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Abstract: The Sustainable East Africa Research in Community Health (SEARCH) trial was a universal
test-and-treat (UTT) trial in rural Uganda and Kenya, aiming to lower regional HIV-1 incidence. Here,
we quantify breakthrough HIV-1 transmissions occurring during the trial from population-based,
dried blood spot samples. Between 2013 and 2017, we obtained 549 gag and 488 pol HIV-1 consensus
sequences from 745 participants: 469 participants infected prior to trial commencement and 276
SEARCH-incident infections. Putative transmission clusters, with a 1.5% pairwise genetic distance
threshold, were inferred from maximum likelihood phylogenies; clusters arising after the start of
SEARCH were identified with Bayesian time-calibrated phylogenies. Our phylodynamic approach
identified nine clusters arising after the SEARCH start date: eight pairs and one triplet, representing
mostly opposite-gender linked (6/9), within-community transmissions (7/9). Two clusters contained
individuals with non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, both linked to
intervention communities. The identification of SEARCH-incident, within-community transmissions
reveals the role of unsuppressed individuals in sustaining the epidemic in both arms of a UTT trial
setting. The presence of transmitted NNRTI resistance, implying treatment failure to the efavirenz-
based antiretroviral therapy (ART) used during SEARCH, highlights the need to improve delivery
and adherence to up-to-date ART recommendations, to halt HIV-1 transmission.

Keywords: HIV; phylogenetics; phylodynamics; cluster; transmission network; molecular epidemiology

1. Introduction

The Sustainable East Africa Research in Community Health (SEARCH) trial was a
large-scale randomised universal test-and-treat (UTT) trial involving 32 communities in
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rural Uganda and Kenya (Figure 1), testing the hypothesis that universal HIV treatment and
annual testing coupled with a community-based, multi-disease, patient-centred approach
would result in a lower number of new HIV infections and better community health in
intervention communities [1]. HIV incidence declined in the intervention arm over time, but
at three years, incidence did not significantly differ between the intervention and control
arms. Population-level HIV testing at baseline and expanded eligibility for universal
antiretroviral therapy (ART) in the control arm early in the study contributed to this
finding [1]. Results were consistent across other UTT trials, including HPTN 071/PopART
in Zambia and South Africa [2], ANRS 12249/TasP in South Africa [3], and BCPP/Ya Tsie
in Botswana [4], providing evidence that despite not reaching HIV elimination targets,
UTT increases population-level viral suppression [5]. As new HIV infections were reduced
but not eliminated in these trials, understanding the dynamics of infection may be able to
inform future public health interventions by better targeting of preventative measures.
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Figure 1. SEARCH community point locations (n = 32) across the three geographically separate
SEARCH trial regions: Western Uganda (in red, n = 10), Eastern Uganda (in orange, n = 10), and
Western Kenya (in gold, n = 12).

Phylogenetic studies highlighting HIV-1 transmission dynamics have historically been
less common in sub-Saharan Africa due to limited sequence availability [6], but there are
increasing efforts to rectify the scarcity. Studies in Uganda, for example, have quantified
the history and spread of HIV in the country [7], outlined the role of HIV community-based
introductions in their sustainment of rural epidemics [8], and characterised migratory
patterns and HIV transmission flows into high-prevalence hotspots from surrounding
general population sources [9–12]. The wealth of information extracted from phylogenetic
studies benefits our understanding of HIV-1 infections, evolutionarily and epidemiologi-
cally, and with the scaling up of sequencing in sub-Saharan Africa, light will be shed on
the transmission networks and dynamics of the region. Phylogenetic knowledge of HIV
lineages and their transmission, coupled with epidemiological data, can inform the design
of epidemic control measures through our knowledge of transmission events and, thus,
their prevention [13].

Here, we report the generation of consensus sequences from partial gag and pol genes
of over 700 participants in the SEARCH trial, using these to detect and characterise HIV-1
transmission clusters among the East Africa SEARCH trial population. SEARCH trial
participants were universally screened for HIV at baseline using rapid antibody tests to
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detect all prevalent HIV-1 infections within the intervention and control communities [1].
However, due to the delayed window of accuracy of rapid antibody tests [14,15], any recent
infections (stemming from exposure close to baseline screening) were not detected until a
later date and thus classified as incident infections, despite transmission occurring prior
to trial initiation. Therefore, we extend our phylogenetic clustering approach to include a
phylodynamic analysis of these sequences to distinguish transmissions occurring within the
trial from those that predated it. First, we provide an overview of the characteristics of all
sequenced SEARCH trial participants, including HIV-1 sequence subtyping and screening
for drug-resistant mutations (DRMs). We then identify closely linked sequences using two
different approaches: pairwise genetic distance (GD) thresholds to identify any sequences
linked at <1.5% GD, and a time-resolved, phylodynamic approach, to identify any linked
sequences with an inferred time of transmission arising after the start of the SEARCH
trial. By comparing the phylogenetic and phylodynamic approaches, we can identify
which putative transmission clusters are relevant in the context of SEARCH, allowing us
to understand the nature of incident transmission clusters within a UTT trial setting, to
inform better targeted preventative interventions.

2. Materials and Methods
2.1. Study Design and Population

HIV-1 consensus sequences were obtained from participants in both intervention
and control SEARCH trial communities, PCR-amplified from a subset of dried blood
spots (DBS), as described by Salazar-Gonzalez et al. [16]. In intervention communities,
participants were screened yearly over the three-year trial period (June 2013 to June 2017) to
detect incident cases; in control communities, participants were screened twice, at baseline
and at the trial end [1]. DBS samples were collected from all SEARCH trial participants,
with all incident cases selected for sequencing alongside a convenience sample of baseline
cases. Only samples from participants with a measured HIV viral load ≥5000 copies/mL
were sent for sequencing.

Specifically, the sequence data consisted of partial HIV-1 gag (1.1 kilobases at the
5′-end; n = 549) and pol (1 kilobase at the 5′-end; n = 488) gene sequences from 745 SEARCH
trial participants spread across three geographically distinct regions: Western Uganda,
Eastern Uganda, and Western Kenya. For 292 SEARCH trial participants, both gag and pol
were sequenced. Epidemiological data were available for all sequenced participants, and
characteristics recorded included date of sample collection, participant gender, age, region
and community of residence, occupation, and HIV-1 infection category (i.e., prevalent or
incident). Incident cases were individuals known to be HIV-1 negative at baseline but
whose seroconversion was detected during the SEARCH trial; prevalent cases were those
individuals known to be HIV-1 positive at baseline. In total, 730 participants had complete
epidemiological data records. Missing values were associated with region, community, and
sample collection date (NA = 2), age, and occupation (NA = 15).

2.2. Sequence Subtyping

HIV-1 subtyping was carried out using REGAv3 [17] after cross-checking subtype as-
signments with COMET [18] and SCUEAL [19]. REGAv3 was selected as the subtyping tool
of choice as it displayed the most agreement with the other two tools, and it was preferred
over the more complex output of SCUEAL subtype assignments due to the purpose of
HIV-1 subtyping in this study: to provide an overview of subtype distribution across the
SEARCH population, rather than analysing sequence recombination and breakpoints.

2.3. Drug Resistance Profiling

The SEARCH pol sequences (n = 488) were screened for DRMs using the Stanford HIV
Drug Resistance Database [20]. Specifically, the sequences were screened for mutations in
protease and reverse transcriptase, and drug resistance scores were generated for each of
the sequences to the following 20 antiretrovirals (ARVs): abacavir (ABC), zidovudine (AZT),
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emtricitabine (FTC), lamivudine (3TC), tenofovir (TDF), stavudine (D4T), and didanosine
(DDI) (nucleoside reverse transcriptase inhibitors, NRTIs); doravirine (DOR), efavirenz
(EFV), etravirine (ETR), nevirapine (NVP), and rilpivirine (RPV) (non-nucleoside reverse
transcriptase inhibitors, NNRTIs); atazanavir/ritonavir (ATV/r), darunavir/r (DRV/r),
lopinavir/r (LPV/r), fosamprenavir/r (FPV/r), indinavir/r (IDV/r), nelfinavir (NFV),
saquinavir/r (SQV/r), and tipranavir/r (TPV/r) (protease inhibitors, PIs).

The prevalence of drug resistance was measured according to World Health Organi-
sation (WHO) standards, where resistance to NNRTI-based ART regimens is defined as
resistance to NVP or EFV, resistance to NRTI-based regimens is defined as resistance to
any of the NRTIs listed above, resistance to PI-based regimens is defined as resistance to
ATV/r, LPV/r or DRV/r, and any resistance is defined as resistance to any of the aforemen-
tioned ARVs [21,22]. Only sequences classified as having low-, intermediate-, or high-level
resistance were considered for drug resistance prevalence estimates.

2.4. Genetic Linkage Analysis

Maximum likelihood phylogenies for the gag and pol datasets (n = 549, n = 488, respec-
tively) were constructed using IQ-TREE v1.6.12 [23], and Cluster Picker v1.2.5 (Andrew
Leigh Brown Group, University of Edinburgh, Edinburgh, UK) [24] was used to identify
clusters (>90% bootstrap support threshold) of closely-related sequences at the <1.5% pair-
wise GD threshold. To test whether less-supported clusters were being excluded, Cluster
Picker was also used to identify any clusters regardless of bootstrap support at the <1.5%
GD threshold; however, the same clusters were detected, indicating high support for the
identified clusters.

Cluster Picker was favoured over other cluster detection tools, such as HIV-TRACE [25],
as a result of findings from Rose and colleagues [26]. Briefly, the different clustering algo-
rithms used by Cluster Picker and HIV-TRACE (maximum pairwise GD and single-linkage
clustering, respectively) result in Cluster Picker better detecting distinct, two-individual
transmission events separated by long time periods allowing for viral population diver-
gence, and HIV-TRACE better detecting larger and fewer transmission clusters, which may
be advantageous for detection of larger outbreaks or epidemics with high coverage [26].
Consequently, due to the small proportion of sequenced SEARCH trial participants, Cluster
Picker remained the better option to identify transmission clusters in our dataset.

As both gag and pol sequences were available for 292 trial participants, there was
some overlap between clusters identified for each dataset, resulting in some clusters being
counted twice. Moreover, some participants for whom both genes were sequenced were
only in gag or pol clusters, resulting in them being excluded from analysis due to not being
a conclusive cluster.

In R v4.0.2 (https://cloud.r-project.org/index.html, accessed on 10 May 2022) [27], a
logistic, stepwise regression model was set up to determine whether certain characteristics
made sequenced SEARCH participants more likely of being in a <1.5% GD cluster, and
adjusted odds ratios were calculated for statistically significant variables. The best-fitting
model (AIC: 227.54, Table S1) included region, occupation, HIV-1 infection category, and
SEARCH trial arm.

2.5. Phylodynamic Analysis

Only inferred transmission clusters arising after the start of the SEARCH trial (June 2013)
were of public health interest in this study, which aimed to investigate where new infec-
tions during the SEARCH trial stemmed from. To estimate the time to the most recent
common ancestor (tMRCA) and ages of any internal nodes in SEARCH-incident clusters
(used as proxies for cluster ages and within-cluster transmission events, respectively),
we conducted Bayesian molecular clock phylogenetic inference using BEAST v1.10.4
(http://www.beast2.org/, accessed on 10 May 2022) [28]. To measure ancestral node
estimates more accurately, historical HIV-1 sequences were included in determining a
calibration rate for the molecular clock. Sequences were included from two historical

https://cloud.r-project.org/index.html
http://www.beast2.org/
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timepoints: 1998 and 1999 published HIV-1 Ugandan sequences [29] and 1986 Ugandan
sequences from our group [30].

After removing any temporal sequence outliers [31] using TempEst v1.5.3 (http://
tree.bio.ed.ac.uk/software/tempest/, accessed on 10 May 2022) [32], four different BEAST
runs with SEARCH and historical sequences were set up, accounting for uncertainty where
incomplete sampling dates were included: gag A1 (n = 339), gag D (n = 116), pol A1 (n = 297),
and pol D (n = 102). All runs were performed under an uncorrelated relaxed log-normal
molecular clock [33] for 1 billion generations, sampling every 10,000th generation. The
SRD06 nucleotide substitution model was used for all runs, which consists of the HKY
substitution model [34] with four categories of rate heterogeneity (γ + 4) [35] and two
codon position partitions that are parameterised separately: positions (1 + 2) and position 3.
The coalescent tree prior differed according to subtype: for subtype A1 runs, a Bayesian
SkyGrid prior [36] with 20 parameters and a time at the last transition point of 80 was
used; for subtype D runs, a GMRF Bayesian Skyride prior [37] was used, and the clock rate
was allocated a narrow, truncated prior of mean 0.003 substitutions/site/year (a normal
distribution with a standard deviation of 0.01, in [0.001, 0.01]).

The aforementioned BEAST priors were selected after assessing convergence and
mixing of a variety of runs (see Table S2 and Figures S1–S3) in Tracer v1.7.1 (http://tree.
bio.ed.ac.uk/software/tracer/, accessed on 10 May 2022) [31,38]. For the final four runs
selected, the posterior distribution trace plots were indicative of efficient Markov chain
Monte Carlo chains with good mixing [39], and effective sample size (ESS) values were
above 200 for all parameters in gag D, pol A1, and pol D runs (and all ESS values above 150
for gag A1). Additionally, runs were selected that minimised the width of the 95% highest
posterior density intervals (95% HPD) to minimise the error surrounding internal node age
estimates.

TreeAnnotator v1.10.4 (https://beast.community/treeannotator, accessed on 10 May 2022),
distributed as part of the core BEAST package, was used to generate maximum clade credi-
bility (MCC) trees with median node heights for each of the BEAST runs, discarding 10%
of the states as burn-in. Using the MCC trees, the median age and 95% HPD for each node
in a SEARCH-incident cluster were extracted, with each representing a maximum estimate
of the time for the inferred transmission event.

In R v4.0.2 [27], a logistic, stepwise regression model was set up to determine whether
certain characteristics made sequenced SEARCH participants more likely to be in SEARCH-
incident clusters, and adjusted odds ratios were calculated for statistically significant vari-
ables. The best-fitting model (AIC: 142.79, Table S3) included occupation and HIV-1 infection.

3. Results
3.1. Characteristics of Sequenced SEARCH Trial Participants

The epidemiological characteristics of sequenced, HIV-1 positive SEARCH trial partic-
ipants (n = 745) are summarised in Table 1, Tables S4 and S5, according to the SEARCH
geographical region, trial arm, and HIV-1 infection category (prevalent or incident), re-
spectively. The age and occupation of sequenced participants were categorised using the
same classification as the seminal SEARCH trial results [1]. Of the sequenced participants,
410 (55%) were female, and 469 (63%) were classified as prevalent infections (known to
be HIV-infected at SEARCH trial baseline, either through rapid antibody testing or doc-
umented HIV-positive from Ministry Record). Over half of sequenced participants (376,
50.5%) reported their occupation as farmers, a “low-risk informal sector” occupation. After
farmers, healthcare workers (69, 9.3%) and household workers (69, 9.3%) were the most
common occupations. The median age of sequenced participants was 33, ranging from 17
to 86 years.

http://tree.bio.ed.ac.uk/software/tempest/
http://tree.bio.ed.ac.uk/software/tempest/
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/
https://beast.community/treeannotator
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Table 1. Characteristics of sequenced SEARCH trial participants by geographical region (n = 745).

Western Uganda Eastern Uganda Western Kenya NA Total

n (%) n (%) n (%) n (%) n (%)

All 377 (50.6) 61 (8.2) 305 (40.9) 2 (0.3) 745 (100)

Gender
(χ2 test p-value = 5 × 10−5)

Female 180 (47.7) 31 (50.8) 197 (64.6) 2 (100) 410 (55)
Male 197 (52.3) 30 (49.2) 108 (35.4) 0 335 (45)

Age category
15–20 years 17 (4.5) 4 (6.6) 18 (5.9) 0 39 (5.2)
21–49 years 311 (82.5) 47 (77) 236 (77.4) 0 594 (79.7)
≥50 years 45 (11.9) 10 (16.4) 42 (13.8) 0 97 (13)

NA 4 (1.1) 0 9 (3) 2 (100) 15 (2)

Occupation *
(χ2 test p-value = 7 × 10−4)

Formal sector 50 (13.3) 6 (9.8) 66 (21.6) 0 122 (16.4)
High-risk informal sector 22 (5.8) 4 (6.6) 24 (7.9) 0 50 (6.7)
Low-risk informal sector 282 (74.8) 51 (83.6) 179 (58.7) 0 512 (68.7)

Other 12 (3.2) 0 20 (6.6) 0 32 (4.3)
No job or disabled 7 (1.9) 0 7 (2.3) 0 14 (1.9)

NA 4 (1.1) 0 9 (3) 2 (100) 15 (2)

HIV-1 infection †

(χ2 test p-value < 2 × 10−16)
Prevalent 263 (69.8) 5 (8.2) 199 (65.2) 2 (100) 469 (63)
Incident 114 (30.2) 56 (91.8) 106 (34.8) 0 276 (37)

Trial arm
(χ2 test p-value = 6 × 10−9)

Intervention 142 (37.7) 22 (36.1) 184 (60.3) 0 348 (46.7)
Control 235 (62.3) 39 (63.9) 121 (39.7) 0 395 (53)

NA 0 0 0 2 (100) 2 (0.3)

* A formal sector occupation was defined as a teacher, student, government worker, military worker, health worker,
or factory worker. A high-risk informal sector occupation was defined as a fishmonger, fisher, bar owner, bar worker,
transportation worker, or factory worker. A low-risk informal sector occupation was defined as a farmer, shopkeeper,
market vendor, hotel worker, homemaker, household worker, construction worker, or miner. † HIV-1 infection was
defined as prevalent if HIV-1 positive at SEARCH trial baseline and incident if HIV-1 negative at baseline but if
seroconversion was detected during the trial.

3.2. Sequencing Density

At baseline, 13,529 SEARCH trial participants were reported as living with HIV:
2873 (21.2%) in Western Uganda, 1590 (11.7%) in Eastern Uganda, and 9066 (67%) in
Western Kenya [1]. However, owing to differences in success rate from DBS sequencing,
this distribution is not well represented by the prevalent (i.e., HIV-1 positive at baseline)
sequenced subset of participants: 263 sequences (56.1%) from Western Uganda, 5 (1.1%)
from Eastern Uganda, and 199 (42.4%) from Western Kenya. With regard to incident cases,
850 were reported over the course of the trial: 317 (37.3%) in Western Uganda, 132 (15.5%)
in Eastern Uganda, and 401 (47.2%) in Western Kenya. The geographical distribution of
the 276 sequenced incident cases was 114 (41.3%), 56 (20.3%), and 106 (38.4%), respectively,
and was approximately in line with the overall incident cases recorded during the trial,
albeit with an underrepresentation of Kenyan incident cases.

The prevalent and incident sequencing densities (the percentage of HIV-1 positive
SEARCH trial participants successfully amplified) are summarised in Table 2, according
to geographical region and the SEARCH trial arm. Overall, the sequencing density of
incident HIV-1 infections is much higher (above 30% in all cases) than the sequencing
density of prevalent HIV-1 infections, highlighting the priority of the SEARCH trial with
regard to sequencing incident infections recorded during the trial. The timing of sample
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collection for sequenced participants, with distinction between the trial arm and HIV-1
infection category, is summarised in Figure 2, showcasing the difference in screening
intensity between intervention and control communities.
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Figure 2. Sequencing intensity dot plot of the control (top) and intervention (bottom) arms of the
SEARCH trial, with distinction between incident (dark) and prevalent (light) infections. Screening
frequency differed between the intervention and control arms: yearly screening in intervention
communities; baseline and year 3 screening only in control communities. Two incident infections
were detected during rounds of baseline testing; most prevalent infections were detected at baseline,
with the remaining picked up in later rounds.
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Table 2. Prevalent and incident sequencing densities by geographical region and by trial arm.

Total HIV+ Sequenced HIV+ Sequencing Density

n n %

Prevalent sequencing density by geographical region
Western Uganda 2873 263 9.15
Eastern Uganda 1590 5 0.31
Western Kenya 9066 199 2.19

Total 13,529 467 3.45

Incident sequencing density by geographical region
Western Uganda 317 114 35.96
Eastern Uganda 132 56 42.42
Western Kenya 401 106 26.43

Total 850 276 32.47

Prevalent sequencing density by trial arm
Intervention 7212 204 2.83

Control 6317 263 4.16
Total 13,529 467 3.45

Incident sequencing density by trial arm
Intervention 435 144 33.10

Control 415 132 31.81
Total 850 276 32.47

3.3. Subtype Distribution

SEARCH gag (n = 549) and pol (n = 488) sequences were classified as HIV-1 subtypes
(A1, A2, C, D, or G) or inter-subtype recombinants (recombinants) using REGAv3 [17],
and the regional distribution of subtypes for each gene sequence is summarised in Table 3.
Overall, the most prevalent HIV-1 subtype was A1 in both gag and pol, with 323 (58.8%)
and 278 (57%) sequences, respectively. This was followed by subtype D, also in both genes,
and by recombinants. The distribution of subtypes was broadly similar between gag and
pol, with a slightly higher number of recombinants and a lower number of subtype A1
sequences in pol. When stratified by geographical region (Table 3), the distribution of
subtypes varied: the frequency of subtype D was higher in Western and Eastern Uganda
compared to Western Kenya (~20% vs. ~10%, respectively), subtype A1 was higher in
eastern regions (Eastern Uganda and Western Kenya, ~60–70% vs. 50% in Western Uganda),
subtype A2 was only identified in Western Kenya, and Eastern Uganda presented lower
subtype diversity. Subtype distribution differed the most between Western Uganda and
Western Kenya, with χ2 test of association p-values of 1.1× 10−5 and 4.6× 10−4 for gag and
pol subtype distributions, respectively, while differences between both Ugandan regions
and Eastern Uganda and Western Kenya were more nuanced and depended on the gene
under consideration (Table 3).

Table 3. gag (n = 548, NA = 1) and pol (n = 486, NA = 2) HIV-1 subtype distribution by region.

Western Uganda Eastern Uganda Western Kenya Total

n (%) n (%) n (%) n (%)

gag pol gag pol gag pol gag pol

A1 141
(49.1)

122
(48.8)

32
(68.1)

35
(62.5)

149
(69.6)

119
(66.1)

322
(58.8)

276
(56.8)

A2 0 0 0 0 4
(1.9)

3
(1.7)

4
(0.7)

3
(0.6)

D 71
(24.7)

61
(24.4)

10
(21.3)

14
(25)

25
(11.7)

21
(11.7)

106
(19.3)

96
(19.7)
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Table 3. Cont.

Western Uganda Eastern Uganda Western Kenya Total

n (%) n (%) n (%) n (%)

gag pol gag pol gag pol gag pol

C 29
(10.1)

20
(8) 0 0 12

(5.6)
8

(4.4)
41

(7.5)
28

(5.8)

G 1
(0.4)

1
(0.4) 0 0 2

(0.9) 0 3
(0.6)

1
(0.2)

Recombinants 45
(15.7)

46
(18.4)

5
(10.6)

7
(12.5)

22
(10.3)

29
(16.1)

72
(13.1)

82
(16.9)

Total 287
(100)

250
(100)

47
(100)

56
(100)

214
(100)

180
(100)

548
(100)

486
(100)

To determine subtype diversity, χ2 tests of association were conducted comparing the distribution of A1, D, and
other (A2, C, G, and recombinants) sequences between regions: across all three regions, gag p-value = 2.5 × 10−5,
pol p-value = 6.2 × 10−4; between Western Uganda and Eastern Uganda, gag p-value = 0.03, pol p-value = 0.06;
between Western Uganda and Western Kenya, gag p-value = 1.1 × 10−5, pol p-value = 4.6 × 10−4.; between Eastern
Uganda and Western Kenya, gag p-value = 0.13, pol p-value = 0.03.

3.4. Drug Resistance Profiles

Participants sequenced in the pol region (n = 488) were screened for drug resistance.
Overall, 69 (14.1%) sequences were resistant (according to WHO criteria, see Methods).
When stratified by drug class, resistance to NNRTI-based regimens was the most prevalent,
with 66 (13.5%) sequences exhibiting NNRTI resistance, followed by 26 (5.3%) sequences
with resistance to NRTI-based regimens. No PI resistance was identified in the sample.
Resistance stratified by the SEARCH trial arm and HIV-1 infection category is summarised
in Table 4. Based on χ2 tests of association, no significant difference was found in the
distribution of drug-resistant and drug-sensitive pol sequences according to geographical
region (p-value = 0.51), SEARCH trial arm (p-value = 0.5), or prevalent/incident HIV-1
infections (p-value = 0.63).

Table 4. Drug resistant sequences, by trial arm (n = 486, NA = 2 *) and HIV-1 infection † (n = 488).

Sensitive
NRTI

Resistance
Only

NNRTI
Resistance

Only

NRTI +
NNRTI

Resistance
Total

n (%) n (%) n (%) n (%) n (%)

Drug resistant sequences by trial arm
Intervention 203 (87.1) 2 (0.9) 27 (11.6) 1 (0.4) 233 (47.9)

Control 214 (84.6) 1 (0.4) 34 (13.4) 4 (1.6) 253 (52.1)
Total 417 (85.8) 3 (0.6) 61 (12.6) 5 (1) 486 (100)

Drug resistant sequences by HIV-1 infection †

Prevalent 208 (84.9) 2 (0.8) 31 (12.7) 4 (1.6) 245 (50.2)
Incident 211 (86.8) 1 (0.4) 30 (12.3) 1 (0.4) 243 (49.8)

Total 419 (85.9) 3 (0.6) 61 (12.5) 5 (1) 488 (100)
NRTI = nucleoside reverse transcriptase inhibitor; NNRTI = non-nucleoside reverse transcriptase inhibitor.
* Two sensitive pol sequences were unallocated to control or intervention communities. † HIV-1 infection was
defined as prevalent if HIV-1 positive at SEARCH trial baseline and incident if HIV-1 negative at baseline but if
seroconversion was detected during the trial. Incident sequences are ART-naïve at sampling; prevalent sequences
may be ART-experienced at sampling.

Within the resistant sequences identified, the most common NNRTI-associated mu-
tation was K013N (n = 37), with an overall prevalence of 7.6% in pol SEARCH sequences
(95% CI = 5.4–10%), followed by Y181C (n = 8; 1.6, 95% CI = 0.7–3.2%), and G190A (n = 7;
1.4%, 95% CI = 0.6–2.9%). The most common NRTI-associated mutation was M184V (n = 16;
3.3%, 95% CI = 1.9–5.3%), followed by D67N and M41L (n = 4; 0.8%, 95% CI = 0.2–2.1%,



Viruses 2022, 14, 1673 10 of 18

both). A full list of the 69 resistant sequences alongside their resistance levels and associated
mutations is available in Table S6.

3.5. Identification of SEARCH Trial Clusters
3.5.1. Genetically Linked Clusters

Maximum likelihood phylogenies were generated using IQ-TREE v1.6.12 [23] and
analysed using Cluster Picker v1.2.5 [24] to identify clusters of closely related sequences
with a maximum pairwise GD of 1.5%. We identified 13 unique <1.5% GD clusters, ranging
in size from two to four sequenced participants, summarised in Figure 3A and Table 5. Of
the 13 clusters, 11 (84.6%) contained at least one male and one female participant, 11 (84.6%)
were within-community clusters, 10 (76.9%) contained at least one incident participant,
and 9 (69.2%) were intervention community clusters. Most clusters (8 clusters, 61.5%) were
between participants from within the same age category. The odds of being in a cluster
were lower for sequenced participants with “low-risk informal sector” occupations, with
an adjusted odds ratio (aOR) of 0.34 and a 95% CI of 0.14–0.83%. The odds were higher for
sequenced participants from intervention communities (aOR = 3.34, 95% CI = 1.42–8.79%).
There were no other characteristics recorded that differed significantly between clustered
and non-clustered sequenced participants.

Table 5. Characteristics of SEARCH <1.5% pairwise genetic distance (GD) clusters (n = 13) and of
phylodynamic clusters arising after the start of the SEARCH trial (n = 9).

<1.5% GD Clusters SEARCH-Incident Clusters

n (%) n (%)

All 13 (100) 9 (100)

Gender
Differing gender cluster 11 (84.6) 6 (66.7)

Same gender (female) cluster 1 (7.7) 2 (22.2)
Same gender (male) cluster 1 (7.7) 1 (11.1)

HIV-1 infection category
Prevalent cluster 3 (23.1) 0
Incident cluster 2 (15.4) 4 (44.4)
Mixed cluster 8 (61.5) 5 (55.6)

Region
Intra-region cluster 13 (100) 9 (100)
Inter-region cluster 0 0

Community
Intra-community cluster 11 (84.6) 7 (77.8)
Inter-community cluster 2 (15.4) 2 (22.2)

Age
Intra-age cluster 8 (61.5) 4 (44.4)
Inter-age cluster 3 (23.1) 3 (33.3)

NA 2 (15.4) 2 (22.2)

Occupation
Intra-occupation cluster 4 (30.8) 3 (33.3)
Inter-occupation cluster 7 (53.8) 4 (44.4)

NA 2 (15.4) 2 (22.2)

Trial arm
Intervention cluster 9 (69.2) 5 (55.6)

Control cluster 3 (23.1) 3 (33.3)
Mixed cluster 1 (7.7) 1 (11.1)

Subtype
A1 cluster 10 (76.9) 7 (77.8)
D cluster 2 (15.4) 2 (22.2)

Recombinant cluster 1 (7.7) 0
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Figure 3. (A) SEARCH sequenced participants in <1.5% pairwise genetic distance (GD) clusters
(n = 30 sequences) and (B) participants in SEARCH-incident, phylodynamic clusters (n = 19 se-
quences). Nodes representing participants from control communities are in orange, intervention
communities are in green; circles represent prevalent infections, squares incident infections; nodes
are labelled with the gender (M = male, F = female) and age (years, in brackets) for each partici-
pant; turquoise-highlighted clusters are inferred inter-community transmissions, gold-highlighted
sequences are NNRTI resistant.

3.5.2. SEARCH-Incident Transmission Events

In the above-described phylogeny-based analysis, three of the <1.5% GD clusters iden-
tified were recorded within the trial as prevalent pairs (Figure 3A), i.e., the inferred trans-
mission event that generated the cluster occurred before the implementation of SEARCH
interventions. To characterise clusters arising after the start of the SEARCH trial, we
adopted an approach based on a time-resolved, phylodynamic methodology to exclude
genetically linked clusters with an inferred transmission time prior to the start of SEARCH.
We used BEAST v1.10.4 [28], which incorporates a locally autocorrelated clock in a Bayesian
phylodynamic framework, to estimate the tMRCA for all linked sequences. From the
time-resolved trees generated (Figures S2 and S3), we identified nine incident SEARCH
clusters, eight pairs and one triplet, summarised in Figure 3B and Table 5.

The characteristics of the clusters changed somewhat when restricted to the period
of the trial. Overall, six (66.7%) were differing sex clusters, seven (77.8%) were within-
community clusters, all contained at least one incident participant, and five (55.6%) were
intervention community clusters. The odds of being in a cluster were lower for sequenced
participants with “low-risk informal sector” occupations (aOR = 0.16, 95% CI = 0.05–0.46%),
and higher for sequenced participants with incident infections (aOR = 7.78, 95% CI = 2.48–34.2%).
No other recorded characteristics were significantly different among sequenced participants
in SEARCH-incident clusters and sequenced HIV-positive participants not in clusters.

3.6. Drug Resistance Characterisation of SEARCH Trial Clusters

For the seven unique phylodynamic clusters with pol-sequenced participants, se-
quences were screened for drug resistance (Figure 3B). One pair of subtype D sequences
was identified with both sequences highly resistant to NNRTIs (K103N mutation), which
were closely linked to a third sequence with the same high-resistance mutation. This triplet
shared a recent common ancestor, with a median age prior to the start of the SEARCH trial
but with a 95% HPD overlapping the SEARCH trial timeline, and lay within the genetically
linked, four-person cluster depicted in Figure 3A. These participants were all from the same
intervention community in Western Uganda: those in the drug-resistant SEARCH-incident
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cluster were an 18-year-old incident female and a 19-year-old prevalent male, while the
closely linked third participant was a 35-year-old incident male. Separately, a subtype A1
sequence from a prevalent female of unknown age was found to also be highly resistant
to NNRTIs with a K103N mutation, although their cluster pair (a 38-year-old incident
male from the same Kenyan intervention community) was not, suggesting resistance was
not transmitted in this case. Overall, the prevalence of resistance amongst participants
in SEARCH-incident clusters was 18.8%, while the prevalence of resistance amongst non-
clustering participants was 14%; however, this difference was not statistically significant
(χ2 test of association p-value = 0.86).

4. Discussion

The aim of this study was to detect and characterise HIV-1 transmission clusters
among the East Africa SEARCH trial population, with particular interest in transmission
events which occurred after the start of the trial. The study included 745 HIV-1 positive
SEARCH trial participants, from which partial HIV-1 gag and/or pol consensus sequences
were available. Among sequenced participants, the most prevalent subtype was A1 in all
geographical regions, followed by subtype D. Over a quarter (25.2%) of HIV-1 sequences
had at least one DRM, and 14.1% of sequences had resistance to at least one class of ARVs.
Using phylogenetic methods, 13 clusters were identified with <1.5% pairwise GD. Applying
phylodynamic approaches to the analysis enabled the identification of nine clusters with
an inferred tMRCA later than the start of the SEARCH trial, deemed SEARCH-incident
clusters. The identification of SEARCH-incident clusters is an indicator of ongoing HIV-1
transmission within a UTT trial setting, where substantial efforts were made to reduce
transmission.

4.1. Regional Distribution of HIV-1 Subtypes

The regional distribution of HIV-1 subtypes highlights the differences in subtype di-
versity between Uganda and Kenya, such as the higher proportion of subtype D sequences
in Uganda (both East and West) compared to Western Kenya, where the proportion of
subtypes A1 and A2 is higher (Table 3). Our results are broadly consistent with published
literature on HIV-1 subtype distribution in East Africa, with regard to the higher preva-
lence of subtypes A and D [40–42] and the prevalence of HIV-1 recombinant forms in
East Africa [43]. Eastern Uganda presented lower subtype diversity: no subtype C was
identified, in contrast with the findings of Poon and colleagues [42], who reported a low
frequency of subtype C in the region. Nevertheless, the lower diversity of Eastern Ugandan
sequences is likely due to the smaller regional sample size (61 sequenced SEARCH trial par-
ticipants, compared to 377 and 305 for Western Uganda and Western Kenya, respectively).
Overall, our results indicate that despite the small size, the sequenced sample of SEARCH
trial participants is representative of the HIV-1 subtype distribution in East Africa.

4.2. Drug Resistance in SEARCH

The type of DRMs identified in our dataset are amongst the most commonly identified
in East Africa [44]: M184V is the most prevalent NRTI mutation in East Africa and SEARCH;
K103N, Y181C, and G190A are the most prevalent NNRTIs in East Africa, with K103N
the most prevalent in the SEARCH sample, followed by Y181C and G190A (Table S6).
Discrepancies in the type of mutation and its prevalence in the SEARCH trial compared to
ref. [44] were also found. For PI mutations, East Africa prevalence estimates suggest I85V
and N88D are the most common; however, neither mutation was identified in SEARCH,
likely due to the lack of power owing to the lower overall prevalence of PI mutations and
the sequenced sample size.

The identified prevalence of drug resistance across sequenced SEARCH trial partici-
pants was 14.1%, with 25.2% of sequences harbouring at least one DRM. Drug resistance
was highest to NNRTIs, followed by NRTIs and PIs, consistent with published litera-
ture [21,22,44]. For Uganda specifically, where data on national resistance prevalence is
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available for 2016 [21], the levels of drug resistance amongst Ugandan SEARCH trial partici-
pants were lower than the national estimates; however, the differences were not statistically
significant (χ2 test of association p-value = 0.38): 17.4% vs. 13.1% for any drug resistance;
15.4% vs. 12.4% for NNRTI resistance; 5.1% vs. 4.9% for NRTI resistance; 1% vs. none for
PI resistance.

The acquisition and transmission of DRMs reflects a population where prescribed ART
regimens, either through national guidelines or via the SEARCH trial, were not suppressing
viral replication, resulting in downstream effects on HIV-1 transmission. The detection of
DRMs in treatment naïve incident cases further highlights this issue. The high prevalence
of NNRTI resistance, particularly of sequences harbouring resistance mutation K103N,
highlights issues with the first-line EFV-based regimens administered during the SEARCH
trial, for which K103N reduces susceptibility 20-fold [20].

No differences were found in the distribution of drug-resistant and drug-sensitive se-
quences between trial arms; nevertheless, a lower level of transmitted drug resistance could
have been expected in intervention communities due to earlier universal ART provision
and increased monitoring.

4.3. The Effect of the SEARCH Sampling Frequency on Genetic Linkage Clustering

Using the <1.5% GD threshold for clustering, we estimated that the adjusted odds
of being in a cluster were 3.34 times higher for participants from SEARCH intervention
communities compared to control communities. This is likely an artefact of differential
sampling between trial arms: with intervention community sampling performed yearly
throughout the course of the trial, incident cases are detected at an earlier timepoint after
infection onset, compared to incident infections in control communities which are only
detected at the end of the trial, as sampling was performed at baseline and in the final
year of SEARCH only. This differential sampling frequency, coupled with HIV-1 mutation
rates, results in a higher chance of <1.5% GD clusters being detected in intervention com-
munities than in control communities due to shorter sequence divergence times between
infection and detection of incident cases. Indeed, simulation analyses demonstrated that
clustering methods are systematically biased to detect variation in sampling rates rather
than transmission rate variation [45].

The difficulty in addressing the sampling difference with a clustering approach led to
the adoption of the more demanding phylodynamic approach, through which we would
be able to distinguish estimated infection times as being within or outside the period of
the trial.

Increased odds of clustering for intervention community participants were not ob-
served when using a phylodynamic approach for cluster detection. This confirms that the
finding is a sampling artefact. As our priority was to detect transmission clusters arising
during the SEARCH trial, by assigning ages to the ancestral nodes we were able to exclude
clusters with inferred ages prior to the start of the trial, removing <1.5% GD clusters that
did not meet this criterion.

4.4. Inferred SEARCH Trial Transmission Events

Overall, nine unique clusters were identified with a median tMRCA after the start of
the SEARCH trial, representing transmission events occurring during the trial (Table 5).
Moreover, when considering whether the tMRCA 95% HPD interval for a cluster with
incident cases overlapped with the start of the SEARCH trial, an additional four clusters
(three control, one intervention) were identified, and an intervention community cluster
was expanded from two to four members.

Of the nine unique clusters with SEARCH-incident start date medians, three were
same-gender clusters: two all-female and one all-male cluster (Figure 3B, Table 5). The
all-female clusters likely represent an unsampled, “missing” male, especially as there was
higher female enrolment in the SEARCH trial, while the male–male pair could indicate
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transmission among men who have sex with men or an unsampled common female
sexual partner.

Both inferred inter-community transmission events identified were between Kenyan
communities. This aligns with the findings of Camlin and colleagues, who quantified
HIV-associated mobility within the same SEARCH geographical regions and found the
highest mobility was in communities from Western Kenya [46]. We found 22.2% of trans-
mission events to represent inferred inter-community transmissions, contrasting with the
reported 40% prevalence of inter-community phylogenetic clusters in rural Rakai District,
in southwestern Uganda [8]. This apparent variability in inter-community transmission
estimates among different study populations highlights differences in study design, where
SEARCH communities were designed to be geographically separated, and suggests a
highly context-specific feature to HIV-associated mobility and transmission measurement.
Notwithstanding, the identified phylodynamic clusters reflect the rural dynamics of HIV-1
transmission in East Africa: mainly heterosexual, within-community transmissions.

The adjusted odds of being in a SEARCH-incident phylodynamic cluster were 7.78
higher for participants with incident HIV-1 infections. This is not unexpected, as partic-
ipants identified with incident infections in the context of the SEARCH trial are at most
three years into an infection. Given that most sources of infection would lie within the
SEARCH communities, among which recruitment of prevalent cases was very high, the
probability of clustering will be close to the probability at which prevalent cases were
sequenced. However, the probability of a prevalent case being included is reduced by the
much lower probability at which prevalent cases receiving ART transmit HIV.

Two highly NNRTI-resistant clusters, both with K103N mutations, were identified
within SEARCH-incident clusters, one of which possibly highlights evidence of EFV-based
drug resistance transmission within the SEARCH trial. While K103N is one of the most
frequently transmitted DRMs in East Africa [44] and severely reduces the efficacy of the
NNRTIs in widespread use in sub-Saharan Africa, identification, and possible transmission,
of such mutation within the highly monitored context of the SEARCH trial emphasises
the importance of improved ART delivery, regimens, comprehensive treatment access and
adherence, and intensified viral load monitoring to reduce the spread of resistance in rural
East African populations [47]. With EFV-based regimens being phased out, adherence to
the currently recommended ART regimen of DTG, 3TC, and TDF [48] will continue to play
an important role in reducing HIV transmission and preserving health, particularly in light
of the higher barrier to DTG drug resistance development [49].

4.5. Limitations

Our study has several limitations. Firstly, the low fraction of all HIV-1 positive
SEARCH trial participants that were sequenced, along with the difference in sampling
density for prevalent and incident infections, resulted in missing data with regard to
transmission cluster analysis, both phylogenetic and phylodynamic. This consequently
leads to an incomplete picture of the SEARCH trial HIV-1 epidemic, complicating the
interpretation of results.

At the time the SEARCH trial was planned, phylogenetic analysis was not being
used to track onward transmission. Nevertheless, HIV-1 consensus sequences were ob-
tained from DBS stored during the trial and used here to provide important insights into
transmission dynamics among trial participants. There were challenges involving the
successful amplification of DBS samples, consequently resulting in a lower number of se-
quences obtained. In future work, suitable trial sample storage would allow more detailed
investigation, for example, using deep sequencing reads [12,50].

5. Conclusions

Our study provides insights into the characteristics and dynamics of HIV-1 transmis-
sions within the East Africa SEARCH trial population. Our results corroborate findings
on the distribution of HIV-1 subtypes and drug resistance in Uganda and Kenya. Phy-
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lodynamic cluster characterisation indicated how most HIV-1 transmissions during the
SEARCH trial were within the same community; however, almost one-quarter of transmis-
sions were inferred to originate outside the community, highlighting the role of targeting
mobile populations to halt inter-community spread. Monitoring cluster formation and
tailoring prevention and risk reduction interventions to persons with common charac-
teristics to those of clustering incident infections will allow more rapid interruption of
transmission. Altogether, these efforts will contribute to reducing the incidence of HIV-1
infections in the ongoing East African epidemic as the field moves forward with advances
in ART treatments and prevention.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14081673/s1, Table S1: Estimated regression parameters, stan-
dard errors, z-values, and p-values for the logistic regression model used to determine whether certain
characteristics made sequenced SEARCH participants more likely of being in a <1.5% genetic distance
(GD) cluster; Table S2: Settings for tested BEAST runs [31,33–37,51–53]; Figure S1: Median node
ages and associated 95% highest posterior density (95% HPD) intervals for SEARCH-incident nodes;
Figure S2: Maximum clade credibility trees with median node ages for gag A1 (left) and gag D (right)
SEARCH trial sequences; Figure S3: Maximum clade credibility trees with median node ages for pol
A1 (left) and pol D (right) SEARCH trial sequences; Table S3: Estimated regression parameters, stan-
dard errors, z-values, and p-values for the logistic regression model used to determine whether certain
characteristics made sequenced SEARCH participants more likely of being in SEARCH-incident
clusters; Table S4: Characteristics of sequenced SEARCH trial participants, by trial arm (n = 745);
Table S5: Characteristics of sequenced SEARCH trial participants, according to HIV-1 infection
category (n = 745); Table S6: SEARCH trial sequences with low- to high-level NRTI/NNRTI resis-
tance, according to WHO standards for resistance classification, alongside NRTI/NNRTI- associated
mutations.

Author Contributions: Conceptualisation, D.V.H., J.F.S.-G., T.L. and A.J.L.B.; methodology, E.P.-H.,
T.L., J.F.S.-G., D.S., H.E.G. and A.J.L.B.; validation, J.F.S.-G.; formal analysis, E.P.-H.; investigation,
E.P.-H.; sequence data generation and quality control, J.F.S.-G. and D.S.; resources, P.K. and M.R.K.;
writing—original draft preparation, E.P.-H.; writing—review and editing, A.J.L.B., E.D.C., J.A., M.P.
and D.V.H.; supervision, A.J.L.B. and K.E.A. All authors have read and agreed to the published
version of the manuscript (except T.L.).

Funding: The SEARCH trial was funded by the Division of AIDS, National Institute of Allergy and
Infectious Diseases of the National Institutes of Health (NIH), with award numbers U01AI099959,
UM1AI068636, and R01 AI074345–06A1, and by the President’s Emergency Plan for AIDS Relief.
H.E.G. was supported by the MRC Precision Medicine Doctoral Training Programme; K.E.A. was
supported by an ERC Starting Grant (757688); A.J.L.B. was supported by NIH (GM110749); E.P.-H.
was supported by a Wellcome Trust Scholarship (222329/Z/21/Z).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki. The SEARCH trial protocol was approved by the ethics committees at the University
of California, San Francisco (code: 12-09555, date: 20 December 2012); the Kenya Medical Research
Institute (code: 2453, date: 06 February 2013); and Makerere University School of Medicine in
Uganda (code: REC 2013-002, date: 14 January 2013). Data analysis was approved by the ethics
committee of the School of Biological Sciences, University of Edinburgh (code: AJLBROWN-0002,
date: 12 June 2018).

Informed Consent Statement: Informed consent was obtained from all the subjects involved in
this study.

Data Availability Statement: Sequence data analysed in this study have been submitted to GenBank
under accession numbers ON501128-ON502164.

Acknowledgments: We thank the Ministries of Health of Uganda and Kenya, staff at the MRC/UVRI
and LSHTM Uganda Research Unit, and all the communities and participants involved in the trial.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/v14081673/s1
https://www.mdpi.com/article/10.3390/v14081673/s1


Viruses 2022, 14, 1673 16 of 18

References
1. Havlir, D.V.; Balzer, L.B.; Charlebois, E.D.; Clark, T.D.; Kwarisiima, D.; Ayieko, J.; Kabami, J.; Sang, N.; Liegler, T.; Chamie, G.;

et al. HIV Testing and Treatment with the Use of a Community Health Approach in Rural Africa. N. Engl. J. Med. 2019, 381,
219–229. [CrossRef] [PubMed]

2. Hayes, R.J.; Donnell, D.; Floyd, S.; Mandla, N.; Bwalya, J.; Sabapathy, K.; Yang, B.; Phiri, M.; Schaap, A.; Eshleman, S.H.; et al.
Effect of Universal Testing and Treatment on HIV Incidence—HPTN 071 (PopART). N. Engl. J. Med. 2019, 381, 207–218. [CrossRef]
[PubMed]

3. Iwuji, C.C.; Orne-Gliemann, J.; Larmarange, J.; Balestre, E.; Thiebaut, R.; Tanser, F.; Okesola, N.; Makowa, T.; Dreyer, J.; Herbst,
K.; et al. Universal Test and Treat and the HIV Epidemic in Rural South Africa: A Phase 4, Open-Label, Community Cluster
Randomised Trial. Lancet HIV 2018, 5, e116–e125. [CrossRef]

4. Makhema, J.; Wirth, K.E.; Pretorius Holme, M.; Gaolathe, T.; Mmalane, M.; Kadima, E.; Chakalisa, U.; Bennett, K.; Leidner, J.;
Manyake, K.; et al. Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. N. Engl. J. Med. 2019,
381, 230–242. [CrossRef]

5. Havlir, D.; Lockman, S.; Ayles, H.; Larmarange, J.; Chamie, G.; Gaolathe, T.; Iwuji, C.; Fidler, S.; Kamya, M.; Floyd, S.; et al.
What Do the Universal Test and Treat Trials Tell Us about the Path to HIV Epidemic Control? J. Int. AIDS Soc. 2020, 23, e25455.
[CrossRef] [PubMed]

6. Nduva, G.M.; Hassan, A.S.; Nazziwa, J.; Graham, S.M.; Esbjörnsson, J.; Sanders, E.J. HIV-1 Transmission Patterns Within and
Between Risk Groups in Coastal Kenya. Sci. Rep. 2020, 10, 6775. [CrossRef] [PubMed]

7. Yebra, G.; Ragonnet-Cronin, M.; Ssemwanga, D.; Parry, C.M.; Logue, C.H.; Cane, P.A.; Kaleebu, P.; Leigh Brown, A.J. Analysis of
the History and Spread of HIV-1 in Uganda Using Phylodynamics. J. Gen. Virol. 2015, 96, 1890–1898. [CrossRef] [PubMed]

8. Grabowski, M.K.; Lessler, J.; Redd, A.D.; Kagaayi, J.; Laeyendecker, O.; Ndyanabo, A.; Nelson, M.I.; Cummings, D.A.T.; Bwanika,
J.B.; Mueller, A.C.; et al. The Role of Viral Introductions in Sustaining Community-Based HIV Epidemics in Rural Uganda:
Evidence from Spatial Clustering, Phylogenetics, and Egocentric Transmission Models. PLoS Med. 2014, 11, e1001610. [CrossRef]

9. Bbosa, N.; Ssemwanga, D.; Nsubuga, R.N.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Nanyonjo, M.; Kuteesa, M.; Seeley, J.; Kiwanuka,
N.; Bagaya, B.S.; et al. Phylogeography of HIV-1 Suggests That Ugandan Fishing Communities Are a Sink for, Not a Source of,
Virus from General Populations. Sci. Rep. 2019, 9, 1051. [CrossRef]

10. Bbosa, N.; Ssemwanga, D.; Ssekagiri, A.; Xi, X.; Mayanja, Y.; Bahemuka, U.; Seeley, J.; Pillay, D.; Abeler-Dörner, L.; Golubchik, T.;
et al. Phylogenetic and Demographic Characterization of Directed HIV-1 Transmission Using Deep Sequences from High-Risk
and General Population Cohorts/Groups in Uganda. Viruses 2020, 12, 331. [CrossRef] [PubMed]

11. Grabowski, M.K.; Lessler, J.; Bazaale, J.; Nabukalu, D.; Nankinga, J.; Nantume, B.; Ssekasanvu, J.; Reynolds, S.J.; Ssekubugu, R.;
Nalugoda, F.; et al. Migration, Hotspots, and Dispersal of HIV Infection in Rakai, Uganda. Nat. Commun. 2020, 11, 976. [CrossRef]
[PubMed]

12. Ratmann, O.; Kagaayi, J.; Hall, M.; Golubchick, T.; Kigozi, G.; Xi, X.; Wymant, C.; Nakigozi, G.; Abeler-Dörner, L.; Bonsall, D.; et al.
Quantifying HIV Transmission Flow between High-Prevalence Hotspots and Surrounding Communities: A Population-Based
Study in Rakai, Uganda. Lancet HIV 2020, 7, e173–e183. [CrossRef]

13. Novitsky, V.; Zahralban-Steele, M.; Moyo, S.; Nkhisang, T.; Maruapula, D.; McLane, M.F.; Leidner, J.; Bennett, K.; Wirth, K.E.;
Gaolathe, T.; et al. Mapping of HIV-1C Transmission Networks Reveals Extensive Spread of Viral Lineages across Villages in
Botswana Treatment-as-Prevention Trial. J. Infect. Dis. 2020, 222, 1670–1680. [CrossRef] [PubMed]

14. Greenwald, J.L.; Burstein, G.R.; Pincus, J.; Branson, B. A Rapid Review of Rapid HIV Antibody Tests. Curr. Infect. Dis. Rep. 2006,
8, 125–131. [CrossRef] [PubMed]

15. Piwowar-Manning, E.; Fogel, J.; Laeyendecker, O.; Wolf, S.; Cummings, V.; Marzinke, M.; Clarke, W.; Breaud, A.; Wendel, S.;
Wang, L.; et al. Failure to Identify HIV-Infected Individuals in a Clinical Trial Using a Single HIV Rapid Test for Screening. HIV
Clin. Trials 2014, 15, 62–68. [CrossRef] [PubMed]

16. Salazar-Gonzalez, J.F.; Salazar, M.G.; Tully, D.C.; Ogilvie, C.B.; Learn, G.H.; Allen, T.M.; Heath, S.L.; Goepfert, P.; Bar, K.J. Use of
Dried Blood Spots to Elucidate Full-Length Transmitted/Founder HIV-1 Genomes. Pathog. Immun. 2016, 1, 129–153. [CrossRef]

17. Pineda-Peña, A.C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; De Oliveira,
T.; Vandamme, A.M. Automated Subtyping of HIV-1 Genetic Sequences for Clinical and Surveillance Purposes: Performance
Evaluation of the New REGA Version 3 and Seven Other Tools. Infect. Genet. Evol. 2013, 19, 337–348. [CrossRef]

18. Struck, D.; Lawyer, G.; Ternes, A.M.; Schmit, J.C.; Bercoff, D.P. COMET: Adaptive Context-Based Modeling for Ultrafast HIV-1
Subtype Identification. Nucleic Acids Res. 2014, 42, e144. [CrossRef]

19. Kosakokvsky Pond, S.L.; Posada, D.; Stawiski, E.; Chappey, C.; Poon, A.F.Y.; Hughes, G.; Fearnhill, E.; Gravenor, M.B.; Leigh
Brown, A.J.; Frost, S.D.W. An Evolutionary Model-Based Algorithm for Accurate Phylogenetic Breakpoint Mapping and Subtype
Prediction in HIV-1. PLoS Comput. Biol. 2009, 5, e1000581. [CrossRef]

20. Rhee, S.Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. Human Immunodeficiency Virus Reverse Transcriptase
and Protease Sequence Database. Nucleic Acids Res. 2003, 31, 298–303. [CrossRef]

21. World Health Organisation. HIV Drug Resistance Report; WHO: Geneva, Switzerland, 2019.
22. World Health Organisation. HIV Drug Resistance Report; WHO: Geneva, Switzerland, 2021.
23. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating

Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [CrossRef]

http://doi.org/10.1056/NEJMoa1809866
http://www.ncbi.nlm.nih.gov/pubmed/31314966
http://doi.org/10.1056/NEJMoa1814556
http://www.ncbi.nlm.nih.gov/pubmed/31314965
http://doi.org/10.1016/S2352-3018(17)30205-9
http://doi.org/10.1056/NEJMoa1812281
http://doi.org/10.1002/jia2.25455
http://www.ncbi.nlm.nih.gov/pubmed/32091179
http://doi.org/10.1038/s41598-020-63731-z
http://www.ncbi.nlm.nih.gov/pubmed/32317722
http://doi.org/10.1099/vir.0.000107
http://www.ncbi.nlm.nih.gov/pubmed/25724670
http://doi.org/10.1371/journal.pmed.1001610
http://doi.org/10.1038/s41598-018-37458-x
http://doi.org/10.3390/v12030331
http://www.ncbi.nlm.nih.gov/pubmed/32197553
http://doi.org/10.1038/s41467-020-14636-y
http://www.ncbi.nlm.nih.gov/pubmed/32080169
http://doi.org/10.1016/S2352-3018(19)30378-9
http://doi.org/10.1093/infdis/jiaa276
http://www.ncbi.nlm.nih.gov/pubmed/32492145
http://doi.org/10.1007/s11908-006-0008-6
http://www.ncbi.nlm.nih.gov/pubmed/16524549
http://doi.org/10.1310/hct1502-62
http://www.ncbi.nlm.nih.gov/pubmed/24710920
http://doi.org/10.20411/pai.v1i1.116
http://doi.org/10.1016/j.meegid.2013.04.032
http://doi.org/10.1093/nar/gku739
http://doi.org/10.1371/journal.pcbi.1000581
http://doi.org/10.1093/nar/gkg100
http://doi.org/10.1093/molbev/msu300


Viruses 2022, 14, 1673 17 of 18

24. Ragonnet-Cronin, M.; Hodcroft, E.; Hué, S.; Fearnhill, E.; Delpech, V.; Leigh Brown, A.J.; Lycett, S. Automated Analysis of
Phylogenetic Clusters. BMC Bioinform. 2013, 14, 317. [CrossRef] [PubMed]

25. Kosakovsky Pond, S.L.; Weaver, S.; Leigh Brown, A.J.; Wertheim, J.O. HIV-TRACE (TRAnsmission Cluster Engine): A Tool for
Large Scale Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens. Mol. Biol. Evol. 2018, 35, 1812–1819.
[CrossRef]

26. Rose, R.; Lamers, S.L.; Dollar, J.J.; Grabowski, M.K.; Hodcroft, E.B.; Ragonnet-Cronin, M.; Wertheim, J.O.; Redd, A.D.; German, D.;
Laeyendecker, O. Identifying Transmission Clusters with Cluster Picker and HIV-TRACE. AIDS Res. Hum. Retrovir. 2017, 33,
211–218. [CrossRef] [PubMed]

27. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
28. Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian Phylogenetic and Phylodynamic Data

Integration Using BEAST 1.10. Virus Evol. 2018, 4, vey016. [CrossRef]
29. Harris, M.E.; Serwadda, D.; Sewankambo, N.; Kim, B.; Kigozi, G.; Kiwanuka, N.; Phillips, J.B.; Wabwire, F.; Meehen, M.; Lutalo, T.;

et al. Among 46 Near Full Length HIV Type 1 Genome Sequences from Rakai District, Uganda, Subtype D and AD Recombinants
Predominate. AIDS Res. Hum. Retrovir. 2002, 18, 1281–1290. [CrossRef] [PubMed]

30. Grant, H.E. Characterisation of the Ugandan HIV Epidemic with Full-Length Genome Sequence Data from 1986 to 2016. PhD
Thesis, University of Edinburgh, Edinburgh, UK, 2022.

31. Hill, V.; Baele, G. Bayesian Estimation of Past Population Dynamics in BEAST 1.10 Using the Skygrid Coalescent Model. Mol. Biol.
Evol. 2019, 36, 2620–2628. [CrossRef]

32. Rambaut, A.; Lam, T.T.; Carvalho, L.M.; Pybus, O.G. Exploring the Temporal Structure of Heterochronous Sequences Using
TempEst (Formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [CrossRef]

33. Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4,
699–710. [CrossRef]

34. Hasegawa, M.; Kishino, H.; Yano, T. aki Dating of the Human-Ape Splitting by a Molecular Clock of Mitochondrial DNA. J. Mol.
Evol. 1985, 22, 160–174. [CrossRef] [PubMed]

35. Yang, Z. Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate
Methods. J. Mol. Evol. 1994, 39, 306–314. [CrossRef] [PubMed]

36. Gill, M.S.; Lemey, P.; Faria, N.R.; Rambaut, A.; Shapiro, B.; Suchard, M.A. Improving Bayesian Population Dynamics Inference: A
Coalescent-Based Model for Multiple Loci. Mol. Biol. Evol. 2013, 30, 713–724. [CrossRef]

37. Minin, V.N.; Bloomquist, E.W.; Suchard, M.A. Smooth Skyride through a Rough Skyline: Bayesian Coalescent-Based Inference of
Population Dynamics. Mol. Biol. Evol. 2008, 25, 1459–1471. [CrossRef]

38. Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer
1.7. Syst. Biol. 2018, 67, 901–904. [CrossRef]

39. Nascimento, F.F.; dos Reis, M.; Yang, Z. A Biologist’s Guide to Bayesian Phylogenetic Analysis. Nat. Ecol. Evol. 2017, 1, 1446–1454.
[CrossRef]

40. Lihana, R.W.; Ssemwanga, D.; Abimiku, A.G.; Ndembi, N. Update on HIV-1 Diversity in Africa: A Decade in Review. AIDS Rev.
2012, 14, 83–100.

41. Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV Subtype Diversity Worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [CrossRef]
42. Poon, A.F.Y.; Ndashimye, E.; Avino, M.; Gibson, R.; Kityo, C.; Kyeyune, F.; Nankya, I.; Quiñones-Mateu, M.E.; ARTS, E.J.;

The Ugandan Drug Resistance Study Team. First-Line HIV Treatment Failures in Non-B Subtypes and Recombinants: A
Cross-Sectional Analysis of Multiple Populations in Uganda. AIDS Res. Ther. 2019, 16, 3. [CrossRef]

43. Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Kirtley, S.; Gouws-Williams, E.; Ghys, P.D.; Abimiku, A.G.; Agwale, S.;
Archibald, C.; et al. Global and Regional Epidemiology of HIV-1 Recombinants in 1990–2015: A Systematic Review and Global
Survey. Lancet HIV 2020, 7, e772–e781. [CrossRef]

44. Ssemwanga, D.; Lihana, R.W.; Ugoji, C.; Abimiku, A.G.; Nkengasong, J.N.; Dakum, P.; Ndembi, N. Update on HIV-1 Acquired
and Transmitted Drug Resistance in Africa. AIDS Rev. 2015, 17, 3–20. [PubMed]

45. Poon, A.F.Y. Impacts and Shortcomings of Genetic Clustering Methods for Infectious Disease Outbreaks. Virus Evol. 2016,
2, vew031. [CrossRef] [PubMed]

46. Camlin, C.S.; Akullian, A.; Neilands, T.B.; Getahun, M.; Bershteyn, A.; Ssali, S.; Geng, E.; Gandhi, M.; Cohen, C.R.; Maeri, I.; et al.
Gendered Dimensions of Population Mobility Associated with HIV across Three Epidemics in Rural Eastern Africa. Health Place
2019, 57, 339–351. [CrossRef] [PubMed]

47. Sigaloff, K.C.E.; Hamers, R.L.; Wallis, C.L.; Kityo, C.; Siwale, M.; Ive, P.; Botes, M.E.; Mandaliya, K.; Wellington, M.; Osibogun, A.;
et al. Unnecessary Antiretroviral Treatment Switches and Accumulation of HIV Resistance Mutations; Two Arguments for Viral
Load Monitoring in Africa. J. Acquir. Immune Defic. Syndr. 2011, 58, 23–31. [CrossRef] [PubMed]

48. World Health Organisation. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recom-
mendations for a Public Health Approach; WHO: Geneva, Switzerland, 2021.

49. Vitoria, M.; Hill, A.; Ford, N.; Doherty, M.; Clayden, P.; Venter, F.; Ripin, D.; Flexner, C.; Domanico, P.L. The Transition to
Dolutegravir and Other New Antiretrovirals in Low-Income and Middle-Income Countries: What Are the Issues? AIDS 2018, 32,
1551–1561. [CrossRef]

http://doi.org/10.1186/1471-2105-14-317
http://www.ncbi.nlm.nih.gov/pubmed/24191891
http://doi.org/10.1093/molbev/msy016
http://doi.org/10.1089/aid.2016.0205
http://www.ncbi.nlm.nih.gov/pubmed/27824249
http://doi.org/10.1093/ve/vey016
http://doi.org/10.1089/088922202320886325
http://www.ncbi.nlm.nih.gov/pubmed/12487816
http://doi.org/10.1093/molbev/msz172
http://doi.org/10.1093/ve/vew007
http://doi.org/10.1371/journal.pbio.0040088
http://doi.org/10.1007/BF02101694
http://www.ncbi.nlm.nih.gov/pubmed/3934395
http://doi.org/10.1007/BF00160154
http://www.ncbi.nlm.nih.gov/pubmed/7932792
http://doi.org/10.1093/molbev/mss265
http://doi.org/10.1093/molbev/msn090
http://doi.org/10.1093/sysbio/syy032
http://doi.org/10.1038/s41559-017-0280-x
http://doi.org/10.1097/COH.0000000000000534
http://doi.org/10.1186/s12981-019-0218-2
http://doi.org/10.1016/S2352-3018(20)30252-6
http://www.ncbi.nlm.nih.gov/pubmed/25427100
http://doi.org/10.1093/ve/vew031
http://www.ncbi.nlm.nih.gov/pubmed/28058111
http://doi.org/10.1016/j.healthplace.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31152972
http://doi.org/10.1097/QAI.0b013e318227fc34
http://www.ncbi.nlm.nih.gov/pubmed/21694603
http://doi.org/10.1097/QAD.0000000000001845


Viruses 2022, 14, 1673 18 of 18

50. Ratmann, O.; Grabowski, M.K.; Hall, M.; Golubchik, T.; Wymant, C.; Abeler-Dörner, L.; Bonsall, D.; Hoppe, A.; Leigh Brown, A.J.;
de Oliveira, T.; et al. Inferring HIV-1 Transmission Networks and Sources of Epidemic Spread in Africa with Deep-Sequence
Phylogenetic Analysis. Nat. Commun. 2019, 10, 1411. [CrossRef] [PubMed]

51. Tavaré, S. Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lect. Math. Life Sci. 1986, 17, 57–86.
52. Kingman, J.F.C. The Coalescent. Stoch. Processes Appl. 1982, 13, 235–248. [CrossRef]
53. Griffiths, R.C.; Tavaré, S. Sampling Theory for Neutral Alleles in a Varying Environment. Philos. Trans. R. Soc. London. Ser. B Biol.

Sci. 1994, 344, 403–410. [CrossRef]

http://doi.org/10.1038/s41467-019-09139-4
http://www.ncbi.nlm.nih.gov/pubmed/30926780
http://doi.org/10.1016/0304-4149(82)90011-4
http://doi.org/10.1098/rstb.1994.0079

	Introduction 
	Materials and Methods 
	Study Design and Population 
	Sequence Subtyping 
	Drug Resistance Profiling 
	Genetic Linkage Analysis 
	Phylodynamic Analysis 

	Results 
	Characteristics of Sequenced SEARCH Trial Participants 
	Sequencing Density 
	Subtype Distribution 
	Drug Resistance Profiles 
	Identification of SEARCH Trial Clusters 
	Genetically Linked Clusters 
	SEARCH-Incident Transmission Events 

	Drug Resistance Characterisation of SEARCH Trial Clusters 

	Discussion 
	Regional Distribution of HIV-1 Subtypes 
	Drug Resistance in SEARCH 
	The Effect of the SEARCH Sampling Frequency on Genetic Linkage Clustering 
	Inferred SEARCH Trial Transmission Events 
	Limitations 

	Conclusions 
	References

