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Summary
Background Delayed diagnosis and treatment of sight threatening diabetic retinopathy (STDR) is a common cause
of visual impairment in people with Type 2 diabetes. Therefore, systematic regular retinal screening is recom-
mended, but global coverage of such services is challenging. We aimed to develop and validate predictive models for
STDR to identify ‘at-risk’ population for retinal screening.

Methods Models were developed using datasets obtained from general practices in inner London, United Kingdom
(UK) on adults with type 2 Diabetes during the period 2007−2017. Three models were developed using Cox regres-
sion and model performance was assessed using C statistic, calibration slope and observed to expected ratio meas-
ures. Models were externally validated in cohorts from Wales, UK and India.

Findings A total of 40,334 people were included in the model development phase of which 1427 (3¢54%) peo-
ple developed STDR. Age, gender, diabetes duration, antidiabetic medication history, glycated haemoglobin
(HbA1c), and history of retinopathy were included as predictors in the Model 1, Model 2 excluded retinopathy
status, and Model 3 further excluded HbA1c. All three models attained strong discrimination performance in
the model development dataset with C statistics ranging from 0¢778 to 0¢832, and in the external validation
datasets (C statistic 0¢685 − 0¢823) with calibration slopes closer to 1 following re-calibration of the baseline
survival.

Interpretation We have developed new risk prediction equations to identify those at risk of STDR in people with
type 2 diabetes in any resource-setting so that they can be screened and treated early. Future testing, and piloting is
required before implementation.

Funding This study was funded by the GCRF UKRI (MR/P207881/1) and supported by the NIHR Biomedical
Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology.
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is a common cause of visual impairment in the working
Research in context

Evidence before this study

We searched PubMed and Google Scholar for studies
published from January 1980 to June 2021 using search
terms (“diabetic” or “diabetes” or “T2DM”) AND (“reti-
nopathy” or “maculopathy”) AND (“prediction” or “pro-
gression” or “risk model”) and found several prognostic
models for sight threatening diabetic retinopathy
(STDR). However, most of them require previous record
of retinopathy status, glycated haemoglobin (HbA1c)
estimation or other clinical or laboratory parameters
and therefore it is difficult to use these models in in
low-resource settings.

Added value of this study

We have developed and externally validated three risk
prediction equations to estimate the absolute risk of
STDR over a period of 3 years. These models are ideal
for use in low resource settings as they are limited to
demographic and clinical parameters that patients can
inform fieldworkers in community screening. All three
models are well calibrated and have good performance
with C statistics close to 0.7 and above in both the
development and external validation datasets. Our risk
prediction equation and the risk charts may be used to
stratify people with diabetes at risk of STDR from the
community for urgent retinal screening especially in
countries with no established systematic diabetic reti-
nopathy screening programmes.

Implications of all the available evidence

Retinal screening is recommended for all people with dia-
betes at a regular basis but people living in many low- and
middle-income countries do not have access to systematic
screening. These models have the potential to identify
those who need prioritisation for retinal screening and
treatment whilst health systems are being improved to
accommodate systematic retinal screening for all people
with diabetes. Further validation and piloting of these
models are required before implementation at community
level or for self-assessment.
Introduction
Diabetes and its complications are a significant global
health burden and currently, there are around 463 million
people with diabetes worldwide.1,2 Diabetic retinopathy,
the most commonmicrovascular complication of diabetes,
age group people.2,3 The retinopathy can progress to sight
threatening diabetic retinopathy (STDR) without any
symptoms and STDR has to be identified early by retinal
examination or photography.4 It is estimated that approxi-
mately 28 million people with diabetes have STDR glob-
ally.5 Therefore, systematic regular retinal screening is
recommended for all people with diabetes. However, reti-
nal screening is resource intense, and most countries do
not have the expertise or facilities to develop and sustain a
systematic retinal screening programme for their increas-
ing population with diabetes. Due to other pressing health
priorities, establishing diabetic retinopathy screening is
not a priority in the majority of less-developed countries.
Therefore, the numbers of people with visual impairment
due to STDR is likely to increase with the rising prevalence
of diabetes. There is an unmet need to identify those at
risk of STDR using easily available predictors so that they
can be prioritised for retinal examination or screening. In
addition, a targeted optimisation of risk factors for this
group of individuals may also reduce the risk of disease
progression.

There are several prognostic models that have been
developed for STDR to personalise retinal screening
strategy.6,7 However, these cannot be applied in low-
resource settings as most of them require previous record
of retinopathy status, glycated haemoglobin (HbA1c) esti-
mation or other laboratory or clinical parameters (Supple-
ment Table 1).8−25 Therefore, although the presence of
diabetic retinopathy and HbA1c are strong predictors of
STDR, an ideal risk model for STDR in low resource set-
tings should be limited to demographic and clinical param-
eters that patients can inform fieldworkers in community
screening. Community-based health-screening is widely
practised in low and middle-income countries as primary
care is still in its infancy.

Although systematic diabetic retinopathy screening
with retinal camera is the gold standard, most people
with diabetes do not have access to this service globally.
The aim of this study was to develop predictive models
for STDR that could be applied based on available
resources so that those at risk of STDR could be priori-
tised for retinal screening from the growing population
with diabetes.
Methods
Local research ethics approval was obtained from Moor-
fields Research Management Committee. Further ethics
approval from Health Research Authority was not
www.thelancet.com Vol 51 Month , 2022
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required as the study included only fully anonymised
data. Approval was also obtained from the Caldecott
guardian of these anonymised datasets in Queen Mary
University London (QMUL) and Secure Anonymised
Information Linkage (SAIL) in Wales and local research
ethics approval in Madras Diabetes Research Founda-
tion (MDRF), Chennai, India. This study was conducted
in accordance with the Declaration of Helsinki. Patient-
level consent was not required as the study only used
fully anonymised routinely collected data (SIVS1057,
Moorfields Eye Hospital dated 14/04/2020).
Study design, setting and data source

Model development dataset. We developed the predic-
tive models using existing dataset obtained from gen-
eral practices (GP) in three Clinical Commissioning
Groups (CCGs) in East London, which included New-
ham, Tower Hamlets, and City and Hackney. The data-
set covered more than 98% of the GP-registered multi-
ethnic population in these CCGs. The data included
demographic information, diagnoses, prescriptions,
referrals, laboratory test results and clinical values.
Diagnoses, symptoms and clinical values were recorded
using read code classifications.

We included all adults with a diagnostic read code for
type 2 diabetes (T2DM) during the period 01/01/2007-31/
12/2017 and aged 18 or over at study entry. As the retinal
screening events and DR screening events were not
recorded simultaneously, we allowed for a 6-month delay
for DR events to be recorded from the date of retinal exami-
nation. Study baseline was defined as the date of the first
DR screening examination (or recorded non-STDR event
date where retinal screening examination was not recorded
in the previous 6 months) within the study start and end
dates. Start date was defined as the latest of 01/01/2007,
the patients registration date, or the date the patient turned
18. In our cohort, participants need a baseline screening
episode or DR event followed by a last screening episode or
DR event recorded during the study period. However, par-
ticipants who developed STDR outside of the study period,
require their last screening episode or last non-STDR event
date not necessarily to have occurred during the study
period but recorded at least 6 months prior to their STDR
onset date. Follow-up time end date is defined as the earli-
est date of first diagnosis of STDR, date of death, 31/12/
2017, de-registration from the GP, or the date of their last
DR screening appointment or last DR event. People who
were lost to follow up were censored at the date they left
the study. Follow-up time was censored at 3-years.
Model validation datasets
Fully anonymised data from the SAIL databank26 was
used for external validation, consisting of 170,588
T2DM participants registered with over 170 primary
care-GP practices, successfully screened for DR from
www.thelancet.com Vol 51 Month , 2022
Wales between 2008 and 2017, of predominately White
ethnicity. The SAIL databank record absence of DR
(R0) and absence of Maculopathy (M0) unlike the devel-
opment cohort and screening results are recorded
alongside the screening appointment. Entry of individu-
als into this cohort was at any time during an 11-year
period from 01/01/2008-31/12/2017. The cohort entry
date was defined as the latest of date of 18th birthday,
date of registration with the GP or 01/01/2008. Follow-
up time ended at the earliest of date of 31/12/2017, de-
registration from the GP, death, onset of STDR or the
date of their last successful DR screening appointment.
For participants who developed STDR outside of the
study period, a recorded screening episode prior to the
event and after study end was required to ensure they
were disease free by study end. Index date or study base-
line was defined as the date of first DR screening
appointment between cohort entry and end of follow-
up. The second external validation cohort included indi-
vidual participant hospital data from Dr Mohan’s Diabe-
tes Specialities Centre (DMDSC) and the Madras
Diabetes Research Foundation (MDRF), a tertiary care
diabetes hospital, Chennai, India that screens all people
with diabetes registered in the hospital on a regular
basis. The DMDSC MDRF Diabetes Electronic Medical
Records (DEMR) system identified 19,909 individuals
with T2DM who had undergone routine screening for
assessment of DR and eGFR during 2011 and followed-
up regularly every 3−6 months between 2011 and 2018.
Outcome
The main outcome was STDR and this was classified
according to the American Academy of Ophthalmology
International Classification as the first record of severe
non-proliferative diabetic retinopathy, proliferative dia-
betic retinopathy or diabetic macular oedema. In the UK
datasets, the respective grades of R2, R3 and M1 based on
the English Diabetic Eye Screening Programme classifi-
cation were used. The grades of retinopathy were deter-
mined by trained graders or ophthalmologists from
retinal images captured through dilated pupils using
fixed retinal cameras.
Predictor variables
Based on existing literature (Supplement Table 2) we
have identified the predictors that are found to be associ-
ated with the outcome and then these variables were
checked in the model development dataset. After con-
sidering their availability in the model development
dataset we considered the following risk factors in this
study: age, HbA1c, systolic blood pressure (SBP), dura-
tion of diabetes, body mass index (BMI), total choles-
terol, antidiabetic medication, estimated glomerular
filtration rate (eGFR), history of cardiovascular disease
(ischaemic heart disease, heart failure, stroke,
3
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peripheral vascular disease, cardiovascular death, acute
myocardial infarction, bypass graft/angioplasty, angina
pectoris, cardiac arrhythmia, major ECG abnormality,
silent myocardial infarction, congestive heart failure,
transient ischemic attack, arterial event requiring sur-
gery). These covariates were measured at baseline for
each individual and the closest record to the index date
(§ 6 months) was selected for clinical variables.

The covariates considered in the SAIL dataset were
also recorded in the same way as the model develop-
ment dataset, taking the closest record to the index date
(§ 6 months) and coding standards were consistent
with Quality outcomes Framework (QOF).27 However,
eGFR in the SAIL dataset was calculated from data on
serum creatinine, ethnicity and age using the 4-variable
Modification of Diet in Renal Disease Study equation
unlike in the model development dataset where eGFR
was directly provided by the laboratories.28 The MDRF
dataset had fewer newly diagnosed participants as
patients were seen in secondary care (hospital data),
which may or may not have been the initial point of con-
tact unlike the UK primary care datasets. Eligibility cri-
teria for MDRF was different to that of the UK cohorts,
in that the dataset was previously curated to include par-
ticipants who had concurrently undergone routine
screening for assessment for eGFR and DR.29
Sample size and missing data. The Events per Variable
(EPV) was between 18 and 95 in the datasets, assuming
a maximum number of 35 parameters used in this
study, indicating adequate sample size for model devel-
opment and validation.30 All covariates were inspected
for missing values by coding the missing data as a sepa-
rate category and then they were considered in the uni-
variable and multivariable modelling. None of the
variables retained in the final models had missing data
and therefore, no further actions were required.
Model development and validation
We developed the predictive model using the Cox pro-
portional hazard model given below.

h tð Þ ¼ h0 tð Þexp b1x1 þ b2x2 þ . . .þ bnxnð Þ
where:

t − time from start date

h(t) − hazard function

h0 (t) − Baseline hazard function

b1 - Coefficient for predictor x1
b2 − Coefficient for predictor x2
bn − Coefficient for predictor xn

Predictive factors were selected using backward
elimination procedure while considering statistical
significance at each step, variables that were statistically
insignificant (p>0.05) were removed until all of the vari-
ables became statistically significant in the model
(p<0.05). Final parsimonious model was then further
assessed for its performance in the development data
set and then each variable was assessed for its contribu-
tion towards model performance, those variables with
least contribution (<0.1 change in C-statistic) were
removed from the model and this was identified as
Model 1. A further reduced model was developed by
removing predictors that would require laboratory test-
ing and retinal screening expertise and therefore diffi-
cult to apply in resource restricted settings (Model 2). A
minimal model with non-invasive predictors was then
obtained by removing any clinical variables/laboratory
tests from reduced model above and this was named as
Model 3. These three models were used to assess the
effects of prognostic factors, and hazard ratios (HR)
with 95% confidence intervals (CI) are presented for
each of the variable.

Internal validity of the model was assessed according
to the measures of model performance in the develop-
ment datasets.30 External validity of the model was
assessed in SAIL and MDRF datasets described above.
For both internal and external validation, model perfor-
mance was assessed using calibration and discrimina-
tion measures where calibration, is the agreement
between observed and predicted times to the outcome.31

The calibration slope was quantified using the beta-coef-
ficient of the linear predictor in each dataset. This gives
an impression of whether risks were over or under pre-
dicted across all time points. To visualise calibration at a
single time-point at 3 years across various risk thresh-
olds, participants were categorised into deciles of 3-year
STDR risk, with observed (3-year Kaplan-Meier event
rate) and mean predicted risks plotted for each group.
The ratio of observed to expected (O/E) risks were also
reported which summarises the agreement between
Kaplan-Meier event rate and mean predicted risk at
3 years.31 Model discrimination is the ability of the
model to differentiate between patients who reached the
endpoint and those who didn’t. This measure is quanti-
fied using the C-statistic in other words Area Under the
Curve. A C−statistic between 0¢6 up to 0¢7, and a C-sta-
tistic between 0¢7 and 0¢9 suggests good and strong dis-
crimination of the predictive models respectively.
Models were updated in each external validation cohort,
if required, by re-calibrating the baseline survival func-
tion at 3-years. This is where the calibration slope is set
to 1, by assigning the linear predictor as an offset term
in the model for the external validation datasets. Updat-
ing of the baseline survival aims to correct the calibra-
tion slope to make the average predicted risk equal to
the observed overall event rate. A risk chart was devel-
oped for the minimal model (Model 3) using colours
representing high, medium and low risk for having
STDR within the next 3 years. This chart was produced
www.thelancet.com Vol 51 Month , 2022
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using all three datasets, model development and model
validation datasets in the UK and India. Data manage-
ment and analysis was performed using Stata 17 (Stata
Corp., College Station, Texas, USA).
Sensitivity analysis
As the date of onset of STDR is difficult to pinpoint with
routine data, final models were re-estimated accounting
for the interval censored nature of retinal screening data
using the interval-censored Cox model.32,33 These models
were fit using the IcenReg package in R.34 In this
approach the left interval was defined as the time from
baseline to the last screening examination in which the
participant was event free and the right interval the time
from baseline to the date STDR was recorded. Partici-
pants who did not develop STDR were assumed to be
right censored where previous definitions for end of fol-
low-up apply. DR events recorded within 6 months of
their retinal screening date were assumed to be the result
from that screening visit for the model development data-
set as screening and DR events were not recorded simul-
taneously. Moreover, incidence rates generated from the
nonparametric Turnbull’s estimator35 (allowing for
events to occur in an interval) using the R package Inter-
val36 and Kaplan-Meier estimate (assuming specific event
times) were compared.

Role of the funding source: The funder had no role
in the design and conduct of the study; collection, man-
agement, analysis or interpretation of the data; prepara-
tion, review or approval of the manuscript; and decision
to submit the manuscript for publication.
Ethics approval and consent to participate
Ethical approval was not necessary for the use of deiden-
tified data derived from routinely recorded information
in the electronic health record accessed by the Clinical
Effectiveness Group Queen Mary University of London
with the permission of the general practitioner data con-
trollers.
Results
The model development dataset included 71,908 people
with T2DM diagnosis and screening code during the
period from 2007-2017. From these patients after sev-
eral exclusion criteria as explained in detail in Supple-
ment Figure 1 there were 40,334 patients eligible to be
included in the study.
Overall study population
Table 1 shows baseline characteristics of study popula-
tion by each dataset. Overall, 40,334 people in model
development dataset, 102,672 people in UK validation
dataset and 17,509 people in Indian validation dataset
met our inclusion criteria. All of the variables that
www.thelancet.com Vol 51 Month , 2022
contributed toward the final models (age, gender, dura-
tion of diabetes, HbA1c, history of background or mild
to moderate retinopathy) were complete in the model
development dataset and ethnicity was recorded among
more than 98% of the model development dataset.

Supplement Table 4 shows the number of incident
cases of STDR during the follow-up period and the inci-
dence rate in model development and model validation
datasets. The model development dataset had a total of
1427 people developed STDR events during the follow-
up period, with an incidence rate per 1000 person years
of 14.69 (95% CI: 13.94 to 15.47).
Baseline characteristics of the study population
The highest proportion of people, 21,672 (53¢7%) in model
development and 57,352 (55¢9%) in UK validation dataset
had 0−2 years of duration of known diabetes. However,
the highest proportion of people 7514 (42¢9%) in Indian
validation dataset had greater than 10 years of known dura-
tion of diabetes at baseline. Both the UK model develop-
ment dataset and Indian model validation dataset had
lower proportions of people aged 65+, 26% and 13%
respectively compared with the UK model validation data-
set with 48% of people aged 65 and above. More than 75%
of people in UK were overweight or obese with a BMI≥25
kg/m2 whereas the Indian dataset had 67% people in the
same group. HbA1c levels distribution was similar in UK
model development dataset and Indian model validation
dataset with around 13.2% people in the ≥ 80 mmol/mol,
however the UK model validation dataset had 8.5% of peo-
ple in this group. All three datasets had around 24%−37%
people in highest SBP≥160 mmHg group. Total Choles-
terol level was <5.2 mmol/L among 29,919 (77.5%) and
14,358 (82%) participants from UK model development
and Indian model validation datasets respectively. More
than 70% people in UK model development and Indian
datasets had eGFR levels ≥ 60 ml/min/1.73 m2. There
were 13% and 23% of people with history of CVD in UK
development and validation datasets respectively, whereas
the Indian model validation dataset had only 4% people
with history of CVD. Around 80% and 60% of study par-
ticipants were under at least one antidiabetic drug in the
UK datasets and 98% in the Indian dataset respectively.
History of antihypertensive medication was lowest among
Indians 8454 (48%) compared with UK study participants
in model development 25,603 (64%) and model validation
77,221 (75%) datasets. Highest proportion of people with
background retinopathy 5,418 (31%) was reported among
Indians whereas 21,417 (20%) and 8581 (21%) study partic-
ipants in UK model validation and model development
dataset had background retinopathy at baseline.
Univariable analysis
Univariable results after considering all covariates that
were pre-identified from literature have been presented
5



Development Dataset UK Validation Dataset India Validation Dataset
N = 40,334 N = 102,672 N = 17,509

Duration of diabetes at baselinea

0-2 years 21,672 (53.7%) 57,352 (55¢9%) 2395 (13.7%)

2-5 years 6503 (16.1%) 17614 (17¢2%) 2764 (15.8%)

5-10 years 6542 (16.2%) 19018 (18¢5%) 4836 (27.6%)

>10 years 5617 (13.9%) 8688 (8¢5%) 7514 (42.9%)

Duration of diabetes, years Median(IQR) 1.5 (0.3-6.2) 1.4 (0.3-5.4) 8.2 (4.0-13.5)

Age at baseline, years

<45 9211 (22.8%) 8143 (7.9%) 3771 (21.5%)

45-54 11229 (27.8%) 17,067 (16¢6%) 5974 (34.1%)

55-64 9471 (23.5%) 28,311 (27¢6%) 5520 (31.5%)

65-74 6892 (17.1%) 29,903 (29¢1%) 1902 (10.9%)

75+ 3531 (8.8%) 19,248 (18¢7%) 342 (2.0%)

Age, years mean (SD) 55.7 (13.2) 63.5 (12.5) 53.4 (10.2)

Gender

Male 21,676 (53.7%) 58,124 (56¢6%) 11,440 (65.3%)

Ethnicity All Indians

White 10,572 (26.2% 46,182 (45.0%)

South Asian 18,913 (46.9%) 971 (0¢9%)

Black 8161 (20.2%) 261 (0¢3%)

Other 2291 (5.7%) 775 (0¢8%)

Not recorded 397 (1.0%) 54,483 (53¢1%)

Body Mass Index (kg/m2)

<18¢5 453 (1.1%) 221 (0¢2%) 99 (0.6%)

18¢5 − 25 6745 (16.7%) 9096 (8¢9%) 5710 (32.6%)

25-30 14,581 (36.2%) 28,440 (27¢7%) 8077 (46.1%)

≥30 16,251 (40.3%) 55,493(54¢0%) 3623 (20.7%)

Not recorded 2304 (5.7%) 9422 (9¢2%) 0 (0.0%)

BMI, kg/m2 mean(SD) 30.0 (6.1) 32.3 (6.6) 27.0 (4.1)

HbA1c (mmol/mol)

<50 12,972 (32.2%) 41,591 (40¢5%) 3776 (21.6%)

50 to 59 12,681 (31.4%) 32,952 (32¢1%) 4169 (23.8%)

60 to 69 6082 (15.1%) 13,396 (13¢0%) 3084 (17.6%)

70 to 79 3289 (8.2%) 6030 (5¢9%) 2311 (13.2%)

80 and over 5310 (13.2%) 8703 (8.5%) 4169 (23.8%)

Not recorded 0 (0.0%) 0 (0.0%) 0 (0.0%)

HbA1c, mmol/mol, mean(SD) 60.3 (18.7) 56.5 (15.8) 67.0 (20.3)

Systolic Blood Pressure (mmHg)

<120 9033 (22.4%) 11,832 (11¢5%) 3609 (20.6%)

120-129 10,148 (25.2%) 20,835 (20¢3%) 4731 (27.0%)

130-139 10,742 (26.6%) 29,938 (29¢2%) 4245 (24.2%)

140-149 5816 (14.4%) 23,161 (22¢6%) 2708 (15.5%)

150-159 2146 (5.3%) 7395 (7¢2%) 1171 (6.7%)

160 and over 1893 (4.7%) 7038 (6.9%) 1039 (5.9%)

Not recorded 556 (1.4%) 2473 (2.4%) 6 (0.03%)

Systolic blood pressure, mmHg, mean(SD) 130.0 (16.1) 134.5 (15.6) 129.2 (16.4)

Total Cholesterol (mmol/L)

<5¢2 29,919 (74.2%) Not available 14,358 (82.0%)

5¢2- 6¢1 5787 (14.3%) 2207 (12.6%)

≥6¢2 2894 (7.2%) 812 (4.6%)

Not recorded 1734 (4.3%) 132 (0.8%)

Table 1 (Continued)
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Development Dataset UK Validation Dataset India Validation Dataset
N = 40,334 N = 102,672 N = 17,509

Total Cholesterol, mmol/L, mean(SD) 4.4 (1.2) 4.6 (1.2) 4.2 (1.1)

eGFR(ml/min/ 1¢73m2)

<60 3592(8.9%) 9,309 (9¢1%) 845 (4.8%)

≥60 28219(70.0%) 37,391 (36¢4%) 16,664 (95.2%)

Not recorded 8523(21.1%) 55,972(54¢5%) 0(0.0%)

eGFR, ml/min/1.73m2, median(IQR) 84.0 (71.0-90.0) 75.7 (63.1-89.1) 99.0 (83.9-113.4)

Cardiovascular Diseaseb

Yes 5212 (12.9%) 24,571(23¢9%) 771(4.4%)

History of Antidiabetic medication

Diet-controlled 8925 (22.1%) 38,936 (37¢9%) 224 (1.3%)

One drug 17,213 (42.7%) 36,900 (35¢9%) 1955 (11.2%)

Two drugs 10,162 (25.2%) 22,617 (22¢0%) 9757 (55.7%)

Insulin 4034 (10.0%) 4219 (4¢1%) 5573 (31.8%)

History of Antihypertensive medication (ever)

Yes 25,603 (63.5%) 77,221 (75¢2%) 8454 (48.3%)

History of background/mild or moderate retinopathy

Yes 8581 (21.3%) 20,417 (19¢9%) 5418 (30.9%)

Table 1: Baseline characteristics of the population in three datasets.
a Time since the diagnosis of diabetes.
b CVD includes Myocardial infarction, CHD, Atrial Fibrillation, Heart Failure and Stroke.

Articles
in supplement Table 3. In univariable analysis, com-
pared to those who are aged <45 years, people 65
−74 years of age had higher risk of STDR (HR: 1¢73;
95%CI 1¢46 − 2¢04) and those who were aged 75 and
over had 38% higher risk of STDR (HR: 1.56; 95% CI 1¢
27−1.93). Females were at lower risk of STDR com-
pared with males (HR: 0.91; 95%CI 0.82−1¢01). South
Asian and Black study participants had higher risk of
STDR compared with White participants with 38%
and 48% increased risk respectively. Those with
HbA1c≥80 mmol/mol were almost seven times (HR:6¢
68; 95%CI 5¢62−7¢93) more likely to have STDR com-
pared with those who have HbA1c<50 mmol/mol.
Study participants with SBP≥160 mmHg were almost
three times more likely to have STDR (HR: 2¢55; 95%
CI 2¢05−3¢18) compared to those who had
SBP<120mmHg at baseline. People with eGfr≥60 ml/
min/ 1.73m2 were 20% less likely to develop STDR
(HR:0¢79 95% CI 0¢67−0¢93) compared to those with
eGFR<60 ml/min/1¢73m2. There was significant
increase in the risk of STDR by 60% among those
with history of CVD (HR: 1¢60; 95%CI 1.40−1¢82)
compared to those with no history of CVD. Study
participants with history of insulin at baseline were
14 times more likely to have STDR compared to
those who were not on any antidiabetic medication
(HR: 14.14 95% CI 1.68−2.16). People with history
of background retinopathy were 6.77 times more
likely to develop STDR compared to those who did
not have history of background retinopathy at base-
line (HR: 6.77; 95% CI 6.08−7.54).
www.thelancet.com Vol 51 Month , 2022
Predictor variables, Predictive Models and their
performance
Table 2 shows the final parsimonious model (Model 1)
selected from backward elimination of predictor varia-
bles that were least significant and variables that did not
reduce model performance significantly. The variables
retained in the model were age at baseline, gender, dura-
tion of T2DM, history of antidiabetic medication, HbA1c
level at baseline (§ 6 months), and history of background
retinopathy at baseline. Reduced model (Model 2) had all
variables of Model 1 except history of background retinopa-
thy which had the least contribution towards model perfor-
mance. Further reduced model (Model 3) was a low-
resource model with all non-clinical variables and included
all variables in Model 2 except HbA1c.
Internal validation and external validation
All three models had strong performance in discrimina-
tion with a C-statistic greater than 0.7 in the model
development dataset as given in Table 3. Model perfor-
mance in all ethnic groups of White, South Asians,
Black and other were also strong with C-Statistic greater
than 0.7 (Supplement Table 5). Model 1 and Model 2
had the highest performance among South Asians with
a C-Statistic of 0¢844 (95% CI 0¢830−0¢857) and 0.815
(95% CI 0.800−0.830) and Model 3 (non-invasive)
model had slightly reduced model performance of
0¢801 (95% CI 0¢784−0¢817). All three models had low-
est performance among Black minority with C-Statistic
ranging from 0¢745 to 0¢810.
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Characteristic Model 1 (N = 40,334) Model 2 (N = 40,334) Model 3 (N = 40,334)
Hazard Ratio (95% CI) Hazard Ratio (95% CI) Hazard Ratio (95% CI)

Age

<45 1.00 1.00 1.00

45-54 1.17 (0.91-1.50) 1.21 (0.94-1.55) 1.16 (0.91-1.49)

55-64 1.16 (0.89-1.51) 1.25 (0.97-1.63) 1.11 (0.86-1.44)

65-74 1.65 (1.26-2.15) 1.70 (1.31-2.22) 1.44 (1.11-1.88)

75+ 1.80 (1.27-2.53) 1.93 (1.38-2.70) 1.56 (1.12-2.19)

Duration of Type 2 Diabetes (Years)a 1.09 (1.06-1.11) 1.12 (1.09-1.15) 1.12 (1.10-1.15)

Age by duration interaction a b

<45 1.00 1.00 1.00

45-54 0.99 (0.96-1.01) 0.98 (0.95-1.00) 0.98 (0.95-1.01)

55-64 0.97 (0.95-1.00) 0.96 (0.93-0.98) 0.96 (0.93-0.99)

65-74 0.96 (0.93-0.98) 0.94 (0.91-0.96) 0.94 (0.91-0.96)

75+ 0.95 (0.92-0.97) 0.93 (0.90-0.95) 0.93 (0.90-0.95)

Gender

Male 1.00 1.00 1.00

Female 0.89 (0.80-0.99) 0.84 (0.76-0.94) 0.83 (0.75-0.92)

Antidiabetic History

Diet control 1.00 1.00 1.00

One drug 1.35 (1.05-1.73) 1.37 (1.07-1.75) 1.49 (1.16-1.90)

Two drugs 2.42 (1.91-3.07) 2.74 (2.16-3.47) 3.55 (2.81-4.48)

Insulin 3.43 (2.66-4.42) 4.45 (3.46-5.72) 6.75 (5.29-8.62)

Hba1c (mmol/mol)

<50 1.00 1.00

50-59 1.19 (0.98-1.44) 1.23 (1.02-1.49)

60-69 1.69 (1.39-2.05) 1.80 (1.49-2.19)

70-79 1.82 (1.47-2.25) 2.03 (1.64-2.50)

80 and over 2.88 (2.39-3.46) 3.28 (2.73-3.93)

History of Background (mild or moderate) diabetic retinopathy

No 1.00

Yes 3.71 (3.30-4.16)

Table 2: Hazard ratios for predictor variables in each development model predicting the three-year risk of STDR.
a Duration of type 2 diabetes was used a continuous variable in the model.
b Multiplicative modification to the duration slope for each age group.
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In relation to the external validation, Model 1 had
excellent performance both in the UK and Indian data-
set with a C-statistic that is greater than 0.7 and calibra-
tion slope value closer to 1. Model 2 with fewer variables
had slightly lower performance both in the UK and
Indian datasets. Model 3 the non-invasive model had
satisfactory performance in the UK and Indian dataset
with C statistic of 0¢685 and 0¢713 respectively, and the
observed to expected ratio closer to 1 following model
re-calibration of the baseline survival function showed
its applicability in both settings (Table 3). The beta coef-
ficient of the linear predictor or calibration slope sug-
gests that on average observed risks across all time
points by 3 years were being over-estimated by our mod-
els in Wales and in India, except for model 1 in India
which has a calibration slope > 1. The calibration plot in
external validation datasets (Figure 1) was generated by
categorising 3-year risks into 10 groups, and it suggest
the predicted risks appear to be better aligned to the
observed risks at 3-years in the UK (Wales) dataset than
India. However, following re-calibration of the baseline
survival, observed and predicted risks in both UK and
India datasets were more closely aligned. Observed over
expected (O/E) ratios show that all models applied in
the Indian datasets, were on average over-predicting
risks at 3 years and risks being slightly under-predicted
in Wales at 3-years. However, re-calibrated O/E ratios
for both UK (Wales) and India were all nearer to 1
(1.013-1¢026).
Model presentation
The risk-chart (Figure 2) is a graphical representation of
the risk score, and this shows the risk of each individual
according to their group of T2DM duration, age, gender
and antidiabetic medication. For example, a female
aged 55 with one year duration of diabetes and on insu-
lin has an estimated 3-year risk of 6% to develop STDR.
www.thelancet.com Vol 51 Month , 2022



Performance Statistic Development Dataset External Validation

UK (Wales) Dataset India −MDRF Dataset

Model 1

C statistic (95% CI) 0¢832 (0¢822 to 0¢842) 0.775 (0.767 to 0.783) 0.823 (0.810 to 0.836)

Calibration Slopea (95% CI) 1¢000 0.953 (0.924 to 0.982) 1.015 (0.939 to 1.091)

O/E Ratio - 1.147 0.429

Re-calibrated O/E Ratio - 1.017 1.026

Model 2

C Statistic (95% CI) 0¢795 (0¢784 to 0¢807) 0.707 (0.697 to 0.717) 0.742 (0.724 to 0.761)

Calibration Slopea (95% CI) 1¢000 0.853 (0.817 to 0.889) 0.921 (0.832 to 1.01)

O/E Ratio - 1.221 0.429

Re-calibrated O/E Ratio - 1.016 1.013

Model 3 (Non-Invasive)

C Statistic (95% CI) 0¢778 (0¢766 to 0¢790) 0.685 (0.675 to 0.695) 0.713 (0.693 to 0.733)

Calibration Slopea (95% CI) 1¢000 0.839 (0.799 to 0.879) 0.887 (0.786 to 0.987)

O/E Ratio - 1.223 0.530

Re-calibrated O/E Ratio - 1.021 1.018

Table 3: Model performance statistics in development and external validation datasets.
a Beta-coefficient of the linear predictor, equal to 1 in model development dataset by definition. Shrunken (Heuristic) baseline survival at 3-years in model

development dataset is 0.9947 for model 1, 0.9933 for model 2 and 0.9903 for model 3. Re-calibrated baseline survival for SAIL is 0.9940 for model 1, 0.9919

for model 2 and 0.9883 for model 3. Re-calibrated baseline survival for MDRF is 0.9980 for model 1, 0.9974 for model 2 and 0.9960 for model 3.
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Whereas a male aged 55 years with one year duration of
diabetes and on insulin has an estimated 3-year risk of
8% to develop STDR. In addition, for those with dura-
tion more than 10 years the risk of STDR was peaking
in the age group of <45 years, with further increased
risk if they were taking two antidiabetic medications or
be placed on insulin. Supplementary file Figure 1 and 2
provides the risk charts generated for UK validation
dataset and Indian validation dataset.
Sensitivity analysis
The incidence rates of STDR using the Turnbull’s esti-
mator which accounts for the interval censored nature
of routine healthcare data, appear in close correspon-
dence with Kaplan-Meier rates in the development
cohort (Supplement Table 6). Similarly, Hazard ratios
from the interval-censored Cox model presented in Sup-
plement Table 7 are consistent with our final models
generated using the Cox model assuming right censor-
ing (Table 2).
Discussion
We have developed and externally validated three risk
prediction equations to estimate the absolute risk of
STDR over a period of 3 years. The first model may be
applied in settings where laboratory facilities and retinal
screening is available. The second model is for settings
where retinal screening is a challenge, but HbA1c is rou-
tinely available. The third model is developed for
resource restricted settings. The equations are well cali-
brated and have good performance with C statistics
www.thelancet.com Vol 51 Month , 2022
close to 0.7 and above in both the development and
external validation datasets.

To our knowledge this is the first study that has
developed a risk prediction model for STDR to triage
the at-risk group for retinal screening especially in
resource restricted settings where systematic retinal
screening is not available or accessible. Although, all
people with diabetes should be screened regularly for
STDR, nearly all low- and middle-income countries lack
a systematic retinal screening programme and late pre-
sentation of STDR with irreversible visual loss is preva-
lent. The third model uses no laboratory markers or
record of previous retinopathy status. Although, the
least accurate of the three models, this model may be
used by community workers to prioritise people at risk
for retinal screening, facilitating efficient use of the lim-
ited capacity of retinal facilities. It may also be promoted
as a self-assessment tool that can be used by people with
diabetes to assess their risk of STDR. It may help them
to make informed decisions about managing their level
of diabetes and preventing or delaying STDR.

Undiagnosed diabetes also remains a global chal-
lenge. In our UK datasets, more than 50% of the people
were newly diagnosed diabetes (≤2 years duration at
baseline). However, some of them may present with
STDR. Therefore, using these datasets enabled us to
take this factor into account. Our risk models highlight
that duration of diagnosed diabetes is by itself an insuf-
ficient predictor of STDR. Whilst several non-labora-
tory-based risk scores are available for community
screening of diabetes, no similar models exist for identi-
fying STDR alongside. On the contrary, a simple urine
dipstick can identify albuminuria in all newly detected
9



Figure 1. Observed and predicted 3-year risk of STDR event risk according to Model 1, Model 2, and Model 3 in validationy
yModels mean predicted risks against observed risks (Kaplan-Meier event rates) for risk groups categorised into deciles of pre-

dicted risk for UK (Wales) and India datasets. Shrunken (Heuristic) baseline survival at 3-years in model development dataset is
0.9947 for model 1, 0.9933 for model 2 and 0.9903 for model 3. Re-calibrated baseline survival for SAIL is 0.9940 for model 1, 0.9919
for model 2 and 0.9883 for model 3. Re-calibrated baseline survival for MDRF is 0.9980 for model 1, 0.9974 for model 2 and 0.9960
for model 3.
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person with diabetes. Therefore, this model may also be
useful in such circumstances.

Two recent systematic reviews on predictive models for
diabetic retinopathy have summarised the existing litera-
ture on this topic and has identified several predictive
models on severe diabetic retinopathy related outcomes
including any form of retinopathy,8 blindness,9,13,20
diabetic macular oedema (DME) or proliferative diabetic
retinopathy (PDR),10,14 treatment of DME/PDR,12 intrare-
tinal microvascular abnormalities,15 STDR,16,19 retinopa-
thy requiring photocoagulation,21 and other forms of
severe diabetic retinopathy23,24 as presented in Supple-
ment Table 1. These studies have used different data sour-
ces including routinely available databases such as The
www.thelancet.com Vol 51 Month , 2022



Figure 2. Risk-chart for 3-year risk of STDR using model 3 (Low-Resource Model) in the model development dataset.
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Health Improvement Network Data (THIN data)18 and
Clinical Practice Research Datalink Data (CPRD),20 US
claims database,14 hospital databases,37,38 diabetic eye
screening data and clinical trials data.9,15 However, models
utilising only non-laboratory parameters are required for
application in low-resource settings.

Only a few of existing predictive models were identi-
fied with low risk of bias mainly because most had small
sample sizes, missing data, or lacked external validation.
Our study has filled this gap by introducing three mod-
els that could be chosen based on the resource setting.
We also externally validated the models in two datasets
from UK and India so that the models are tested in both
high and middle-income countries. We have also pro-
vided a risk chart with a colour scheme to aid commu-
nity workers. These models are not a replacement for
retinal screening and should be used only for prioritisa-
tion for regular retinal screening.

One of the limitations of the study is that there were
differences in the sources of our datasets. Our develop-
ment dataset is a primary care dataset from London,
where records are updated from the diabetic screening
units while the SAIL de-identified dataset on the popula-
tion of Wales obtain data from multiple resources
including retinal screening episodes. The SAIL dataset
had poor recording of ethnicity with (54,483) 53% miss-
ing values and by extension eGFR (which was calculated
using the Modification of Diet in Renal Disease
(MDRD) equation incorporating serum creatinine and
www.thelancet.com Vol 51 Month , 2022
ethnicity) with 54.5% missing values but none of these
variables were included in the models and therefore did
not have an impact on the results. However, further
studies with complete data on all relevant covariates or
studies using missing data analysis techniques such as
multiple imputation to address missing values would
be useful as part of any pilot or external validation of
these models. The India dataset was from electronic
medical records from an established diabetes centre.
Furthermore, the English national diabetic eye screen-
ing classification of R2 also includes a proportion of
people with less severe grades compared to the Ameri-
can Academy of Ophthalmology International Classifi-
cation. In addition, there are inconsistencies in referral
criteria used around the world and the use of “sight-
threatening” and “vision-threatening” retinopathy.
Therefore, further studies using alternative referral
thresholds are required.

In conclusion, we have developed three predictive
models to predict three-year risk of STDR that may be
applied based on resource settings. These risk scores
may be used to identify those who need prioritisation for
retinal screening and treatment so that the rate of blind-
ness due to STDR does not rise with the rising preva-
lence of diabetes. However, further testing and piloting
of these models would be required, and they do not
replace retinal screening but could be more useful as a
pre-screening strategy until systematic retinal screening
for all people with diabetes is made available globally.
11
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