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A B S T R A C T   

Introduction: COVID-19 related non-pharmaceutical interventions (NPIs) led to a suppression of RSV circulation 
in winter 2020/21 in the UK and an off-season resurgence in Summer 2021. We explore how the parameters of 
RSV epidemiology shape the size and dynamics of post-suppression resurgence and what we can learn about 
them from the resurgence patterns observed so far. 
Methods: We developed an age-structured dynamic transmission model of RSV and sampled the parameters 
governing RSV seasonality, infection susceptibility and post-infection immunity, retaining simulations fitting the 
UK’s pre-pandemic epidemiology by a set of global criteria consistent with likelihood calculations. From Spring 
2020 to Summer 2021 we assumed a reduced contact frequency, returning to pre-pandemic levels from Spring 
2021. We simulated transmission forwards until 2023 and evaluated the impact of the sampled parameters on the 
projected trajectories of RSV hospitalisations and compared these to the observed resurgence. 
Results: Simulations replicated an out-of-season resurgence of RSV in 2021. If unmitigated, paediatric RSV 
hospitalisation incidence in the 2021/22 season was projected to increase by 30–60% compared to pre-pandemic 
levels. The increase was larger if infection risk was primarily determined by immunity acquired from previous 
exposure rather than age-dependent factors, exceeding 90 % and 130 % in 1–2 and 2–5 year old children, 
respectively. Analysing the simulations replicating the observed early outbreak in 2021 in addition to pre- 
pandemic RSV data, we found they were characterised by weaker seasonal forcing, stronger age-dependence 
of infection susceptibility and higher baseline transmissibility. 
Conclusion: COVID-19 mitigation measures in the UK stopped RSV circulation in the 2020/21 season and 
generated immunity debt leading to an early off-season RSV epidemic in 2021. A stronger dependence of 
infection susceptibility on immunity from previous exposure increases the size of the resurgent season. The early 
onset of the RSV resurgence in 2021, its marginally increased size relative to previous seasons and its decline by 
January 2022 suggest a stronger dependence of infection susceptibility on age-related factors, as well as a weaker 
effect of seasonality and a higher baseline transmissibility. The pattern of resurgence has been complicated by 
contact levels still not back to pre-pandemic levels. Further fitting of RSV resurgence in multiple countries 
incorporating data on contact patterns will be needed to further narrow down these parameters and to better 
predict the pathogen’s future trajectory, planning for a potential expansion of new immunisation products 
against RSV in the coming years.   

1. Introduction 

Respiratory syncytial virus (RSV) is a globally widespread (Oban-
do-Pacheco et al., 2018; Nair et al., 2010) endemic virus causing 

respiratory infections, and is the most common pathogen in children 
diagnosed with acute lower respiratory infections (ALRI) (Shi et al., 
2017). Most symptomatic and severe cases are in children younger than 
5 years, with infants in the first year of life the most heavily affected. In 
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temperate regions RSV is highly seasonal as RSV epidemics tend to occur 
in the winter (Obando-Pacheco et al., 2018; Bloom-Feshbach et al., 
2013). 

Through SARS-CoV-2 targeted mitigation measures, RSV epidemi-
ology has been substantially disrupted with very few cases reported 
during the typical winter season in 2020–2021 (National flu and 
COVID-19 surveillance reports, 2021; Oh et al., 2021). As 
non-pharmaceutical interventions (NPI) have been gradually relaxed 
throughout 2021, countries across the world have reported substantial 
off-season RSV activity (Yeoh et al., 2020; Summeren et al., 2021; Na-
tional flu and COVID-19 surveillance reports: 2021 to 2022 season, 
2022; Tang et al., 2021; Opek et al., 2021). The disruption of RSV sea-
sonality and the build-up of a large cohort of RSV-naive children poses 
great uncertainty about the public health burden the ongoing and up-
coming RSV seasons will bring. Recent modelling studies analysed how 
the build-up of immunity debt due to NPIs could result in earlier and 
larger outbreaks of RSV (Zheng et al., 2021) and other respiratory 
pathogens (Baker et al., 2020) following the lifting of contact re-
strictions, and possibly affecting seasonality for some years to come. 

The magnitude of the disruption in RSV epidemiology in future years 
will depend on transmission characteristics including the relative 
importance of respiratory tract development and general immune 
maturation with age versus the RSV-specific immunity built up by 
repeated exposure. The rate that immunity to reinfection wanes and the 
seasonal effects of more indoor contacts and changed climatic conditions 
in the winter also play a role (Li et al., 2022a). All of these factors are 
only partially understood. RSV disease burden rapidly declines in older 
children and it has been postulated that this is primarily due to immu-
nity acquired by repeated exposure (Hodgson et al., 2020; Hogan et al., 
2016; Yamin et al., 2016). This has been difficult to assess however, 
because the clockwork-like seasonality of RSV in most countries with 
routine surveillance meant that each year’s birth cohort was exposed to 
very similar infection risk making it impossible to disentangle the dif-
ferential effects of development with age (mainly the development of the 
respiratory tract) and the RSV-specific immunity from past exposure. 
The suppression of RSV in the 2020–2021 season removed exposure 
while leaving ageing unchanged, decoupling these two factors and 
thereby creating an opportunity to determine their role in immunity 
acquisition. Immunity against reinfection with RSV has been estimated 
to last from 7 months (Arenas et al., 2009) to more than a year (Pan--
Ngum et al., 2017), further complicated by partial heterologous immune 
evasion by its subtypes A and B (Human et al., 2020). Seasonal changes 
in climatic conditions can alter RSV’s effective transmissibility, modu-
lated further by the concurrent change in interpersonal contact patterns 
shaping human to human transmission; however, the extent to which 
this pre-determines the timing of RSV seasons is largely unknown (Pitzer 
et al., 2015) with the off-season resurgence of RSV in Europe and else-
where in 2021 (Li et al., 2022b; Eden et al., 2022) highlighting the 
potential for out of season spread. 

Off-season outbreaks in 2021 were of different cumulative size and 
timing, although in almost all cases occurred weeks or months before the 
usual onset of the RSV season. While it’s clear that the build-up of sus-
ceptibility during a period of suppression due to NPIs played a role, it is 
less clear how the epidemiologic parameters of RSV would impact the 
peak and cumulative size of the resurgence. While this will also depend 
on the specifics of NPIs enacted in different countries and the recovery of 
contact patterns thereafter, the features of the resurgence also reflect 
incompletely understood aspects of RSV epidemiology, such as the role 
of age-dependent (respiratory tract and general immune system) 
development versus immunity from previous RSV infections in children. 
Modelling studies have made various assumptions on how susceptibility 
to RSV disease depends on these two factors (Zheng et al., 2021; 
Hodgson et al., 2020; Hogan et al., 2016, 2017; Pan-Ngum et al., 2017; 
Poletti et al., 2015; Kombe et al., 2019), as well as on the duration of 
post-infection immunity. We expect that depending on the true value of 
these parameters, the resurgence will take different forms, although it 

would inevitably be complicated by location-specific factors of contact 
rate recovery. In this study we use a mathematical model of RSV 
transmission calibrated to case and contact data from the United 
Kingdom to explore how these different aspects of RSV epidemiology 
shape post-suppression RSV dynamics and what we can conclude from 
the patterns of resurgence so far observed. 

2. Methods 

2.1. Model structure 

We developed an age-structured, deterministic compartmental SIRS- 
type dynamic transmission model (Fig. 1A) of repeated RSV infections 
(Hodgson et al., 2020). The model comprises 11 age groups (SI Table 1) 
with higher resolution in the first 2 years of life, where most severe 
disease is concentrated. 

The model keeps track of up to three successive RSV infections, after 
which further reinfections still occur but are no longer distinguished, 
thus assuming that subsequent reinfections will not provide additional 
protection. Individuals are either susceptible (S), infected and infectious 
(I) or recovered (R) with short term sterilising immunity to reinfection. 
Following recovery from infection, individuals lose immunity at a rate ω 
to become susceptible again but with additional lifelong partial pro-
tection (reflected by a lower susceptibility to infection) gained from 
previous exposure. To reflect that mothers with a recent infection 
transfer antibodies to their children transplacentally (Chu et al., 2017) 
we assume that a proportion of newborns, determined by the proportion 
of adults of childbearing age with short term post infection immunity 
(ie. in the compartment R), will be born in the same immune state (R1

1) as 
someone with a recent infection (Fig. 1 and SI Methods). 

The model is initialised with a stationary population structure 
calculated from birth and death rates in England and Wales in 2020 
(Deaths registered monthly in England and Wales - Office for National 
Statistics, 2022), so that the size of age groups is stationary already at 
the start of simulations (SI Methods). Simulations are then run for 30 
years, which is sufficient (SI Fig. 6) to reach a stable pre-pandemic 
baseline seasonal pattern, before contact restrictions are introduced in 
2020, followed by another 4 years of forward simulation following the 
lifting of NPIs in May 2021. 

2.2. Contact rates (seasonality and NPIs) 

To reproduce the seasonal dynamics of RSV transmission we 
modelled an annually recurring increase in the transmission rate (β) 
during the winter months (SI Methods). To model the suppression of 
RSV observed in the winter of 2020–21 we reduced transmission rates by 
90% between 26/03/2020 and 17/05/2021, during which restrictive 
NPI measures were in place in the United Kingdom (COVID-19 Gov-
ernment Response Tracker, 2020), following which contact rates return 
to their pre-pandemic baseline. As a sensitivity analysis we also explored 
a scenario where contact rates start gradually recovering from 
08/03/2021, linearly recovering to their baseline on 17/05/2021, 
instead of a step change on 17/05/2021. 

2.3. Data sources for RSV incidence and fixed parameters 

Our model parameters were informed by a combination of different 
data sources. 

To match the overall seasonal pattern, we used case notifications 
from Respiratory DataMart (2013–2020) (Zhao et al., 2014), the Res-
piratory infections laboratory reports (2014–2020) (Respiratory in-
fections: laboratory reports 2020, 2021) data series (SI Fig. 1), and rates 
of hospitalisations per population from SARI-Watch (2017–2022) (Na-
tional flu and COVID-19 surveillance reports: 2021 to 2022 season, 
2022). Hospitalisation counts for the < 5 y and 65 + y age groups from 
SARI-Watch were used to calculate the Poisson likelihood of simulated 
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Fig. 1. A. Age-structured SIRS model of RSV transmission with reinfections, immunity waning, births with maternal immunity and deaths. B. Simulated hospital-
isations for children under 5 years before the COVID-19 pandemic. Blue lines are accepted simulations (see Methods) with a negative log-likelihood lower than 1500 
(corresponding to the best 15 % of fits, red dashed lines showing their median); grey lines are those discarded. Black dots show hospitalisation rates for England from 
SARI Watch (National flu and COVID-19 surveillance reports: 2021 to 2022 season, 2022). C. Likelihoods of accepted and rejected parameterisations. The x-axis 
shows the number of age groups the simulations correctly predict the attack rate. Dots highlighted in red were rejected because of a biennial seasonal pattern and 
those marked with ‘x’ because of less than 85% of cases within the RSV season (week 40–13). 
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hospitalisations from week 40 of 2018 to week 20 of 2020 as 
age-stratified (Zhao et al., 2014) hospitalisation counts were only 
available for this (pre-pandemic) period. 

Hospitalisation rates (per 100,000 population) were also available 
for the period following the emergence of COVID-19. While less severe 
than for case notifications, there is some level of under-ascertainment in 
the hospitalisation data, which we accounted for by taking the ratio of 
annual hospitalisations in SARI-Watch to estimates of the full RSV- 
associated annual hospitalisation burden in the literature (Taylor 
et al., 2016; Reeves et al., 2017, 2019; Fleming et al., 2015; Sharp et al., 
2021). 

The risk for hospitalisation upon infection was modelled specific to 
the age groups based on estimates from previous model fitting (Hodgson 
et al., 2020). 

In addition, we used age-specific symptomatic attack rate estimates 
from a Kenyan household study (Munywoki et al., 2015). 

Age-specific mixing was informed by a synthetic contact matrix for 
the United Kingdom (Prem et al., 2021). 

Other fixed model parameters are the rate of recovery (γ) (Hodgson 
et al., 2020) from infection (set at 1/7 days-1) and the rate of births 
(2314/day) (Office for National Statistics, 2021). 

2.4. Model selection 

2.4.1. Parameter sampling and selection by global criteria 
As a non-notifiable disease, RSV surveillance data suffer from sig-

nificant under-reporting and are subject to changes in testing rates and 
health seeking behaviour. Consequently, we decided to incorporate 
existing knowledge on age-specific attack rates in typical RSV seasons, 
the concentration of cases/hospitalisations within seasons (defined from 
week 40 to week 13) and the observed regularity of RSV in the UK 
(Fig. 1B, SI Fig. 1) for model selection. 

Therefore, we filtered simulation results for validity by comparison 
with observed pre-pandemic RSV epidemiology, using three quantita-
tive criteria that capture the essential characteristics of RSV epidemics in 
the UK:  

1) The model has to reproduce the proportion of each age group 
infected in typical pre-pandemic RSV seasons. Accordingly, we 
retained those simulations only where the age-specific infection 
attack rates were within 0.5- to 2-fold of literature estimates 
(Munywoki et al., 2015), taking into account the large uncertainty in 
these– estimates, while noting that most simulations are closer to the 
median estimates (SI Fig. 3A).  

2) more than 85 % of pre-pandemic infections have to occur within 
weeks 40 and 13 (inclusive), as in the RSV seasons from 2014 to 
22020 in England and Wales (SI Figs. 1 and 3B, SI Table 5).  

3) the relative difference between the dynamics of incident infections 
(SI Methods) of the last two pre-pandemic years had to be less than 
15 % (SI Figure 7). 

Simulations were retained when each of these criteria was satisfied 
in at least 8 of the model’s 11 age groups. 

To analyse the effect of the parameters we conducted Latin Hyper-
cube Sampling (LHS) with 20,000 sampling points (Table 1, SI 
Methods), within realistic ranges of the individual parameters and using 
probability distributions to ensure positivity where relevant. 

We analysed the effect of five factors influencing RSV epidemiology 
on the expected post pandemic dynamics: (i) the relative effect of age 
and exposure on increasing immunity, (ii) the baseline (out of season) 
transmissibility (R0), the (iii) strength and (iv) duration of seasonally 
increased transmission, and (v) the waning rate of sterilising immunity 
post-infection. 

The relative effect of age and exposure on immunity is described in 
the model by the susceptibility to infection decreasing exponentially as a 
function of both age and the level of exposure (Table 1, SI Fig. 2). The 
steepness of this decreasing function is defined by the two parameters 
κexp and κage, with larger values indicating a stronger dependence on 
exposure or age, respectively. After an initial sparser sampling of the 
parameter space, we found that all parameterisations showing seasonal 
dynamics consistent with UK data satisfy the condition 
κexp< 1.65–4.5 *κage, so parameter vectors outside this range were 
removed, increasing the proportion of realistic parameterisations to 
approximately 30 %. In the case of exposure-dependence, a value of 
κexp= 0.3 (lower bound of the explored parameter range, arbitrary units) 
means a 22 % reduction in the susceptibility after each infection 
whereas κexp = 1.25 (higher bound) is equivalent to a 71 % reduction 
after each infection. In the case of age-dependence, κage= 0.067 corre-
sponds to a 7 % reduction in susceptibility by moving up one age group, 
meaning a 2-fold reduction from the youngest to the oldest age group. At 
the strongest age effect (κage = 1/3) the reduction is 28 % by each age 
group (28-fold from youngest to oldest). In Results we refer to these two 
parameters jointly by their ratio κage/κexp, with a higher value meaning 
stronger age dependence (Figs. 2B and 4). 

2.4.2. Likelihood calculations 
In addition to the filtering of simulations by these global criteria, we 

also performed likelihood calculations to verify if results are comparable 
to a likelihood-based method. We compared simulated hospitalisations 
for the under-5 and over-65 year old age groups to the corresponding 
counts of hospitalisations in SARI-Watch for the 2018–2019 and 
2019–2020 seasons (data provided by UKHSA, see Acknowledgements), 
taking into account under-ascertainment (SI Methods) and the variation 
in the size of catchment areas of reporting hospitals. We calculated a 
Poisson likelihood for each datapoint of this time series and summed the 
negative log-likelihoods. 

We then added to this the sum of negative log-likelihoods calculated 

Table 1 
Fixed and sampled parameters (distributions used for Latin Hypercube 
sampling).  

Parameter name 
(symbol) 

Values Description 

Susceptibility of 
the ith age 
group to jth 

infection 
(

δ(j)i

)

δ(j)i =

δ0exp
(
−
(
κexpj+κagei

) )
κexp= Unif 

(0.3, 1.25) 
κage= Unif(1/16, 1/3) 

κexp defines how the 
susceptibility to 
infection depends on 
whether it is the 1st, 
2nd or 3rd infection 
κage: defines how the 
susceptibility to 
infection depends on 
age 
δ0: scaling constant, 
to ensure 
parameterisations 
have the same R0 

Seasonal forcing 
width (weeks) 

Gamma(shape=10,rate=2) 
(minimum: 1, maximum: 14, median: 
4.8) 

Standard deviation of 
normal distribution 
defining the seasonal 
forcing (see SI 
Methods) 

Seasonal forcing 
strength 
(maximum 
above baseline) 

Unif(0.2,1.5) Maximum level of 
seasonal forcing 
above a baseline of 1 

Baseline 
transmissibility 
(R0) 

R0=Gamma(shape=14,rate=8) ( 
Spencer et al., 2021) 
(min: 0.48, max: 4.14) 

R0 value at the 
baseline level (1) of 
seasonal forcing 

Waning rate (ω) ω = 1/Norm(mean=350,sd=50) ( 
Hodgson et al., 2020; White et al., 
2005; Moore et al., 2014) 

Rate of loss of 
immunity post- 
infection (1/day) 

rate of recovery 
(γ) 

1/7 day-1 (Hodgson et al., 2020) Rate of recovery from 
infection 

birth rate 2314 births/day (Deaths registered 
monthly in England and Wales - 
Office for National Statistics, 2022) 

Number of live births 
per day  
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from comparing empirically observed age-specific attack rates (Muny-
woki et al., 2015) to the simulated ones, using binomial marginal 
probability (SI Methods). 

2.4.3. Sensitivity analysis by partial rank correlations 
We grouped paediatric hospitalisations into three age groups: infants 

(below 1 year of age), children between 1 and 2 years of age, and 
children between 2 and 5 year of age. To explore how the relative 
(compared to the pre-pandemic seasons’ average, a value of 1 meaning 
the same burden as pre-pandemic) burden of the resurgent RSV season 
for these three groups correlate with the values of the sampled param-
eters we used partial rank correlation coefficients (PRCC) (Wu et al., 

Fig. 2. RSV resurgence as a function of epidemiological parameters. (A) Partial rank correlation coefficients (PRCC) between the sampled parameters and the 
proportionate change post-NPI in cumulative and peak hospitalisations. Asterisks show the correlation has a p-value above 0.05. (B) Level of cumulative hospi-
talisations as a function of susceptibility determined by previous exposure (blue) or age (red), captured by the ratio κage/κexp. Statistics calculated on the relative 
changes from pre-pandemic years to 2021 values (epi-years from week 23 to week 22). 
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2013; Nunes et al., 2022), which quantifies the sign and strength of the 
parameters’ effect on model outputs. We used PRCC as a sensitivity 
measure because collinearities between parameters (SI Fig. 5) are 
controlled for when calculating the correlation coefficients. We used two 
measures of the disease burden, the cumulative number of hospital-
isations and the peak level of hospitalisations. In both cases the calcu-
lations are by epi-years. For the burden calculations, we defined 
epi-years to last from week 23 of a given year to week 22 of the next 
year, so that off-season outbreaks in 2021 are within a single epi-year. 

3. Results 

Of the 20,666 simulations, 2621 were discarded because both the 
attack rate and seasonal concentration of cases were outside the desired 
range, an additional 9190 because of a mismatch in attack rates alone 
and 862 because of insufficient seasonal concentration of cases. A 
further 1895 simulations were discarded because of irregular annual 
epidemics. The remaining 6098 simulations reproduced the main fea-
tures of pre-pandemic RSV epidemiology in the UK (Fig. 1B) in terms of 
age-stratified attack rates (SI Fig. 3A) and seasonal dynamics (SI 
Fig. 3B). 

We then investigated if this filtering methodology is consistent with 
likelihood calculations. Accepted parameterisations have a more than 2- 
fold lower median negative log-likelihood than rejected ones (SI Fig. 4A- 
B), with the separation stronger for the likelihoods calculated from 
attack rates and hospitalisations for 65 + year olds. While there is 
overlap in the total likelihood between accepted and rejected simula-
tions, their density functions are well separated (SI Fig. 4B). Rejected 
parameter sets that have a low negative log-likelihood suffer from 
incorrect attack rates in more than 3 age groups or show strongly 
biennial patterns (Fig. 1 C), which is not the case in the UK. 

The likelihood figures are dominated by merely two available years 
of hospitalisation counts and while the negative log-likelihood might be 
low for some rejected parameterisations, these do not recapitulate the 
seasonal regularity and the age-specific attack rate distribution that are 
important features of RSV epidemics. Conversely however, 80 % of 
accepted parameterisations have a negative log-likelihood below 3000 
and parameterisations that have likelihoods below 1000 are almost 
exclusively ones accepted by our global criteria. In other words, the 
filtering criteria above is broadly consistent with a likelihood approach 
as well, while it removes some parameterisations that fail to capture 
essential features of pre-pandemic RSV activity. 

3.1. Dynamics in the first year following the easing of contact restrictions 

Simulations of post-NPI RSV resurgence, assuming that NPIs are 
dropped and social mixing immediately returns to pre pandemic in-
tensity, consistently show a substantial increase in RSV hospitalisations 
in the first epi-year (week 23 to week 22) after a relaxation of NPIs. 

Sensitivity analysis by partial rank correlation coefficients showed 
that a stronger dependence of infection susceptibility on immunity from 
previous infections positively correlated with the relative size (1 = same 
size as pre-pandemic seasons) of the resurgent outbreak (Fig. 2A), 
although only for children above the age of 1 year. Meanwhile, a 
stronger age-dependence of infection susceptibility has a negative effect 
on the cumulative and peak size of the resurgent season, when 
controlled for correlations between model parameters. 

Using the ratio κage/κexp (age-dependence divided by exposure- 
dependence parameter) to compare simulations, we found that the ex-
pected post-suppression increase in cumulative hospitalisations for 
under 1-year olds is largely consistent (30–40 %), independently of 
whether susceptibility is mainly dependent on age-related factors or 
immunity due to previous exposure (Fig. 2B). This is also reflected by the 
PRCC for this age group between κexp and the cumulative burden having 
a p-value above 0.05 (Fig. 2A). In contrast, cumulative hospitalisations 
for 1–2 year olds depend strongly on the κage/κexp ratio, showing a higher 

correlation and with a median increase of approximately 60 % in the 
most age-dependent and 90 % in the most exposure-dependent case 
(Fig. 2B). For the 2–5 year olds group this effect is even more pro-
nounced, with the median increase ranging from 75 % to 130 %. This is 
in some sense expected, since it is in these age groups that many first and 
second infections did not occur in the winter of 2020–2021 due to 
suppression, and if susceptibility is primarily exposure-dependent then 
the resurgence is more pronounced in the 2–5 year old age groups, as it is 
amplified by a higher proportion of first (or second) infections. 

As a result of this differential increase of cases in the 2–5 year old 
groups, the average age of paediatric (under 5-year) hospitalisation is 
expected to increase (SI Figure 8B) by 2–3 months, again amplified by a 
stronger dependence of susceptibility on previous exposure. Peak hos-
pitalisation demand showed a similar trend in that larger increases were 
found if susceptibility to infection is more exposure dependent (SI 
Figure 8A). 

3.2. Dynamics in subsequent seasons 

Following the initial epidemic after contact behaviour returns to pre- 
pandemic levels, our accepted simulations suggest that in subsequent 
seasons the RSV burden would revert back to pre-pandemic incidence 
(Fig. 3A-B). 

In scenarios assuming immunity to infection is largely dependent on 
age, RSV epidemiology in the 2022–2023 season was largely identical to 
that before the pandemic, if social mixing returned to pre-pandemic 
level following the removal of all NPIs in 2021. Assuming that infec-
tion risk is strongly dependent on previous exposure, however, led to a 
much larger epidemic in 2021 (1–2 y: 50 %, 2–5 y: 100 %, median 
values) and subsequently, in 2022, peak hospitalisation incidences were 
30–40 % lower than pre-pandemic in children 1–2 and 2–5 years old 
(Fig. 3), respectively. In 2023 peak incidence marginally rebounded 
again above the pre-pandemic level for 1–2 and 2–5 year old children. 

3.3. Comparison with observed resurgence in 2021 

To explore the effect of parameters on resurgence in the general case, 
the scenarios above were based on the simplified assumption of contact 
levels returning to their pre-pandemic level stepwise in May 2021. This 
is likely not what occurred in reality (Jarvis et al., 2021), as contact rates 
started to recover from March 2021 when a phased reopening of schools 
started in England. Indeed, even the simulations with the best likeli-
hoods could not reproduce well the resurgence of RSV observed from 
June 2021 (SI Figure 10) if making the unrealistic assumption of a 
stepwise recovery of contact rates. 

We therefore performed simulations with a gradual (linear) recovery 
of contact rates starting from the 8th of March 2021. As we did not have 
hospitalisation counts for this period, we calculated the Euclidean dis-
tance (mean squared deviation) of simulated hospitalisation rates (per 
100,000 population) for children under 5 years from the reported SARI- 
Watch rates in 2021–2022. We found that the gradual recovery of 
contact rates from March resulted in several simulated trajectories 
showing a resurgence from June 2021, as was observed in reality 
(Fig. 4). 

We further explored if these trajectories reproducing the early post- 
NPI resurgence significantly differed from all accepted simulations in 
their parameterisation. We found that four of the epidemiologic pa-
rameters indeed had statistically different distributions compared to all 
accepted parameterisations selected only on the basis of their pre- 
pandemic features (Fig. 4 inset). Specifically, the early resurgence sce-
narios showed a significantly stronger dependence of susceptibility on 
age-related factors, a significantly lower (median value 40%) seasonal 
forcing, a higher baseline transmissibility and also a shorter period of 
above-baseline forcing. These simulations also replicated the longer 
season duration, declining throughout the Autumn and ending in the 
early winter. The median value of the resurgent season’s peak was 
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roughly equivalent to pre-pandemic seasons while a lower peak was 
observed in reality. This is likely due to the fact that we assumed a 
complete recovery of contact rates to the pre-pandemic level, while in 
reality contact levels did not recover yet in 2021 to their pre-COVID-19 
level with continued high levels of homeworking and reduced use of 
public transport (Jarvis et al., 2021). 

Despite the earlier resurgence in 2021, these simulations also largely 
reverted to their normal seasonality from 2022 (SI Figure 9). 

4. Discussion 

In 2021, RSV circulation in the UK and many other temperate set-
tings started well ahead of the usual season, likely due to a build-up of a 
large pool of previously unexposed and therefore susceptible children. 
Using an age-structured dynamic model we explored how the pattern of 
RSV resurgence depends on its main epidemiologic parameters, first 
under the assumption that contact behaviour reverted to its pre- 
pandemic intensity in 2021. Within the range of plausible 

Fig. 3. Dynamics of post-NPI weekly hospitalitalisation incidence as a function of infection susceptibility determined by age or previous exposure. Incidence was 
normalised to pre-pandemic peak incidence and time to the timing of the pre-pandemic peak. Colours indicate whether RSV immunity to infection is predominantly a 
function of previous exposure (blue) or age (red). The lines show median values by binned values of the ratio of the two parameters (κage/κexp). 

Fig. 4. Simulations of RSV resurgence from June 2021, assuming gradual recovery of contact levels from March 2021, showing the 10% of simulations with the 
lowest error with respect to SARI-Watch hospitalisation rates. Inset: Cumulative density functions of parameters for all simulations accepted for matching pre-NPI 
RSV epidemiology (grey) versus the subset of accepted simulations that also replicated the early resurgence (blue). Dashed lines show median values for the two 
distributions; p-values are from Kolgomorov-Smirnov tests. 
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parameterisations we explored, we found that in the absence of contact 
restrictions, the 2021–2022 season would result in 51 % (median value 
across parameterisations) more hospitalised cases in all children under 
the age of 5 than in pre-pandemic years. This increase was particularly 
pronounced in children older than 1 year of age, leading to an increase 
in the average age of a hospitalised RSV case that season. We also found 
that uncertainty in the dependence of infection susceptibility on age or 
previous exposure had a large effect on the size of the resurgence, with a 
stronger dependence on previous infections leading to larger resurgent 
seasons, in particular in the 1–5 year old groups. 

In reality, the cumulative size of the resurgent season in 2021 was 
only marginally larger than the seasons of 2018 and 2019, with 516 
hospitalisations in 2021 versus 500 (2018) and 494 (2019) per 100,000 
population (SARI-Watch) (National flu and COVID-19 surveillance re-
ports: 2021 to 2022 season, 2022) and the peak size in 2021 smaller than 
of pre-pandemic seasons. 

This is likely due to the fact that while the UK largely dropped any 
restrictions to contacts relevant to the transmission of RSV in Summer 
2021, social contacts did not yet reach pre-pandemic intensity (CMMID, 
2020) in 2021, with many continuing to work from home, reduced use of 
public transit and fewer larger indoor gatherings being organised. 

By replacing our first assumption of contact recovering step-wise in 
May 2021 with a gradual recovery starting from March, we could 
reproduce the early onset of the RSV resurgence from June 2021. Ana-
lysing the parameter distributions of simulations matching the early 
resurgence and the epidemic’s decline in the autumn and early winter, 
we found that they are characterised by stronger age-dependence, 
weaker (40% above baseline) seasonal forcing and higher baseline 
transmissibility. Thus, the early resurgence and the absence of signifi-
cant RSV activity in the winter of 2021–2022 suggest that the seasonal 
factors behind RSV’s regular annual pattern may be weaker than often 
assumed previously, while the baseline transmissibility of RSV is higher, 
and it only needs to be triggered by small changes in climate and contact 
patterns. However, this finding needs to be qualified by the fact that 
contact patterns did not fully recover and indeed continuously changed 
in 2021 and early 2022, with for instance mask wearing increasing in 
December 2021 during the Omicron wave (Jarvis et al., 2021). 

RSV surveillance in many countries showed a common pattern of 
suppression of the 2020–2021 season followed by off-season outbreaks, 
including France (Casalegno et al., 2021) or the Netherlands (Teirlinck 
et al., 2021). In the southern hemisphere, Australia also saw a delayed 
(Yeoh et al., 2020; McNab et al., 2021) RSV epidemic in the summer 
months, starting 20 weeks later than usual and reaching a higher peak, 
confirmed both by surveillance testing and hospital admissions (Foley 
et al., 2021). As we recently showed in a Bayesian model fitting study 
(Krauer et al., 2022), the pre- and pandemic RSV data in the case of 
Australia (New South Wales) also support high baseline transmissibility 
and low seasonal forcing, similarly to our analysis here. 

France, the Netherlands, Australia and Iceland all reported a sub-
stantial increase in the average age of infection for children, ranging 
from 2 to more than 10 months (Summeren et al., 2021). The delayed 
onset, the increase of RSV burden in the 1–5 years age groups, as well as 
the increase in the average age of infection in these countries are 
consistent with our modelling above. However, it is also clear the peak 
level and duration of these resurgent RSV outbreaks were also modu-
lated by retained NPIs, as well as contact patterns not having reverted to 
pre-pandemic levels and possibly changes in testing rates. A more sys-
tematic analysis across multiple countries will be required once data for 
the entire season is available to arrive at conclusions on the relative role 
of the epidemiologic parameters analysed in this study. 

Our knowledge of what determines susceptibility to RSV disease in 
children remains incomplete. A longitudinal study in 1986 (Glezen et al., 
1986) followed newborns until 5 years of age and found similar infection 
rates in infants and 1–2 year olds and that the risk of reinfection was 
reduced in the presence of RSV specific antibodies. However, Scott et al. 
(2006). showed through molecular analyses of a longitudinal houshold 

study in coastal Kenya that sterilising immunity against reinfection with 
either the same strain or the same group often does not last until the next 
RSV season. A birth cohort study including 635 children in Kenya 
(Ohuma et al., 2012) demonstrated a 70 % reduction in infection risk 
following the first and 59 % following second infection for about six 
months. They also found that disease severity was primarily age- rather 
than exposure-related. Human challenge studies in adults (Hall et al., 
1991; DeVincenzo et al., 2010) showed strong dependence of reinfection 
risk with the presence of F and G antibodies from previous infection but 
that even with high antibody levels the risk of reinfection if challenged 
was 25 %. In summary, there are only a few studies that have assessed 
the relative role of age and previous infection in modulating paediatric 
reinfection risk. Most find a limited role of age and some short-lived 
protection from previous infection. However, other factors that can be 
context-specific, for example changing contact patterns as young chil-
dren become more mobile and start attending daycare (Qian et al., 
2021), may mask some of the age effects observed. 

All modelling studies for RSV have to make assumptions regarding 
the change in susceptibility to infection as children age to account for 
the strongly age-specific clinical profile of RSV. Several studies assume 
reduced susceptibility following infection, with a range of a perpetual 
25–70 % reduction in the susceptibility to subsequent infections, which 
was either a prior based on estimates derived from the literature (Zheng 
et al., 2021; Pan-Ngum et al., 2017; Poletti et al., 2015) or arrived at by 
fitting an exposure-dependent model (Hodgson et al., 2020). In some 
cases, an age-dependent reduction in susceptibility was assumed instead 
of exposure-determined immunity (Hogan et al., 2016, 2017). Kombe 
et al. (2019). considered the effect of both factors and jointly inferred 
them through fitting to data from a detailed longitudinal household 
study in Kenya. They assumed a similar exponential form as in our 
present study while also analysing infections with heterologous strains. 
For this setting they estimated a small (<10 %) age-dependent reduction 
in susceptibility to infection in 1–4 year olds relative to infants, and a 
> 70 % reduction in older age groups. Previous infections were esti-
mated to permanently halve susceptibility to reinfection. Similar evi-
dence from other settings is needed to get a better overarching picture 
on how immunity against RSV is shaped by ageing and infection history. 

In recent years many mathematical modelling studies for RSV 
transmission have been conducted (Zheng et al., 2021; Hodgson et al., 
2020; Hogan et al., 2016, 2017; Pan-Ngum et al., 2017; Poletti et al., 
2015; Kombe et al., 2019, 2021; Mezei et al., 2021), especially in the 
context of modelling prospective public health interventions, laying the 
groundwork for the potential introduction of maternal vaccines (Madhi 
et al., 2020) and lower cost long-lasting monoclonal antibodies (Griffin 
et al., 2020) in the coming years. A number of recent modelling studies 
have also analysed the potential patterns of resurgence of RSV and other 
respiratory pathogens following the easing of COVID-19-related re-
strictions (Zheng et al., 2021; Baker et al., 2020). Baker et al. (2020) 
raised the possibility of enlarged post-NPI outbreaks of RSV and influ-
enza due to the increase of susceptibility caused by immunity loss during 
NPIs, predicting peak outbreaks in the winter of 2021–2022 and 
outbreak size positively correlated with the duration and stringency of 
restrictions. Zheng et al. (2021) used an age-structured SIS model to 
predict that the buildup of susceptibility during NPIs will lead to an 
earlier and larger RSV season in 2021–2022 and an increase in the 
average age of infection. Our findings are consistent with both studies, 
while we in addition also explored the underlying dependence on the 
key parameters of RSV epidemiology in such forecasts, in particular the 
role of age-related factors and immunity from previous exposure in 
children under 5 years. 

The increasing availability of post-NPI RSV data from more and more 
countries in the coming months provides an opportunity to further study 
the relative importance of age and exposure in RSV transmission dy-
namics with statistical inference methods. Our study highlights the 
importance of a better understanding of such for predicting RSV 
epidemiology following the interruption of transmission due to COVID- 
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19 restrictions. Similar considerations will apply following a likely 
partial interruption of RSV transmission as RSV vaccines currently un-
dergoing clinical trials are considered for routine infant immunisation in 
the years to come (Griffin et al., 2020; GSK, 2021; RSV Vaccine and mAb 
Snapshot, 2021; Pfizer, 2021). 
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