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Abstract

Multiple outcomes reflecting different aspects of routine care are a common

phenomenon in health care research. A common approach of handling such

outcomes is multiple univariate analyses, an approach which does not allow

for answering research questions pertaining to joint inference. In this study,

we sought to study associations among nine pediatric pneumonia care out-

comes spanning assessment, diagnosis and treatment domains of care, while

circumventing the computational challenge posed by their clustered and high-

dimensional nature and incompletely recorded covariates. We analyzed data

from a cluster randomized trial conducted in 12 Kenyan hospitals. There were

varying degrees of missingness in the covariates of interest, and these were

multiply imputed using latent normal joint modeling. We used the pairwise

joint modeling strategy to fit a correlated random effects joint model for the

nine outcomes. This entailed fitting 36 bivariate generalized linear mixed

models and deriving inference for the joint model using pseudo-likelihood the-

ory. We also analyzed the nine outcomes separately before and after multiple

imputation. We observed joint effects of patient-, clinician- and hospital-level

factors on pneumonia care indicators before and after multiple imputation of

missing covariates. In both pairwise joint modeling and separate univariate

analysis methods, enhanced audit and feedback improved documentation and

adherence to recommended clinical guidelines over time in six and five
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pneumonia care indicators, respectively. Additionally, multiple imputation

improved precision of parameter estimates compared to complete case analysis.

The strength and direction of association among pneumonia outcomes varied

within and across the three domains of pneumonia care
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1 | INTRODUCTION

Multiple responses reflecting different aspects of patients' care are a common phenomenon in routine care studies,
investigating research questions such as the level of adherence to standard quality of care guidelines by clinicians in dif-
ferent health care facilities. Besides complexities associated with multiple outcomes spanning several domains of qual-
ity care, routine data are prone to missing information which can occur at patient-, clinician- and/or facility-level.

Despite measuring, for each patient, a correlated vector of response variables, inferences in most routine care studies
are based on one primary outcome or multiple separate analyses.1–3 Alternatively, the outcomes are combined into a sin-
gle composite score,4–7 to provide global trends and insight into the quality of patient care. While these approaches are rel-
atively straight forward, some research questions require joint modeling of all outcomes simultaneously,8,9 for instance,
when the association among outcomes and joint effects of covariates on all outcomes are of primary research interest.8–11

In principle, a joint model links two or more models, using random effects that capture association among outcomes
of interest. Statistically, joint modeling has advantages over separate analyses of multiple outcomes. This includes effi-
ciency gain and bias reduction, especially when data are missing at random (MAR) in some of the outcomes.8,12–16 In
addition, joint modeling allows for different types of models for the different outcomes17 (e.g., linear, non-linear, and
generalized linear mixed models), while the interpretation of parameter estimates is the same as interpretation from
the separate univariate models.13

Although joint models have been extended from the common bivariate to the multivariate cases,14 standard fitting
procedures are difficult to implement with high-dimensional outcomes.8,14,16,18–21 The computational complexities stem
from an increase in the number of parameters to be estimated, for every new outcome added into the joint model,8 and
relatedly the increasing dimension of the random-effects vector.

To overcome these challenges, the shared random-effects model, which assumes that all outcomes share the same set
of random effects, can be considered. In this case, the dimension of the random effects does not increase with an increase
with the number of outcomes.8,20 The price to pay is a sometimes restrictive, less realistic model.8,16 For instance, when
dealing with discrete outcomes (e.g., binomial and Poisson), that have a natural link between the mean and variance.

A plausible alternative is the pairwise joint modeling approach, which allows fitting of the correlated random-effects
joint model, while circumventing the computational complexity associated with a full joint multivariate model.8,9,11,14

As mentioned earlier, missing data in either outcomes or covariates is a common problem in routine data. Although joint
modeling can be used to mitigate the effect of missing data among outcomes, appropriate strategies of handling missing
covariates in high-dimensional joint modeling is hardly addressed in the literature. For instance, a previous joint modeling
study reported deletion of case records with missing covariates to alleviate computational challenges.22 The repercussion of
suboptimal missing data handling techniques include risk of biased and inefficient estimates, hence misleading inferences.23

In the present study, we sought to jointly analyze nine binary outcomes, at the same time accounting for covariate
missingness in a pediatric routine data set, from a cluster randomized trial conducted in Kenyan hospitals. Specifically,
we used multiple imputation, based on the joint modeling (JM) framework to address missing covariates across two
levels of the hierarchy. Thereafter, we used the pairwise approach within the pseudo-likelihood framework to estimate
the joint effects of covariates on outcomes. This was in addition to estimating the strength of association among nine
pneumonia outcomes. Besides joint modeling, we analyzed the nine binary outcomes separately under complete case
analysis and after multiple imputation of missing covariates.

The remainder of this article is organized as follows. Section 2 introduces the joint modeling approach using mixed
models and the pairwise fitting approach. Section 3 introduces the pneumonia trial data while Section 4 present multi-
level multiple imputation model, univariate random effect model and pairwise joint model for pneumonia trial data set.
Results under complete case analysis and after multiple imputation are presented in Section 5 and we conclude with a
discussion in Section 6.
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2 | CORRELATED RANDOM-EFFECTS JOINT MODEL

Let Yrij denote the rth r¼ 1,2,…,pð Þ outcome for the ith i¼ 1,2,…,Nð Þ subject in cluster j j¼ 1,2,…,nið Þ. The
corresponding univariate random effects model for the rth outcome can be defined as

h�1 E Yrijjbri,Xrij,Zrij
� �� �¼X0

rijβrþZ0
rijbri, ð1Þ

where h�1 �ð Þ is an appropriate link function depending on the type of outcome (i.e., whether continuous, binary, count,
etc.),12 Xrij is a vector of known covariates with fixed effects βr , and Zrij is a vector of covariates with random effects
bri. The univariate random effects model can be extended to jointly model all the outcomes simultaneously, by impos-
ing a joint multivariate distribution on the random effects.14,15,17 Moreover, the number of random effects can vary
among the outcomes of interest. Conditional on the vector of random effects brið ), the outcomes are assumed to be
independent8 and the corresponding log-likelihood contribution for subject i equals

li y1i,y2i,…,ypijΘ�
� �

¼ ln
Z Yp

r¼1

f ri yrijbri,θrð Þf bijDð Þdbi: ð2Þ

The vector Θ� contains all parameters of the full joint model (i.e., fixed parameters denoted by β� and covariance
parameters denoted by Σ�), while f ri yrijbri,θrð Þ is the density of yri conditional on the random effects for the rth out-
come on subject i. The vector of random- effects bi is assumed to follow a multivariate normal distribution with mean
zero and covariance matrix D , that is,

bi ¼

b1i
b2i

..

.

bpi

0BBBB@
1CCCCA�N

0

0

..

.

0

0BBBB@
1CCCCA,

D11 D12 … D1p

D21 D22 … D2p

..

. ..
. . .

. ..
.

Dp1 Dp2 … Dpp

0BBBB@
1CCCCA

266664
377775:

The elements Drs in D correspond to blocks of random effects variance–covariance between the rth and the sth out-
comes r,s¼ 1,2,…,pð Þ. For example, assuming that each outcome has a random intercept (b0) and a random slope (b1),
then Drs is given by

Drs ¼

σ2b0r σb0rb1r σb0rb0s σb0rb1s

σ2b1r σb1rb0s σb1rb1s
σ2b0s σb0sb1s

σ2b1s

266664
377775:

The elements of the variance covariance matrix D can be used to measure the strength of association between any
two outcomes of interest. As mentioned earlier, the dimension of the random effects vector bi in the full joint model,
increases with an in increase in the number of outcomes. This leads to computational challenges for high dimensional
vectors of outcomes.8,10,14

2.1 | The pairwise modeling approach

In light of computational challenges highlighted above, Fieuws and Verbeke14 proposed a pairwise approach within the
pseudo-likelihood framework to handle high-dimensional vectors of outcomes. With a vector of p outcomes, the
pairwise approach maximizes the likelihood for all Q¼ p p�1ð Þ=2 pairwise models separately, instead of maximizing
the full joint multivariate likelihood.14,24 Precisely, this produces a so-called pseudo-likelihood (pl) of the follow-
ing form:
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pl Θð Þ¼ l Y 1,Y 2jΘ12ð Þl Y 1,Y 3jΘ13ð Þ,…, l Yp�1,YpjΘp�1p
� �¼Yp�1

r¼1

Yp
s¼1

l Y r ,YsjΘrsð Þ: ð3Þ

For a given pair of responses r,s¼ 1,2::,pð Þ, l Y r ,YsjΘrsð Þ denotes the likelihood, while Θrs is the vector of all param-
eters encountered in a pairwise joint model.14 The corresponding pseudo-log likelihood function (pll) is given by

pll Θð Þ¼
Xp�1

r¼1

Xp
s¼rþ1

ll Y r ,YsjΘrsð Þ,

¼
XQ
q¼1

ll YqjΘq
� �

,

where Yq and Θq contain all the observations and parameters, respectively, in the qth response pair q¼ 1,2,…,Qð Þ. All
Q pair-specific parameter vectors Θq q¼ 1,2,…,Qð Þ are stacked together into Θ with fixed parameters denoted by β. It is
clear that if bΘq maximizes l YqjΘq

� �
, then bΘ, the stacked vector combining all bΘq, maximizes pll Θð Þ:24 The asymptotic

distribution of bΘ is multivariate normal given by

ffiffiffiffi
N

p bΘ�Θ
� �

�MVN 0,H�1GH�1
� �

, ð4Þ

where H�1GH�1 is a sandwich estimator and H and G are based on cluster-wise Hessians and gradients of the log-
pseudo-likelihood function, respectively.8,10,18,24 The vector of all parameters in the full joint model (Θ�Þ and stacked
vector from pairwise models (ΘÞ are not equivalent. Specifically, some parameters in Θ� have a single counterpart in Θ,
while other elements in Θ� have multiple counterparts in Θ:8 A set of fixed effects (β�), for the full joint model, are
obtained by averaging duplicate parameter estimates from the pairwise joint models.8,14 This can be achieved by multi-
plying the stacked vector of regression parameters (βÞ with an appropriate weight matrix A as below

β� ¼Aβ: ð5Þ

The standard errors follow as the square root of diagonal elements of variance–covariance estimator

Σ� ¼A H�1GH�1
� �

AT : ð6Þ

Further details on estimation of fixed effects and corresponding standard errors are presented in the application
section.

3 | PNEUMONIA TRIAL DATA

In this study, we analyzed routine pediatric data collected in a cluster randomized trial in 12 Kenyan hospitals between
March and November 2016.2,25 The trial's objective was to investigate the level of uptake of pediatric pneumonia treat-
ment guidelines recommended by the World Health Organization (WHO) in 2013.26 Details on the trial are contained
in the trial report.2 In brief, hospitals were randomly allocated to the intervention arm or control arm. Six hospitals in
the intervention received an enhanced monthly audit and feedback (A&F) report on assessment, diagnosis and treat-
ment of pneumonia cases, a bi-monthly standard A&F report assessing performance and adherence to general inpatient
pediatric care guidelines at facility level. Besides A&F reports, the trial intervention package contained network inter-
vention strategies such as peer learning among clinicians across study facilities, workshops and follow-up emails and
phone calls by the trial pediatrician. On the other hand, six control hospitals received a bi-monthly standard A&F
report and network intervention strategies.2,25
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During the trial period, 2299 children aged 2 to 59 months were admitted in general pediatric wards with childhood
pneumonia in 12 study hospitals. However, this analysis excluded 172/2299 (7.5%) case records lacking admitting clini-
cian's information. The remaining 2127/2299 (92.5%) patients were admitted by 378 clinicians. Of the 2127 pneumonia
cases, 953 (44.8%) were admitted to six intervention hospitals. On average, there were 32 clinicians per hospital, and
the number of patients per clinician ranged between 3 and 46. Data were extracted by trained data clerks from pediatric
admission record (PAR) (a structured paper based medical record/form used in pediatric wards in CIN hospitals) after
discharge from hospital. The data were entered into an open source data capture tool (Research Electronic Data Cap-
ture, [REDCap])27 using a standard operating procedure manual.

3.1 | Pediatric pneumonia care indicators

The outcomes of interest were nine pneumonia care indicators spanning three domains of care (Table 1). These are
1 = cough, 2 = difficult breathing, 3 = respiratory rate, 4 = oxygen saturation, 5 = level of consciousness measured on
the ‘Alert’, ‘Verbal response’, ‘response to Pain’, and ‘Unresponsive’ (AVPU) scale, 6 = lower chest wall indrawing
(signs and symptoms in the assessment domain), 7 = pneumonia severity classification (diagnosis domain), 8 = oral
amoxicillin prescription to treat pneumonia, and 9 = oral amoxicillin dosage and frequency of administration (treat-
ment domain). While these indicators were measured on different scales reflecting different aspects of care, we created
a binary variable for each one of them as appropriate (Table 1). For each case record, we assessed documentation of
cough and difficult breathing (primary pneumonia signs and symptoms required for identification of pneumonia cases),
respiratory rate, oxygen saturation, AVPU, lower chest wall indrawing (secondary signs and symptoms required for
classification of pneumonia severity).26 For each sign and symptom, we created a binary variable with the value one
representing documentation in pediatric admission record (PAR) (e.g., cough assessed at point of admission and mar-
ked in a check box as present or absent) and zero representing lack of documentation of a sign and symptom in the
medical record by the admitting clinician (Table 1). In the diagnosis domain, we assessed whether clinical pneumonia
diagnosis and the severity classification documented in a patient's PAR by the admitting clinician was in line with the
diagnosis and the severity implied by presenting signs and symptoms. Here, we created a binary variable with value
one representing correct diagnosis and severity classification and zero representing misclassification of pneumonia
severity (Table 1).

In the treatment domain, we had two binary indicators, one assessing adherence to prescription guidelines and the
other assessing adherence to dosing guidelines. For the prescription indicator, the value one represented prescription of
oral amoxicillin to treat pediatric pneumonia as per the guidelines while zero represented deviation from ideal care
(i.e., lack of evidence in a patient's medical record that oral amoxicillin was prescribed) (Table 1).

To determine correctness of dose among oral amoxicillin recipients, we considered actual dose prescribed, patient's
weight and frequency of administration as documented in a patient's medical record. We created a binary indicator
with value one representing oral amoxicillin correct dosage and correct frequency of administration (i.e., 32–48 interna-
tional units per Kilogram [IU/Kg] every 12 h). Inappropriate oral amoxicillin dosing was considered as: lack of docu-
mentation of actual oral amoxicillin dose prescribed, lack of documentation of patient's weight, undocumented/wrong
frequency of oral amoxicillin administration, oral amoxicillin underdosing (<32 IU/Kg every 12 h) or overdosing
(>48 IU/Kg every 12 h) (Table 1).

3.2 | Covariates

In this analysis, the covariates of intertest included intervention arm, follow-up time (in months) and their interaction,
hospital malaria prevalence status and pediatric admission workload. Five out of 12 hospitals were drawn from high
malaria endemic regions while the remaining seven hospitals were drawn from regions with low malaria endemicity in
Kenya.28 Hospitals with less than 1000 pediatric admissions per year were categorized as low admission workload while
those with 1000 or more pediatric admissions per year were categorized as high admission workload hospitals. This cat-
egorization allowed us to assess the impact of admission workload on quality of inpatient pediatric pneumonia care.
This is considering that public hospitals in LMICs are often characterized by a shortage in workforce, potentially
impeding delivery of health care services.29–31 At clinician level, gender and cadre were considered (here cadre refers to
clinician's level of training, that is, clinical officers with diploma-level training and medical officers with bachelors'
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degree level training). Among 295 clinicians with observed cadre, majority were clinical officer interns at 62.4%
(n = 184) followed by medical officer interns at 33.4% (n = 99). Clinical officer and medical officers accounted for 2.0%
(n = 6) each. Among 296 clinicians with observed gender, 43.2% (n = 128) were females.

At patient level, we considered gender, number of comorbid illnesses and age in months at point of admission.
While the WHO pediatric pneumonia treatment guidelines apply for children aged 2–59 months26 we categorized
patients into two age groups, (i.e., 2–11 months and 12–59 months) in order to assess whether pneumonia care adminis-
tered varied between infants and older children. This is considering that older children tend to have better outcomes
compared to infants.32 Approximately, 42.5% (903/2127) of the patients were aged between two and 11 months and
57.5% (1224/2127) were females and among 2114 patients with observed gender, 55.1% (n = 1164) were males. Regard-
ing comorbidities, we determined the total number of clinical diagnoses documented in patient medical records. The
diagnoses of interest in the comorbidity variables included malaria, malnutrition, asthma, tuberculosis (TB), rickets,
anemia, diarrhea and dehydration. For each patient, we created separate binary variables for each diagnosis above with
value 1 denoting the presence of a disease and 0 denoting absence of a disease. We then created a categorical variable
which consisted of a count of comorbidities defined as (0 = none, 1 = one, 2 = two, 3 = three or more comorbid ill-
nesses). The above categorization was to assess whether care among pneumonia patients varied with an increase in the
number of comorbid illness. Clinically, 46.8% (995/2127) of the patients had no comorbidities, 29.8% (633/2127) had
one comorbidity, 17.9% (381/2127) had two comorbidities, and 5.5% (118/2127) had at least three comorbidities.

TABLE 1 Definition of binary outcomes in the assessment, diagnosis and classification and treatment domains of pediatric

pneumonia care

Quality of care domain Indicator Scores in binary indicators

1. Assessment
Primary signs and symptoms

Cough 1: if cough is documented,

0: if it is not documented.

Difficult breathing 1: if difficult breathing is documented,

0: if it is not documented.

Secondary sign and symptoms Respiratory rate 1: if respiratory rate is documented,

0: if it is not documented.

Oxygen saturation 1: if oxygen saturation is documented,

0: if it is not documented.

AVPUa 1: if AVPU is documented,

0: if it is not documented.

Lower chest wall indrawing 1: if indrawing is documented,

0: if it is not documented.

2. Diagnosis and classification Correct diagnosis* 1: if the admitting clinician documented pneumonia as the clinical
diagnosis

0: if documented clinical diagnosis is severe pneumonia or missing
classification.

3. Treatment Correct prescription 1: if oral amoxicillin was prescribed and documented in the medical
record.

0: if amoxicillin was not prescribed

Correct oral amoxicillin dose 1: if oral amoxicillin was prescribed in correct dose and frequencies,
that is, 32–48 international units/Kilogram (IU/Kg) every 12 h.
0: if oral amoxicillin prescription is an under dose (<32 IU/Kg) or
overdose (>48 IU/Kg) or missing amoxicillin dose or wrong
frequency or missing frequency or missing patient's weight.

Note: AVPUa:-Alert, Verbal response, Pain response, Unresponsive, *Pneumonia diagnosis for patients with history of cough and/or difficult breathing
(primary signs) in combination with signs of lower chest wall indrawing and/or respiratory rate (RR) ≥50 (≥40) for patients aged 2–11 (12–59 months), in the
absence of danger any sign (inability to drink/breastfeed, cyanosis, grunting or oxygen saturation < 90% or AVPU = ‘V', ‘P' or ‘U').
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3.3 | Missingness in the trial data

Missing data occurred in patient- and clinician level covariates. Approximately, 21.9% (83/378) and 21.7% (82/378) clini-
cians had missing data on the gender and cadre variables respectively, while patient's gender was missing in 0.7%
(17/2127) case records. An assessment of the missing data pattern revealed that nearly all clinicians with missing cadre
had gender missing as well.

4 | APPLICATION: MODEL FITTING AND INFERENCE

4.1 | Multiple imputation

Before fitting the analyses models of interest, we imputed partially observed covariates assuming a missing at random
(MAR) mechanism. MI was conducted within joint modeling (JM) framework where imputation values are drawn from
a multivariate normal distribution in a single step.23,33 We used the latent normal approach to impute incomplete cate-
gorical variables of interest.23 Multiple imputation was implemented in the jomo34 and mitml35 packages in R (version
3.5.4) which allow imputation of categorical variables with more than two levels in the second and higher levels of the
multilevel structure. For the i th i¼ 1,…,2127ð Þ patient nested within the j th clinician j¼ 1,…,378ð Þ in hospital
l l¼ 1,…,12ð Þ, we defined a two-level JM imputation model corresponding to

Y 1ð Þ
ijl ¼X 1ð Þ

ijl β
1ð Þ þb 1ð Þ

jl þ e 1ð Þ
ijl ð7Þ

Y 2ð Þ
jl ¼X 2ð Þ

jl β 2ð Þ þb 2ð Þ
jl

e 1ð Þ
ijl �N 0,σ2e

� �
,and b 1ð Þ

jl ,b 2ð Þ
jl

� �
�N 0,Σbð Þ,

where Y 1ð Þ
ijl and Y 2ð Þ

jl are vectors of partially observed level 1 variables (patient's sex) and level two variables (clinician's
sex and cadre) respectively. Predictor variables X 1ð Þ

ijl

� �
for missing patient's sex were fully observed variables

(i.e., follow-up time, interacted with feedback arm, hospital admission workload and hospital malaria prevalence status,
patient's age and the number of comorbid illnesses). Predictor variables X 2ð Þ

jl

� �
for missing clinician's sex and cadre at

the second level of the imputation model included follow-up time interacted with feedback arm, hospital admission
workload and hospital malaria prevalence status. We also included all the nine binary response variables in both levels
of the imputation model. A random intercept bjl

� �
was included to account for clustering at clinician level. Missing

values were imputed 20 times with a burn-in of 500, and 500 updates between each imputed data set. Imputed values
were assessed as appropriate while trace plots were used to assess convergence of the imputation model.36

4.2 | Separate univariate analyses

First, we analyzed the nine outcomes separately under complete case analysis and after multiple imputation of missing
covariates. For each outcome r¼ 1,2,…,9ð Þ, we fitted a generalized linear mixed model defined by.

logit P Yrijl ¼ 1
� �� �¼ βr0þβr1x age group;rijlð Þ þβr2x patient sex;rijlð Þ þβr3x comorbidities¼0;rijlð Þ þβr4x comorbidities¼1;rijlð Þ

þβr5x comorbidities¼2;rijlð Þ þβr6x clinician cadre;rjlð Þ þβr7x clinician sex;rjlð Þ þβr8x admission worklod;rjlð Þ
þβr9x malaria prevalence;rlð Þ þβr10x time in months;rlð Þ þβr11x trial arm;rlð Þ þβr12x time in months;rlð Þ � x trial arm;rlð Þ þbrijl, :

ð8Þ

where βr1,βr2…,βr12 are regression parameters associated with known fixed covariates for the rth outcome. Due to
relatively low numbers of clinical and medical officers, we grouped clinicians into two cadres from the initial four. That
is, clinical officers (CO) combine clinical officers and clinical officer interns and medical officers (MO) combine medical
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officers and medical officer interns, respectively. The vector of random clinicians' intercepts bijl is assumed to follow a
normal distribution with mean zero and variance σ2b:

4.3 | Full multivariate joint model

To analyze the nine pneumonia outcomes jointly, a full multivariate joint model was considered:

logit P Y 1i ¼ 1ð Þ½ � ¼X iβ1þb1i

logit P Y 2i ¼ 1ð Þ½ � ¼X iβ2þb2i

..

.

logit P Y 9i ¼ 1ð Þ½ � ¼X iβ9þb9i,

ð9Þ

where X i denotes a vector of known covariates and β1, β2,…,β9 are vectors of regression parameters to be estimated for
each of the nine outcomes. The random clinicians' intercepts were assumed to follow a joint zero-mean normal distri-
bution denoted by

b1i
b2i
b3i
b4i
b5i
b6i
b7i
b8i
b9i

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
�N 0,Dð Þ

where D, the covariance matrix of the random effects has the following structure:

D¼

σ2b1 σb1b2 σb1b3 σb1b4 σb1b5 σb1b6 σb1b7 σb1b8 σb1b9
σ2b2 σb2b3 σb2b4 σb2b5 σb2b6 σb2b7 σb2b8 σb2b9

σ2b3 σb3b4 σb3b5 σb3b6 σb3b7 σb3b8 σb3b9

σ2b4 σb4b5 σb4b6 σb4b7 σb4b8 σb4b9
σ2b5 σb5b6 σb5b7 σb5b8 σb5b9

σ2b6 σb6b7 σb6b8 σb6b9

σ2b7 σb7b8 σb7b9
σ2b8 σb8b9

σ2b9

2666666666666666664

3777777777777777775

: ð10Þ

4.4 | Pairwise joint modeling

To circumvent computational burden associated with model (9), we applied the pairwise approach to jointly model the
probability of documentation among nine pneumonia outcomes under complete case analysis and after multiple impu-
tation of missing covariates. We fitted 36 pairwise models where each pairwise model was defined by.
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logit P Yrijl ¼ 1
� �� �¼ βr0þβr1x age group;rijlð Þ þβr2x patient sex;rijlð Þ þβr3x comorbidities¼0;rijlð Þ þβr4x comorbidities¼1;rijlð Þ

þβr5x comorbidities¼2;rijlð Þ þβr6x clinician cadre;rjlð Þ þβr7x clinician sex;rjlð Þ þβr8x admission worklod;rjlð Þ
þβr9x malaria prevalence;rlð Þ þβr10x time in months;rlð Þ þβr11x trial arm;rlð Þ þβr12x time in months;rlð Þ � x trial arm;rlð Þ þbrijl, :

ð11Þ

logit P Ysijl ¼ 1
� �� �¼ βs0þβs1x age group;sijlð Þ þβs2x patient sex;sijlð Þ þβs3x comorbidities¼0;sijlð Þ þβs4x comorbidities¼1;sijlð Þ

þβs5x comorbidities¼2;sijlð Þ þβs6x clinician cadre;sjlð Þ þβs7x clinician sex;sjlð Þ þβs8x admission worklod;sjlð Þ
þβs9x malaria prevalence;slð Þ þβs10x time in months;slð Þ þβs11x trial arm;slð Þ þβs12x time in months;slð Þ � x trial arm;slð Þ þbsijl,

where Yrijl and Ysijl denote the rth and the sth outcomes, r≠ s for (r,s= 1,2,...,9) for patient i admitted by clinician j
in hospital l. Each outcome occurred in eight specific pairs and we included a random clinicians' intercept in each
model. For each pairwise joint model, the random effects were assumed to follow a bivariate normal distribution den-
oted by

br
bs

	 

�N 0,

σ2br σbrbs
σ2bs

 !" #
: ð12Þ

We fitted all pairwise joint models using the JMbayes package37 using a server with the following specification: 40 GB
memory, Intel Xeon E5-4650 (2.70GHz) processor (12 cores/24 threads), Gnu/Linux Ubuntu 14.04 OS, and R (version
3.4.4) programming language. For verification purposes, complete case analysis was also conducted in SAS version 9.4
using a SAS macro provided by.10

Under complete case analysis, regression estimates, and standard errors were averaged across 36 pairwise models
using the pseudo-likelihood approach presented in Section 2. Likewise, regression parameters were averaged across the
various pairwise models for each imputed data set. Variance–covariance estimators6 were also obtained for each
imputed data set. This step resulted in 20 sets of averaged regression parameters and variance–covariance estimators
respectively. Thereafter, Rubin's rules38 were applied to obtain final estimates while accounting for within and between
imputation variability. More details on the two-step procedure are as follows.

4.4.1 | Inference for fixed regression parameters

Each bivariate model in the mth imputed dataset had a vector of 26 regression coefficients (i.e., 13 regression coefficients
for each outcome) denoted by bβqm,q¼ 1,2,…,36, m¼ 1,2,…,20. We stacked the 36 pairwise parameter estimate vectors
resulting into a column vector with 936 rows, that is,

bβm ¼

bβ1mbβ2m
..
.

bβ36m

2666664

3777775
936�1

, m¼ 1,2,…,20:

Any two pairwise joint models with a common outcome (e.g., l Y r ,Ysð Þ and l Y r ,Ys0ð Þ s≠ s0Þ shared the parameters
for the rth outcome.8–10,24 To account for duplicate parameter estimates, we pre-multiplied bβm with an appropriate
weight matrix A as follows,

bβ�m ¼Abβm,m¼ 1,2,…,20: ð13Þ

The weight matrix A had 117 rows (i.e., 13 regression parameters for each of the nine outcomes) and 936 columns
and it was constructed such that, it averaged all duplicate parameter estimates of an outcome across the eight pairwise
models in which it occurred. The resulting vector, bβ�m was a stacked column vector of 117 parameter estimates for all
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nine outcomes. Each outcome had 13 regression parameters denoted by bβ�mr . This step was repeated for all 20 imputed
data sets.

4.4.2 | Inference for standard errors

The corresponding standard errors were obtained using the pseudo-likelihood approach introduced above. For each
bivariate pair ,Ymq, q¼ 1,2,…,36, in the mth imputed dataset, we estimated the variance–covariance matrix, H�1GH�1.
Since H and G depend on the unknown parameters in Θ, 8,24 estimation proceeded as follows. N indicates the total
number of subjects.

Step 1: We obtained bJmq and bKmq for each pairwise model using.

bJmq ¼
XN
i¼1

XT
imq
bT imqX imq and bKmq ¼ XT

1mq
bT1mq,X

T
2mq
bT2mq,…,XT

Nmq
bTNmq

h i
,

where X imq corresponds to the ith subject's contribution in the design matrix for the fixed effects, bT imq ¼
ZimqbDmqZT

imq

� ��1
where Zimq is the ith subject's contribution in the design matrix for random effects24 and Dmq is the

variance–covariance matrix for the random effects for the qth pair in the mthimputed data set. N indicates the number
of subjects.

Step2: We combined bJmq and bKmq estimated across all the 36 pairs, (i.e., bJm1, bKm1

� �
, bJm2, bKm2

� �
,…, bJm36, bKm36

� �
)

as follows.

bJm ¼

bJm1 0 … 0

0 bJm2 … 0

..

. ..
. . .

. ..
.

0 … … bJm36

266664
377775
936�936

and bKm ¼

bKm1bKm2

..

.

bKm36

266664
377775
936�N:

Step 3: We estimated Hm and Gmas follows.

bHm ¼ 1
N
bJm and bGm ¼ 1

N
bKm bKm

T
,

where N is defined above.
Step 4: We obtained a variance–covariance matrix, bΣ�

m for each imputed dataset using.

bΣ�
m ¼AbΩmA

T ,m¼ 1,2,…,20, : ð14Þ

where bΩm ¼ bH�1
m
bGm bH�1

m and A is the weight matrix defined above. Each bΣ�
mwas a 117�117 covariance matrix and

the diagonal elements corresponded to variances of fixed regression parameters inbβ�m.
4.4.3 | Pooling final estimates

In the final step, we pooled the final estimates using Rubin's rules38 for each of the 9 outcomes. This was based on the
set of pairwise regression parameters and the estimated variance covariance matrices bΣ�

m estimated in.10 The pooled MI
estimator for β is given by

β�r ¼
1
M

XM
m¼1

bβ�mr , ð15Þ
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with variance estimator

bVr ¼ bWrþ Mþ1
M

	 

�bBr ,

where

bWr ¼ 1
M

XM
m¼1

bσ2mr

is the average imputation variance, bσ2mr are the diagonal elements of bΣ�
m and

bBr ¼ 1
M�1

XM
m¼1

bβ�mr�β
�
r

� �2

is the between imputation variance. Final MI estimates were compared to those obtained under complete case analysis.

4.4.4 | Wald test for joint covariates effects under complete case analysis and after multiple
imputation

To test for the joint effects of covariates on the outcomes, we used a Wald-type test under complete case analysis and
after multiple imputation of missing covariates. The general linear hypothesis corresponded to.

H0 :L β¼ 0 vs HA :L β≠ 0: ð16Þ

Systems of linear equations were defined as appropriate for different parameter vectors. For illustration, the joint
null hypothesis for the interaction effect between the intervention arm and follow-up time on the nine outcomes
(i.e., β1,12 ¼ β2,12 ¼ β3,12 ¼ β4,12 ¼ β5,12 ¼ β6,12 ¼ β7,12 ¼ β8,12 ¼ β9,12 ¼ 0) was defined using a system of linear equation
below:

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0… 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1… 0 0 0 0 0 0 0 0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.
… ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 0 0 0 0 0 0 0 0 0 0 0 0 1

0BBBB@
1CCCCA

9�117

β1,0
β1,1

..

.

β1,12
β2,0
β2,1

..

.

β2,12

..

.

..

.

β9,0
β9,1

..

.

β9,12

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
117�1
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¼

0

0

..

.

0

0BBBB@
1CCCCA

9�1

:

The alternative hypothesis stated that at least one of the parameters differs from zero. Under complete case analysis,
the test statistic for the joint interaction term was calculated using

F ¼ 1
9

L12
bβ� �0

� �0
L12bΣ�

L0
12

� ��1
L12
bβ� �0

� �
, ð17Þ

where L12 is a matrix of zeros and ones defined to eliminate all parameter estimates except those associated with
the interaction term (i:e:,βr,12 r¼ 1,2,…,9ð Þ), bβ� is a stacked vector of parameter estimates averaged across 36 pairwise
models and bΣ�

is the variance–covariance matrix estimated using pseudo-likelihood. Wald-test statistics for the other
variables were calculated in a similar manner but adjusting the L matrix appropriately.

For imputed datasets, the joint null hypotheses were tested using linear systems of equations like those defined
under complete case analysis. Nonetheless, the test statistics were calculated differently. For instance, the test statistic
for the joint interaction term effect on the nine outcomes after multiple imputation was calculated using

F¼ 1
9

L12β
�
m�0

� �0
L12bVmL0

12

� ��1
L12β

�
m�0

� �
, ð18Þ

where β�m is a stacked vector of pooled parameter estimates for all the nine outcomes and bVm is the variance–
covariance matrix based on Rubin's rules. Wald-test statistics for the other variables were calculated in a similar man-
ner but adjusting the L matrix appropriately. In each case, the test statistic was multiplied by nine (removing the frac-
tion in front) resulting in test statistics that were distributed according to chi-squared distribution with nine degrees of
freedom. A 5% level of significance was considered in all statistical tests.

4.4.5 | Association among pneumonia outcomes

The strength of association among documentation of pneumonia care indicators was evaluated using the
variance–covariance matrix of the random-effects. Since the covariance matrix D defined in (10) was not estimated
directly at analysis stage, we constructed it using blocks of random-effects variance–covariance matrices in
(12) estimated in the pairwise joint models. Under multiple imputation, we first averaged duplicate variance across
36 pairwise random intercept models for each of the 20 imputed data set. Specifically, we extracted the random
intercepts variance–covariance matrix for all 36 pairwise joint models, that is,

Dm1 ¼
σ2bm1

σbm1bm2

σ2bm2

" #
,Dm2 ¼

σ2bm1
σbm1bm3

σ2bm3

" #
,…,Dm36 ¼

σ2bm8
σbm8bm9

σ2bm9

" #
:

We then created an overall variance-covariance matrix Dm for each imputed data set accounting for overlapping infor-
mation. For example, in each imputed data set, (m¼ 1,2,…,20), documentation of cough occurred in the variance-
covariance matrices of the first eight pairs, that is,

Dm1 ¼
σ2bm1

σbm1bm2

σ2bm2

" #
,Dm2 ¼

σ2bm1
σbm1bm3

σ2bm3

" #
,…,Dm8 ¼

σ2bm1
σbm1bm9

σ2bm9

" #
:

We extracted the random intercept variances of each outcome from the pairs it occurred in and averaged them into
a single random intercept variance estimate of Yr (e.g., σ2b1denoting the random intercept variance for cough). On the
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other hand, unique off-diagonal elements corresponding to covariance between any two outcomes were also mapped
into Dm. Thereafter, we averaged all the 20 Dmmatrices, m¼ 1,2,…,20 to obtain the overall 9�9 variance covariance
matrix D for all the nine outcomes. We used the same procedure to construct the random-intercepts variance–covariance
under complete case analysis where we averaged duplicate variances across 36 pairwise random intercept models. The
strength of association between any 2 outcomes, say Yr andYs was calculated using

corr br ,bsð Þ¼ Cov br ,bsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var brð Þ�Var bsð Þp ¼ σbrbsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2br �σ2bs

q : ð19Þ

We performed principal component analysis (PCA) on random clinicians' intercepts variance–covariance matrices
obtained under complete case analysis and after multiple imputation. This was to help visualize factor loadings among
pneumonia outcomes of interest and how they correlated with one another.

5 | RESULTS

The level of documentation and adherence to recommended pneumonia care varied within and across domains of care.
To be specific, most of the signs and symptoms in the assessment domain were well documented except for oxygen satu-
ration and respiratory rate which had documentation rates of 60.9% (1297/2127) and 88.8% (1889/2127) respectively.
On the other hand, the level of documentation and adherence to recommended guidelines in diagnosis and treatment
domains, respectively was poor compared to that of signs and symptoms in the assessment domain. Specifically, of all
2127 syndromic pneumonia cases, only 1473 (69.3%) had correct clinical pneumonia diagnosis and severity classifica-
tion documented in the medical record. In the treatment domain, about 48.7% (1036/2127) were prescribed with oral
amoxicillin as per the guidelines. However, only 25% (523/2127) of all pneumonia patients got the right oral amoxicillin
dose and in the right frequency of administration, that is, 32–48 international units/Kilogram (IU/Kg) every 12 h.

6 | WALD-TYPE TESTS FOR JOINT COVARIATES EFFECTS

After multiple imputation of missing clinician- and patient level covariates, the Wald-type test suggested a significant
joint interaction effect between the trial arm and follow-up time on documentation and adherence to recommended
clinical guidelines on all the nine pediatric pneumonia outcomes of interest (P-value <0.05). Likewise, pediatric admis-
sion workload and malaria prevalence status at hospital level also exhibited significant joint effects on all the nine out-
comes (Table 2). At clinician level, gender and cadre had significant joint effect on documentation and adherence to
recommended pediatric pneumonia care guidelines (Table 2). At patient level, age and comorbidity had significant joint
effect on documentation of all the nine outcomes. On the other hand, patient's gender did not have a significant joint
effect on the outcomes of interest (Table 2). The Wald-type test results under complete case analysis were consistent
with those from imputed datasets for all the covariates. That is, all the covariates had significant joint effects on the
nine outcomes except patient's gender (Table 2).

Figure 1 and Supplementary Table A1-A2 present the odds ratios and their 95% confidence intervals estimated from
the pairwise joint model under complete case analysis and after multiple imputation of missing covariates. Separate
univariate analyses results are presented in Figure 2 and Supplementary Table A3-A4.

Under pairwise joint modeling, the magnitude and direction of covariates effects varied among pneumonia out-
comes of interest. Over time, documentation and adherence to recommended clinical guidelines improved in six out of
nine pneumonia care indicators among children admitted to six intervention hospitals (i.e., enhanced audit and feed-
back arm). That is, for a unit increase in follow-up month, the change in the adjusted odds of oxygen saturation, respi-
ratory rate, lower wall indrawing documentation (in the assessment domain), correct pneumonia diagnosis, oral
amoxicillin prescription and correct dosage among patients admitted to intervention hospitals (i.e., enhanced A&F
arm) were significantly more positive in comparison to the change among patients admitted to control hospitals. These
observations were made under complete case analysis and after multiple imputation of missing clinician- and patient
level covariates (Figure 1). Nevertheless, the estimated 95% confidence intervals estimated were consistently narrower
after multiple imputation. On the other hand, there was no significant difference in the documentation of cough,
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difficult breathing and AVPU over time between patients admitted to six intervention hospitals (enhanced A&F arm)
and patients admitted to six control hospitals (standard A&F arm).

We also observed a few instances of contrasting results. For example, after multiple imputation, the adjusted odds
of AVPU documentation were significantly lower among patients admitted to hospitals with low pediatric admission
workload (Figure 1 and supplementary Table A1). Under complete case analysis, however, there was no significant dif-
ference (Figure 1, supplementary Table A2). Similarly, the adjusted odds of documentation of difficult breathing and
correct oral amoxicillin dose among patients admitted in low malaria prevalence hospitals were lower compared to the
odds of patients admitted in high malaria hospitals. However, under complete case analysis, the difference was not sta-
tistically significant (Figure 1, supplementary Table A2).

TABLE 2 Wald-type test results for joint effects of covariates on nine pneumonia outcomes

Wald-type test under complete case analysis Wald-type test after multiple imputation

Effect Test statistic p value Test statistic p value

Patient's age 19.62 0.02 21.81 0.01

Patient's gender 12.20 0.21 13.16 0.15

Comorbidity 20.54 0.01 23.48 0.01

Clinician's gender 20.91 0.01 22.47 0.007

Clinician's cadre 19.94 0.02 17.96 0.03

Admission workload 25.56 0.002 24.73 0.003

Malaria prevalence 17.89 0.04 19.01 0.02

Time in months 19.26 0.02 18.16 0.03

Enhanced A&Fa arm 17.98 0.04 16.76 0.04

Enhanced A&F arm x follow-up time 18.13 0.03 23.11 0.005

Note: A&Fa, Audit and feedback.

FIGURE 1 Odds ratios (dots) and 95% confidence intervals (horizontal bars) under complete case analysis and after multiple

imputation of missing covariates: Pairwise joint modeling of nine pneumonia care outcomes
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With regards to separate univariate analysis, the direction and magnitude of effects of most of the covariates across
the nine outcomes were by and large consistent with those observed under a pairwise joint model. Additionally, it was
found that documentation and adherence to recommended clinical guidelines improved over time in five out of nine
pneumonia care indicators among children admitted to six hospitals in the enhanced A&F arm (intervention arm). To
be specific, for a unit increase in follow-up month, the change in the adjusted odds of oxygen saturation, respiratory
rate, correct pneumonia diagnosis, oral amoxicillin prescription and correct dosage among patients admitted to inter-
vention hospitals were significantly more positive in comparison to the change among patients admitted to control hos-
pitals. These observations were made under complete case analysis and after multiple imputation. However, multiple
imputation improved precision of the estimated odds ratios compared to complete case analysis (Figure 2, Supplemen-
tary Tables A3-A4). The estimated variance among admitting clinicians (i.e., variance between random clinicians' inter-
cepts) varied across the nine pneumonia outcomes, both under complete case analysis and after multiple imputation of
missing covariates (Tables A3, A4).

FIGURE 2 Odds ratios (dots) and 95% confidence intervals (horizontal bars) under complete case analysis and after multiple

imputation of missing covariates: Separate univariate analysis of nine pneumonia care outcomes

TABLE 3 Variance-correlation matrix for random clinicians' intercepts under complete case analysis

Cough
Difficult
breathing

Respiratory
rate

Oxygen
saturation AVPUa Indrawing

Correct
diagnosis

Correct
treatment

Correct
dose

Cough 1.49

Difficult breathing 0.07 1.92

Respiratory rate �0.29 �0.43 2.71

Oxygen saturation �0.17 �0.47 0.63 7.38

AVPU �0.14 �0.19 �0.20 0.09 2.26

Indrawing �0.22 �0.11 �0.54 �0.39 �0.19 2.33

Correct diagnosis �0.49 �0.53 0.48 0.29 �0.06 0.04 2.64

Correct treatment �0.48 �0.42 0.07 0.16 �0.38 0.66 0.64 1.81

Correct dose �0.54 �0.64 0.57 0.69 �0.21 0.19 0.62 0.73 1.30

Note: AVPUa: Alert, verbal response, pain response, unresponsive.

GACHAU ET AL. 15



Tables 3 and 4 present variance-correlation matrices of random clinicians' intercepts among 9 pneumonia outcomes
under complete case analysis and after multiple imputation, respectively. Generally, the magnitude of correlation esti-
mated among outcomes was consistently larger under multiple imputation compared to complete case analysis. More-
over, the strength and direction of association among outcomes varied within and across domains of care. For instance,
the strength of association between documentation of oxygen saturation and respiratory rate was somewhat high, com-
pared to association with other indicators in the assessment domain. To be specific, correlation between oxygen satura-
tion and respiratory rate documentation increased from 0.69 (Table 3) under complete case analysis to 0.89 (Table 4)
after multiple imputation of missing covariates. In the treatment domain, prescription of oral amoxicillin and correct
dosage exhibited a strong positive association with a correlation coefficient of 0.73 under complete case analysis
(Table 3) and 0.80 after multiple imputation of missing covariates (Table 4).

Across domains of care, correct pneumonia diagnosis was strongly associated with prescription of oral amoxicillin
and correct dosage both in the treatment domain. We also observed that documentation of oxygen saturation, respira-
tory rate, and lower wall chest wall indrawing, in the assessment domain were positively associated with correct pneu-
monia diagnosis, amoxicillin prescription and correctness of the dose. These observations were made under complete
case analysis (Table 3) and after multiple imputation (Table 4). On the other hand, documentation of cough and

TABLE 4 Variance-correlation matrix for random clinicians' intercepts after multiple imputation

Cough
Difficult
breathing

Respiratory
rate

Oxygen
saturation AVPUa Indrawing

Correct
diagnosis

Correct
treatment

Correct
dose

Cough 1.05

Difficult breathing 0.17 0.71

Respiratory rate �0.29 �0.60 2.47

Oxygen saturation �0.30 �0.78 0.89 2.23

AVPU �0.12 �0.24 �0.12 0.22 1.76

Indrawing �0.30 0.06 �0.52 �0.50 �0.26 1.82

Correct diagnosis �0.54 �0.65 0.40 0.24 �0.07 0.35 2.14

Correct treatment �0.45 �0.55 0.23 0.26 �0.22 0.52 0.77 0.56

Correct dose �0.47 �0.76 0.63 0.64 �0.18 0.15 0.74 0.80 0.67

Note: AVPUa, Alert, verbal response, pain response, unresponsive.

FIGURE 3 Results (component loadings for the first and second principal components) of a principal components analysis on

correlation matrix of the random intercepts of model under complete case analysis (panel a) and after multiple imputation (panel b)
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difficult breathing (primary pneumonia signs and symptoms) and AVPU in the assessment domain were negatively
associated with documentation of other pneumonia care indicators.

Under complete case analysis, a principal component analysis (PCA) on the correlation matrix of the random inter-
cepts showed that the first and second principal components explained 57.6% and 24.6% of the variation respectively
(Figure 3, panel a). After multiple imputation, the first and second principal components explained 60.3% and 26.2% of
the variation respectively (Figure 3, panel b). Vectors of two positively correlated outcomes in the loading plots were
close, forming a small angle between them (e.g., oxygen saturation and respiratory rate). On the other hand, vectors of
negatively correlated outcomes (e.g., cough and treatment) were diverging forming a large angle between them. The
direction of vectors for all the outcomes was consistent under complete case analysis and after multiple imputation.

7 | DISCUSSION

In this study we sought to estimate the joint and separate effects of covariates on nine pediatric pneumonia outcomes
from a routine data set collected during a cluster randomized trial conducted in Kenyan hospitals. We also estimated
the strength of association among the outcomes using a correlated random-effects joint model.8,14 Missing data in
covariate across two level of hierarchy were handled using multiple imputation.

During the trial period, documentation and adherence to recommended pediatric pneumonia guidelines by clini-
cians depended on individual quality of care indicators. For instance, documentation of pneumonia care indicators, that
did not require a lot of cognitive effort, were highly documented (e.g., cough, difficult breathing) compared to indicators
that required more cognitive effort on the part of the clinician (e.g., prescribing the right treatment in the right dosage).
These variations in delivery of quality care could also be due to hospital level factors, such as lack of or broken medical
devices, impeding delivery of recommended care (e.g., pulse oximeter to measure oxygen saturation).

From Wald type test, we observed significant joint effects of all covariates of interest except patient's gender and
these observations were consistent between complete case analysis and after multiple imputation of missing patient
and clinician level covariates. After fitting pairwise joint model, results showed that documentation and adherence to
recommended clinical guidelines improved over time in six out of nine pneumonia care indicators among children
admitted to six hospitals in the intervention arm. In separate analysis, documentation and adherence to recommended
clinical guidelines improved over time in five out of nine pneumonia care indicators among children admitted to six
hospitals in the intervention arm.

In both analysis approaches (i.e., pairwise joint modeling and separate univariate analysis), multiple imputation led
to more precise estimates compared to those from complete case analysis. These observations were attributed to loss of
information under complete case analysis resulting in larger standard errors hence wider 95% confidence intervals.

Further results revealed that the strength and direction of association among pneumonia outcomes varied within
and across domains of care. Thus, an assumption of common random-effects among all outcomes would be too restric-
tive and unrealistic for pneumonia trial data analyzed in this study.

In the pairwise modeling approach, estimates obtained by averaging over several auxiliary estimates (from the vari-
ous pairs) do not maximize the full multivariate likelihood. However, Fieuws and Verbeke39 demonstrated with simula-
tions that the loss of efficiency is small in the pairwise approach relative to a full maximum-likelihood based approach.
Moreover, the averaged estimates are consistent and asymptotically normal,8 a property which holds for imputed data
sets thus, ensuring valid within imputation estimates. Validity of within imputation estimates is a prerequisite for the
application of Rubin's rules which then account for between imputation variability.38

Although we did not evaluate computational complexity explicitly, combining pairwise joint model fitting and mul-
tiple imputation comes with its computational expense as demonstrated in this study. At imputation stage, the level of
complexity is compounded when missing data occur in more than one level of clustering. In such occurrences, it is par-
amount to account for the hierarchical structure present in the analysis model of interest in the imputation model as
well. This is because incompatibility between imputation and analysis model may lead to biased estimates, under-
estimated cluster level variances and overestimated individual level variances.23,33 In the current study, missing
covariates were imputed using the latent normal approach within the joint model imputation framework while
accounting for clustering at clinician level. Additionally, the outcomes of interest, all fully observed were included in
the imputation model as auxiliary variables. Nonetheless, there is need for further research possibly through a simula-
tion study to evaluate compatibility between imputation and substantive model or the lack thereof, in the high dimen-
sional joint modeling context.
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At analysis stage, complexity stems from calculating parameters of interest (e.g., obtaining variance–covariance
matrices for each imputed data set using the pseudolikelihood approach before applying Rubin's rules). Besides, con-
structing the overall variance covariance matrix for the random effects is not straight forward, hence the need for
greater care to avoid incorrect inferences due to miscalculations. Therefore, future studies can consider developing and
incorporating generic functions and packages into standard statistical software to handle missing data and other com-
putational aspects (e.g., Wald-type tests to test for joint covariate effects after multiple imputation) more efficiently
when the substantive model of interest entails joint modeling of clustered and high-dimensional vectors of outcomes.

The correlated random-effects joint model fitted using the pairwise approach has been previously used to jointly
analyze clustered binary data10 as well as continuous longitudinal outcomes.14 However, there is essentially no example
in the literature on how to account for missing covariates in a high-dimensional joint modeling context. Additionally,
we extended and exemplified Wald-type tests for joint covariate effects after multiple imputation in a high-dimensional
joint modeling context. To our knowledge, there are no examples in the literature demonstrating application of Wald-
type tests for joint covariate effects tests in high-dimensional joint modeling after multiple imputation, hence the nov-
elty of this study.

Besides estimating the joint effects of covariates after multiple imputation, we estimated the strength of association
among quality-of-care outcomes, aspects that are largely ignored in routine pediatric care studies. In previous analysis
of the trial data, for instance, diagnosis and classification of pneumonia cases was the primary outcome of interest.2 In
yet another study, pneumonia quality of care indicators were combined into a single ordinal composite outcome known
as the pediatric quality of care indicator (PAQC) score.5 Therefore, when there is need for joint inference, we recom-
mend this study as a practical example for handling high-dimensional vector of outcomes using a pairwise fitting
approach and at the same time performing multiple imputation to account for missing covariates. However, if the
research question does not necessitate joint inference, then univariate mixed models as tools for analysis suffice.14

Evidently, this study has several limitations. Firstly, we imputed missing covariates assuming a missing at random
(MAR) mechanism, an assumption that cannot be verified using the observed data alone.8,23,40 Therefore, sensitivity
analysis is recommended to explore the robustness of the inferences to the MAR assumptions.

As already noted, fitting pairwise joint models on multiply imputed data sets was time intensive. Future studies
may consider multiple outputation, an approach suggested by18 as alternative to the pairwise joint modeling using a
sandwich-type robust variance estimator.

In conclusion, there were significant joint effects of covariates on nine pneumonia outcomes before and after multi-
ple imputation of missing covariates. In both pairwise joint modeling and separate univariate analysis approaches,
enhanced audit and feedback improved documentation and adherence to recommended clinical guidelines over time in
six and five out of nine pneumonia care outcomes of interest. Irrespective of the analysis approach, multiple imputation
of missing covariates improved precision of parameter estimates compared to complete case analysis. The strength and
direction of association estimated using clinicians' random intercepts estimated from the pairwise joint model varied
among pneumonia outcomes within and across the three domains of pneumonia care. Across domains of care, pneu-
monia diagnosis was strongly correlated with oral amoxicillin prescription and dosage.
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