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Abstract

Taenia solium is an important cause of acquired epilepsy worldwide and remains endemic

in Asia, Africa, and Latin America. Transmission of this parasite is still poorly understood

despite the design of infection experiments to improve our knowledge of the disease, with

estimates for critical epidemiological parameters, such as the probability of human-to-pig

infection after exposure to eggs, still lacking. In this paper, a systematic review was carried

out and eight pig infection experiments were analyzed to describe the probability of develop-

ing cysts. These experiments included different pathways of inoculation: with ingestion of

proglottids, eggs, and beetles that ingested eggs, and direct injection of activated onco-

spheres into the carotid artery. In these experiments, different infective doses were used,

and the numbers of viable and degenerated cysts in the body and brain of each pig were

registered. Five alternative dose-response models (exponential, logistic, log-logistic, and

exact and approximate beta-Poisson) were assessed for their accuracy in describing the

observed probabilities of cyst development as a function of the inoculation dose. Dose-

response models were developed separately for the presence of three types of cysts (any,

viable only, and cysts in the brain) and considered for each of the four inoculation methods

(“Proglottids”, “Eggs”, “Beetles” and “Carotid”). The exact beta-Poisson model best fit the

data for the three types of cysts and all relevant exposure pathways. However, observations

for some exposure pathways were too scarce to reliably define a dose-response curve with

any model. A wide enough range of doses and sufficient sample sizes was only found for

the “Eggs” pathway and a merged “Oral” pathway combining the “Proglottids”, “Eggs” and

“Beetles” pathways. Estimated parameter values from this model suggest that a low infec-

tive dose is sufficient to result in a 50% probability for the development of any cyst or for
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viable cyst infections. Although this is a preliminary model reliant on a limited dataset, the

parameters described in this manuscript should contribute to the design of future experi-

mental infections related to T. solium transmission, as well as the parameterization of simu-

lation models of transmission aimed at informing control.

Introduction

Neurocysticercosis (NCC) is a common parasitic disease affecting the human central nervous

system (CNS) and a leading cause of acquired epilepsy in endemic areas [1, 2]. The disease is

caused by the larval stage of Taenia solium and is endemic in Latin American, African and

Asian [3] countries where the presence of common risk factors, such as free-roaming pigs and

poor sanitation, leads to high levels of disease transmission [1, 4]. The Foodborne Disease Bur-

den Epidemiology Reference Group (FERG) under the World Health Organization (WHO)

estimated that approximately 2.8 million disability-adjusted life years (DALYs) were lost glob-

ally in 2010 due to NCC [5] with heavy economic consequences such as an annual median loss

of US $ 185.14 million in India, as estimated in 2011 [6]. T. solium also causes economic losses

to the pig industry through decreased market value of infected pigs [2, 7–9].

The life cycle of T. solium involves humans as the only definitive host of the intestinal adult

tapeworm and pigs as the intermediate host of the larval form or cysticercus [10]. Humans

develop taeniasis by ingestion of undercooked pork infected with cysticerci [11], which then

develop into adult tapeworms in the small intestine, releasing eggs or gravid proglottids in

feces [12, 13]. In areas with inadequate sanitation and disposal of human feces, pigs ingest

T. solium eggs/proglottids in human feces or in the surrounding contaminated environment

and develop cysticerci mainly in muscles and subcutaneous tissue [2, 14, 15]. Humans can also

serve as intermediate hosts through accidental ingestion of T. solium eggs released by a human

tapeworm carrier [16]. The cysticerci can lodge anywhere in the human body leading to

human cysticercosis [17]. When cysticerci establish in the CNS, the disease is called NCC and

can manifest with seizures and other neurological symptoms [18].

The T. solium taeniasis/cysticercosis complex was determined to be eradicable by the Task

Force for Disease Eradication (in 1992) [19] and was included under the WHO’s “Global Plan

to Combat Neglected Tropical Diseases (2008–2015)” [20]. The 2012 WHO roadmap for

neglected tropical diseases established the following goals [21]: availability of a validated strat-

egy for control and elimination of T. solium taeniasis/cysticercosis by 2015, and scaling up of

interventions in selected countries by 2020. Since then, various control interventions have

been developed in order to control or eliminate the disease [16, 22] and T. solium transmission

models were also developed to evaluate the relative cost-effectiveness of these strategies [23–

29]. However, development of these models is hampered by persistent limitations in the

understanding of fundamental processes of transmission, such as the probability of human-to-

pig infection upon exposure to eggs. In order to fill this gap, we carried out a systematic review

of experimental pig infections, considering both published and unpublished studies. This

review was used to develop a dose-response model with the purpose of estimating the proba-

bility of infection by porcine cysticercosis in experimental settings [30–36]. Fitting the results

of these studies to a dose-response model provides a basis for translating exposure to T. solium
eggs into a probability of infection.
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of the dose-response analysis can be found in the
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Methods

A systematic literature search on experimental infections of pigs with T. solium cysticercosis

was conducted using indexed literature. In order to have comparable data, this search focused

on articles in which the experimental inoculation was carried out through any the following

approaches: 1) direct ingestion of gravid proglottids (“Proglottid”) [30, 31], 2) inoculation, via

an endoesophageal tube, of eggs placed in a gelatin capsule (“Eggs”) [30, 32, 36], 3) direct

ingestion of dung beetles previously fed with eggs (“Beetles”) [33, 34], and/or 4) inoculation of

activated oncospheres (AO) via catheterization of the common carotid artery (“Carotid”) [35].

These procedures are described in more detail in Table 1. Selection was restricted to these

pathways of inoculation because a systemic infection results from a single infective dose

expressed in a known quantity of T. solium eggs or another unit of easy standardization.

Regarding the characteristics of experimentally infected pigs, only studies in which the pigs

involved had received no treatment before and after inoculation were included. Furthermore,

the pigs had to be between 1 and 2 months old, purchased from cysticercosis-free farms, and

previously confirmed as negative for T. solium antibodies by enzyme-linked immunoelectro

transfer blot (EITB) assay. After a sufficient period allowing for cysts to grow and become

identifiable through macroscopic methods, all pigs must have been humanely euthanized and

a detailed necropsy of the whole carcass implemented to determine the number of cysts they

harbored (total, viable, and brain cysts). Language restrictions were applied, excluding articles

written in a language other than those spoken or understood by the authors of this systematic

review. The included languages were English, Spanish, French and Italian.

The selected database for this study was PubMed (https://pubmed.ncbi.nlm.nih.gov/) and

the search was performed from December 1st 2020 until December 31st 2020.

Search

The following search strategy was applied: In PubMed, using the Boolean operators “AND”

and “OR”, the terms “porcine cysticercosis”, “porcine neurocysticercosis”, “Taenia solium”,

“experimental infection” and “infection model” were introduced in the main search bar as

(((porcine cysticercosis) OR (porcine neurocysticercosis)) AND (taenia solium)) AND

((experimental infection) OR (infection model)). Additionally, thesis research and

Table 1. Exposure pathways used in published experimental cysticercosis infection studies.

Ref. Exposure

pathways

Description

[30, 31] Proglottids The animals were trained to eat banana and honey balls. The required amount of

gravid proglottids was then placed in such a ball and given to the pigs.

[30, 32] Eggs The required number of eggs was transferred into a gelatin capsule. Pigs were sedated

and the capsules were introduced via an endoesophageal tube with 50–250 ml of

support liquid.

[33, 34] Beetles Beetles of the Ammophorus rubripes species were fed cattle feces containing eggs three

days before pig infection. Pigs were trained to eat banana pieces over a 3-day period.

The required number of beetles was then placed in a banana piece and given to the

pigs.

[35] Carotid T. solium eggs were exposed for 10 minutes to 0.75% sodium hypochlorite at 4˚C to

provoke hatching and oncosphere release. The oncospheres were then activated using

artificial intestinal fluid at 37˚C for 1 hour. Finally, pigs were anesthetized and

inoculated with the required number of activated oncospheres via catheterization of

the common carotid artery using the Seldinger technique and an ultrasound device

with a vascular probe.

https://doi.org/10.1371/journal.pone.0264898.t001
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unpublished data from the Cysticercosis Working Group in Peru that were not found with this

search strategy but matched the selection criteria after manual search were also included.

Study selection

The articles were selected in two phases. The first phase consisted in the exclusion of articles

based on a review of the title and/or abstract using the following exclusion criteria: 1) Studies

that have not performed experimental infections, 2) Studies that performed experimental

infections in other animal species, 3) Studies that performed experimental infections with

other parasite species. In the second phase, full texts were read and studies selected according

to the following selection criteria: 1) Availability of a detailed record of the cyst count (total,

viable, and brain cysts), 2) Studies which performed experimental infections through any of

the four exposure pathways previously mentioned, 3) Studies which performed a detailed nec-

ropsy of the whole animal carcass, 4) Studies with pigs meeting the criteria previously

mentioned.

Data collection

The data found in each selected paper were introduced in a database containing the following

information: Author(s), year of publication, exposure pathway, identification of the animal,

dose of the inoculum, number of viable cysts found in the carcass, number of degenerated

cysts found in the carcass, total number of cysts found in the carcass, total number of cysts

found in the brain.

Standardization of dose units

In order to compare the different exposure pathways, all dose units were standardized to be

expressed in eggs. In the studies that used proglottids, the infective dose for each proglottid

was estimated by sampling with replacement a randomly-generated database composed of

10,000 observations following a discrete uniform distribution between 30,000–50,000 eggs for

a full proglottid [13], and then linearly scaled for ½ and ¼ of a proglottid. For the “Beetles”

pathway, we used the database composed by experimentally infected beetles with T. solium
eggs from Gomez-Puerta et al. [37] to estimate the dose for each beetle by sampling with

replacement. The database comprises 35 beetles, with a median of 21 eggs, a range of 3 to 235

eggs per beetle, and a right-skewed distribution (negative binomial distribution). Once the

doses were expressed in T. solium eggs, the mean and standard deviation were calculated for

each unique dose group for both the “Proglottids” and “Beetles” pathways. Studies using eggs

placed in a gelatin capsule and carotid injection of oncospheres were assumed to be expressed

in eggs. The standardized dose units for each exposure pathway are listed in S1 Table.

Dose-response analysis

The dose-response analysis of the data was performed using R version 4.1.1 [38]. Five models

of the way the probability of infection (Pinf) with any, viable or brain cysts varies as a function

of the infective dose, in eggs (D), were evaluated for each exposure pathway. These include

two-parameter log-logistic regression, logistic regression, the exponential model, and approxi-

mate and exact beta-Poisson models. These models were considered because their functions

can accept a large range of doses (D) and are bound between 0 and 1, yielding a proportion

(i.e., probability), which makes them ideal for binomial responses. Each dose-response model

is briefly described below.
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Two-parameter log-logistic regression. This model has two parameters: the slope of the

curve (βslope) and the median infective dose (βID50) (see Eq 1), which were estimated by maxi-

mum likelihood estimation (MLE) using the package ‘drc’ developed by Ritz and Streibig [39].

Pinf Dð Þ ¼
1

1þ exp bslope loge Dð Þ � loge bID50ð Þ½ �
n o ð1Þ

Logistic regression. This model has two parameters: the intercept (β0) and the slope of

the curve (βslope) (see Eq 2). These parameters were estimated by MLE using the package ‘stats’

developed by the R Core Team [38, 40, 41].

Pinf Dð Þ ¼
1

1þ exp � β0 þ βslope � D
� �h i ð2Þ

Exponential model. This model has one parameter: the probability of at least one patho-

gen surviving the chain of barriers and causing an infection from any quantity of ingested

pathogens (r) [42, 43] (see Eq 3). The parameter was estimated by non-linear least squares

approximation using the package ‘stats’ developed by the R Core Team [38].

Pinf Dð Þ ¼ 1 � exp � r � Dð Þ ð3Þ

This model, as well as the beta-Poisson models described below, makes the following three

assumptions [44]: only one viable organism is required to produce the infection process, the

exact number of organisms inoculated in each dose follows a Poisson distribution, and the sur-

vival of any organism in a single host is independent from the survival of other organisms in

that host.

Exact beta-Poisson. Beta-Poisson models are a generalization of the exponential model

and use the same three assumptions [44] described in the prior paragraph. Additionally, the

exact beta-Poisson model incorporates heterogeneity in host-pathogen interactions by allow-

ing for the probability of surviving the chain of barriers to infection to follow a Beta distribu-

tion of parameters alpha (α) and beta (β) with the Kummer confluent hypergeometric

function defined as 1F1(.,.,.) seen in Eq 4 [42, 43, 45]. The parameters were estimated following

Xie et al.’s approach [45], which consisted in estimating the parameters by MLE and using

them as prior information to generate, by a bootstrap algorithm of 5000 iterations, a sample-

size-dependent confidence interval for each parameter in the model.

Pinf Dð Þ ¼ 1� 1F1 a; aþ b; � Dð Þ ð4Þ

Approximate beta-Poisson. This model was derived using the approach in Furumoto

and Mickey [46]. This approximation is used due to the mathematical complexity and diffi-

culty in parameter estimation of the exact beta-Poisson model by transforming parameter beta

(β) into a scale parameter (see Eq 5) [42, 45]. However, this approximation is only valid when

two premises are fulfilled: β » 1, and α « β [42]. The parameters of this model, as for the exact

beta-Poisson, were estimated following Xie et al.’s work [45].

Pinf Dð Þ ¼ 1 � 1þ
D
b

� �� a

ð5Þ

Whether the different types of dose-response models could be used to produce a dose-
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response curve fitting relevant exposure pathways was first assessed by visual checking (for all

models) then by estimating the value of model parameters. While this was done for all models,

more attention was paid to estimating the parameters for models that, visually, seemed to have

a chance of providing a good fit for the data. Subsequently, each dose-response curve was ana-

lyzed through the calculation of both the residual sum of squared errors of prediction (SSE)

and the coefficient of determination (R2) to determine the type of model that best fits the data.

For both beta-Poisson models, only the median probability of infection resulting in the poste-

rior distribution was considered and compared to observed data to develop these calculations.

Using the best-fitted model, we estimated the doses required to produce a probability of infec-

tion of 1% (ID01) and 50% (ID50) for the development of any, viable only, and brain cysts

according to the exposure pathways.

Finally, the data from all three oral exposure pathways (i.e., “Proglottids”, “Eggs” and “Bee-

tles”) were analyzed together to build a single “Oral” pathway with the purpose of obtaining a

more robust model with a wider range of observations reflecting the plausible natural infection

pathways of the disease. The resulting “Oral” pathway was analyzed using the best-fitted type

of dose-response model.

Results

Study selection

The review process and the number of articles selected at each stage of the review is shown in

Fig 1. From an initial number of 166 articles, only 8 studies that performed experimental

Fig 1. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and

other sources. �Consider, if feasible to do so, reporting the number of records identified from each database or register

searched (rather than the total number across all databases/registers). ��If automation tools were used, indicate how

many records were excluded by a human and how many were excluded by automation tools. From: Page MJ,

McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated

guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit:

http://www.prisma-statement.org/.

https://doi.org/10.1371/journal.pone.0264898.g001
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infections were included in this review (including the unpublished study): 2 studies using the

“Proglottid” pathway [30, 31], 4 studies using the “Eggs” pathway [30, 32, 36], 3 studies using

the “Beetles” pathway [33, 34], and 2 studies using the “Carotid” pathway [35].

After combining the data from all studies, the combined sample includes a total of 177 pigs

divided in 20 unique dose groups (including control groups). The dose groups are listed in

Table 2 with information on the exposure pathway used for inoculation, number of exposed

pigs, and number of infected pigs with any cyst (at least one viable and/or degenerated cyst in

the whole carcass), with viable cysts (at least one viable cyst in the whole carcass) and with

brain cysts (at least one viable and/or degenerated cyst in the brain). A table listing the dose

groups with their respective reference (both published and unpublished studies) can be found

in S2 Table.

All studies obtained gravid T. solium proglottids from taeniasis patients after treatment

with 2g of niclosamide, most preserved them in a saline solution with antibiotics at a tempera-

ture between 4–5˚C until needed for infection [30–36], except for the study by Gomez-Puerta

et al. [33] which preserved the gravid proglottids in 25% glycerol supplemented with antibiot-

ics. Additionally, the collection of T. solium eggs from the proglottids were performed by gen-

tle homogenization [30, 35], maceration [32, 36] and direct mixing with cattle feces [33, 34]. A

more detailed description of the experimental designs is available in the publications refer-

enced in Table 1.

The unpublished study conducted by the Cysticercosis Working Group in Peru included in

this paper was reviewed and approved by the Institutional Ethics Committee for the Use of

Table 2. Cysticercosis challenge data by exposure pathway.

Exposure pathway Inoculum dose Exposed pigs Infected pigs with any cyst Infected pigs with viable cysts Infected pigs with brain cysts

Proglottids 0 proglottids 3 0 (0%) 0 (0%) 0 (0%)

¼ proglottid 8 8 (100%) 7 (87.5%) 1 (12.5%)

½ proglottid 8 7 (87.5%) 5 (62.5%) 3 (37.5%)

1 proglottid 30 (14)a 28 (93.3%) 27 (90%) 7 (50%)

Eggs 0 eggs 7 0 (0%) 0 (0%) 0 (0%)

10 eggs 4 3 (75%) 1 (25%) 0 (0%)

100 eggs 9 6 (66.7%) 2 (22.2%) 0 (0%)

1000 eggs 11 10 (90.9%) 3 (27.3%) 0 (0%)

10000 eggs 9 9 (100%) 9 (100%) 2 (22.2%)

20000 eggs 5 5 (100%) 5 (100%) 4 (80%)

100000 eggs 5 5 (100%) 5 (100%) 3 (60%)

Beetles 1 beetle 6 5 (83.3%) 4 (66.7%) 1 (16.7%)

3 beetles 6 6 (100%) 6 (100%) 1 (16.7%)

4 beetles 8 6 (75%) 2 (25%) 0 (0%)

6 beetles 30 24 (80%) 23 (76.7%) 2 (6.7%)

Carotid 2500 AO 5 5 (100%) 5 (100%) 3 (60%)

5000 AO 6 6 (100%) 6 (100%) 6 (100%)

10000 AO 11 9 (81.8%) 9 (81.8%) 7 (63.6%)

45000 AO 1 1 (100%) 1 (100%) 1 (100%)

50000 AO 5 5 (100%) 5 (100%) 4 (80%)

Proglottids: direct ingestion of gravid proglottids; Eggs: inoculation via an endoesophageal tube of eggs placed in a gelatin capsule; Beetles: direct ingestion of beetles

previously fed with eggs; Carotid: inoculation of activated oncospheres via catheterization of the common carotid artery; AO: activated oncospheres.
a Brain cyst counts were only available for 14 pigs.

https://doi.org/10.1371/journal.pone.0264898.t002
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Animals (Comite de Ética y Bienestar Animal (CEBA)) at the School of Veterinary Medicine,

Universidad Nacional Mayor de San Marcos (protocol no. 2009–003, 2010–012, and 2012–

004), and by the Institutional Ethics Committee for the Use of Animals (Comité Institucional

de Ética para el Uso de Animales (CIEA)) at the Universidad Peruana Cayetano Heredia (pro-

tocol no. A5146-01), both located in Lima, Peru.

Even before proceeding to a formal dose-response analysis, we see that there is a lack of a

visible trend in the way the share of infected pigs evolves with the doses available for the “Bee-

tles” and “Carotid” pathways, as well as for the “Proglottids” pathway except possibly for the

development of brain cysts. The low size of available pig samples and limited range in doses

likely explain these results. Hence, we focused our analysis on the “Eggs” pathway as well as on

the combined “Oral” pathway (eggs + proglottids + beetles), which groups information from

the three pathways that most closely mimic wild-type infection routes. The combined pathway

uses more data points hence it is hoped it can allow for more robust estimations.

Dose-response analysis

The R scripts to reproduce the results of the dose-response analysis can be found in the follow-

ing repository in GitHub: https://github.com/dandradem/cysticercosis- -dose-response.

Among all models assessed, the exact beta-Poisson was found to fit the data with the greatest

precision using the least squares method and the coefficient of determination (R2) (see S1

Appendix), and its parameters are presented in this section while the results of the other types

of dose-response models can be found in S2–S5 Appendices. Further, as explained earlier, the

number of data points available in the literature has often proven insufficient to develop a

model, and only the “Eggs” and the “Oral” pathways allowed for the development of dose-

response models. The MLEs for the parameters of these curves are presented in Table 3, while

the results for the other exposure pathways are shown in S6 Appendix. Moreover, with the

approximate beta-Poisson model, we found parameters similar to those of the exact beta-Pois-

son model, but they did not fulfill the premises previously mentioned (β » 1 and α « β) in most

of the dose-response curves and presented misleading results at the beginning of the curve as

shown in S5 Appendix.

For the development of any type of cyst through these exposure pathways, the doses

required to achieve 50% and 80% probabilities of infection are low: lower than 10 and 100 T.

solium eggs respectively (see Table 4). Higher doses are necessary to obtain both viable and

brain cysts using these pathways (Figs 2 and 3). This pattern is confirmed by the doses required

Table 3. MLEs for the parameters of the exact beta-Poisson model.

Exposure pathway α β

Development of any (viable or degenerated) cyst

Oral 0.227 0.286

Eggs 0.371 1.41

Development of viable cysts

Oral 0.213 2.70

Eggs 0.792 500.00

Development of brain cysts

Oral 0.119 303.15

Eggs 0.136 500.00

α: parameter alpha; β: parameter beta; Oral: oral inoculation; Eggs: inoculation via an endoesophageal tube of eggs

placed in a gelatin capsule.

https://doi.org/10.1371/journal.pone.0264898.t003
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Table 4. Estimated doses necessary to cause a 1% and 50% probability (median and 95% range) for the develop-

ment of any, viable and brain cysts, by exposure pathway.

Exposure pathway ID01 ID50

Dose of eggs required for the development of any (viable or degenerated) cyst

Oral 0.024 (0.012–0.123) 2.78 (0.954–19.63)

Eggs 0.056 (0.011–0.497) 8.49 (0.830–49.77)

Dose of eggs required for the development of viable cysts

Oral 0.149 (0.027–0.658) 59.94 (5.85–183.07)

Eggs 7.39 (1.51–24.77) 739.07 (253.53–1963.04)

Dose of eggs required for the development of brain cysts

Oral 28.48 (6.42–166.81) 9.33 x 105 (1.59 x 104–1.79 x 107)

Eggs 43.29 (2.42–422.92) 6.42 x 104 (8697.49–4.75 x 109)

ID01: estimated dose to cause produce a probability of infection of 1%; ID50: estimated dose to cause produce a

probability of infection of 50%; Oral: oral inoculation; Eggs: inoculation via an endoesophageal tube of eggs placed in

a gelatin capsule.

https://doi.org/10.1371/journal.pone.0264898.t004

Fig 2. Exact beta-Poisson dose-response relationship for the “Oral” pathway by type of cyst. Each graph shows the

median (solid black curve) and 95% range (dashed black curves) of the probability of infection as a function of dose,

median ID50 infectious dose (dashed black vertical line), and the available data point with its standard deviation

(“Proglottids” and “Beetles” pathways only). (A) Development of any (viable or degenerated) cyst. (B) Development of

viable cysts. (C) Development of brain cysts.

https://doi.org/10.1371/journal.pone.0264898.g002
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to cause a 1% and 50% probability of infection presented in Table 4. The development of viable

cysts required doses above 50 eggs to achieve a 50% probability of infection, while the doses

required to obtain brain cysts with the same probability were greater than 60000 eggs

(Table 4). Finally, please note that some of the computations give infective doses below one

egg. What a fractional dose of 0.056 eggs to reach ID01 means is that giving one egg to each

pig in a sample would lead to an expected share of infected pigs higher than one percent. To

infect 10 pigs out of a sample of 1000 (share of 1%), for example, one may need to give one egg

to 56 pigs and none to the other 944 pigs.

Discussion

We analyzed several dose-response models in order to estimate the probability of infection

according to the dose of T. solium eggs given to pigs through different exposure pathways. Due

to the limited range of doses used in the experimental infection collected through the system-

atic review, we could not estimate a dose-response model for all the exposure pathways. We

Fig 3. Exact beta-Poisson dose-response relationship for the “Eggs” pathway by type of cyst. Each graph shows the

median (solid black curve) and 95% range (dashed black curves) of the probability of infection as a function of dose,

median ID50 infectious dose (dashed black vertical line), and the available data point. (A) Development of any (viable

or degenerated) cyst. (B) Development of viable cysts. (C) Development of brain cysts.

https://doi.org/10.1371/journal.pone.0264898.g003
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were successful only using the “Oral” pathway and the “Eggs” pathway. A dose-response rela-

tionship was best fitted for these exposure pathways using the exact beta-Poisson model. This

model has a maximum risk curve which limits the upper confidence level through the inclu-

sion of the Kummer confluent hypergeometric function, which also takes into account the het-

erogeneity of the host-pathogen interaction (Eq 4) [42, 43, 47], and thus is widely used for risk

analysis to estimate the probability of infection by diseases caused by viruses, bacteria and

other macro parasites [42]. This model also described the observed experimental data with bet-

ter precision. On the other hand, the approximate beta-Poisson model has a scalable relation

by its parameter β (Eq 5), and therefore lacks a maximum risk curve. As a consequence, it can

produce misleading results when the premises for its validation are not fulfilled (S5 Appendix)

[42].

To be comprehensive, results for the "Proglottids", "Beetles" and "Carotid" pathways are pre-

sented in S6 Appendix. However, because of the low number of studies using low doses, proper

dose-response curves could not be developed for these pathways: a striking example is the

“Carotid” pathway which leads to infections in all pigs in the sample for almost all doses avail-

able. Another issue regarding the development of dose response curves is when the probability

of infection is below 100% at high doses, corresponding to an immunity plateau and an overes-

timation of the probability of infection at low doses (S6 Appendix) [48]. Consequently, the

inclusion of an immune parameter in the exact beta-Poisson function is highly recommended

for future dose-response analysis to obtain best-fitted models. As compared to the other path-

ways, the “Eggs” pathway was informed by a broader range of experimental data, including a

number of experiments with small doses of eggs, with 10 eggs leading to successful infection in

some but not all of the pigs. This resulted in a flattening of the slope of the curve at the lowest

estimated doses as compared to what could have been obtained with other pathways. Besides,

this pathway presented observed data with probabilities of infection for the development of

both any and viable cysts equal to 100% at high doses. Therefore, we believe that the dose-

response curve developed for the “Eggs” pathway can estimate the probability of infection at

lower doses in a reasonably realistic way as compared to other pathways, even without the

inclusion of additional parameters. We also note that, even as the data available do not allow

for the development of dose-response curves for pathways other than “Eggs”, data available

suggests that curves would be displaced to the right when considering viable cysts, with the

exception of the "Carotid" pathway, for which the probability of infection was extremely high

for both all and viable cysts (S6 Appendix).

Two-parameter log-logistic regression, logistic regression and the exponential model were

also assessed. They could not be fitted to the “Proglottids”, “Beetles” and “Carotid” pathways,

due to the limited information in the dataset and the magnitudes of the doses used in the stud-

ies. The exponential model had the best performance during the evaluation of these models

overall (S2–S4 Appendices). With the purpose of improving the fit to the data, logistic regres-

sion was also evaluated assuming a negative control group, with a zero dose and zero probabil-

ity of infection, composed of 15 animals (S3 Appendix). This assumption was useful because

this model does not consider a probability of infection of 0% when an infectious dose is not

administered [41]. However, the resulting model still did not fit the data appropriately, show-

ing that it is not suitable to describe the probability of infection by porcine cysticercosis.

We chose to merge the “Eggs”, “Beetles” and “Proglottids” pathways into a combined

“Oral” pathway. The aim was to obtain a more robust dose-response relationship, as most of

these pathways have limited dose ranges that are in distinct ranges, e.g., in the 10,000s for “Pro-

glottids” and the hundreds for “Beetles”, and between ten and 100,000 for “Eggs”, making fit-

ting a dose-response model accurately with only one of these pathways challenging. These

three exposure pathways provide parameters that are similar. Further, they all involve the
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digestive system, which the “Carotid” pathway bypasses. The “Oral” pathway is likely the clos-

est to the wild-type exposure pathway for T. solium cysticercosis in pigs (ingestion of feces

with proglottids and/or eggs, and possibly isolated eggs and/or insects) [2].

Most pigs in natural endemic conditions are infected with less than ten cysts [16], while few

eggs are enough to infect many pigs in our dose-response model. These findings suggest that

other pathways rather than ingestion of gravid proglottids may play a role in the dynamics of

the disease and it would be useful to study other sources of eggs such as the soil, water, or vec-

tors with eggs [15, 49]. Considering the possible importance of low doses of eggs in pig infec-

tion, novel methods with a limit of detection of 200 eggs per 200 g (1 egg per gram of sample

(EPG)) validated by Gamboa et al. [50], and the Droplet Digital PCR with a limit of 10 eggs

per 5 g (2 EPG) [51], would be recommended to evaluate T. solium eggs in the environment.

Several studies have demonstrated the capability of arthropods such as flies, dung beetles

and blowflies, to transmit taeniid tapeworm eggs [33, 52, 53]. In the case of T. solium, the

potential of dung beetles in the transmission of T. solium eggs has been evaluated in multiple

studies [33, 34, 37]. However, these studies only used beetles previously fed with eggs in vitro
and thus transmission in the environment with dung beetles carrying eggs in natural condi-

tions has yet to be described. Furthermore, Gonzalez et al. has proposed another secondary

transmission mechanism suggesting that pigs ingesting a gravid proglottid may spread the

eggs in the environment through their feces, infecting other animals in the herd [54]. If this is

true, spontaneous expulsion of the whole tapeworm by a carrier in the interval between diag-

nostic and treatment in control studies, which may be common [55], could be a major contrib-

utor (due to the number of eggs involved) to this contamination. In conjunction with the high

infectivity of eggs shown in this study, these processes may help T. solium maintain its endemic

stability and return to the original levels of disease after the completion of control programs if

these are not focused on the treatment of both human and porcine population [54, 56].

Enhancing biosecurity levels to mitigate the risk of accidental ingestion of eggs is also recom-

mended based on the high infectivity of T. solium eggs observed in this study.

Despite the presence of cysts in the pigs’ brain represents a null impact on public health, the

models for the development of brain cysts can also serve as reference to estimate the required

doses to obtain cysts in pigs’ brain experimentally for future studies with the aim of evaluating

treatment schemes for NCC using pigs as animal models. On the other hand, the model for

development of brain cysts through the “Oral” pathway may be extrapolated to human NCC

based on recent evidence which suggests that oncospheres are distributed to all tissues in

humans, instead of being established preferentially in the brain, as was believed before [18].

However, it is necessary to demonstrate that there is no difference in the distribution of cysts

between humans and pigs in order to carry out such extrapolation.

The main limitations in this study were the limited number of data points and range of

doses to develop a robust model. Further, the low sample sizes in some of the studies led to an

increase of the uncertainty in the corresponding sections of the curve. It is necessary to carry

out experimental infections that will allow us to evaluate the performance of infection at lower

doses in controlled scenarios with less uncertainty in the quantity supplied and controlling the

viability of the inoculum. These improvements may inform future models in order to reduce

the uncertainty in the parameters described in this paper.

In conclusion, the exact beta-Poisson is proposed as a potential continuous dose-response

model to estimate the probability of infection across a range of doses of multiple orders of

magnitude, rather than limiting the assessment of human-to-pig transmission to narrow sce-

narios. Although data available is limited, the parameters of the model could be used to esti-

mate the doses necessary to obtain infected pigs with the type of cysts required for the

development of studies involving experimental infections. Moreover, the parameters could
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also be considered in the development of future quantitative risk assessments to fill the gap in

the probability of human-to-pig transmission [57]. Given the links between infection and

immunity [58], knowing the dose required to produce an infection may also help estimate the

doses required to produce protective immunity. Further, in future work, the current frame-

work could be expanded to explore the correlation between the inoculated dose and the num-

ber of cysts in pigs’ bodies and brains and even link the infectious dose to the cyst distribution

in the pig, with the purpose of further describing the disease. The results obtained in this pig

model might be extrapolated (to a certain extent) to human cysticercosis provided both hosts

have a similar cyst distribution. Finally, this paper may provide useful insights when trying to

develop new interventions and models. In this context, the parameters of the exact beta-Pois-

son for the development of viable cysts through oral inoculation may be the most useful,

because this exposure pathway best represents the natural infection pathway, and viable cysts

have the potential to produce human taeniasis perpetuating the T. solium life cycle [18, 35].
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