimer and fibrin-
ogen]; Bakir et al., 2012). By using these criteria, a standard SGS sheet for each patient was filled by 
the infectious diseases physician on admission day. By using SGS criteria, 33% (6/18) patients were 
grouped into severity group 1 (SG- 1), 61% (11/18) patients into severity group 2 (SG- 2), and, 6% (1/18) 
patients into severity group 3 (SG- 3). The median age of the patients was 49 years (range: 18–79), 
and 12 (66.7%) of the patients were male. A 79- year- old male patient in SG- 3 died on the third day of 
hospitalization. The case- fatality rate (CFR) for the cohort was 5.6%. Follow- up samples were collected 
from 12 individuals after a median duration of 54 weeks (range: 46–57 weeks). The CCHF patient 
characteristics are summarized individually in Table  1 and the calculated daily SGS scores during 
hospitalization in Table 1—source data 1.

System-level metabolic reprogramming during the acute phase of 
CCHFV infection
Due to the natural heterogeneity in human cohorts, we used longitudinal samples from 12 patients 
(SG- 1: n = 5; SG- 2: n = 7) to perform differential expression analyses for each infected patient between 
the time of infection and approx. 1 year post- recovery (Range: 46–57 weeks). The differential gene 
expression (DGE) profile for the acute phase compared to the recovered phase in all patients showed 
an upregulation of 2891 genes and a downregulation of 2738 genes (adj. p<0.05)(Figure 1A and 
Supplementary file 1). To check whether the gene expression changes between the acute phase 
and recovered phase may be due to differences in cell types abundances, we performed digital cell 
quantification (DCQ) using the Estimating the Proportions of Immune and Cancer cells (EPIC) (Racle 
and Gfeller, 2020) algorithm for blood circulating immune cells. No statistically significant (adj p < 
0.05) difference was observed in the key immune cell types (Figure 1—figure supplement 1). Next, 
we used the functional analysis using a consensus scoring approach based on multiple gene set anal-
ysis (GSA) runs by incorporating the directionality of gene abundance using R/Bioconductor package 

eLife digest Crimean- Congo hemorrhagic fever (CCHF) is an emerging disease that is increasingly 
spreading to new populations. The condition is now endemic in almost 30 countries in sub- Saharan 
Africa, South- Eastern Europe, the Middle East and Central Asia. CCHF is caused by a tick- borne virus 
and can cause uncontrolled bleeding. It has a mortality rate of up to 40%, and there are currently no 
vaccines or effective treatments available.

All viruses depend entirely on their hosts for reproduction, and they achieve this through hijacking 
the molecular machinery of the cells they infect. However, little is known about how the CCHF virus 
does this and how the cells respond. To understand more about the relationship between the cell’s 
metabolism and viral replication, Neogi, Elaldi et al. studied immune cells taken from patients during 
an infection and one year later.

The gene activity of the cells showed that the virus prefers to hijack processes known as central 
carbon and energy metabolism. These are the main regulator of the cellular energy supply and the 
production of essential chemicals. By using cancer drugs to block these key pathways, Neogi, Elaldi 
et al. could reduce the viral reproduction in laboratory cells.

These findings provide a clearer understanding of how the CCHF virus replicates inside human 
cells. By interfering with these processes, researchers could develop new antiviral strategies to treat 
the disease. One of the cancer drugs tested in cells, 2- DG, has been approved for emergency use 
against COVID- 19 in some countries. Neogi, Elaldi et al. are now studying this further in animals with 
the hope of reaching clinical trials in the future.

https://doi.org/10.7554/eLife.76071
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Figure 1. Differential gene expression and pathway analysis between acute and recovery phases. (A) Heatmap of Z- score transformed expression 
values of significantly regulated genes in the pair- wise comparisons namely recovered vs. acute (overall), recovered vs. acute (SG- 1), recovered vs. acute 
(SG- 2). The columns represent the patient samples and their corresponding severity groups at different time points. The rows represent genes that are 
hierarchically clustered based on Euclidean distance. (B) Pathways were found to be significantly regulated (adj. p < 0.05) by genes expressed at the 
acute infection phase compared to recovered phase. The heatmap visualizes negative log scaled adjusted p- values of different directionality classes. 
Non- directional p- values were generated based on gene- level statistics alone without considering the expression direction. The mixed- directional 
p- values were calculated using subset of gene- level statistics of up and down- regulated genes respectively for mixed- directional up and down. 
Distinct directional up and distinct directional down p- values are calculated from gene statistics with expression direction (C) Network visualization of 
significant reporter metabolites (adj. p < 0.1) and reporter subsystems (pathways) identified in acute compared to recovered. The yellow node denotes 
reporter metabolite and blue node denotes reporter subsystems. Light red and green colored nodes represent upregulated and downregulated genes 
respectively. Each edge in the network denotes association of genes with reporter metabolites and subsystems based on the human genome- scale 
metabolic model. (D) Venn diagram of significantly up- regulated genes in recovered vs acute (SG- 1) and recovered vs acute (SG- 2) phases (E) Venn 
diagram of significantly down- regulated genes in recovered vs. acute (SG- 1) and recovered vs. acute (SG- 2) phases. (F) Gene ontology (GO, biological 
process) enrichment analysis results of commonly regulated genes (882 upregulated and 569 down- regulated) from (D) and (E). The color gradient 
and bubble size correspond to the gene ratio of each GO term and the adjusted p- value of the enrichment test, respectively. The adjacent bar graph 
represents the percentage of genes upregulated or downregulated in each GO term.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page

https://doi.org/10.7554/eLife.76071
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PIANO (Väremo et al., 2013) for KEGG pathway gene- set. Using the group- specific consensus scores 
(acute vs. recovered) and directionality classes, we identified distinct upregulation (adj. p < 0.05) 
of metabolic pathways such as one carbon pool by folate, oxidative phosphorylation (OXPHOS), 
glycolysis, N- glycan biosynthesis, and antiviral pathways like the NOD- like receptor signaling pathway 
(Figure 1B and Supplementary file 2). However, the pathways related to the down- regulated genes 
were mainly antiviral defense mechanism- associated pathways including innate immune responses 
like Th1, Th2, and Th17 cell differentiation, the NF- kB pathways, chemokine signaling pathway, etc. 
(Figure 1B). Additionally, since most of the metabolic pathways were upregulated, we used the DGE 
results of acute- vs- recovered to identify reporter metabolites. Reporter metabolites are metabolites 
around which most of the transcriptional changes occur (Patil and Nielsen, 2005) thus being indica-
tive of gene- level altered regulation of metabolism. The analysis identified 37 significantly upregulated 
reporter metabolites (adj. p < 0.1), that were part of OXPHOS, TCA- cycle, nucleotide metabolism, 
N- glycan metabolism, and amino acid- related pathways (Figure 1C). To specifically investigate the 
genes that were significantly associated with disease severity during the acute phase, the samples 
were grouped into either SG- 1 or SG- 2 and 3 combined. There were 12 genes (ERG, PROM1, HP, 
HBD, AHSP, CTSG, PPARG, TIMP4, SMIM10, RNASE1, VSIG4, CMBL, MT1G) that were significantly 
upregulated in patients in the SG- 2 and SG- 3 combination group compared to SG- 1 (Figure 1—figure 
supplement 2A) However, no obvious links between these genes were noted and no apparent clus-
tering was observed (Figure 1—figure supplement 2B). This was further supported by serum secre-
tome analysis using the 22 soluble cytokine and chemokine markers by Luminex assay on samples 
collected during the acute phase of the disease from SG- 1 (n = 6) and SG- 2 (n = 11). Of the 22 markers 
used for analysis, only interleukin 8 (IL- 8) and Granulocyte- macrophage colony- stimulating factor (GM- 
CSF) was shown borderline significance between SG- 1 and SG- 2 (Figure 1—figure supplement 3). 
However, when we compared the acute phase with the recovered phase in SG- 1, and SG- 2 separately, 
there was a distinct DGE profile. In SG- 1 the differentially expressed genes were significantly fewer 
(adj. p < 0.05; n = 1617, upregulated: 954 and downregulated: 663) compared to those in SG- 2 (adj. 
p < 0.05; n = 4256, upregulated: 2182 and downregulated: 2074) (Figure 1D and E). There were 
1451 overlapping genes between SG- 1 and SG- 2 that were differentially upregulated (n = 882) and 
downregulated (n = 569). Using gene ontology (GO) analysis after removal of the redundant terms 
using REVIGO (Supek et al., 2011), the majority of the genes from the top two GO terms that were 
significantly upregulated were part of the IFN- I signaling pathway (GO:0060337) and the regulation 
of viral genome replication (GO:0045069) (Figure 1F). This indicates that the disease severity signifi-
cantly affected gene expression of the interferon signaling pathway profiling during the acute phase, 
whereas it was comparable when they recovered.

Distinct interferon signaling-related pathways in CCHFV-infection
To identify the CCHFV- induced changes in the interferon- related signaling pathways, we used our 
previously curated datasets for genes (n = 205) associated with the interferon response (Chen et al., 
2021). The majority of the genes of the interferon signaling pathways were upregulated (36%, 73/205, 
adj p < 0.05), while 11% (22/205) were downregulated (Figure 2A). Of the IFN- regulated genes, IFI27 
(ISG12) showed the most robust upregulation (Figure 2B). This was further supported by RNAscope 
analysis targeting the IFI27 transcript in the SW13 cell line infected with CCHFV strain IbAr10200 
(Figure 2C). Apart from this ISG20, ISG15, Mx1, Mx2, and several other ISGs showed upregulation 
in the acute phase (Supplementary file 1). Given that the interferon signaling pathways have a role 
in disease severity, we next performed an association between the patient viral load and genes in 
the interferon signaling- related pathways. We identified six genes (TRIM25, IFI35, EIF2AK2, USP18, 
IFI6, and BST2) that were negatively associated with the cycle threshold (CT) value of RT- PCR (adj p < 
0.05 and R > −0.8, Figure 2D), suggesting a higher viral load was associated with an increased expres-
sion of these ISGs. Overall, the gene expression data indicate that the CCHFV infection regulates IFN 

Figure supplement 1. Digital cell quantification using EPIC.

Figure supplement 2. Severity group association with gene expression.

Figure supplement 3. Violin plot of 22 soluble markers as determined from Luminex assay assays.

Figure 1 continued

https://doi.org/10.7554/eLife.76071
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responses and patients with a successful disease outcome showed stimulation of several ISGs during 
the acute phase of infection.

Network analysis identified the central role of central carbon and 
energy metabolism (CCEM) in the regulation of signaling pathways
To further deepen our understanding of the cellular regulation of acute CCHFV- infection at the molec-
ular level from a systems perspective, we employed a weighted gene co- expression network analysis 
at the transcriptomic level. Based on the network analysis of pairwise gene co- expression (adj. p < 
0.001, Spearman ρ > 0.84), we identified a set of seven communities of strongly interconnected genes 
(Figure 3A). Next, we ranked all the communities based on their centrality (average degree of nodes) 
to identify the sets of genes with the highest coordinated expression changes that were predicted 
to influence network behavior robustly. The functional enrichment analysis of the central community 
(c1) of the transcriptomics is associated (adj. p < 0.05) mainly with alterations in pyruvate metabolism, 
TCA- cycle, and to a smaller extent to glycolysis and gluconeogenesis (adj. p < 0.2) (Figure 3A and 
Figure 3—figure supplement 1). Further, we observed (Figure 3B and Figure 3—figure supple-
ment 2) a high number of negative correlations between community (c1) and those associated with 
Notch, mechanistic target of rapamycin (mTOR) and Forkhead box protein O (FoxO) signaling (c5), 
and hypoxia inducing factor- 1 (HIF- 1) signaling (c7). Interestingly, the OXPHOS- associated community 
(c3) also tends to be negatively correlated with those involved in Notch/mTOR/FoxO signaling (c5) 
and HIF- 1 signaling (c7). These patterns are also observed among the top 10% of most central genes 

Figure 2. Differentially expressed genes in interferon (IFN) signaling pathways. (A) Heatmap visualizes the expression pattern of IFN- signaling genes 
(including ISGs) significantly different between the recovered and acute phases. The columns represent the patient samples and their corresponding 
severity groups at different time points. The rows represent genes hierarchically clustered based on Euclidean distance. (B) MA- plot of differentially 
regulated genes between the recovered and acute phases. ISGs are marked. (C) RNAscope analysis targeting IFI27 genes in infected and non- infected 
cells. (D) Spearman correlation between viral load and IFN signaling genes (adj p < 0.05).

https://doi.org/10.7554/eLife.76071
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Figure 3. Weighted co- expression network analysis. (A) Network visualization of seven gene co- expression communities identified. Nodes and node 
size represent genes and their centrality (degree) respectively and edges represent significant Spearman correlation (adj p < 0.001 and R > 84). Key 
significantly regulated pathways (adj. p < 0.05) in each community are labeled. (B) Heatmap of correlations among top 5% central genes in each 
community. Column and row annotation denotes corresponding communities. (C) Heatmap of significant correlation (adj. p < 0.05) between key 
metabolic and signaling pathways mentioned in (A). Column and row annotation denotes corresponding pathways.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.76071
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in each community, suggesting key opposite differences not only at a global community level but also 
in key genes in each community (Figure 3B). At a pathway level, we indeed observed antagonistic 
trends between the above- mentioned pathways (Figure 3C). Our functional and network community 
analyses in the patient transcriptomics identified the coordination of biological signaling systems like 
FoxO, Notch and mTOR/HIF- 1 signaling with metabolic pathways of CCEM during CCHFV- infection.

Quantitative proteomics analysis identified modulation of key 
metabolic processes and signaling pathways during productive 
replication in vitro
Our longitudinal transcriptomics analysis of CCHF patient samples revealed alternations in the several 
key metabolic processes and signaling pathways during the acute phase of infection at a system level. 
As CCHFV fails to infect the peripheral blood mononuclear cells (PBMCs) (Connolly- Andersen et al., 
2009), to understand the global changes in the cellular response during productive CCHFV- infection, 
we infected Huh7 and SW13 cells with CCHFV, which are the common cell lines used in pathogenesis 
studies and considered highly permissive for CCHFV (Dai et al., 2021). To allow multiple rounds of 
infection we used a multiplicity of infection (MOI) of 1 and used a time- course proteomic experiment 
for 24 and 48hpi using single batch TMT- labeling based mass- spectrometric analysis to avoid batch 
effects, inflated false- positive results, and minimize the typical missing values issue (Brenes et al., 
2019). Due to the higher cell death the proteomics analysis could not be performed in SW13 48hpi. 
In the UMAP clustering of the proteome data, we observed a clear separation between the mock 
and virus- infected cells in both the cell lines (Figure 4A). At 24hpi and 48hpi a substantial amount of 
CCHFV proteins, N, M, and L protein were detected (Figure 4B). The immune fluorescence analysis 
targeting N- protein of CCHFV infected Huh7 cells at 24hpi with 1 MOI is shown in Figure 4C. The 
differential protein analysis (DPA) identified 3205 and 3070 proteins upregulated and 2926 and 3279 
proteins downregulated in the infected samples at 24hpi and 48hpi in Huh7 cells and 2,217 upreg-
ulated and 1705 downregulated in SW13 cells respectively compared to the mock (adj. p < 0.05) 
(Supplementary file 3). The consensus scoring- based gene set analysis (GSA) using PIANO on the 
DPA at 24hpi and 48hpi in Huh7 and 24hpi in SW13 identified 68 pathways to be dysregulated in at 
least one of the comparisons. We observed downregulation (adj. p < 0.05) of the glycolysis/gluco-
neogenesis, purine metabolism, PI3K- Akt, and HIF- 1 signaling pathways in both Huh7 and SW13 cell 
lines at 24hpi (Figure 4D) indicating CCHFV utilized these pathways during productive replication at 
an early phase. These pathways are known to have feedback mechanisms (Hayward, 2004; Locasale, 
2018) to maintain cellular homeostasis, which is consistent with the observation that at 48hpi (in 
Huh7 cells) the pathways were not significantly dysregulated. The pathways like TCA- cycle and insulin 
secretion showed opposite trends in the cell lines indicating cell type- specific differential regulation 
of metabolic and signaling pathways during CCHFV replication. In time- series analysis in Huh7 cells, 
oxidative phosphorylation (OXPHOS) pathway was upregulated during CCHFV infection in a temporal 
manner indicating shift in metabolic processes towards OXPHOS during productive replication of the 
virus. The other pathways that also showed distinct temporal upregulation during CCHFV infection 
in vitro were N- glycan biosynthesis and cytokine- cytokine receptor interactions. In turn, pathways 
like FoxO signaling, T- cell receptor signaling pathways, Th1 and Th2 cell differentiation, and NK cell- 
mediated cytotoxicity were downregulated and upregulated of Notch signaling in Huh7 24hpi but not 
at 48hpi indicating the role of these pathways at the early stage of infection. A severe metabolic rear-
rangement occurred in SW13 cells at 24hpi toward central carbon and energy metabolism and amino 
acid metabolism as the pathways like pyruvate metabolism, glycine, serine, and threonine metabo-
lism, tryptophan metabolism etc. were downregulated (Figure 4D). We also performed quantitative 
proteomics analysis of the Huh7 cells with 4 MOI infections at 24hpi and observed similar alterations 
in the pathways (Figure 4—figure supplement 1). Next, we performed gene set enrichment analysis 
(GSEA ) in Enrichr and compared Huh7 and SW13, 24hpi and patients RNAseq data and observed the 

Figure supplement 1. Gene set enrichment analysis of the individual communities.

Figure supplement 2. Weight co- expression network of the negatively co- related genes We observed a high number of negative correlations between 
this community (c1) and those associated with Notch, mTOR, and FoxO signaling (c5) and HIF- 1 signaling (c7).

Figure 3 continued

https://doi.org/10.7554/eLife.76071
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key common dysregulated pathways were TCA cycle, HIF- 1, and FoxO signaling pathways (Figure 4E). 
Glycolysis and OXPHOS are molecular interconversion systems, where the end product of the glycol-
ysis is fueling OXPHOS through the TCA cycle which normally is the primary energy source and major 
pathways of CCEM. Glutaminolysis is an alternative pathway for mitochondrial energy production 
through OXPHOS under altered metabolic conditions (Zhang et al., 2019; Zheng, 2012). Therefore, 
we blocked glycolysis and glutaminolysis in SW13 and Huh7 cells using 2- deoxy- D- glucose (2- DG) 
(5 mM) and 6- diazo- 5- oxo- L- norleucine (DON) (50 μm), respectively (Figure 4F) following infection. 

Figure 4. LC- MS/MS- based quantitative proteomics analysis in CCHFV- infected Huh7 and SW13 cells. (A) Principal component analysis of proteomics 
samples of Huh7 cells and SW13 (inset) using only human proteins. (B) Identification of the CCHFV N (UniProtKB P89522.1), M (UniProtKB Q8JSZ3.1) 
and L (UniProtKB Q6TQR6.2) protein in the quantitative proteomics analysis. (C) Immunofluorescence staining of the CCHFV nucleoprotein to assess 
the infectivity. (D) Significantly regulated pathways (adj p < 0.05) in any of the pair- wise proteomics analyses in Huh7 and SW13 cells. The heatmap 
visualizes negative log scaled adjusted p- values of different directionality classes. Non- directional p- values are generated based on gene- level statistics 
alone without considering the expression direction. The mixed- directional p- values are calculated using subset of gene- level statistics of up and down- 
regulated genes respectively for mixed- directional up and down. Distinct directional up and distinct directional down p- values are calculated from 
gene statistics with expression direction. The first column annotation represents directionality of pathways and second column annotation denotes 
corresponding differential expression analysis. (E) Venn diagram showing commonly dysregulated pathways in patients transcriptomics and cell line 
proteomics. (F) Schematic diagram of the glycolysis and glutaminolysis and targeted drugs. (G) Metabolic control of viral replication in vitro. Fold 
change of the CCHFV L- gene following infection and treatment of 2- DG and DON at indicated concentrations compared to untreated in SW13 cells and 
Huh7 cells. A two- tailed paired Student t- test was performed, and p values are mentioned.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Quantitative proteomics of the Huh7 with 4 MOI infection 24hpi and comparisons with the 1 MOI infection indicated 2452 
proteins were common that were significantly dysregulated.

https://doi.org/10.7554/eLife.76071
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Infectivity of CCHFV, quantified as relative CCHFV L- gene levels in cells lysates, showed a significant 
decrease in 2- DG treated cells in both SW13 and Huh7 (p = 0.003 and p = 0.028, respectively). While 
in the DON treated cells a significant decrease was observed in SW13 cell (p < 0.001) and an inhibitory 
trend in Huh7 (p = 0.162) (Figure 4G). These data indicate that alteration in the CCEM affects CCHFV 
replication despite the cell- specific differences.

Temporal dynamics of interferon response in vitro
The temporal changes in the interferome (cluster of interferon genes) are represented as a heat- map 
in Figure 5A and the log2fold change of the significantly altered protein levels at 24hpi and 48hpi are 
represented as volcano plots in Figure 5B. Several ISGs, such as Mx1, Mx2 IFIT1, ISG15, ISG20, and 
IFI6, were transcriptionally upregulated in the acute phase in patient samples (Supplementary Data 
File 1), were also significantly elevated in proteomics of infected Huh7 cells by 48hpi (Figure 5C). To 
determine that the observed induction of ISGs is due to the CCHFV- infection itself and not caused 
by the presence of any residual interferon in the virus- containing supernatant, we performed infec-
tion using UV- inactivated virus supernatant. As shown in the immunoblots in Figure 5D, a significant 
increase in expression of several ISGs namely RIG- I, IFIT1, ISG15 and a noticeable increase in Mx1, 
Mx2, and ISG20 proteins were observed in CCHFV- infected cells and not in UV inactivated virus super-
natant, confirming that CCHFV- infection induces the expression of these ISGs. The WB images from 
all three experiments were given in Figure 5—figure supplement 1 and the Figure 5—source data 1.

Discussion
In our study, using the system level genome- wide transcriptomic analysis of a longitudinal patient 
cohort, temporal quantitative proteomics from in vitro infection assays in Huh7 cells, cross- sectional 
quantitative proteomics analysis in SW13 cells, and in vitro inhibition of CCHFV replication following 
the blocking the glycolysis and glutaminolysis, we showed that during CCHFV- infection there is meta-
bolic reprogramming of host cells towards central carbon and energy metabolism and this plays a 
major role in viral replication despite the existence of cell- type- specific differences. Upregulation of 
OXPHOS was a unique feature of CCHFV- infection, at both the system- level blood transcriptomics 
and cellular proteomics during productive infection in Huh7. By applying network- based system 
biology methods, we identified the negative co- ordination of the biological signaling systems like 
FoxO/Notch axis and mTOR/HIF- 1 signaling along with metabolic pathways of CCEM during CCHFV- 
infection at the system level. Blocking the two key CCEM pathways, glycolysis and glutaminolysis, 
controlled viral replication in vitro. Moreover, IFN- I mediated antiviral mechanisms were also activated 
with elevated key antiviral ISGs (ISG12, ISG15, ISG20), and MXs (Mx1 and Mx2).

Viruses exploit the host metabolic machinery to meet their biosynthetic demands. This reliance is 
further highlighted by observed variations in the cell- specific viral replications and production leading 
to changes in host metabolism (Yu et al., 2011). The changes in the energy metabolism can therefore 
be seen as an evolving property of the combined host- virus metabolic system and could be related to 
changes in host cellular demands arising from viral production (Molenaar et al., 2009). Our system- 
level transcriptomics data on patient material and in vitro cell culture assays indicated a transient 
dysregulation of key metabolic processes of the CCEM, like OXPHOS, glycolysis, and TCA- cycle in 
CCHFV- infection. These pathways are also known to promote replication of several other RNA viruses 
including human immunodeficiency virus type 1 (HIV- 1), rubella virus, dengue virus (DENV), rhino-
virus, hepatitis C virus (HCV), influenza virus, etc (Mayer et al., 2019; Thaker et al., 2019). Blocking 
glycolysis and glutaminolysis, that fuel OXPHOS, resulted in severe suppression of CCHFV- replication 
suggesting the need for these pathways for efficient viral replication. Our system biology analysis 
further indicated the coordinating role of the metabolic pathways of CCEM with biological signaling 
systems like Notch/FoxO axis and mTOR/HIF- 1 signaling during the CCHFV- infection. It is known that 
these biological systems regulate energy metabolism. Notch signaling plays an essential role in main-
taining the cellular energy homeostasis via regulation of HIF- 1 and PI3K/AKT signaling that is known 
to induce glycolysis (Landor et al., 2011).

On the other hand, FoxO signaling regulates cell proliferation by modulating energy metabolism 
and gluconeogenesis (Kousteni, 2012). The coordinated role of these transcriptional regulators (HIF- 
1α, FoxO, mTOR, and Notch1) modulates OXPHOS and mitochondrial biogenesis (Kondo et  al., 

https://doi.org/10.7554/eLife.76071
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Figure 5. Temporal dynamics of interferon stimulating genes (ISGs). (A) Heatmap of Z- score transformed expression values of proteins belonging to the 
cellular response to IFN signaling pathways in Mock- infected and CCHFV- infected Huh7 cells at 24hpi and 48hpi as identified in proteomics. The log- 
2- fold change in the genes corresponding to the indicated proteins identified in our patient transcriptomics data (recovered vs acute) is shown under 
the column name RNASeq. (B and C) Volcano plot of ISGs visualizing the expression status of Mock- infected and CCHFV- Infected samples at (B) 24hpi 
and (C) 48hpi. The size and color gradients of the dots correspond to the adjusted P values of differential expression analysis and the log2 fold change, 
respectively. (D) Representative western blots illustrate the indicated ISGs in Mock- infected, CCHFV- infected, and UV- inactivated CCHFV- infected Huh7 
cells at 48hpi. ISG20 antibody gave a specific band at approx. 40 kDa without any non- specific band in the membrane that was cut at 50 kDa in the top. 
(E) The densitometric intensity of the bands was quantified using Fiji (ImageJ) software. The intensity of the individual bands was first normalized to 
the respective β-actin loading control and further relative normalization with respect to the mock- infected control was done. The bars are represented 
as means ± SD of three independent experiments. A two- tailed paired Student t- test was performed, and p values are represented as *p < 0.05, **p < 
0.01 and ***p < 0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw western blot images.

Figure supplement 1. Western blot Images of ISGs (RIG- I, IFIT1, Mx1, Mx2, ISG20, ISG15), CCHFV- N protein and β-actin at 48hpi from three 
experimental replicates.

https://doi.org/10.7554/eLife.76071
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2020). Notch signaling has also been known to facilitate viral infectivity of RNA viruses including influ-
enza virus, respiratory syncytial virus (RSV), HCV, etc. (Breikaa and Lilly, 2021) and have regulatory 
roles in inflammation (Shang et al., 2016). Our study is concordant with an earlier study that reported 
the downregulation of the Notch signaling in CCHFV- infection at the transcript level (Arslan et al., 
2019). However, our study also pointed out that during productive infection in Huh7 cells, Notch 
signaling was upregulated at 24hpi but not at 48hpi, indicating a role in the early stage of viral replica-
tion. Silencing of the Notch1 reported increasing toll- like receptor 4 (TLR4) triggered proinflammatory 
cytokines (Zhang et al., 2012) which is common during acute CCHFV- infection (Ergönül et al., 2017).

Several viruses encode proteins such as Ebola virus (EBOV) glycoprotein, the Dengue virus (DENV) 
nonstructural protein 1 (NS1), etc., that are known to activate TLR4 (Olejnik et al., 2018). On the 
other hand, at the first encounter with the pathogen, PI3Ks negatively regulate TLRs including TLR4 
signaling (Fukao and Koyasu, 2003). Of note, in our proteomics data during productive infection, 
we observed downregulation of PI3K/Akt signaling at 24hpi but not at 48hpi. lthough there was 
no distinct downregulation of the whole pathway, in our patient system- level transcriptomics data, 
we also noted significant downregulation of genes belonging to the PI3K/Akt pathway during acute 
CCHFV- infection. Moreover, apart from PI3K/Akt, mTOR and HIF- 1 signaling were also downregu-
lated at 24hpi, indicating modulation of PI3K/mTOR/HIF- 1 axis by CCHFV for its replication. In our 
previous study, we have shown that exogenous nitric oxide that is known to regulate the HIF- 1 via 
the Akt/mTOR pathway under normoxic conditions (Sandau et al., 2000), inhibited CCHFV in vitro 
(Simon et al., 2006). Interestingly, an in vitro study in another Bunyavirus, Rift Valley fever virus (RVFV), 
identified the inhibition of the PI3K/Akt pathway by dephosphorylation of the AKT and Forkhead box 
protein O1 (FoxO1)(Popova et al., 2010). In our study, we observed distinct downregulation of FoxO 
signaling pathway both at the system- level blood transcriptomics and during productive infection, 
including the FoxO transcription factors FoxO1 and FoxO3, that can act as negative feedback regula-
tors of the innate cellular antiviral response (Lei et al., 2013). FoxO1 and FoxO3 also play an essential 
role in the immunometabolic dynamics and are important targets for glycolysis and gluconeogenesis 
(Lundell et al., 2019).

One of the key pathways that were significantly upregulated both in patients’ transcriptomics and 
during progressive infection in Huh7 cells was OXPHOS. This indicates that CCHFV may manipulate 
mitochondrial dynamics for its replication by activating the OXPHOS machinery to meet elevated 
energy demands. Several RNA viruses like respiratory syncytial viruses (RSV), HCV, DENV, Zika virus 
(ZIKV), and pathogenic human coronaviruses, and are known to target mitochondria for their replica-
tion (Gatti et al., 2020). Our data also showed that upon suppression of the glycolysis and glutamino-
lysis that fuels mitochondrial OXPHOS, there was inhibition of CCHFV- replication, further supporting 
the role of mitochondrial metabolism and biogenesis in CCHFV- replication and pathogenesis. Further 
investigations on role of mitochondrial biogenesis on CCHFV- pathogenesis can aid novel antiviral 
strategies.

A shift in OXPHOS can also affect the T- cells differentiation, as observed in both patients’ tran-
scriptomics and Huh7 proteomics data. In addition to innate immune responses, adaptive immune 
responses mediated mainly by T- cells play a critical role in the pathogenesis of viral infections. While 
we have observed an upregulation of IFN- related pathways in proteomics, there was a downregu-
lation of genes belonging to Th1 and Th2 differentiation and T- cell receptor signaling pathways in 
the proteomics and the transcriptomics data. Th1 cells secrete IFN-γ, IL- 2, TNF-α and are respon-
sible for cell- mediated inflammatory reaction and tissue injury. Th2 cells secrete some of the cyto-
kines including IL- 10 and help B- cells for antibody production. During most acute viral infections, 
there is a cross- regulation for Th1 and Th2 activations primarily mediated by IL- 10 and IFN-γ, respec-
tively. Furthermore, activation of Th1 response tends to recovery from an infection while a Th2 acti-
vation results a severe clinical pathology (Mosmann and Sad, 1996). Th1 and Th2 harmonize the 
cell- mediated and the humoral response respectively and Th1/Th2 balance has been linked to the 
prognosis of viral diseases (Gil- Etayo et al., 2021). Dengue hemorrhagic fever (DHF), a severe form 
of dengue fever (DF), is characterized by shock, hemorrhage, and death. It was shown a shift from the 
predominance of Th1- type response in cases of DF to the Th2- type in cases of DHF (Chaturvedi et al., 
1999). Mouse model studies have shown activation of the Th1 response is associated with better 
protection to CCHFV- infection (Hawman et al., 2021; Hinkula et al., 2017). While activation of Th2 
is often associated with disease severity in viral hemorrhagic fever (Sancakdar et al., 2014), in case of 
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CCHFV, balanced Th2- response was shown to be protective in immunized mice with a dynamic shift 
from Th1 to Th2 at the later part of infection (Hinkula et al., 2017). Our patient data and cell infection 
data suggest that the virus subverts this adaptive immune response by suppressing T- cell response 
that could influence the disease outcome and recovery. However, this suppression did not impact 
patient survival in our cohort through Th2 cytokines IL8 and IL10 were significantly elevated in the 
serum of severe cases. Our data indicated a down- regulation of Th1 and Th2 cell differentiation during 
acute phase of infection and at the early phase of viral replication. The naive T cells are dependent on 
OXPHOS while activated T- cells on glycolysis and after differentiation, the cells are mainly dependent 
upon the glycolysis than OXPHOS (Angajala et al., 2018). Switch in the OXPHOS during the CCHFV- 
infection and imbalance in Th1, Th2, and Th17 differentiation can alter the outcome of the adaptive 
immune response in survived CCHFV- infected patients.

One of the primary antiviral defense mechanisms is the type- I interferon (IFN- I) response. IFN- I 
are pleiotropic cytokines with varied cellular functions mediated by the transcriptional activations 
of several interferon- stimulated genes (ISGs). It is known that CCHFV- replication is sensitive to IFN- I 
(Andersson et al., 2006). However, the virus can also delay the induction of IFN, and IFN treatment 
is ineffective following the establishment of infection, suggesting that CCHFV has developed mecha-
nisms to block innate immune responses (Andersson et al., 2008). The protective role of IFN- I against 
CCHFV has been exemplified in animal models in which IFNAR−/− or STAT- 1−/− mice (Bente et al., 2010; 
Zivcec et al., 2013) or STAT2−/− hamsters (Ranadheera et al., 2020) showed enhanced susceptibility 
to CCHFV- infection. Even in in vitro experiments, pre- treatment of cells with IFN-α was found to be 
inhibitory to CCHFV (Andersson et al., 2008). Although CCHFV is inhibited by the IFN- response, not 
many ISGs with anti- CCHFV activity have been identified apart from MxA, although ISG20 and PKR 
have been proposed (Andersson et al., 2004) to have anti- CCHFV activity. In the present study, we 
observed that several ISGs with known or proposed anti- CCHFV activity, i.e., Mx1, ISG15 and ISG20 or 
not defined for CCHFV like IFIT1, IFIT3, IFITM3, IFI16, and OAS3 were upregulated in the acute phase 
CCHFV patient samples as well as in the cell- infection model.

Our CCHFV infected Huh7 proteomics data is further strengthened by a recent transcriptomics 
study performed in CCHFV infected Huh- 7 and HepG2 showing significant alterations in IFN- response 
and upregulation of IFIT1, Mx1, ISG15, IF16 genes in CCHFV- infected Huh7 cells (Kozak et al., 2020) 
as was observed in our proteomics data. The CCHFV- induced ISGs, either alone or in combination with 
other ISGs can possess specific antiviral activities and regulate IFN- signaling (Mesev et al., 2019). The 
changes in the protein abundance of several ISGs at 24hpi and 48hpi also suggest that they have a 
dynamic activity during different phases of the virus infection. Furthermore, CCHFV has also evolved 
mechanisms to evade the immune response through the proteins they express and modifications in 
the genome (Guo et al., 2012; Scholte et al., 2017).

In conclusion, our study comprehensively describes the host- immune response against CCHFV 
that can explain viral pathogenesis. The interplay of the metabolic reprogramming toward the central 
carbon and energy metabolism and its negative association with biological signaling pathways like 
Notch/FoxO and PI3K/mTOR/HIF- 1 and the IFN- mediated host antiviral mechanism could provide 
attractive options for therapeutic intervention of CCHF. Further studies on the role of mitochondrial 
biogenesis and dynamics in CCHFV- infection, replication, and pathogenesis will enhance our under-
standing of host- virus interactions, leading to the development of new antiviral strategies. Moreover, 
targeting the central carbon and energy metabolism and components of OXPHOS can be an attrac-
tive host- directed therapy during the acute CCHFV- infection by increasing the host antiviral response.

Materials and methods
Study design, patients, and sample collection
We enrolled 18 adult patients ( ≥ 18 years) diagnosed with CCHF who were followed up by the clinical 
service of Infectious Diseases and Clinical Microbiology of Sivas Cumhuriyet University Hospital, Sivas, 
Turkey. The CCHF patients were divided into three groups using the SGS scores of 1, 2, and 3 (Bakir 
et al., 2012). Blood samples were collected on the admission day (acute stage) and from the survi-
vors, 1 year after their recovery (Table 1) following confirmed positive real- time RT- PCR test (Altona 
Diagnostics, Hamburg, Germany) and/or serology by IgM indirect immunofluorescence antibody (IFA) 
assay (Euroimmun, Luebeck, Germany). Serum cytokine profiling targeting 22 cytokines/chemokines 
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was performed by Public Health England using a 22 -plex customized Luminex kit (Merck Millipore, 
Darmstadt, Germany).

Cells and viruses
The CCHFV strain IbAr10200 (isolated initially from Hyalomma excavatum ticks from Sokoto, Nigeria, 
in 1966) was used in this study. The small cell carcinoma in the adrenal cortex cells, SW13- ATCC- 
CCL- 105, and human hepatocyte- derived cellular carcinoma cell line Huh7 was obtained from Marburg 
Virology Laboratory (Philipps- Universität Marburg, Marburg, Germany) and matched the STR refer-
ence profile of Huh7. The cell lines were tested negative for mycoplasma contamination.

RNA sequencing (RNAseq) analysis
Peripheral blood mononuclear cells (PBMCs) RNA sequencing (RNAseq) from acute phase and conva-
lescent phase of CCHFV- infected patients was performed as described by us recently (Appelberg 
et  al., 2020; Zhang et  al., 2018a). Total RNA was extracted from Trizol- treated PBMC using the 
Direct- zol RNA Miniprep (Zymo Research, CA, USA) according to the manufacturer’s protocol. RNA- 
Seq was performed at the National Genomics Infrastructure, Science for Life Laboratory, Stockholm, 
Sweden, as described by us previously (Zhang et al., 2018a). The transcriptomics data pre- processing, 
alignment, and read counting were performed as described by us recently (Appelberg et al., 2020).

All the downstream analysis was performed only on protein- coding genes. Firstly, sample similarity 
and dissimilarity were accessed through dimensionality reduction using Uniform Manifold Approxima-
tion and Projection (UMAP). Normalized expression data of all protein- coding genes were subjected 
to UMAP dimensionality reduction using R package UMAPv0.2.6.0. The reduced dimensions of the 
data were plotted in 2D space using the R package ggplot2 v3.3.2 (https://cran.r-project.org/web/ 
packages/ggplot2/index.html). Differential gene expression analysis was performed using raw read 
counts using the R/Bioconductor package DESeq2 v1.26.0 (Love et al., 2014). Genes with adjusted 
p- values < 0.05 were considered significantly regulated. Further, functional enrichment analysis was 
done on differential gene expression analysis results to identify significantly regulated pathways. The 
analysis was carried out using R package PIANO v2.2.0 (Väremo et al., 2013) (nperm = 500, geneset 
stat = mean). Nominal p- values and log2 fold change values of all genes are inputted to the package. 
Pathways belonging to KEGG category of metabolism, environmental information processing and 
organismal systems were used as gene- sets for the analysis. Pathways with adjusted p- value < 0.05 
were chosen as significantly regulated. Additionally, three gene sets related to IFN- signaling curated 
by the group (Chen et al., 2021) were also considered for the enrichment analysis of gene commu-
nities. Gene ontology (GO) enrichment analysis was performed using the enrichr for GO biological 
process 2018 gene- set (https://maayanlab.cloud/Enrichr/). Redundant GO terms were removed using 
the online tool REVIGO (Supek et al., 2011). Reporter metabolites (Patil and Nielsen, 2005) were 
identified through R package PIANO (nperm = 500, geneset stat = reporter).The human reference 
genome- scale metabolic model obtained from metabolic atlas (Robinson et al., 2020) was used to 
generate the metabolite- gene sets. Metabolites with adjusted p- values < 0.1 were chosen as signifi-
cantly regulated (Radic Shechter et  al., 2021). Metabolic subsystems associated with significant 
reporter metabolites were extracted from reference metabolic model using in- house Perl scripts. 
Digital cell type quantification was performed using Estimating the Proportions of Immune and Cancer 
cells (EPIC) (Racle and Gfeller, 2020) algorithm for blood circulating immune cells. Mann- Whitney U 
test was performed to identify significantly changed cell types.

Network analysis
The co- expression network analysis was performed as described previously (Arif et al., 2021) and 
adapted in viral diseases (Appelberg et al., 2020; Mikaeloff et al., 2022). Networks were built by 
computing pairwise Spearman rank correlations between all genes after removal of non- expressed 
(row median FPKM <1) or lowly variant (row variance <0.1) genes and analyzed in igraph for those 
displaying statistically significant (adjusted p < 0.001) positive correlations. Centrality analysis was 
performed by computing degree centrality. Communities were identified by modularity maximization 
through the Leiden algorithm (Traag et al., 2019). Functional enrichment analysis of network commu-
nities was carried out using enrichr module of python package GSEAPY v0.9.16 (Subramanian et al., 
2005; Chen et al., 2013) (https://github.com/zqfang/GSEApy).
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Visualization
Heatmaps were generated using the R/Bioconductor package ComplexHeatmapv2.2.0 (Gu et  al., 
2016) Bubble plots, MA plots, volcano plots, violin plots and bar plots were created using the R 
package ggplot2 v3.3.2. Network visualization was performed using Cytoscape v3.6.1 (https://cytos-
cape.org/). Venn diagrams were constructed using the online tool InteractiVenn (http://www.interac-
tivenn.net/).

In vitro infection assays in Huh7 and SW13 cells
Huh7 and SW13 cells were infected with the CCHFV in triplicate, as described by us previously (Appel-
berg et al., 2020; Krishnan et al., 2021). Briefly, Huh7 cells were infected with CCHFV IbAr10200 
at a multiplicity of infection (MOI) of 1. After 1 hr of incubation (37 °C, 5% CO2) the inoculum was 
removed, the cells were washed with PBS, and 2 ml DMEM supplemented with 5% heat- inactivated 
FBS was added to each well. Samples were collected in triplicate at 24 and 48hpi along with controls. 
Due to high permissiveness, we restricted the SW13 infection of 1 MOI for 24 hr only. The infection 
in Huh7 24hpi was confirmed by immunofluorescence staining of CCHFV nucleoprotein- protein. The 
cells were fixed in ice- cold acetone- methanol (1:1) and stained using a rabbit polyclonal anti- CCHFV 
nucleocapsid antibody (home- made) followed by a fluorescein isothiocyanate (FITC)- conjugated anti- 
rabbit antibody (Thermo Fisher Scientific, US) and DAPI (Roche, US).

Tandem mass tag (TMTpro) labeled reversed-phase liquid 
chromatography mass-spectrometric (RPLC-MS/MS) analysis
The RPLC- MS/MS of the TMTpro labeled samples was performed as described by us recently (Appel-
berg et al., 2020; Chen et al., 2021). Briefly, following the protein digestion in S- Trap microcolumns 
(Protifi, Huntington, NY), the resulting peptides were labeled with TMTpro tags. Labeled peptides 
were fractionated by high pH (HpH) reversed- phase chromatography, and each fraction was analyzed 
on an Ultimate 3,000 UHPLC (Thermo Scientific, San Jose, CA) in a 120 min linear gradient. Proteins 
were searched against the SwissProt human database and CCHFV strain Nigeria/IbAr10200/1970 
separately using the search engine Mascot v2.5.1 (MatrixScience Ltd, UK) in Proteome Discoverer v2.5 
(Thermo Scientific, US) software allowing up to two missed cleavages.

Proteomics data analysis
The raw data were first filtered to remove missing data. Proteins detected in all samples were retained 
for analysis resulting in 8501 proteins in the filtered dataset. The filtered data were then normalized 
by applying eight different methods using R/Bioconductor package NormalyzerDE v1.4.0 (http://quan 
titativeproteomics.org/normalyzerde). The quantile normalization was superior to other methods and 
was selected for further use. Differential protein expression analysis was performed using R/Biocon-
ductor package limma v3.42.2 (https://bioconductor.org/packages/release/bioc/html/limma.html). 
Proteins with adjusted p- values of less than 0.05 were regarded as significant. KEGG pathway enrich-
ment analysis was performed as mentioned in the transcriptomics section. The mass spectrometry 
proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner 
repository with the dataset identifier PXD022672.

RNAscope and western blot
The RNAscope ISH Assays (ACD Bioscience, US) targeting IFI27 (440111, ACD Bioscience, US) and 
CCHFV (510621, ACD Bioscience, US) were performed as described previously ( Zhang et al., 2018b). 
The western blot (WB) analysis targeting RIG- I, IFIT1, ISG20, ISG15, MX1, and MX2 were performed 
as described by us previously (Chen et al., 2021).

Metabolic perturbation and virus infection
To inhibit glycolysis and glutaminolysis, following 1hpi (moi 0.1) the cells were treated with 
2- deoxy- D- glucose (2- DG, 5  mM), and diazo- 5- oxo- L- norleucine (DON, 50  uM) respectively. The 
concentrations were selected based on the minimal [mean (SD) cell viability, DON- SW13: 84% (4%), 
DON- Huh7: 78% (2%) and 2- DG- SW13: 80% (2%) or no cytotoxicity (2- DG in Huh7]) in the respective 
cells 24 hr following drug treatment. The cells were collected after 24hpi and the cells were lysed 
in Trizol reagent. RNA was extracted using the Direct- zol RNA Miniprep kit (Zymo Research, Irvine, 
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CA) according to the manufacturer’s instructions. Viral RNA was measured by quantitative real real- 
time polymerase chain reaction (qRT- PCR) using TaqMan Fast Virus 1- Step Master Mix (Thermo Fisher 
Scientific) with primers and probe specific for the CCHFV L gene; Forward: 5-  GCCA  ACTG  TGAC  KGTK  
TTCT  AYAT  GCT-3’, Reverse- 1: 5’-  CGGA  AAGC  CTAT  AAAA  CCTA  CCTT C-3’, Reverse- 2: 5’-  CGGA  AAGC  
CTAT  AAAA  CCTG  CCYT C-3’ and Reverse- 3: 5’-  CGGA  AAGC  CTAA  AAAA  TCTG  CCTT C-3’ and Probe 
FAM- CTGA CAAG YTCA GCAA C –MGB. RNAse was used as endogenous control. The cycling reac-
tions were performed using a capillary Roche LightCycler 2.0 system.
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