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Abstract1

Polio can circulate unobserved in regions that are challenging to monitor. To assess2

the probability of silent circulation, simulation models can be used to understand3

transmission dynamics when detection is unreliable. Model assumptions, however,4

impact the estimated probability of silent circulation. Here, we examine the impact of5

having distinct populations, rather than a single well-mixed population, with a discrete-6

individual model including environmental surveillance. We show that partitioning a7

well-mixed population into networks of distinct communities may result in a higher8

probability of silent circulation as a result of the time it takes for the detection of9

a circulation event. Population structure should be considered when assessing polio10

control in a region with many loosely interacting communities.11

Keywords Poliovirus · Metapopulation · Markov model · Asymptomatic12

transmission coherence13

B Celeste Vallejo
celestervallejo@gmail.com

1 Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA

2 Depart of Infectious Disease Epidemiology and Centre for Mathematical Modelling of Infectious
Disease, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT,
UK

3 South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis
(SACEMA), Stellenbosch University, Jonkershoek Road, Stellenbosch 7600, South Africa

4 University of Michigan, Ann Arbor, MI 48109, USA

5 Department of Biology, University of Florida, Gainesville, FL 32611, USA

6 Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01014-6&domain=pdf
http://orcid.org/0000-0001-7408-5690


un
co

rr
ec

te
d

pr
oo

f

_####_ Page 2 of 28 C. Vallejo et al.

1 Introduction14

Wild poliovirus type 1 (WPV1) remains endemic in two countries (Afghanistan and15

Pakistan) as hard-to-reach areas within these countries, which include those with an16

inter-Local Government Area or those with a nomadic population, have low vaccina-17

tion rates (Bawa et al. 2018; Naeem et al. 2013). In one survey designed to understand18

the cause of low polio vaccination rates in rural Peshawar, Pakistan, 48.8% of chil-19

dren under 4 years old were found to be completely unvaccinated to polio in 201120

with 13.9% of those surveyed claiming health care workers never visited their village21

(Naeem et al. 2013). Although some such areas have robust and reliable surveillance22

systems for monitoring polio-induced acute flaccid paralysis, the primary method by23

which circulation of polio is detected (Saleem et al. 2016), this may not be the case24

for all areas with either no or low vaccination coverage.25

Determining the continued circulation of polio is further complicated by asymp-26

tomatic infections. First infections are typically, and repeat infections almost always,27

asymptomatic (Koopman et al. 2017). Surveillance methods can increase confidence28

that polio is no longer circulating, but they are difficult to reliably implement (Mbaeyi29

et al. 2017; Nnadi et al. 2017; O’Reilly et al. 2012). Simulation models based on30

our knowledge of polio natural history can be used to reconstruct difficult-to-observe31

transmission dynamics, and thus assess the probability of prolonged silent circulation32

in polio-endemic regions (Duintjer Tebbens et al. 2018; Duintjer Tebbens and Thomp-33

son 2018; Eichner and Dietz 1996; Kalkowska et al. 2019, 2021, 2018, 2012, 2018;34

Koopman et al. 2017; Thompson and Kalkowska 2020; Vallejo et al. 2017).35

Modeling can account for infrequent observed cases and ongoing asymptomatic trans-36

mission, providing more accurate estimates for the probability of polio circulation37

conditional on the timing of the last detected paralytic case. This quantity may be38

of particular interest to policy-makers. The World Health Organization (WHO) set a39

threshold of 3 years since a detected paralytic case as one of the criteria for declaring40

a region polio-free (Henderson 1989). In 1996, Eichner and Dietz were the first to use41

modeling to assess this threshold in terms of the probability of continued circulation,42

hereafter the silent circulation statistic, under a specific set of model assumptions43

(Eichner and Dietz 1996). Subsequently, researchers have extended the analysis by44

relaxing the assumptions in that initial work (Duintjer Tebbens et al. 2019; Kalkowska45

et al. 2018, 2012, 2018; Vallejo et al. 2019). These relaxations of model assumptions46

make it possible to more confidently assess this time-based criterion in diverse condi-47

tions.48

Eichner and Dietz used a Markov chain model with susceptible-infectious-recovered49

(S-I-R) compartments (Eichner and Dietz 1996). Under their assumptions, the 3-50

year threshold used for polio elimination declaration was deemed appropriate for the51

large populations (over 500,000 individuals) that they considered (Eichner and Dietz52

1996). The model in (Eichner and Dietz 1996) was modified in Kalkowska et al.53

(2012) to incorporate seasonality and add a vaccinated class. Under their model’s54

assumptions, the 3-year threshold was also found to be suitable for populations over55

500,000. In Vallejo et al. (2019), the authors proposed another Markov chain model56

which included temporary immunity and the possibility for repeat infection. Under57

their assumptions, the 3-year threshold was not consistently acceptable for smaller58
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populations (approximately 20,000 individuals) Vallejo et al. (2019). Although these59

models varied somewhat, all assumed mass-action transmission and exponentially60

distributed event waiting times.61

One implication of assuming mass-action transmission is that all individuals in the62

system are equally likely to contact all others. This is a potentially problematic assump-63

tion for representing polio in endemic regions such as Pakistan, where people reside64

in large cities as well as in semi-isolated villages (Demographia World Urban Areas65

2020; Baig et al. 2019; Naeem et al. 2013). This partitioned structure needs to be66

accounted for in order to accurately predict the probability of silent circulation. Of67

particular interest is the probability of silent circulation beyond the 3-year threshold68

established by the WHO for polio elimination declaration (Henderson 1989). One way69

in which the homogeneous population assumption can be relaxed is through the use70

of a metapopulation (or multi-patch) model. This type of model allows for one large,71

homogeneously mixed population to be viewed as a collection of sub-populations that72

can only make contacts within their subgroup, thus modifying the contact pattern. 173

Models in which the contact pattern is modified by partitioning the population have74

mainly been used to answer questions related to overall persistence (Andreasen and75

Christiansen 1989; Etienne and Heesterbeek 2000; Hagenaars et al. 2004). Using a76

stochastic S-I-R model, Hagenaars et al. found that increasing spatial heterogeneity (or77

the “patchiness”) of the population corresponded to a decrease in disease persistence78

(Hagenaars et al. 2004). Similarly, Etienne et al. found that increased habitat fragmen-79

tation was associated to a decrease in species persistence (Etienne and Heesterbeek80

2000). These papers both provide evidence that one large population is more likely to81

sustain persistence when compared to multiple smaller populations of the same total82

size.83

Duintjer Tebbens et al. put forth one example of a polio-specific metapopulation model84

(Duintjer Tebbens et al. 2019). Modifying the model in Kalkowska et al. (2012), the85

authors divided the large population considered in Kalkowska et al. (2012) into two86

sub-populations. One patch held a population with high vaccination coverage and87

high paralytic case surveillance. The second patch was one that was under-vaccinated88

with varying rates of paralytic case detection. Movement between patches varied89

from isolated (no movement) to well mixed. Among other results, they found that90

the smaller (500,000 individuals) and isolated subpopulation had a higher probability91

of silent circulation than the larger (5,000,000 individuals), well-mixed population92

(Duintjer Tebbens et al. 2019). This metapopulation model was further modified to93

incorporate more subpopulations with increased regional specificity (Duintjer Tebbens94

et al. 2018; Duintjer Tebbens and Thompson 2018; Kalkowska et al. 2018) as well as95

environmental surveillance (ES) (Kalkowska et al. 2019). The primary focus of these96

papers was to study the effect of heterogeneity in other aspects of polio transmission97

such as access to vaccination and extent of environmental surveillance, and not on98

contact patterns.99

Here, we use a discrete-individual, multi-patch model to extend past work by con-100

sidering a non-homogeneous contact structure (Vallejo et al. 2019). We compare a101

homogeneous contact pattern to a heterogeneous one by partitioning a large popu-102

lation, while preserving the same total population. We also consider the effect that103
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_####_ Page 4 of 28 C. Vallejo et al.

varying vaccination rates and ES detection probabilities have on the probability of104

silent circulation within this metapopulation framework.105

We show that varying the number of patches changes the estimated probability106

of silent circulation. After 3 years since a paralytic case, generally the partitioned107

populations have a higher probability of silent circulation when compared to the non-108

partitioned population, with an exception in the case of high rates of vaccination.109

However, the relationship between patch size and silent circulation probability is not110

monotonic. The results we present suggest that the appropriate case-free period for111

declaring a region polio-free may need to be adjusted based on both population size112

and structure. The goal of this work is therefore to illuminate modeling assumptions113

that may present problems when model results are used to declare regions polio-free.114

As this model is not detailed enough to directly inform policy, the results presented115

in this paper should be viewed principally as a guide to addressing the influence of116

common modeling assumptions.117

2 Methods118

2.1 Discrete-Individual Stochastic Model Specification119

The model used in this paper is an extension of the S-I-R type counting process in120

Vallejo et al. (2019). The original compartments considered were S: naive suscep-121

tible, I1: first infection with the virus, R: recovered and fully immune, P: partially122

susceptible, and Ir : reinfected. We assume that only individuals in the I1 compartment123

experience symptomatic polio, in particular polio-induced acute flaccid paralysis. We124

extend the model considered in Vallejo et al. (2019) by including a vaccinated com-125

partment; transmission seasonality; and a population divided into patches, typically p126

patches each with population size Np, with and without movement between patches.127

We assume an “effective” vaccination rate, such that vaccinated individuals in the128

model cannot be infected. A less-than-perfect vaccine would require higher actual129

coverage to achieve performance similar to the effective coverage levels we consider.130

ES is also incorporated as a possible detection system, but has no effect on transmis-131

sion. To simulate the use of ES in the hypothetical population, we use a detection132

rate that is the probability of detection via ES multiplied by the number of infected133

individuals (I1 and Ir ). This is done for each patch and occurs once each day. Although134

this does not allow us to explore questions related to implementation of ES such as135

location of ES sites or size of catchment areas, we can use this method to understand136

how sensitivity of ES affects the probability of silent circulation.137

Immunity to polio is parameterized by two terms: waning immunity rate and wan-138

ing immunity depth. Waning immunity rate refers to the speed at which the immunity139

wanes (i.e., the average rate at which an individual leaves the recovered class). Wan-140

ing immunity depth is a unitless quantity that represents the protection offered by141

antibodies generated from a natural infection. In the model, waning immunity depth142

is accounted for in the reinfection and recovery rates. Reinfection occurs at a much143

slower rate on average and recovery occurs at a much faster rate compared to infection144

and recovery in a naive susceptible individual. For more details, see (Koopman et al.145
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Table 1 Events and corresponding model transitions. For each compartment, the superscript refers to the
patch and the subscript refers to the number in that compartment. All events (with the exception of movement
between patches) occur among individuals of the same patch p. Birth and death events are coupled to keep
population size constant: a death in any compartment induces a birth in the S compartment in that patch

Event description Transition

Vaccination
(
Si , Vj

) → (
Si−1, Vj+1

)

First infection
(
Si , I1, j

) → (
Si−1, I1, j+1

)

Reinfection
(
Pi , Ir , j

) → (
Pi−1, Ir , j+1

)

First infection recovery
(
I1,i , R j

) → (
I1,i−1, R j+1

)

Reinfected recovery
(
Ir ,i , R j

) → (
Ir ,i−1, R j+1

)

Immunity waning
(
Ri , Pj

) → (
Ri−1, Pj+1

)

Death in S No change

Death in X ∈ {I1, V , R, P, Ir } (
Si , X j

) → (
Si+1, X j−1

)

Bi-directional movement between patches p, q
(

M p
i , Mq

j

)
→

(
M p

i−1, Mq
j+1

)

M, T ∈ {S, I1, V , R, P, Ir }
(

T q
k , T p

l

)
→

(
T q

k−1, T p
l+1

)

2017). As in Vallejo et al. (2019), we fix the waning immunity scenario as fast shallow146

(i.e., immunity wanes quickly but to a shallow depth).147

Due to the strongly seasonal nature of polio infections (Duintjer Tebbens et al. 2013;148

Grassly and Fraser 2006; Martinez-Bakker et al. 2015; O’Reilly et al. 2012), we add149

seasonal forcing to the transmission term of the model given in Vallejo et al. (2019).150

The form of the seasonal transmission term β(t) is given in Eq. 1. The amplitude is151

chosen to be 5% of the contact rate β to mimic the amount of seasonal forcing used152

in Kalkowska et al. (2012).153

β(t) = β (1 + 0.05 · sin(2π t)) (1)154

Event descriptions with corresponding transition in the model are given in Table 1155

and a diagram of the model is given in Fig. 1. For more details on the model in the156

absence of vaccination, see Vallejo et al. (2019).157

Movement between patches is a population density-dependent event in the model.158

Once the patch is chosen, the sizes of the compartments (S, I1, V , R, P , Ir ) are used159

as weights to determine the kind of individual to move. To ensure that patch size160

is constant, there is a reciprocal movement from the sink patch to the source patch.161

Movement from patch p to a randomly chosen patch q is initiated by an individual162

in patch p with movement rate α· compartment size (i.e., S, I1, V , R, P , Ir ). The163

corresponding movement from patch q to patch p occurs by randomly choosing an164

individual from patch q from a compartment chosen with probability proportional165

to the compartment’s size. Individuals are fully characterized by the compartment in166

which they are counted.167
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S I1

V

R P Ir

Patch p

α

α

β(t)
(I1 + κIr)

NK

θ

γ ω
κβ(t)

(I1 + κIr)
NK

γ

κ

μ μ

μ

μ μ μ

μ

Fig. 1 A schematic diagram of the model used in this paper, modified from Vallejo et al. (2019). The
compartments of the model are: S (naive susceptible), I1 (first infection with the virus), V (fully vaccinated
against infection), R (recovered and fully immune from infection), P (partially susceptible to infection), and
Ir (reinfected). The transmission term (β(t)) is time dependent to incorporate seasonal forcing. Movement
between patches (represented by the dashed lines) is reciprocal to maintain patch sizes

2.2 The Silent Circulation Statistic168

The silent circulation statistic is an estimate of the probability of silent circulation169

given the time interval since the last detected paralytic case of polio. In Vallejo et al.170

(2019), the authors proposed a formula for estimating the statistic from model output.171

Slight modifications (in italics) of the definitions used in constructing the formula172

were necessary in order to apply it to a multi-patch model.173

Here, we define an intercase interval to be the time between days when cases174

were detected anywhere in the population across all patches. Note that detected cases175

may be paralytic or, if ES is occurring, either paralytic or asymptomatic. We define176

an extinction interval to be the time between the day of the last detected case and177

extinction (i.e., all infectious compartments empty) in all patches. As before, cases178

may be asymptomatic if ES is occurring. Using this collection of time intervals, we used179

the following formula (Eq. 2) from Vallejo et al. (2019) to determine the probability180

of elimination after an interval of Δt years without a detected paralytic case (denoted181

PE (Δt)). Since either polio continues to circulate or polio has been eliminated, the182

probability of silent circulation given an interval of Δt years without a case (PSC (Δt))183

is PSC (Δt) = 1 − PE (Δt).184

PE (Δt) = number of extinction intervals ≤ Δt

(number of extinction intervals + number of intercase intervals ≥ Δt)
185

(2)186

There exist two definitions in the literature for the start of the first intercase interval187

(Duintjer Tebbens et al. 2019; Eichner and Dietz 1996; Kalkowska et al. 2012, 2018;188

Vallejo et al. 2019). Either the first intercase interval begins at the start of the simulation189
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or with the first simulated paralytic case; prior work demonstrated that this assumption190

does not change the probability of silent circulation estimation in sufficiently large191

populations (Vallejo et al. 2019), such as those we consider in this work (see Fig. 9 in the192

Appendix). We assume intercase intervals are only between two explicitly simulated193

paralytic cases.194

2.3 Metapopulation Description195

To investigate the consequences of heterogeneous mixing on undetected polio circu-196

lation, we compare different partitionings of a population of 64k (64000) individuals:197

2 × 32 k (2 patches of 32000), 4 × 16 k, 8 × 8 k, 16 × 4 k, and 32 × 2 k. The main198

text figures assume that patches within a model are all equal in size; in Sect. 3.4 and199

the Appendix we relax this constraint. A population of 64000 individuals is approx-200

imately 10% of the population in districts such as Killa Abdullah and Pishin located201

within the Balochistan Province in Pakistan where polio continues to circulate Naqvi202

et al. (2017). Considering the potential impact that unvaccinated and under vaccinated203

subpopulations have in these areas may help to understand why these areas continue204

to have polio circulation.205

2.4 Interpatch Migration Rates206

The populations residing within the remaining polio-endemic countries are mobile,207

migrating both nationally and internationally (Kuschminder and Dora 2009). In 2008,208

230,700 people were classified as internally displaced persons within Afghanistan209

(Kuschminder and Dora 2009). Given a total population of 27.72 million in 2008 in210

Afghanistan The World Bank (2020), this is an internal movement rate of approxi-211

mately 0.0083 per year. Notably, there is a long history of migration from Afghanistan212

to Pakistan Kuschminder and Dora (2009). In 2008, there were approximately 750,000213

Afghan refugees living in Pakistan Kuschminder and Dora (2009). Given a total popu-214

lation of 27.72 million in 2008 in Afghanistan The World Bank (2020), the movement215

rate from Afghanistan to Pakistan is approximately 0.027 per year. While most move-216

ment occurs from Afghanistan to Pakistan Kuschminder and Dora (2009), there were217

a total of 274,200 Afghan refugees that migrated from Pakistan to Afghanistan in218

2008 Kuschminder and Dora (2009). Given a total population in Pakistan in 2008 of219

171.6 million The World Bank (2020), this gives a movement rate of 0.002 per year220

from Pakistan to Afghanistan. Movement between tehsils (administrative units) in221

Pakistan, concentrating on travel to and from Karachi, was captured using cell phone222

data (Wesolowski et al. yyy). The data captured movement rates ranging from 21.9223

per year to 44.04 per year (Wesolowski et al. yyy).224

These numbers most likely contain some biases. The national migration rate of225

Pakistan may be much lower, as the tracked population was described as “highly226

mobile” (Wesolowski et al. yyy) and necessarily owned a cell phone; cell phone227

subscribers represented approximately 22% of the total population. It is also possible228

that the true migration rates between Afghanistan and Pakistan as well as the internal229

movement rate within Afghanistan are underestimated, as the studies cited above do230
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not capture non-refugee movement. Given the wide range of estimated movement231

rates and the focus of the paper on metapopulation dynamics, we chose movement232

rates to be consistent with observed data while also allowing for multipatch dynamics233

to remain prominent. The following movement rates were chosen: 0, 0.05, 0.1, 0.2,234

and 1 per year. See Sect. 3.3 for the effect of movement rate on the metapopulation235

dynamics.236

2.5 Model Iteration Specifics237

Previous work assumed that simulations began with a population initialized at the238

endemic equilibrium, determined analytically for an arbitrarily large population (Duin-239

tjer Tebbens et al. 2019; Eichner and Dietz 1996; Kalkowska et al. 2012, 2018;240

Vallejo et al. 2019). This assumption may not hold for finite populations, however,241

and real-world polio-endemic regions are not necessarily at endemic equilibrium when242

observation begins. We address this with a burn-in period before modeling observa-243

tions. A burn-in period is used in simulation modeling to move the system away from244

potentially misspecified initial conditions to a state sampled from the system’s station-245

ary distribution. Our model is initialized with 99% of the patch population, Np, in the246

S compartment and the remaining 1% in the I1 compartment to replicate the potential247

start of a polio epidemic. We simulate a 50-year burn-in (without detecting any cases)248

to reach conditions that represent those at the quasi-steady-state. In order to prevent249

extinction before the end of the burn-in period (which would correspond to a real-world250

population that briefly had polio that was never detected), external exposures occur,251

at a rate of 0.1% of the population per year. All individuals in the total population are252

equally likely to be exposed during this time. If a susceptible individual (S or P) is253

drawn, that person becomes infected (i.e., is moved from S to I1, or from P to Ir ).254

If the individual is not susceptible (I1, Ir , R, V ), then no infection occurs. After the255

initial 50-year burn-in period, the observation period begins and external exposures256

no longer occur; conceptually, this might be because surrounding populations external257

to the model have high vaccination rates and have thus eliminated polio. Figure 10258

in the Appendix shows the distribution of starting conditions for each compartment259

compared to the endemic equilibrium value that comes from the related differential260

equations model.261

The model is simulated using a Gillespie algorithm Gillespie (1977) with 10,000262

replicates. As we are looking to represent real-world polio-endemic settings where263

by definition at least one polio case has been observed, replicates without at least264

one detected case are repeated as necessary with new random number seeds. Data265

collection does not begin until after the burn-in period, and ends when all infectious266

compartments in all patches are zero (i.e., extinction of the virus in the population),267

or after 100 years, whichever occurs first. Parameter values relating to transmission268

and vital dynamics are given in Table 2. The paralysis-to-infection ratio (PIR) is269

commensurate with that for poliovirus serotype 1 (1 case for every 200 I1 infections).270

For simplicity, we assume that every paralytic case that occurs is detected; it is worth271

noting that prior work has demonstrated that lowering the paralytic case detection272
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Table 2 Parameters used in the model. Parameters related to transmission and vital dynamics taken from
Vallejo et al. (2019)

Parameter Value Description

β 135 Contact rate (contacts/individual/year)

μ 0.02 Turnover (birth/death) rate ((year)−1)

γ 13 Recovery rate ((year)−1)

ω 0.2 Waning immunity rate ((year)−1)

κ 0.4179 Waning immunity depth

θ 0%; 5%; 20%; 50% Proportion vaccinated ((year)−1)

ε 0%; 0.1%; 1%; 10% Probability of detection through ES

PIR 0.005 Paralysis to infection ratio (serotype 1)

α Varies Movement rate between patches ((year)−1)

p 1; 2; 4; 8; 16; 32 Number of patches

Nk 64k; 32k; 16k; 8k; 4k; 2k Village size dependent upon number of patches (p)

probability substantially increases the probability of silent circulation Vallejo et al.273

(2019).274

3 Results275

3.1 Effect of Partitioning on the Probability of Silent Circulation276

We first compare the probability of silent circulation in the large, homogeneously277

mixed 64k population to isolated (i.e., movement rate α = 0) partitions of the large278

population in the absence of vaccination and environmental surveillance. Figure 2A279

depicts the probability of silent circulation in each partitioning as calculated by the280

silent circulation statistic. Figure 2B presents the differential calculated by subtracting281

the probability of silent circulation at each Δt interval for the partitioned populations282

from the large 64k population. Positive values correspond to a higher probability of283

silent circulation in the 64k population; negative values correspond to higher in the284

comparison scenario. Figure 2C gives the odds ratio of a particular partitioning having285

a higher probability of silent circulation compared to the 64k population. Values greater286

than one indicate that it is more likely for the 64k village to have a higher probability287

of silent circulation at a particular Δt interval compared to the partitioned population.288

Initially, up to approximately 2 years since a detected paralytic case of polio, the289

homogeneously mixed 64k population has a higher probability of silent circulation290

when compared to the various partitionings. The differential increases monotonically291

with an increase in the number of partitions. Subsequently, with the exception of 32292

patches of 2k, the large population has a lower probability of silent circulation com-293

pared to the partitions. This differential, however, does not have monotonic behavior294

with patch size. The mid-range partitions (16 × 4k and 8 × 8k) emerge as the divi-295

sions with the higher probability of silent circulation after 3 years without a detected296
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Fig. 2 Effect of population partitioning on the probability of silent circulation visualized using the silent
circulation statistic (A), the probability differential (B), and the odds ratio (C). The probability differential
(B) is calculated by subtracting the probability of silent circulation in the partitioned populations from that of
the large 64k population. Negative values indicate that the partitioned populations have a higher probability
of silent circulation. Values less than one in the odds ratio plot (C) indicate that the 64k population is less
likely to have continued silent circulation compared to the partitioned populations. The inset plots expand
the y-axis scale to show behavior between 2.5 and 3.5 years since a paralytic case was observed
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paralytic case, with 4 × 16k having the highest overall. This indicates that a smaller297

number of larger isolated patches (such as four isolated villages) have a higher proba-298

bility of prolonged silent circulation than one homogeneously mixed population (such299

as a large city).300

3.1.1 Intercase and Extinction Interval Distributions301

To understand the source of the nonlinear relationship between patch size and silent302

circulation probability after 3 years since a paralytic case observed in the silent circu-303

lation statistic, we consider the intervals used to construct it.304

Figure 3A shows the cumulative distribution function (CDF) of intercase interval305

lengths (time between two detected cases) for all populations considered. The rela-306

tionship between patch size and intercase interval length is complex. The mid-range307

populations (8 × 8k and 4 × 16k) identified as having the highest probability of silent308

circulation after 3 years since a paralytic case also have the greatest density of long309

intercase and extinction intervals. In general, extinction intervals tend to be longer than310

intercase intervals, but because there may be many intercase intervals before a single311

extinction occurs, it is possible that a long interval is most likely to end in another312

case for a given set of model parameters.313

The CDF of extinction interval lengths is given in Fig. 3B. Again, there is a non-314

monotonic relationship between extinction interval length and number of population315

divisions. One difference to note in this plot, although the mid-range populations that316

were found to have the highest probability of silent circulation after 3 years without317

a paralytic case have a higher density of extinction intervals of length greater than 3318

years, 8 patches of 8k overtakes 4 patches of 16k to have the highest overall density319

during this time. Thus, 8 patches of 8k is more likely to have low levels of persistence320

before elimination for a longer period of time. Note that the density of extinction321

intervals for the 64k population is zero at 3 years since a detected paralytic case.322

Note that in either case the circulation intervals for the 64k population end before 3323

years. This confirms that for large populations the 3-year threshold is appropriate as put324

forth in (Eichner and Dietz 1996; Kalkowska et al. 2012, 2018; Vallejo et al. 2019).325

However, this does not seem to be the case for smaller, isolated, and unvaccinated326

populations as also indicated by Vallejo et al. (2019), as these populations have the327

potential to have longer times between either a paralytic case or extinction. While328

intervals greater than 3 years remain uncommon in our simulations, they may become329

increasingly likely as the number of villages (and total population) increases further,330

e.g., � 4 patches of 16k people.331

3.2 Comparison to a Single Population332

Although similar, the scenario of multiple isolated patches each of size x is not equiv-333

alent to more replicates of a single population of size x . In constructing the circulation334

intervals in the multi-patch scenario, events that end circulation such as a paralytic335

case or extinction are considered across all patches. In contrast, there is only one336

patch to consider in the case of a single population. We observe the same pattern in337
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Fig. 3 Cumulative distribution of intercase (time between detected paralytic cases, A and extinction (time
between the last paralytic case and extinction, B intervals for isolated populations. Intercase intervals beyond
3 years are very rare, while some extinction intervals can last more than 3 years
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the intercase and extinction interval distribution by patch size in the single population338

and isolated multi-patch scenario (see Fig. 11 in the Appendix). However, the isolated339

multi-patch scenario has longer extinction intervals, while the single population has340

longer intercase intervals.341

3.3 Effect of interpatchmovement on the Probability of Silent Circulation342

Generally, the subdivided regions described in Sect. 2.3 do not exist in isolation but343

experience some interpatch movement. In Sect. 3.3.1, we explore the effect of adding344

interpatch movement on the probability of silent circulation. In Sect. 3.3.2, we compare345

the silent circulation statistic across all partitions with interpatch movement.346

3.3.1 Varying the Movement Rate347

Broadly, as the movement rate between patches increases, the probability of silent348

circulation in the partitioned populations converges to that of the large 64k population349

(i.e., becomes well-mixed). See Figs. 4 and 5 for two such examples (4 × 16k and 16350

× 4k, respectively).351

For larger populations existing in a smaller number of patches (i.e., 4 × 16k,352

Fig. 4), increasing the rate of movement has the effect of decreasing the probability353

of silent circulation after approximately 2 years since a paralytic case. After 3 years354

since a paralytic case, 4 isolated patches of 16k have the highest probability of silent355

circulation when compared to either one large population of 64k or another population356

of × 16k that has movement between patches.357

On the other hand, in the case of smaller populations existing in a larger number358

of patches (i.e., 16 × 4k, Fig. 5) the relationship between movement rate and silent359

circulation potential is not as straightforward. Similar to the 4 × 16k population up360

to 2 years since a paralytic case, increasing movement between patches increases the361

probability of silent circulation. After 3 years since a paralytic case, the probability362

of silent circulation is highest for the mid-range of the movement rates considered363

(α = 0.05, 0.1, and 0.2) and lowest for the extremes of the movement rate range364

(α = 0 and 1).365

For both partitionings shown, after 3 years since a case, a large enough movement366

rate decreased the probability of silent circulation when compared to either some367

movement or no movement at all. However, the effect of a small amount of movement368

or complete isolation differed by patch size. For a smaller patch size, a small amount369

of movement increased the probability of silent circulation when compared to isolated370

patches, while for a larger patch size, a small amount of movement decreased the371

probability of silent circulation in comparison with isolated patches. Thus, the structure372

of the population is important to consider when estimating the silent circulation statistic373

in a given region, as even adding a small amount of realism (such as movement) can374

have a significant effect on the predicted outcome.375
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Fig. 4 Effect of interpatch movement on the probability of silent circulation given a Δt interval of time
since the last detected paralytic case in the 4 × 16k population visualized using the silent circulation statistic
(A), the differential comparison to the 1 × 64k population (B), and the odds ratio (C). The inset plot shows
the curves restricted to between 2.5 and 3.5 years since a paralytic case. A movement rate (α) of 0 indicates
that the 4 patches are isolated from each other. For the nonzero movement rates, the value indicates the rate
at which one individual initiates movement, but with the assumption of reciprocated movement between
the sink and the source patch, two individuals move when one initiates
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Fig. 5 Effect of interpatch movement on the probability of silent circulation given a Δt interval of time
since the last detected paralytic case in the 16 × 4k population visualized using the silent circulation statistic
(A), the differential comparison to the 1 × 64k population (B), and the odds ratio (C). The inset plot shows
the curves restricted to between 2.5 and 3.5 years since a paralytic case. A movement rate (α) of 0 indicates
that the 16 patches are isolated from each other. For the nonzero movement rates, the value indicates the rate
at which one individual initiates movement, but with the assumption of reciprocated movement between
the sink and the source patch, two individuals move when one initiates
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3.3.2 Movement Effect376

As can be seen in Figs. 4 and 5 in Sect. 3.3.1 with a large enough interpatch movement377

rate, the silent circulation curve of the partitioned population converges onto that of the378

homogeneously mixed population, nullifying the effect of subdividing. To analyze the379

full influence of partitioning while also considering the impact of interpatch movement,380

we focus on an interpatch movement rate of 0.1 per year.381

Moving from no movement to a movement rate of 0.1 per year had different effects382

on the probability of silent circulation depending on population size (see Fig. 6; darker383

lines indicate a movement rate of 0.1 per year and lighter lines are for no-movement384

scenarios). For smaller patch sizes (e.g., 32 × 2k and 16 × 4k), increasing the move-385

ment rate increased the probability of silent circulation, while for larger patch sizes386

(e.g., 2 × 32k, 4 × 16k, and 8 × 8k) increasing the movement rate decreased this387

probability. With interpatch movement, 8 × 8k had the highest overall probability of388

silent circulation after 3 years since a detected paralytic case. This shows that there389

may be a higher probability of undetected circulation in an area with many loosely390

connected, small villages than there is in an area with one large interconnected village391

such as a city.392

Analogous to the results presented in Fig. 2 (no interpatch movement), the rela-393

tionship between patch size and circulation potential is not monotonic. This can also394

be seen in the intercase and extinction interval distribution curves (Fig. 12 in the395

Appendix).396

3.4 Effect of Heterogeneous Patch Sizes on the Probability of Silent Circulation397

For the initial analyses on the effect of partitioning a large population on the probability398

of silent circulation, all subdivided populations were of the same size to simplify399

extinction dynamics. Redistributing the population such that one patch contained much400

larger population sizes (e.g., 1 × 32k, 4 × 8k or 1 × 32k, 8 × 4k) uncovered thresholds401

on the number of smaller-sized patches needed to sustain transmission. For example,402

one patch of 32k together with 4 patches of 8k with interpatch movement had a403

lower probability of silent circulation than 8 patches of 8k with interpatch movement404

(see Fig. 13 in the Appendix). Such thresholds may be important to consider when405

developing strategies to break transmission chains.406

3.5 Effect of Vaccination on the Probability of Silent Circulation407

Although our model is conceptually based on isolated sub-populations with minimal408

effective vaccination coverage, such as may be present in regions with overall high409

coverage, we also consider the effect of increasing vaccination coverage on silent cir-410

culation. Figure 7 shows a comparison of the probability of silent circulation between411

the 1 × 64k and 4 × 16k populations, with a movement rate of 0.1 per year, for a range412

of vaccination rates. Overall, the probability of silent circulation decreases as the vac-413

cination rate increases. In this model, vaccinations decrease the number of individuals414

susceptible to infection, which in turn results in sooner extinction of polio.415
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Fig. 6 Comparison of the probability of silent circulation in partitioned populations with a reciprocated
movement rate of 0.1 per year visualized using the silent circulation statistic (A), the probability differential
(B), and the odds ratio (C). The probability differential (B) is calculated by subtracting the probability
of silent circulation in the partitioned populations from that of the large 64k population. Negative values
indicate that the partitioned populations have a higher probability of silent circulation. Values less than one
in the odds ratio plot (C) indicate that the 64k population is less likely to have continued silent circulation
compared to the partitioned populations. Lighter, more transparent, lines represent the value of the quantity
in the absence of movement to use for comparison. The inset plot focuses on behavior between 2.5 and 3.5
years since a paralytic case was observed
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Fig. 7 Comparison of the effect of vaccination on the probability of silent circulation in the 1 × 64k (dotted
lines) and the 4 × 16k population with movement rate 0.1 per year (solid lines) visualized using the silent
circulation statistic (A), the probability differential (B), and the odds ratio (C). The probability differential
(B) is calculated by subtracting the probability of silent circulation in the partitioned populations from that of
the large 64k population. Negative values indicate that the partitioned populations have a higher probability
of silent circulation. Values less than one in the odds ratio plot (C) indicate that the 64k population is less
likely to have continued silent circulation compared to the partitioned populations. The inset plot focuses
on behavior between 2.5 and 3.5 years since a paralytic case was observed

At the lower rates of vaccination considered in this model, the 4 × 16k population416

with movement still had a higher probability of silent circulation at 3 years since417
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Fig. 8 Comparison of the effect of utilizing environmental surveillance on the probability of silent cir-
culation in the 1x64k (dotted lines) and the 4 × 16k population with movement rate 0.1 per year (solid
lines) visualized using the silent circulation statistic (A), the probability differential (B), and the odds ratio
(C). The probability differential (B) is calculated by subtracting the probability of silent circulation in the
partitioned populations from that of the large 64k population. Negative values indicate that the partitioned
populations have a higher probability of silent circulation. Values less than one in the odds ratio plot (C)
indicate that the 64k population is less likely to have continued silent circulation compared to the partitioned
populations. A detection event is defined as detection through either a paralytic case or through ES

a detected paralytic case when compared to the 1 × 64k population. This was also418

the case for the isolated and 0.1 per year movement scenarios but in the absence of419

vaccination. Reducing the susceptible population in accordance with these vaccination420
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rates was not sufficient to bring the probability of silent circulation in the 4 × 16k421

population to that of the 1 × 64k population. However, at the highest vaccination rate422

considered, the 4 × 16k population had the higher probability of silent circulation at423

3 years since a detected paralytic case. This provides a threshold for the size of the424

susceptible population necessary in these four patches in order for the silent circulation425

potential to be highest in the well-mixed regime versus the segmented population. This426

further supports the need to consider population structure when utilizing the silent427

circulation statistic.428

3.6 Effect of Environmental Surveillance on the Probability of Silent Circulation429

Figure 8 shows a comparison of the probability of silent circulation in the 1 × 64k430

population with the 4 × 16k population with a movement rate of 0.1 per year for a431

range of environmental surveillance (ES) detection probabilities. For these scenarios,432

either a paralytic case or detection via ES are used to construct the intervals of the433

silent circulation statistic. Instead of considering the probability of silent circulation434

since a detected paralytic case, we consider the probability since a detection event435

(circulation detected either through a paralytic case or by ES).436

In general, the probability of silent circulation decreases as the probability of detec-437

tion through ES increases. In particular, the probability of silent circulation was zero438

at 3 years since a detection event for both population scenarios with at least a 0.1% ES439

detection probability. Unlike detection of paralytic cases which occurs at a particular440

rate but only with a first infection, ES can in principle be implemented at any rate and441

can detect both paralytic and the more common non-paralytic infections.442

Increasing the ES detection probability decreased the difference in silent circulation443

potential between the two population scenarios considered. While this assumes that444

ES would be as thorough (per capita) in small populations as in large ones—which445

may not be realistic—this result suggests that having a more thorough ES program446

reduces the importance of taking population structure into account.447

4 Discussion448

In this paper, we demonstrate that partitioning a large population can meaningfully449

change the probability of silent circulation. We found that a large population of 64k had450

a high probability of elimination after 3 years without a detected paralytic case. While451

the WHO’s elimination criterion does not specify the configuration of the population452

in its guidelines, these results support using the WHO’s elimination criterion of 3 years453

without a detected paralytic case if the population under consideration is large and454

well-mixed. However, partitioning this population of 64k, and, in particular, increasing455

the number of divisions, increased the probability of silent circulation beyond 3 years456

since a detected case. This suggests that if a population is not well-mixed, the 3-year457

case-free criterion may warrant more scrutiny.458

We show that the frequency of detected cases is the main driver behind longer inter-459

vals of time between events that end silent circulation in the partitioned populations.460
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In particular, prolonged circulation appears to be driven by extinction intervals rather461

than intercase intervals. In order to decrease these interval lengths, it is important to462

increase the probability of detecting cases when they occur. As paralytic infections463

are already likely to be detected, other methods of detection such as environmental464

surveillance could be used as a supplement Brouwer et al. (2018).465

Since this model is not calibrated to an exact region, the time at which changes466

in silent circulation probability between subpopulations take place should not be the467

main focus. Nonetheless, the observation that at the 3-year benchmark the relationship468

between population structure, the amount of interpatch movement, and silent circu-469

lation potential can be non-monotonic may be important. Non-monotonicity implies470

that silent circulation estimation predictions are challenging to make based upon data471

from other population scenarios. More complex models that take these factors into472

account and are calibrated to specific populations should be developed in order to473

better inform policy.474

If the silent circulation statistic is to be used to make predictions concerning polio475

elimination potential in areas with continued circulation, additional work is needed to476

understand the effect of the assumptions of the data-generating model. For example,477

the results in this paper confirm the observations in Duintjer Tebbens et al. (2019)478

when the population is divided into a smaller number of larger patches (e.g., 4 patches479

of 16k). However, we show that the observation does not hold given a larger number480

of smaller patches (e.g., 16 patches of 4k).481

In this work, we focused on total populations of 64k, with all subpopulations sym-482

metrically connected with one another. For computational reasons, we did not consider483

substantially larger total populations, but larger, more complex networks of small484

subpopulations may be able to sustain undetected polio transmission for substan-485

tially longer. An important, related operational issue is the scale at which regions are486

declared polio-free. It is possible that in a sufficiently large, complex population, polio487

would be sustained, largely undetected, in small refugia, tending to be spread to other488

such semi-isolated populations before local extinction occurs. These are important489

considerations for future work.490

Additional areas of future investigation include exploration of varying immunity491

levels, further relaxation of the mass-action transmission term by use of a network492

model, and considering non-exponential time intervals between events. A clear under-493

standing of how these assumptions affect the probability of silent circulation will494

produce more accurate estimations. This can be used to understand where transmis-495

sion may be persistent and highlight the populations in which resource allocation needs496

to be increased in order to curb the transmission potential.497
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5 Appendix510

5.1 Intercase Interval Definition511

The initial intercase interval has been defined as either the time between the start of512

the simulation and the first simulated paralytic case (referred to as the initial case513

assumption (ICA) in Vallejo et al. (2019)) (Eichner and Dietz 1996; Kalkowska et al.514

2012) or as the time between the first two explicitly simulated paralytic cases (referred515

to as the non-initial case assumption (NICA)) Vallejo et al. (2019). Vallejo et al. (2019)516

explored the consequence of the ICA in small populations (25000 and smaller). They2 517

determined that defining the first interparalytic case interval as the time between the518

start of the simulation and the first paralytic case had the effect (in most cases) of519

estimating a higher probability of silent circulation when compared to the NICA. This520

effect decreased with an increase in population size. In this paper the population size521

considered is large enough such that either definition of the first interparalytic case522

interval is appropriate (see Fig. 9). In any case, we believe it is more realistic for523

observation of the system to begin after a paralytic case had been detected, rather than524

at the exact moment of detection. Therefore, we define all interparalytic case intervals525

as between two explicitly simulated paralytic cases (or the NICA).3 526

Fig. 9 A comparison of the silent circulation statistic curves with the initial case assumption (defining the
time between the start of the simulation and the first simulated paralytic case as an intercase interval; ICA)
and without the initial case assumption (defining only the time between explicitly simulated paralytic cases
as an intercase interval; NICA) for the 16 patches of 4k scenario. Note that in this paper NICA was used
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5.2 Initial Patch Population Distribution527

See Fig. 10.528

Fig. 10 Box plots demonstrating the distribution of starting values for each compartment after the 50-
year burn-in period compared to the endemic equilibrium value obtained by solving the related system
of differential equation represented by the solid red horizontal line. Note that the extinction dynamics are
highly influential in determining the starting conditions. Even the 64k population is not large enough to
reproduce equilibrium-like conditions
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5.3 Intercase and Extinction Interval Distribution in Single Populations529

See Fig. 11.530

Fig. 11 Cumulative distribution function (CDF) of intercase (time between detected paralytic cases, A and
extinction (time between the last detected paralytic case and extinction, B intervals for single populations
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5.4 Intercase and Extinction Interval Distribution for the Multi-patch Model with531

Interpatch Movement532

See Fig. 12.533

Fig. 12 Cumulative distribution function (CDF) of intercase (time between paralytic cases, A and extinction
(time between the last detected case and extinction, B intervals for the multi-patch model with an interpatch
movement rate of 0.1 per year. Lighter, more transparent, lines represent the value of the quantity in the
absence of movement to use for comparison
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5.5 The Probability of Silent Circulation in Heterogeneous Patches534

See Fig. 13.535

Fig. 13 Comparison of the probability of silent circulation between evenly distributed patch populations
and heterogeneous patch distributions visualized using the silent circulation statistic (A), the differential
comparison to the 1 × 64k population (B), and the odds ratio (C). The probability differential (B) is
calculated by subtracting the probability of silent circulation in the partitioned populations from that of the
large 64k population. Negative values indicate that the partitioned populations have a higher probability
of silent circulation. Values less than one in the odds ratio plot (C) indicate that the 64k population is less
likely to have continued silent circulation compared to the partitioned populations. The inset plot shows the
curves restricted to between 2.5 and 3.5 years since a paralytic case. The mixed population distributions
are represented by dashed lines

123



un
co

rr
ec

te
d

pr
oo

f

Effect of population partitioning on the probability… Page 27 of 28 _####_

References536

Andreasen V, Christiansen FB (1989) Persistence of an infectious disease in a subdivided population. Math537

Biosci 96(2):239–253. https://doi.org/10.1016/0025-5564(89)90061-8538

Baig IA, Ahmad RN, Baig SA, Ali A (2019) Rural business hub: framework for a new rural development539

approach in rain-fed areas of Pakistan - A Case of Punjab Province. SAGE Open. https://doi.org/10.540

1177/2158244019885133541

Bawa S, Shuaib F, Saidu M, Ningi A, Abdullahi S, Abba B, Idowu A, Alkasim J, Hammanyero K, Warigon542

C, Tegegne SG, Banda R, Korir C, Yehualashet YG, Bedada T, Martin C, Nsubuga P, Adamu US,543

Okposen B, Braka F, Wondimagegnehu A, Vaz RG (2018) Conduct of vaccination in hard-to-reach544

areas to address potential polio reservoir areas, 2014–2015. BMC Public Health 18(4):1312. https://545

doi.org/10.1186/s12889-018-6194-y546

Brouwer AF, Eisenberg JNS, Pomeroy CD, Shulman LM, Hindiyeh M, Manor Y, Grotto I, Koopman JS,547

Eisenberg MC (2018) Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling548

of environmental surveillance data. PNAS 115(45):E10625–E10633549

Demographia World Urban Areas. http://www.demographia.com/db-worldua.pdf. Accessed: 2020-05-16550

Duintjer Tebbens RJ, Thompson KM (2018) Evaluation of proactive and reactive strategies for polio eradi-551

cation activities in Pakistan and Afghanistan. Risk Anal 39(2):389–401. https://doi.org/10.1111/risa.552

13194553

Duintjer Tebbens RJ, Pallansch MA, Kalkowska DA, Wassilak SGF, Cochi SL, Thompson KM (2013)554

Characterizing poliovirus transmission and evolution: insights from modeling experiences with wild555

and vaccine-related polioviruses. Risk Anal 33(4):703–749. https://doi.org/10.1111/risa.12044556

Duintjer Tebbens R, Pallansch M, Cochi S, Ehrhardt D, Farag N, Hadler S, Hampton L, Martinez M,557

Wassilak S, Thompson K (2018) Modeling poliovirus transmission in Pakistan and Afghanistan to558

inform vaccination strategies in undervaccinated subpopulations. Risk Anal 38(8):1701–1717. https://559

doi.org/10.1111/risa.12962560

Duintjer Tebbens R, Kalkowska D, Thompson K (2019) Global certification of wild poliovirus eradication:561

insights from modelling hard-to-reach subpopulations and confidence about the absence of transmis-562

sion. BMJ Open 9(1):e023938563

Eichner M, Dietz K (1996) Eradication of Poliomyelitis: When Can One Be Sure That Polio Virus Trans-564

mission Has Been Terminated? Am J Epidemiol 143(8):816–822565

Etienne RS, Heesterbeek J (2000) On optimal size and number of reserves for metapopulation persistence.566

J Theor Biol 203(1):33–50. https://doi.org/10.1006/jtbi.1999.1060567

Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–568

2361569

Grassly NC, Fraser C (2006) Seasonal infectious disease epidemiology. Proc R Soc B: Biol Sci570

273(1600):2541–2550. https://doi.org/10.1098/rspb.2006.3604571

Hagenaars T, Donnelly C, Ferguson N (2004) Spatial heterogeneity and the persistence of infectious diseases.572

J Theor Biol 229(3):349–359. https://doi.org/10.1016/j.jtbi.2004.04.002573

Henderson R (1989) The World Health Organization’s plan of action for global eradication of poliomyelitis574

by the year 2000. Ann N Y Acad Sci 569(1):69–85575

Kalkowska DA, Tebbens RJD, Thompson KM (2012) The probability of undetected wild poliovirus circu-576

lation after apparent global interruption of transmission. Am J Epidemiol 175(9):936–949577

Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, Thompson KM (2018) Modeling undetected live578

poliovirus circulation after apparent interruption of transmission: Pakistan and Afghanistan. Risk579

Anal 39(2):402–413. https://doi.org/10.1111/risa.13214580

Kalkowska DA, Tebbens RJD, Thompson KM (2018) Another look at silent circulation of poliovirus in581

small populations. Infectious Disease Modelling 3:107–117582

Kalkowska D, Duintjer Tebbens R, Thompson K (2019) Environmental surveillance system characteristics583

and impacts on confidence about no undetected serotype 1 wild poliovirus circulation. Risk Anal584

39(2):414–425. https://doi.org/10.1111/risa.13193585

Kalkowska D, Pallansch M, Wassilak S, Cochi S, Thompson K (2021) Global transmission of live586

polioviruses: updated dynamic modeling of the polio endgame. Risk Anal 41(2):248–265. https://587

doi.org/10.1111/risa.13447588

Koopman J, Henry CJ, Park JH, Eisenberg MC, Ionides EL, Eisenberg JN (2017) Dynamics affecting the589

risk of silent circulation when oral polio vaccination is stopped. Epidemics 20:21–36. https://doi.org/590

10.1016/j.epidem.2017.02.013591

123

https://doi.org/10.1016/0025-5564(89)90061-8
https://doi.org/10.1177/2158244019885133
https://doi.org/10.1177/2158244019885133
https://doi.org/10.1186/s12889-018-6194-y
https://doi.org/10.1186/s12889-018-6194-y
http://www.demographia.com/db-worldua.pdf
https://doi.org/10.1111/risa.13194
https://doi.org/10.1111/risa.13194
https://doi.org/10.1111/risa.12044
https://doi.org/10.1111/risa.12962
https://doi.org/10.1111/risa.12962
https://doi.org/10.1006/jtbi.1999.1060
https://doi.org/10.1098/rspb.2006.3604
https://doi.org/10.1016/j.jtbi.2004.04.002
https://doi.org/10.1111/risa.13214
https://doi.org/10.1111/risa.13193
https://doi.org/10.1111/risa.13447
https://doi.org/10.1111/risa.13447
https://doi.org/10.1016/j.epidem.2017.02.013
https://doi.org/10.1016/j.epidem.2017.02.013


un
co

rr
ec

te
d

pr
oo

f

_####_ Page 28 of 28 C. Vallejo et al.

Kuschminder K, Dora M (2009) Migration in Afghanistan: History, Current Trends and Future prospects.592

Ph.D. thesis593

Martinez-Bakker M, King AA, Rohani P (2015) Unraveling the transmission ecology of polio. PLoS Biol594

13(6):1–21. https://doi.org/10.1371/journal.pbio.1002172595

Mbaeyi C, Ryan MJ, Smith P, Mahamud A, Farag N, Haithami S, Sharaf M, Jorba JC, Ehrhardt D (2017)596

Response to a large polio outbreak in a setting of conflict - middle east, 2013–2017. Morbidity and597

mortality weekly report, Centers for Disease Control and Prevention598

Naeem M, Adil M, Abbas S, Khan M, Naz M, Khan A, Khan M (2013) Coverage and causes of missed599

oral polio vaccine in urban and rural areas of Peshawar. J Ayub Med College, Abbottabad?: JAMC600

23:98–102601

Naqvi A, Naqvi S, Yazdani N, Ahmad R, Ahmad N, Zehra F (2017) Understanding the dynamics of602

poliomyelitis spread in Pakistan. Iran J Public Health 46(7):997–998603

Nnadi C, Damisa E, Esapa L, Braka F, Waziri N, Siddique A, Jorba J, wa Nganda G, Ohuabunwo C,604

Bolu O, Wiesen E, Adamu U (2017) Continued endemic wild poliovirus transmission in security-605

compromised areas – Nigeria, 2016. Morbidity and mortality weekly report, Centers for Disease606

Control and Prevention607

O’Reilly KM, Durry E, ul Islam O, Quddus A, Abid N, Mir TP, Tangermann RH, Aylward RB, Grassly608

NC (2012) The effect of mass immunisation campaigns and new oral poliovirus vaccines on the609

incidence of poliomyelitis in Pakistan and Afghanistan, 2001–11: a retrospective analysis. The Lancet610

380(9840):491–498. https://doi.org/10.1016/S0140-6736(12)60648-5611

Saleem M, Haider I, Ajmal F, Khan A (2016) Audit & Evaluation of the Acute Flaccid Paralysis Surveillance612

System in Khyber Pakhtunkhwa, Pakistan. KHYBER MEDICAL UNIVERSITY JOURNAL 8(1)613

The world bank: population, total - Afghanistan, Pakistan (2020). Data retrieved from https://data.614

worldbank.org/indicator/SP.POP.TOTL?end=2008&locations=AF-PK&start=2008615

Thompson K, Kalkowska D (2020) Review of poliovirus modeling performed from 2000 to 2019 to sup-616

port global polio eradication. Expert Rev Vaccines 19(7):661–686. https://doi.org/10.1080/14760584.617

2020.1791093618

Vallejo C, Keesling J, Koopman J, Singer B (2017) Silent circulation of poliovirus in small populations.619

Infect Dis Modell 2:431–440620

Vallejo C, Pearson CAB, Koopman J, Hladish TJ (2019) Evaluating the probability of silent circulation of621

polio in small populations using the silent circulation statistic. Infect Dis Modell622

Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB, Engø-Monsen K, Buckee623

CO (2015) Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc Natl624

Acad Sci 38:11887–11892. https://doi.org/10.1073/pnas.1504964112625

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps626

and institutional affiliations.627

123

https://doi.org/10.1371/journal.pbio.1002172
https://doi.org/10.1016/S0140-6736(12)60648-5
https://data.worldbank.org/indicator/SP.POP.TOTL?end=2008&locations=AF-PK&start=2008
https://data.worldbank.org/indicator/SP.POP.TOTL?end=2008&locations=AF-PK&start=2008
https://doi.org/10.1080/14760584.2020.1791093
https://doi.org/10.1080/14760584.2020.1791093
https://doi.org/10.1073/pnas.1504964112

	Effect of population partitioning on the probability of silent circulation of poliovirus
	Abstract
	1 Introduction
	2 Methods
	2.1 Discrete-Individual Stochastic Model Specification
	2.2 The Silent Circulation Statistic
	2.3 Metapopulation Description
	2.4 Interpatch Migration Rates
	2.5 Model Iteration Specifics

	3 Results
	3.1 Effect of Partitioning on the Probability of Silent Circulation
	3.1.1 Intercase and Extinction Interval Distributions

	3.2 Comparison to a Single Population
	3.3 Effect of interpatch movement on the Probability of Silent Circulation
	3.3.1 Varying the Movement Rate
	3.3.2 Movement Effect

	3.4 Effect of Heterogeneous Patch Sizes on the Probability of Silent Circulation
	3.5 Effect of Vaccination on the Probability of Silent Circulation
	3.6 Effect of Environmental Surveillance on the Probability of Silent Circulation

	4 Discussion
	Acknowledgements
	5 Appendix
	5.1 Intercase Interval Definition
	5.2 Initial Patch Population Distribution
	5.3 Intercase and Extinction Interval Distribution in Single Populations
	5.4 Intercase and Extinction Interval Distribution for the Multi-patch Model with Interpatch Movement
	5.5 The Probability of Silent Circulation in Heterogeneous Patches

	References




