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Abstract

Background: A detailed understanding of the pathological processes involved in genetic frontotemporal dementia
is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential
to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF
proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected),
as well as presymptomatic individuals from mutation non-carriers.

Methods: A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF
samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using
LASSO and Random forest.

Results: When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially
important for the separation. Among these, four were identified as most important, namely neurofilament medium
polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The
combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and
AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models,
but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and
C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified
with a potential to contribute to a separation, including progranulin (GRN).
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Conclusion: In conclusion, we have identified several proteins with the combined potential to separate affected
individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between
presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of
these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.

Keywords: Cerebrospinal fluid, Neurofilament medium polypeptide (NEFM), Neuronal pentraxin 2 (NPTX2),
Neurosecretory protein VGF (VGF), Aquaporin 4 (AQP4), LASSO, Random forest, Suspension bead array

Background
Frontotemporal dementia (FTD) is a group of neurode-
generative diseases that typically displays a younger age
at onset compared to other dementias [1]. A correct
diagnosis is crucial to begin future disease-modifying
treatments in the early phases of the disease. Protein
biomarkers have the potential to aid the clinical assess-
ment of patients and increase the knowledge about the
molecular changes preceding symptom onset [2]. For
this purpose, it is useful to study the genetic forms of
FTD, including presymptomatic mutation carriers, to
uncover early disease processes.
Different proteins in cerebrospinal fluid (CSF) and

plasma have been suggested as potential biomarkers for
FTD [3]. One of the most studied fluid biomarkers for
symptom onset in FTD is neurofilament light chain,
(NEFL, also known as NfL) [4]. Elevated CSF levels of
NEFL is a marker of neuroaxonal damage [5] and has
been investigated in a wide range of neurological condi-
tions [6, 7]. Other biomarkers for FTD require further
evaluation in additional cohorts to assess their potential
[8–13].
A challenge in FTD research is the clinical, genetic

and neuropathological diversity among patients which
sometimes overlap with other neurodegenerative dis-
eases. The different phenotypes (behavioural variant,
primary progressive aphasias etc.), monogenic causes
and aggregated proteins in brain tissue (mainly TAR
DNA-binding protein 43; TDP-43 or tau) can chal-
lenge the ambitions to find fluid biomarkers for FTD.
By utilizing machine learning based algorithms, pat-
terns can be recognized which can be used to identify
a panel of proteins that together have the potential to
distinguish between different subgroups of FTD. Such
a panel of proteins, instead of a single biomarker, will
likely better resemble the complex and multifactorial
nature of FTD.
In this study, we have used an antibody-based proteo-

mics approach to measure proteins in CSF in a large,
well-described cohort from the GENetic Frontotemporal
dementia Initiative (GENFI) study [14]. Our aims were
to identify panels of proteins and evaluate their potential
to distinguish (I) affected individuals from unaffected in-
dividuals, and (II) presymptomatic mutation carriers

from mutation non-carriers. In addition, identifying pro-
teins altered in mutation carriers can bring further
insight into important pathophysiological mechanisms in
the disease development of genetic FTD.

Methods
Sample cohort
The sample cohort consisted of 221 participants re-
cruited as a part of the GENFI study [14]. Baseline cere-
brospinal fluid (CSF) samples were collected at 15
centres from year 2012 to 2019 according to a GENFI
standardized protocol. Participants were enrolled in
GENFI because they had a 50% risk of FTD due to a
pathogenic mutation in a first degree relative in one of
the following genes: chromosome 9 open reading frame
72 (C9orf72), progranulin (GRN), microtubule associated
protein tau (MAPT) or TANK-binding kinase 1 (TBK1).
Among the 221 participants, 47 were symptomatic indi-
viduals which hereafter will be annotated as affected mu-
tation carriers (AMC), 98 were presymptomatic
mutation carriers (PMC) and 76 were mutation non-
carriers (NC). The PMC and NC will together be anno-
tated as unaffected individuals. The clinical phenotype of
AMC included behavioural variant FTD (bvFTD, n = 32)
[15], primary progressive aphasia (PPA, n = 7) [16] and
amyotrophic lateral sclerosis (ALS, n = 5) [17] (four with
ALS and one with FTD-ALS). The remaining three af-
fected participants included two with the phenotype pro-
gressive supranuclear palsy (PSP) and one with dementia
that was not otherwise specified (D-NOS). When com-
paring CSF protein levels between affected (AMC) and
unaffected individuals (PMC +NC), only AMC with
bvFTD or PPA were included in the analysis to reduce
phenotypic heterogeneity.
The age at onset ranged from 35 to 73 years, with a

mean age of 58 years. The age and sex distribution for
AMC, PMC and NC are presented in Table 1, as well as
the mutated genes for the mutation carrier groups. For
AMC, age at onset and clinical phenotype are also pre-
sented. No significant differences were observed for the
sex distribution (Fisher’s exact test). One-way ANOVA
was used to assess differences in age, which was ob-
served between affected and unaffected participants,
with older individuals in AMC compared to both PMC
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and NC (Tukey’s Honestly Significant Difference post
hoc test). There was no statistically significant difference
in age between PMC and NC. Years to expected onset
was calculated based on the mean age at disease onset in
the respective genetic groups (C9orf72, GRN, MAPT) ac-
cording to Moore et al. 2020 [18].

Suspension bead array assay
CSF samples were collected by lumbar puncture into
polypropylene tubes. Immediately after collection, the
fluid was centrifuged at 963 xg for 10 min at 4 °C. The
supernatant was aliquoted into polypropylene cryotubes
and stored at − 80 °C. At the time for analysis, the CSF
samples were labelled with a tenfold molar excess of bio-
tin (NHS-PEG4-biotin, 21,329, Thermo Scientific) as
previously described [19, 20]. The samples were distrib-
uted in 96-well PCR plates in a constrained randomized
fashion, based on diagnostic group (AMC, PMC or NC),
sex and age. Target proteins (n = 174) were selected
based on previous internal published and unpublished
neuroproteomic efforts [9, 21–26], complemented with
additions from literature. Antibodies towards 169 of the
174 proteins were selected from the Human Protein
Atlas project (www.proteinatlas.org) and antibodies to-
wards the remaining five proteins were included from
other providers. The majority of the antibodies were
polyclonal rabbit antibodies, but three were monoclonal
mouse antibodies and two were polyclonal goat anti-
bodies. The antibodies were conjugated onto carboxyl-
ated color-coded magnetic beads (Magplex, Luminex
corporation) using NHS-EDC chemistry, as described
previously [20, 27, 28], where each bead identity

corresponds to one antibody. The antibody coupled
beads were subsequently pooled to form the suspension
bead array. Next, the biotinylated CSF samples were fur-
ther diluted, and heat treated at 56 °C for 30 min before
they were combined with the suspension bead array in a
384-well plate and incubated overnight. Detection was
enabled by the addition of a streptavidin conjugated
fluorophore (Streptavidin R-Phycoerythrin Conjugate,
Invitrogen), and the readout was performed in a Flex-
map 3D instrument (Luminex corporation). After a
stringent quality control (inter-assay correlation and cor-
relation to negative control), we selected 111 proteins
for further statistical analysis (Supplementary Table 1).

Data analysis
The open source software R (version 4.0) [29] was used
for data processing, analysis and illustrations. The ana-
lysis focused on two main comparisons: affected vs un-
affected individuals and PMC vs NC. The following
packages were used, in additions to the specific func-
tions listed below: stats, tidyverse [30], ggbeeswarm, and
ggpubr.

Quality control and normalization
The data was normalised to diminish the effects of time
delay during readout. A robust linear regression (rlm,
MASS [31]) was performed, and the obtained residuals
were added to the median signal intensity per protein. In
addition, a second normalisation step was performed to
reduce potential differences between plates [32].

Table 1 Demographic and clinical data

Total Affected mutation carriers Presymptomatic mutation carriers Non-carriers p-value

Number of individuals 221 47 98 76 –

Sex distribution [F/M] 119/102 20/27 58/40 41/35 0.17a

Age [mean ± SD (range)] 50 ± 14 (20–76) 62 ± 9 (38–76) 46 ± 12 (20–74) 47 ± 13 (20–69) 3e-14b

Age at onset [mean ± SD (range)] 58 ± 9 (35–73) –

Mutation [N (%)] C9orf72 27 (57) 41 (42)

GRN 12 (26) 38 (39)

MAPT 7 (15) 16 (16)

TBK1 1 (2) 3 (3)

Clinical phenotype [N (%)] bvFTD 32 (68)

PPA 7 (15)

Otherc 8 (17)

Age measured in years
AMC affected mutation carriers, PMC presymptomatic mutation carriers, NC non-carriers, C9orf72 chromosome 9 open reading frame 72, GRN progranulin, MAPT
microtubule associated protein tau, TBK1 TANK-binding kinase 1, bvFTD behavioural variant frontotemporal dementia, PPA primary progressive aphasia, FTD-ALS
frontotemporal dementia with amyotrophic lateral sclerosis, PSP progressive supranuclear palsy, D-NOS dementia not otherwise specified
aFisher’s exact test
bANOVA. Tukey’s Honestly Significant Difference (Tukey’s HSD) post-hoc test was performed for pairwise comparisons (AMC vs NC, p = 3e-11; AMC vs PMC, p = 2e-
13; PMC vs NC, p = 0.8)
cOther clinical phenotypes included ALS (n = 4), FTD-ALS (n = 1), PSP (n = 2), D-NOS (n = 1)
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Predictive model building and feature selection
The Least absolute shrinkage and selection operator
(LASSO) [33] and Random forest models were used for
feature selection for downstream analyses. LASSO
models (cv.glmnet, glmnet [34]) were constructed based
on a training set consisting of 2/3 of the samples. The
tuning parameter lambda was optimised to give the
minimum cross-validation error. The performance of the
model was assessed using a test set (the remaining 1/3
of the samples) and the area under the curve (AUC) of
receiver operating characteristic analyses (roc, pROC
[35]) with the optimal cut-off determined using You-
den’s index [36] (coords, pROC [35]). The stability of the
LASSO models was assessed by creating 1000 models
using the same training set but different seeds during
the cross-validation. In addition, Random forest models
[37] (randomForest, randomForest [38]) were con-
structed based on the full data set. The number of trees
was selected to minimise the out-of-bag (OOB) error
rate and the number of random variables used in each
tree was optimised using the tuning function (tuneRF,
randomForest [38]). The performance of the model was
assessed using AUC for the OOB samples. The mean de-
crease accuracy (mda), i.e. the difference in accuracy be-
tween a model with the actual values for a protein and a
model where the data has been randomly shuffled, was
used as an indicator of the importance of each protein.
The stability of the Random forest models was assessed
by creating 1000 models with different seeds, but the
same selected number of trees and number of random
variables. The mean mda (of 1000 models) was calcu-
lated per protein. We aimed for a relatively small num-
ber of proteins to be included in the panels to enable
robust profiles and arbitrarily cut-offs based on this
premise were therefore selected. When comparing af-
fected and unaffected individuals, we focused on pro-
teins present in at least 20% of the models from LASSO,
or with a mean mda above 8 from Random forest. For
the comparison of PMC and NC, we focused on a
smaller list of proteins that were present in at least 80%
of the models from LASSO or with a mean mda above 5
from Random forest.

Statistics and visualizations
The protein panels selected by LASSO and Random for-
est were further investigated in several ways. The poten-
tial univariate differences of protein levels between the
different sample groups (affected vs unaffected and PMC
vs NC) were evaluated using Wilcoxon rank sum test
and the correlation between different protein levels was
calculated using non-parametric Spearman’s correlation
coefficients. P-values below 0.05 were considered signifi-
cant. Principal component analysis (PCA) was performed
on log-transformed data (PCA, FactoMineR [39]; fviz_

pca_ind, factoextra [40]). Hierarchical clustering of PC1
and PC2 was performed using Euclidean distances and
average linkage.

Results
Exploration of a panel of proteins to identify
symptomatic FTD
LASSO and Random forest were used to identify pro-
teins with the combined ability to distinguish affected
from unaffected individuals. The affected individuals in-
cluded FTD patients expressing either bvFTD or PPA,
and the unaffected individuals included both PMC and
NC.

Protein selection based on LASSO models
The training data used for constructing a LASSO model
included 26 affected individuals and 117 unaffected indi-
viduals (2/3 of the samples). A five-fold cross validation
of the training data was performed to optimize the tun-
ing parameter lambda in order to obtain the optimal
trade-off between bias and variance. Three proteins,
neurofilament medium polypeptide (NEFM, also known
as NfM), neuronal pentraxin 2 (NPTX2) and apolipopro-
tein E isoform 4 (APOE4), were selected by LASSO
when constructing the model. Next, the prediction per-
formance of the model was assessed using the test data
which included 13 affected and 57 unaffected individuals
(1/3 of the samples). A ROC curve was obtained with an
AUC of 0.90. The model correctly predicted the diag-
nostic status of 67/70 samples in the test set, with two
false negatives and one false positive sample (i.e. two af-
fected were classified as unaffected and one unaffected
as affected).
Next, the stability of the LASSO model was assessed

by creating 1000 models based on the training data. The
AUC obtained when predicting the test data ranged
from 0.89 to 0.98. The seven proteins with highest score
from LASSO were NEFM (100%), NPTX2 (71.6%),
APOE4 (55.6%), neurosecretory protein VGF (VGF,
40.2%), translocation protein SEC63 homolog (SEC63,
40.2%), apolipoprotein A1 (APOA1, 31.5%) and aquapo-
rin 4 (AQP4, 26.5%) (Table 2). The models with the low-
est AUC (0.89) correspond to the models where only
NEFM was included.

Protein selection based on random forest models
In addition to the LASSO models, Random forest was
utilised to select a panel of proteins with the potential to
distinguish affected from unaffected individuals. First,
one Random forest model was constructed and its pre-
diction ability using the OOB samples was subsequently
evaluated. The AUC of the model was 0.94 and it cor-
rectly classified 194 out of the 213 included samples (34/
39 affected individuals, 160/174 unaffected individuals).
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Furthermore, the stability of the Random forest
models was assessed by creating 1000 forests. AUC var-
ied from 0.93 to 0.95. Eleven proteins were defined by
Random forest as the most contributing factors (Table 2)
and were selected for further analysis.

Four proteins selected by both LASSO and random forest
A total of 14 proteins were selected by either LASSO or
Random forest (Table 2), and four of these proteins were
selected by both models, NEFM, NPTX2, VGF and
AQP4. The differences in levels between the affected
and unaffected individuals for these four proteins are
visualised in Fig. 1A and the remaining ten proteins in
Supplementary Fig. 1. The protein levels of NEFM and
AQP4 were significantly higher in the affected group,
while NPTX2 was significantly lower, compared to the
unaffected individuals. The mean VGF levels in the af-
fected group was lower than the mean in the unaffected
group, although it did not reach statistical significance.
A principal component analysis of these four proteins
revealed that 90% of the distribution of differences could
be explained by principal component 1 and 2 (Fig. 1B).
Affected individuals mainly cluster in the bottom right
part of the plot while unaffected individuals cluster in
the top left corner. Furthermore, the four proteins’ com-
bined potential to distinguish the affected individuals
from the unaffected individual was evaluated using a
hierarchical clustering approach (Fig. 1C). When divid-
ing the samples into three clusters, we identified one
very small cluster (1) with only two individuals (one af-
fected and one unaffected individual), one cluster (2)

with 93% affected individuals (affected n = 25, unaffected
n = 2) and one cluster (3) with 93% unaffected individ-
uals (affected n = 13, unaffected n = 171). The group of
unaffected individuals was further investigated by ob-
serving protein levels and cluster distribution of PMC
and NC separately (Supplementary Fig. 2). There were
no differences in protein levels between PMC and NC
for NEFM, NPTX2, VGF or AQP4, nor did they separate
in the PCA analysis. PMC and NC cluster together in
cluster 3 without any apparent pattern. The two un-
affected individuals clustering together with the AMC
(cluster 2) are both NC, and one PMC is clustering to-
gether with one AMC in cluster 1. Next, the distribution
of the genetic causes and clinical phenotypes of the af-
fected individuals were investigated, but no pattern
could be identified that indicated a large difference be-
tween the genetic groups or between bvFTD and PPA
connected to the levels of NEFM, NPTX2, VGF and
AQP4 (Supplementary Fig. 2B). Furthermore, a PCA
analysis based on these four proteins was performed,
where all phenotypes were included, i.e. the affected in-
dividuals with the clinical phenotypes bvFTD and PPA
as well as ALS, FTD-ALS, PSP or D-NOS (Supplemen-
tary Fig. 3). All AMC cluster together, regardless of clin-
ical phenotype.
A heatmap (Supplementary Fig. 4) of the spearman

correlations between the 14 proteins presented in Table
2 demonstrated a strong correlation between NPTX2,
VGF and PTPRN2 (NPTX2-VGF rho = 0.83, NPTX2-
PTPRN2 rho = 0.79, VGF-PTPRN2 rho =0.89). A large
cluster with moderate correlations included AQP4,

Table 2 Proteins selected from LASSO or random forest when comparing affected and unaffected individuals

Protein Description Uniprot Antibody LASSO
% selected

Random forest
Mean mda

NEFM* Neurofilament medium polypeptide P07197 HPA022845 100 28.1

NPTX2* Neuronal pentraxin 2 P47972 HPA049799 71.6 8.4

VGF* Neurosecretory protein VGF O15240 HPA055177 40.2 9.2

AQP4* Aquaporin 4 P55087 HPA014784 26.5 11.3

APOE4 Apolipoprotein E isoform 4 Q8TCZ8 M067–3 55.6 0.8

SEC63 Translocation protein SEC63 homolog Q9UGP8 HPA053295 40.2 3.1

APOA1 Apolipoprotein A1 P02647 HPA046715 31.5 4.2

PTPRN2 Protein tyrosine phosphatase, receptor type N2 Q92932 HPA007255 8.8 8.2

CTSS Cathepsin S P25774 HPA002988 7.6 9.4

SERPINA3 Serpin family A member 3 P01011 HPA000893 0 12.8

C4A/B Complement C4A, complement C4B P0C0L4, P0C0L5 HPA046356 0 11.0

AMPH Amphiphysin P49418 HPA019829 0 9.5

SPP1 Secreted phosphoprotein 1 P10451 NBP2–37423 0 8.8

CD14 Monocyte differentiation antigen CD14 P08571 HPA002035 0 8.5

Asterisk next to the protein name show which proteins were selected by both LASSO and Random forest. Proteins with grey numbers in the LASSO or Random
forest columns did not meet the selected cut-off for that model. LASSO indicates in how many models a protein was selected (% out of 1000 models). Random
forest indicates the mean mda from 1000 models
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AMPH, CD14, C4A/B, NEFM, SERPINA3, CTSS, SPP1,
where AQP4 and AMPH had the strongest individual
correlation (rho = 0.86). SERPINA3 had a strong correl-
ation to APOA1 (rho = 0.81), CD14 (rho = 0.74) and
C4A/B (rho = 0.72). APOE4 had a weak correlation (rho
< 0.40) with all other proteins.

CSF profiles in presymptomatic mutation carriers versus
mutation non-carriers
The construction of LASSO and Random forest models
for the comparison of PMC vs NC was performed in the
same way as described in previous sections (affected in-
dividuals vs unaffected individuals). However, when
comparing PMC and NC, only one protein, progranulin
(GRN) was selected by both LASSO and Random forest.
In addition to GRN, one protein (kininogen 1, KNG1)

was selected from the LASSO models and two proteins
(AQP4 and UPF0606 protein KIAA1549L) from the
Random forest analysis. A PCA plot based on the four
proteins are shown in Fig. 2A. However, no separation
between the PMC and NC could be observed (nor be-
tween any of the genetic groups, Supplementary Fig. 5).
To optimise the analysis, only PMC with expected

present or future TDP-43 pathology and less than 10
years to expected symptom onset (based on the mean
age at disease onset in the respective genetic groups ac-
cording to Moore et al. 2020 [18]) were selected (i.e.
C9orf72 mutation carriers older than 48 years and GRN
mutation carriers older than 51 years). TBK1 presymp-
tomatic mutation carriers were excluded from this ana-
lysis as there were only three individuals and we
currently lack good estimations of mean age at symptom

Fig. 1 Affected vs unaffected. Four proteins (NEFM, AQP4, NPTX2 and VGF) selected by both Random forest and LASSO when comparing
affected and unaffected individuals. Yellow and circles = affected individuals (n = 39), blue and triangles = unaffected individuals (n = 174). A Violin
plots for NEFM, AQP4, NPRX2 and VGF, with p-values from Wilcoxon rank sum test. B A PCA plot based on the four selected proteins. C A
hierarchical clustering based on PC1 and PC2. NEFM, neurofilament medium polypeptide; AQP4, apolipoprotein E isoform 4; NPTX2, neuronal
pentraxin 2; VGF, neurosecretory protein VGF; AU, arbitrary units; PCA, principal component analysis
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onset for this group. In addition, NC older than 48 years
were selected to match the ages of PMC. Thus, 13 PMC
C9orf72, 22 PMC GRN and 34 NC were included in the
models hereafter. The LASSO training data set included
43 individuals (20 PMC and 23 NC) and the test data set
included 26 individuals (15 PMC and 11 NC). When the
stability of the LASSO was assessed, the AUC obtained
varied from 0.73 to 0.82. The four proteins with highest
score from the LASSO models were GRN, TAR DNA
binding protein 43 (TARDBP), KNG1 and heparin bind-
ing EGF like growth factor (HBEGF) (Table 3). In the
Random forest models, the AUC ranged between 0.74
and 0.80 and the three proteins with highest score were
GRN, myelin basic protein (MBP) and calsyntenin-1
(CLSTN1) (Table 3).

Only GRN selected by both LASSO and random forest
A total of six proteins were selected by either LASSO or
Random forest (Table 3). A PCA for the combination of
these six proteins are shown in Fig. 2B. The protein with
the highest contribution to PC1 was KNG1 (40%), and
the main contributing protein to PC2 was GRN (41%).
Similar to the model with all PMC and NC, only GRN
was selected by both models. The differences in GRN
levels between NC, PMC C9orf72 and GRN mutation
carriers are shown in Fig. 2C, and the protein levels of
the five proteins selected by LASSO or Random forest
are shown in Supplementary Fig. 6. As expected, the
level of GRN was lower in GRN mutation carriers which
could be separated from non-carriers in the PCA, but
there was no difference between C9orf72 mutation

Fig. 2 PMC vs NC. A PCA based on four proteins (GRN, KNG1, AQP4 and UPF0606 protein KIAA1549L) selected by either LASSO or Random forest
when all PMC (n = 98, green triangles) and NC (n = 76, blue dots) were included. B PCA based on six proteins (GRN, TARDBP, KNG1, HBEGF, MBP
and CLSTN1) selected by either LASSO or Random forest when the selection was based on age and pathology filtered individuals (NC n = 34 blue
dots, PMC C9orf72 n = 13 red triangles, PMC GRN n = 22 orange squares). C One protein was selected by both LASSO and Random forest: GRN,
presented with p-values from Wilcoxon rank sum test. Same number of individuals included as in B. NC, non-carriers; C9orf72, chromosome 9
open reading frame 72; GRN, progranulin; AU, arbitrary units

Table 3 Proteins selected when comparing age and pathology filtered PMC to NC

Protein Description Uniprot Antibody LASSO
% selected

Random forest
Mean mda

GRN* Progranulin P28799 AF2420 99.9 23.4

TARDBP TAR DNA binding protein 43 Q13148 HPA070770 85.8 −0.1

KNG1 Kininogen 1 P01042 HPA001645 82.2 1.6

HBEGF Heparin binding EGF like growth factor Q99075 HPA053243 82.2 1.5

MBP Myelin basic protein P02686 HPA049222 0 5.0

CLSTN1 Calsyntenin-1 O94985 HPA012749 0 5.0

Selection from LASSO and Random forest when comparing PMC (n = 35) and NC (n = 34) (age and pathology filtered). Only GRN was selected by both LASSO and
Random forest. Proteins with grey numbers in LASSO or Random forest columns did not meet the cut-off for that model. LASSO indicates in how many models a
protein was selected (% out of 1000 models). Random forest indicates the mean mda from 1000 models
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carriers and NC. The strongest correlation (Supplemen-
tary Fig. 7) between these six proteins listed in Table 3
was observed between MBP and TARDBP (rho = 0.82)
and the protein with the strongest correlation with GRN
was CLSTN1 (rho = 0.61).

Discussion
This study aimed to identify panels of CSF proteins with
the potential to distinguish patients with FTD from un-
affected individuals, as well as PMC from NC, using the
multivariate statistical methods LASSO and Random for-
est. The protein levels were measured in CSF from 221
individuals by utilizing an antibody-based suspension
bead array. Four proteins were identified as most im-
portant when comparing affected to unaffected individ-
uals: NEFM, NPTX2, VGF and AQP4, and their
combined profile successfully separated the two groups.
NEFM is one of the subunits in neurofilaments, to-

gether with NEFL and neurofilament heavy polypeptide
(NEFH, also known as NfH). NEFL is a general marker
of neuroaxonal damage but with especially high levels in
FTD and ALS [6] and is one of the most promising fluid
biomarker of symptom onset and disease severity in
FTD. The less studied larger subunits of neurofilament,
NEFM and NEFH are also elevated in CSF in several
neurodegenerative disorders, including FTD [9, 13, 41].
The present study supports previous findings that the
levels of NEFM in CSF is higher in patients with FTD
than in controls and further studies will elucidate the
potential value of measuring NEFM in addition to
NEFL.
Also, NPTX2 and VGF have previously been identified

as potential FTD biomarkers in CSF [8–10, 13]. NPTX2,
together with neuronal pentraxin 1 (NPTX1) and neur-
onal pentraxin receptor (NPTXR), are important for syn-
aptic homeostasis and plasticity [42] and synaptic
dysfunction is a suggested pathological mechanism for
FTD. CSF levels of NPTX2 have been shown to nega-
tively correlate with disease severity and grey matter vol-
ume in genetic FTD [8]. A reduction of NPTX2 in CSF
is also observed in Alzheimer disease (AD) and already
in individuals with mild cognitive impairment compared
to controls [43–46]. Xiao et al. 2017 found an inverse
correlation between NPTX2 levels in CSF and cognitive
performance [43] and Soldan et al. 2019 identified a po-
tential association between CSF NPTX2 and the salience
attention network [44]. Similar to NPTX2, levels of VGF
are also lower in CSF in FTD [9, 10] and AD [46–48].
Furthermore, CSF levels of both NPTX2 and VGF are
lower in patients with dementia with Lewy bodies (DLB)
compared to controls and patients with AD [49, 50].
VGF is related to synaptic function, and a strong correl-
ation (rho = 0.70) between VGF and NPTX2 levels was
previously observed in patients with DLB and AD by

Boiten et al. 2020 [51], which is in concordance with the
strong correlation (rho = 0.83) we observed in this FTD
cohort. Further studies are needed to characterise the
connection between VGF and NPTX2 and their role in
neurodegenerative disorders.
The fourth and last protein being identified as highly

important in the separation between affected and un-
affected individuals was AQP4. AQP4 is the most abun-
dant water channel in the brain and important for
maintaining brain water homeostasis [52]. This bidirec-
tional water channel is mostly localized in astrocytes
close to blood vessels (perivascular) with a particularly
high expression at the blood brain barrier and blood
CSF barrier [53]. AQP4 has been suggested to play a role
in several neurological diseases such as hydrocephalus,
stroke and also AD either by an altered gene expression
or a change in localisation [52].
When comparing affected and unaffected individuals

we focused on affected individuals with bvFTD or PPA
in order to reduce phenotypic heterogeneity. We did not
observe a large difference between the two clinical phe-
notypes regarding the four proteins (NEFM, NPTX2,
VGF and AQP4) selected based on their separation cap-
acity between affected and unaffected individuals. Nor
could we see any distinct deviation when the analysis
was extended to the remaining affected individuals, i.e.
the individuals with ALS, FTD-ALS, PSP or D-NOS. A
more direct effort to find proteins separating different
clinical phenotypes would be interesting but was not
possible in this cohort due to the small number of pa-
tients expressing the respective clinical phenotypes.
The next step in our analysis was to compare PMC

and NC, but no distinct differences between the groups
were observed except for GRN. We decided to focus the
analysis on PMC in proximity to their predicted symp-
tom onset (< 10 years) and with an expected future or
present TDP-43 pathology. Five proteins (TARDBP,
KNG1, HBEGF, MBP and CLSTN1) were identified, in
addition to GRN, that contributed to the separation be-
tween PMC and NC. However, additional studies are
needed to further validate these protein profiles and elu-
cidate their characteristics and potential association to
pathophysiological mechanisms in genetic FTD.
Pathogenic variants of GRN cause haploinsufficiency

which leads to a 50% reduction of GRN in mutation car-
riers (both presymptomatic and symptomatic) compared
to non-carriers. This decrease in GRN levels is measur-
able in both plasma and CSF but the majority of studies
of GRN levels has been performed in plasma partly due
to the higher relative concentration observed in this less
invasive sample material [3]. As expected, we observed
significantly lower CSF levels of GRN in individuals with
a pathogenic mutation in GRN compared to non-
carriers.
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TARDBP (also known as TDP-43) is the main component
of the neuronal inclusions found at neuropathological exami-
nations in the majority of FTD cases and almost all ALS
cases [54]. It is an attractive protein to measure in CSF as it
could have the possibility to distinguish FTD with TDP-43
pathology from FTD with tau-pathology in living patients
since this can only be inferred in genetic and not sporadic
cases. No validated method of detecting TDP-43 in CSF ex-
ists as of today. One recent study has detected pathological
aggregates of TDP-43 in CSF of C9orf72, GRN and TARDBP
mutation carriers but not in controls [55] which warrants
further investigations into the potential use of TDP-43 as a
biomarker for FTD with TDP-43 pathology. When compar-
ing GRN and C9orf72 PMC in proximity to symptom onset
to NC, LASSO identified TARDBP as important and in-
cluded the protein in 85.8% of the models. The only protein
selected in more models was GRN. However, TARDBP was
not regarded important in the Random forest models and
we did not observe a significant difference in the univariate
analysis.
The multiplexed single binder suspension bead array

offers a high-throughput analysis. In order to fully con-
firm the target specificity there is a need for further val-
idation and characterisation, utilizing more antibodies in
either single binder assays or sandwich assay or other or-
thogonal methods such as parallel reaction monitoring
(PRM) assays or epitope mapping. This is exemplified by
the thorough characterisation of NEFM investigated
using both sandwich assays [9] and PRM assay [23] and
AQP4 with a sandwich assay [26]. All used antibodies
from the Human Protein Atlas have been validated and
confirmed to only bind its specific target in a protein
array format (www.proteinatlas.org).
Univariate protein levels often overlap considerably be-

tween different sample groups while a panel of proteins
have the potential to improve the discriminatory capacity
between groups. We have used two machine learning
based algorithms to identify such panels of proteins:
LASSO and Random forest. The two methods have differ-
ent intrinsic properties, for example how they handle cor-
relating variables. Using both algorithms allow us to
achieve more robust results since the four most important
proteins were chosen in both models. LASSO performs
regularisation in order to increase prediction accuracy. By
removing less important features (variables, i.e. proteins),
the interpretation of the model is improved. Random for-
est ensembles a large number of decision trees with ran-
domly selected features and combines their predictions.
The importance of each feature is indicated using the cal-
culated mda per protein. One advantage with Random
forest is that the accuracy of the model can be estimated
from the OOB samples, i.e. samples in the original data
but not included when building a particular tree. Both al-
gorithms were able to successfully predict the

classification of the samples when comparing affected and
unaffected individuals. The AUC varied between 0.89 and
0.98 for 1000 LASSO models, and between 0.93 and 0.95
for 1000 Random forest models. In the prediction models
for PMC and NC, the accuracy was lower (0.73–0.82). For
some biomarkers, as for example GRN, the levels in CSF
are most likely reduced already at birth due to haploinsuf-
ficiency. For others, such as dipeptide repeat proteins pro-
duced as a consequence of the C9orf72 expansion, the
temporal changes have not been ascertained and it is not
clear when they deviate from normal levels in the asymp-
tomatic stage. In this cohort, PMC were at different stages
of their preclinical phase of FTD, with different number of
years from estimated age at onset. The protein levels
might vary greatly across individuals, which might influ-
ence the outcomes of our models. Furthermore, the sam-
ple size was reduced after filtering based on age and
expected pathology. It is possible that we would reach a
higher prediction accuracy between PMC and NC in a lar-
ger cohort, which would enable a better training set for
the models. Moreover, it would be beneficial to use a lon-
gitudinal study design where samples from the same indi-
viduals are collected over many years. This would enable a
more precise investigation of the temporal dynamics con-
nected to FTD. Follow-up samples are being collected and
will enable longitudinal analysis in the future. Since FTD
is such a diverse disease, it would be beneficial to study
distinct subgroups separately. It is not optimal to combine
patients with different genetic causative pathways when
trying to identify protein profiles with the potential to re-
flect pathophysiological processes in the brain. This re-
quires large cohorts, and the small size of the subgroups
(for example PMC with MAPT mutations) in this study
limited such comparisons. However, the patterns observed
for NEFM, AQP4, VGF and NPTX2 were further charac-
terised based on genetic groups and no distinct clusters
were observed based on the genetic cause. Future studies
with even larger cohorts would of course, as always, be
beneficial and could potentially enable a separation of the
individuals into distinct genetic subgroups. Lastly, one ad-
vantage with research on genetic FTD is the ability to
study PMC and the disease stages before symptom onset.
However, the generalisability of the findings to sporadic
FTD needs to be investigated in future studies. Further-
more, as both NEFM, NPTXR, VGF and AQP4 have been
implicated in other neurodegenerative disease in addition
to FTD, it cannot be stated here that the profiles of the
proteins included in the panel are specific for FTD. Previ-
ous studies have investigated these four proteins separ-
ately and it remains to be explored if a combination of the
four proteins has a higher discriminatory power between
different diseases than each individual protein by them-
selves. Thus, the panel needs to be further investigated in
other neurodegenerative cohorts.

Bergström et al. Molecular Neurodegeneration           (2021) 16:79 Page 9 of 14

http://www.proteinatlas.org


Conclusion
In conclusion, by using multivariate statistical methods
to explore CSF levels of 111 proteins, we have identified
a panel of four proteins (NEFM, AQP4, NPTX2 and
VGF) which successfully distinguish most affected indi-
viduals from unaffected individuals. However, these four
proteins were not able to separate between the different
genes (mutation groups) or between the different clinical
phenotypes. Furthermore, when focusing on PMC GRN
and C9orf72 close to expected symptom onset, we have
identified five proteins (TARDBP, KNG1, HBEGF, MBP,
CLSTN1) in addition to GRN, with the potential to con-
tribute to the separation between PMC and NC. Contin-
ued exploration of these proteins, in independent
cohorts, is needed in order to elucidate their potential
association to FTD pathology.
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