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Due to uncertainty regarding the potential impact of unmeasured confounding, health technology
assessment (HTA) agencies often disregard evidence from nonrandomized studies when considering new
technologies. Quantitative bias analysis (QBA) methods provide a means to quantify this uncertainty but
have not been widely used in the HTA setting, particularly in the context of cost–effectiveness modelling
(CEM). This study demonstrated the application of an aggregate and patient-level QBA approach to
quantify and adjust for unmeasured confounding in a simulated nonrandomized comparison of survival
outcomes. Application of the QBA output within a CEM through deterministic and probabilistic sensitivity
analyses and under different scenarios of knowledge of an unmeasured confounder demonstrates the
potential value of QBA in HTA.
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Health technology assessment (HTA) bodies systematically evaluate a wide range of evidence. The type of evidence
considered depends on the reimbursement process of that country; for example, in England, the National Institute
for Health and Care Excellence (NICE) considers both clinical and cost–effectiveness (CE), as well as budget
impact [1]. A cost–effectiveness decision model (CEM) synthesises information about estimated costs and effects;
hence, a critical component is information on the clinical effectiveness.

Randomized controlled trials (RCTs) are generally considered to be the gold standard of evidence when assessing
effectiveness. However, in some cases, an RCT is not feasible, such as when there are ethical concerns or for
rare outcomes (requiring a large sample size to achieve sufficient power). Therefore, HTA bodies are increasingly
presented with nonrandomised evidence, including unanchored (indirect) treatment comparisons. Comparator
data commonly includes previously conducted trials and real-world data (RWD).

One of the key issues with the use of results from nonrandomiszed studies (NRS) is confounding [2]. Although
observed confounding variables can be controlled for in the analysis, such as through matching, unmeasured
confounding variables cannot generally be controlled for. Unmeasured confounding may bias treatment effect
estimates and consequently lead to misleading CE results. For these reasons, HTA agencies have remained sceptical
about the value of real-world evidence for informing healthcare decision making [3].

Recent recommendations have suggested that it is essential to perform a broad range of sensitivity analyses,
including quantitative bias analyses (QBAs), to assess the various types of biases that could occur by using
nonrandomized data [3–5]. In a companion paper, we discuss which approaches may be the most appropriate in
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Table 1. Nomenclature for the level of knowledge of the unmeasured confounder to guide the parameterization of
the quantitative bias analysis methods.
Term Real-world scenario

Good knowledge Where one obtains high-quality external data or elicits expert opinion that broadly reflects the true associations with the unmeasured
confounder

Poor knowledge Where one obtains low-quality external data or elicits poorly informed expert opinion that does not fully reflect the true associations
with the unmeasured confounder

Incorrect knowledge Where one elicits expert opinion that is incorrect or there was no information and incorrect assumptions were made that in no way
reflected the true associations with the unmeasured confounder

different scenarios and the practicalities of implementing such approaches in a CEM [2]. However, these methods
have not yet been demonstrated in practice to illustrate their impact on CE results.

The focus of this study is to demonstrate that the use of QBA methods in NRS which can support the
assessments of uncertainty in CEM outputs and facilitate informed reimbursement decisions. The presented
sensitivity analysis approaches adjust a simulated time-to-event effect estimate for unmeasured confounding after
adjusting for measured confounders and incorporate the results into a CEM through both deterministic sensitivity
analysis (DSA) and probabilistic sensitivity analysis (PSA). Simulated clinical data was used to investigate the
impact of the methods under various real-world scenarios based on the quality of data available to inform the
QBA. Specifically, scenarios in which the parameterization of the QBA methods (based on the knowledge of the
unmeasured confounder) is relatively ‘good’/relatively ‘poor’ compared with settings where the parameterization is
totally incorrect.

Methods
Simulating survival data
Artificial data were created to illustrate the QBA methods. A single dataset was generated to reflect a plausible
scenario that may arise in an oncology setting, particularly for certain oncogene-positive populations where limited
information may be available and single-arm trials were conducted, such as an ALK+ or EGFR+ metastatic non-
small-cell lung cancer population. Specifically, individual patient-level overall survival (OS) data were simulated,
representing information about n = 300 hypothetical study participants, using the approach described in Supple-
mentary Material Appendix 1. Two marginally independent measured baseline characteristics, a binary treatment
variable and a binary unmeasured confounder were simulated. The simulated patient dataset was constructed such
that it represented a hypothetical single-arm trial and RWD control arm with realistic representation of patient
numbers and survival outcomes. The effect of the unmeasured confounder on the outcome was set at 3.43 (HR),
a magnitude of association which appears plausible based on the strength of prognostic factors often unavailable
in real-world oncology datasets such as the performance status (e.g., Eastern Cooperative Oncology Group) and
tumour stage [6,7]. All patients were right censored after 5 years of follow-up, and an independent censoring
mechanism was assumed over follow-up to achieve a proportion of patients censored between 15 and 25%. This
single dataset of artificial patients was used to investigate the impact of the QBA methods with varying levels of
knowledge of the unmeasured confounder to parameterize the methods (Table 1).

Additionally, the CEM required corresponding and clinically plausible progression-free survival (PFS) data. The
algorithm to simulate the PFS data took a patient-level approach and generated progression events that either
occurred before an OS event or at the same time as the OS event, or alternatively were censored.

Analysis
The Cox model was used to estimate the treatment effect and the parameters of the covariates [8]. The hazard
ratio (HR) of the treatment effect was the outcome of interest and used as an input into the CEM. The measured
confounders were adjusted for in the observed model, and both the measured and unmeasured confounders were
adjusted for in the true model, which served as a reference.

Sensitivity analysis methods for unmeasured confounding
Several QBA methods have been described in the literature. In this study, two QBA approaches were used to adjust
the treatment effect HR under varying assumptions of the unmeasured confounder. The first approach required
patient-level data [9], whereas the second approach adjusted the HR on the aggregate level [10].
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The first approach, described by Huang et al. [9] was work that was extended from Carnegie et al. [11] whereby
an unmeasured confounder is simulated given an estimated marginal probability of the unmeasured confounder,
and sensitivity parameters specified to quantify the assumed association between the unmeasured confounder and
the treatment received, and the log hazard of the outcome. This approach assumes a single binary unmeasured
confounder. The R package survSens was used for implementation with the expectation-maximization (EM)
algorithm method option [9].

The second approach used was introduced by Ding et al. [10] and adjusts the point estimate and corresponding
CI on the aggregate level. The sensitivity assumptions required to adjust the observed treatment effect included an
association between the unmeasured confounder and the outcome, and between the unmeasured confounder and
the treatment. Under the assumption of a rare outcome and a binary unmeasured confounder, a bounding factor
can be defined and used to adjust the estimated treatment effect

Bounding factor =
R REU × H RUT

R REU + H RUT − 1

where RREU is the estimated relative risk (RR) between the exposure (E) and the unmeasured confounder (U), and
HRUT is the estimated HR between the unmeasured confounder and the outcome (T). An outcome is considered
relatively rare when it occurs at a rate <15% by the end of follow-up [12]. However, in this study, the assumption
of a rare outcome will be violated given the nature of the simulated population reflecting a realistic oncology
scenario. To overcome this limitation, the square root transformation was used to estimate an RR from a HR for
a nonrare outcome, then the bounding factor formula defined for RR was used to adjust the estimated treatment
effect [10,12,13].

Three hypothetical scenarios each representing different levels of knowledge of the unmeasured confounder to
parameterize QBA methods were examined. These scenarios are defined in Table 1. The sensitivity parameters used
in each scenario for each approach and resultant adjusted treatment effect estimates are provided in Supplementary
Material Appendix 2 and reflect the assumptions one may make under uncertainty of the true association with
an unmeasured confounder. For each scenario, we define a range of sensitivity parameters to reflect the likely
uncertainty around parameter values one would encounter in real-life application of these methods. Notably,
all parameters are selected to ensure that combinations are statistically feasible [14]. For the good scenario, the
parameters were selected close to the true values with some uncertainty. For the poor scenario, the parameters were
offset from the true parameters with some uncertainty, and the direction of association reflected the true direction
of association. In the incorrect scenario, the parameters were offset to a greater extent from the true parameters
compared with the poor scenario with some uncertainty and includes one parameter with a direction of association
opposite to that of the true association.

Cost–effectiveness model
To illustrate how the application of QBA methods within the context of a CEM can be used to investigate uncertainty
in the model outputs, a stylised CE three-state-partitioned survival analysis (PartSA) model was developed. The
model was loosely based on a real case study of a novel therapy in lung cancer, for which the modelling has been
substantially simplified for the purposes of illustration and therapies under consideration remain anonymised. Full
details of the CEM can be found in Supplementary Material Appendix 3.

For the implementation into the CEM, all unmeasured confounding-adjusted HRs were generated and then
input into the CEM for use in the evaluation of the CE outcomes. Firstly, the ‘true’ (albeit unknown) HR was
estimated using the entirety of the available retrospective data. Then analyses were conducted using a comparison
adjusted for measured confounders of survival from the simulated data, as well as an additional comparison using
the two methods to adjust for assumed unmeasured confounding [9,10].

Both costs and utilities were assigned to three health states (preprogression, progressed disease and death) in the
CEM, representing ongoing care and drug costs, as well as quality of life associated with each health state and
treatment arm.

The outcomes produced by the CE analysis were the mean cost per patient and mean quality-adjusted life-years
(QALYs) gained per patient. Standard composite outcomes such as the incremental cost–effectiveness ratio (ICER)
between the intervention and the comparator, and the net monetary benefit (NMB), were also reported. The latter
uses the costs (C), QALYs (Q) and an incremental CE threshold (λ) to express differences between the intervention
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Figure 1. Kaplan-Meier curves of the simulated population for overall survival and progression-free survival.
RWD: Real-world data; S-AT: Single-arm trial.

and the comparator in a single monetary metric:

NNB = Q × λ − C

Point estimates and 95% credibility intervals were reported for all outcomes estimated by the CEM.
DSA and PSA were conducted to assess the sensitivity of the CEM outcomes to the treatment effect estimate

under various assumptions of unmeasured confounding. For the PSA, a Monte Carlo simulation was conducted in
which all parameter values were sampled from predefined sampling distributions over 30,000 iterations.

Results
The simulated patient-level dataset consisted of 300 patients. Of the 300 patients, there were 109 (36.3%) and 191
(63.7%) in the hypothetical trial and RWD arms, respectively. The simulated number of patients and respective
proportions of treatment allocation represent a realistic scenario in a real-world setting for some oncogene-positive
subgroups.

For OS and PFS, 17% and 10% of patients, respectively, were censored before an outcome was observed. The
Kaplan-Meier curves for both simulated arms of OS and PFS outcome are shown in Figure 1.

For OS, the HR for the true treatment effect (i.e., accounting measured and unmeasured confounders) was
0.53 (0.40–0.70). The observed treatment effect (i.e., adjusted for the two measured confounders but not for the
unmeasured confounder) was HR 0.69 (0.53–0.90). The proportional hazards assumption was tested for OS and
PFS simulated datasets using a Chi-square test on the scaled Schoenfeld residuals. In both cases, the proportional
hazards assumption held. Using the Akaike information criterion and Bayesian information criterion, the Weibull
PH was found to be the best-fitting proportional hazards model to the OS and PFS outcomes when adjusting for
measured confounders only.

The resulting adjusted HRs and their respective CIs after applying the Huang et al. [9] and Ding et al. [10]

approaches are shown in Supplementary Material Appendix 2. In addition, the sensitivity parameters used for all
scenarios (i.e., varying levels of knowledge of the unmeasured confounder) are given in Supplementary Material
Appendix 2. Figure 2 displays boxplots of the median of the adjusted HRs after applying the QBA methods relative
to the observed and true HR. Both methods perform similarly across all scenarios, and as the level of knowledge
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Figure 2. Adjusted hazard ratios. Boxplots of the adjusted HR using the Ding et al. and Huang et al. QBA methods under the varying
levels of knowledge (A) good, (B) poor and (C) incorrect of the unmeasured confounder used to parameterize the methods; the dashed
line is the observed HR, and the solid line is the true HR.
HR: Hazard ratio.

of the unmeasured confounder becomes poorer and hence the parameterization becomes poorer, the estimated
HR moves further from the true treatment effect.

The results of the DSA assessing the treatment effect estimate sensitivity to unmeasured confounding are given
in Figure 3. Under the scenario where assumptions were relatively good regarding the unmeasured confounder, the
absolute percentage reduction in the ICER bias compared with the estimate when unmeasured confounding was
not adjusted for was 73.6% for Huang et al. [9] and 81.0% for Ding et al. [10] using the median of the adjusted point
estimates. Similarly, for the NMB outcome, the absolute percentage reduction in bias was 49.6% and 65.5% using
the Huang et al. [9] and Ding et al. [10] methods, respectively. A further reduction in bias could be achieved if we had
more precise knowledge of the relationships with the unmeasured confounder. When there was poor knowledge
of the unmeasured confounder, the absolute percentage reduction in the ICER bias was 65.8% and 51.9%, and
similarly a reduction in the NMB outcome of 54.5% and 40.2%, using the Huang et al. [9] and Ding et al. [10]

methods, respectively. The parameters used in the incorrect knowledge scenario reflected very poor information on
the unmeasured confounder, including opposite relationships to the true associations, and as a result increased the
bias relative to the unadjusted estimate.

The results from the PSA for the change in costs and QALYs are shown in Figure 4 under all three scenarios
of knowledge about the unmeasured confounder with the solid black line a nominal willingness-to-pay threshold
of €30,000. The CE plane shows that when we have good knowledge of the unmeasured confounder, the samples
generated from the two QBA methods [9,10] shift closer to the true samples, as shown by the marginal distributions
of the change in QALYs in Figure 4A. Similarly, as also shown in the DSA, when incorrect knowledge is used for
parameterization of the QBA methods, the cloud of points generated in the CE plane by the QBA methods are
further from the truth than the unadjusted observed results as indicated by the associated densities (Figure 4C). In
the scenario where only poor knowledge of the unmeasured confounder was available, it resulted in the cloud of
points generated by the two QBA approaches shifting towards the true samples but to a lesser extent than when
good knowledge was available (Figure 4B). An additional representation of the results that estimates the proportion
of iterations leading to potential misallocation of resources is given in Supplementary Material Appendix 4.
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Figure 3. Results from the deterministic sensitivity analysis. (A1, B1 & C1) show the difference in GBP from the true
ICER to the median of the adjusted point estimates as estimated by the Huang et al. and the Ding et al. methods with
good, poor and incorrect knowledge of the unmeasured confounder, respectively, and the dashed line represents the
observed or unadjusted estimate, (A2, B2 & C2) represent the difference in GBP from the true NMB estimated by the
Huang et al. and the Ding et al. methods with good, poor and incorrect knowledge of the unmeasured confounder,
respectively, and the dashed line represents the observed or unadjusted estimate. Huang et al. [9] requires individual
patient-level data, whereas Ding et al. [10] requires aggregate data.
GBP: British pound sterling; ICER: Incremental cost–effectiveness ratio; NMB: Net monetary benefit.

Discussion
Confounding is a concern in all NRS and continues to discourage HTA agencies from utilising nonrandomized
evidence presented in submissions to inform treatment effectiveness. Although methodological and practical
guidelines on QBA methods are widely available in causal inference literature [3,15], these have not yet permeated
HTA practice. This study simulated survival data that is considered plausible in the context of previous studies [16,17]

to illustrated how to incorporate the results of QBA methods into the DSA and/or PSA of a CEM to investigate
the impact of biases due to unmeasured confounding in NRS. In addition, this article illustrates that the usefulness
of these QBA methods may depend on the quality of the data available to parameterize them. Although the focus in
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this study was to apply QBA approaches to demonstrate a reduction in bias, in the HTA setting an understanding
of the direction of bias is also potentially useful.

Health technology evaluation varies by jurisdiction. In many jurisdictions, a CE approach is followed where
health benefits are compared with additional costs: the approach followed by NICE in England and Wales is one
such example. The purpose of CEMs is to evaluate the change in cost and outcomes arising from an intervention.
These models are developed in a systematic and transparent way to assist in decision making. Since most CEMs
are informed by multiple data sources and assumptions and are subject to uncertainty, a crucial component in
assessing the CE of an intervention is to conduct sensitivity analyses to characterise uncertainty around the input
parameters [18]. We have proposed in this study that QBA methods assessing the sensitivity of the treatment effect
to unmeasured confounding could also be incorporated into the existing framework of CEM with some natural
extensions to the commonly used approaches to sensitivity analyses. By incorporating QBA methods into existing
CEM frameworks, it will increase the likelihood of their use and reduce the burden of developing de novo approaches
to presenting sensitivity analysis results.

Although QBA methods present a useful tool to assess the sensitivity of both clinical and CE results, there are
several factors to consider when applying these methods. One key consideration is the parameterization of the
methods, such as defining the values of the sensitivity parameters. Ideally, data for this would be sourced from
internal or high-quality external datasets, in which case one might expect to obtain relatively accurate estimates to
parameterize the model. Where such data is not available, lower-quality external data or formal expert elicitation
methods may be used; however, these would be expected to produce commensurately less accurate estimates of
the sensitivity parameters. This study demonstrated that QBA methods reduced the bias of CE results where there
was relatively good knowledge and, to an extent, poor knowledge regarding the unmeasured confounder. In the
incorrect knowledge scenario, the simulation study used parameters that in no way reflected the true associations
of the unmeasured confounder to highlight that reasonable parameterization of these methods is key to obtaining
plausible results. In fact, when there is very poor knowledge of an unmeasured confounder, the application of
the QBA methods could inflate the existing bias. As such, the study supports the use of these methods in this
setting when relatively good data is available to inform parameterization of the QBA but raises questions regarding
the application of these methods when data on the confounders is limited. In cases where estimates are expected
to be inaccurate, one could account for this by widening the range of parameters to cover a broader range of
possible scenarios, thereby adding this uncertainty into the CEM results. Further, an alternative implementation
of QBA may be pursued in such cases, under which one implements a scenario analysis which identifies the
amount of unmeasured confounding that would be required to alter the results of the CEM by a meaningful extent
(e.g., move the ICER above a specified threshold) and then consider whether this level of confounding is plausible.
For transparency and to avoid investigator bias, it is important to prespecify in a protocol and statistical analysis
plan the QBA and parameterization approach.

Other aspects of QBA, beyond the parameterization of the methods, that should be considered include the
availability of methods for the outcome effect measure of interest (e.g., odds ratio, HR, RR) and how the treatment
effect evidence is synthesised. Further discussion of these considerations is given in a companion paper [2]. Notably,
although this study explored the impact of unmeasured confounding in a CE setting and the use of QBA to adjust
for such confounding, there are other biases, such as misclassification, that may impact the results of NRS and that
should be considered. Additional sources of bias relevant to the CE setting are related to key CE inputs such as
costs and utility values. However, the focus of this article is to highlight how the impact of bias on efficacy estimates
affects the CE results and therefore to study the effect of this source of bias in isolation; other sources of bias were
not considered in the CE analysis. In practice, one would ideally first identify all potential sources of bias and
their assumed causal relationships and seek to address as many as possible through the choice of appropriate data
source(s), study design(s) and analyses. One should then determine a suitable QBA approach to account for any
remaining biases that might be expected to have a meaningful impact on the results [19]. Ideally, a holistic approach
to incorporating all potential sources of bias, including both measured and unmeasured confounding, should be
utilised with a CEM; however, exploration of such an approach was beyond the scope of this study.

This study utilised a three-state partitioned survival CEM which is commonly used in oncology and other
disease areas. A limitation of PartSA models is that the modelled survival end points are structurally independent,
with potential implications for the extrapolation of these outcomes. Therefore, the results of this study may not
be generalisable to other modelling frameworks such as state transition models. Further work is required to assess
the generalizability of the results of this study in other CEM frameworks, such as state transition models that
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model explicitly the natural history of a disease and treatment effects, as well as the assumptions underpinning
extrapolations of outcomes beyond the clinical study follow-up period. Additionally, the QBA methods employed
in this study assumed a single binary unmeasured confounder; there are other approaches in the literature for
nonbinary and multiple unmeasured confounders [2]. Further, the scenarios regarding the level of knowledge of the
unmeasured confounder were selected for demonstration; in practice, one would not typically know how good one’s
assumptions are to inform the parameterization of the methods, and therefore careful consideration of the available
data on a case-by-case basis is required. In addition, if the interest lies in outcomes other than survival outcomes,
such as linear models with continuous outcomes, one could consider those methods described by Oster [20] and
Cinelli and Hazlett [21].

Current guidance from HTA agencies regarding the use of QBA methods is limited, and further support from
HTA agencies is needed to ensure alignment on best practices when utilising nonrandomized sources of data to
inform the estimation of treatment effects. This includes guidance on the acceptable methods, their integration
within CE models (where relevant) and the process of prespecifying the sensitivity parameters. NICE, for example,
has developed the QuEENS checklist to assess the quality of effectiveness estimates generated from NRS [22];
however, guidance with respect to unmeasured confounding is limited. Development of such guidelines would
aid users in the practical application and interpretation of these methods. Further methodological work will also
help further this discussion, and although we have utilised simulated data here, future work might use real-world
examples in which RCT data has been used in a CEM to inform a HTA decision and assess whether a similar
conclusion could have been obtained using an external nonrandomized comparator arm, with and without the use
of QBA.

Conclusion
This article illustrates how QBA methods can provide useful tools, when applied sensibly, to help improve the
robustness of treatment effects derived from NRS. The usefulness of such an endeavour will crucially depend
on the appropriateness and plausibility of the quality of the evidence used to inform the sensitivity parameters.
The application of such approaches in the HTA setting can provide decision makers with a more transparent
understanding of the impact of unmeasured confounding on the HTA decision. The inclusion of QBA methods
within a CEM is a natural extension to the existing CEM framework for assessing the sensitivity of results through
both DSA and PSA. The integration of QBA methods into CEM can improve the robustness and interpretation
of the results from a CEM in light of likely unmeasured confounding when using RWD. Further methodological
guidance QBA methods in HTA and their application to real-world HTA case studies are needed.

Summary points

• The application of quantitative bias analysis (QBA) methods to adjust the treatment effect estimate from
nonrandomized studies can reduce the biases in cost–effectiveness results due to unmeasured confounding.

• The definition of the sensitivity parameters and the quality of the available information to inform these need to
be considered prior to the application of QBA methods.

• Further guidance from health technology assessment agencies on the best practices to account for unmeasured
confounding is needed.
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