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Background. Electronic health records (EHRs) offer opportunities for comparative effectiveness research to inform
decision making. However, to provide useful evidence, these studies must address confounding and treatment effect
heterogeneity according to unmeasured prognostic factors. Local instrumental variable (LIV) methods can help stud-
ies address these challenges, but have yet to be applied to EHR data. This article critically examines a LIV approach
to evaluate the cost-effectiveness of emergency surgery (ES) for common acute conditions from EHRs. Methods.

This article uses hospital episodes statistics (HES) data for emergency hospital admissions with acute appendicitis,
diverticular disease, and abdominal wall hernia to 175 acute hospitals in England from 2010 to 2019. For each emer-
gency admission, the instrumental variable for ES receipt was each hospital’s ES rate in the year preceding the emer-
gency admission. The LIV approach provided individual-level estimates of the incremental quality-adjusted life-
years, costs and net monetary benefit of ES, which were aggregated to the overall population and subpopulations of
interest, and contrasted with those from traditional IV and risk-adjustment approaches. Results. The study included
268,144 (appendicitis), 138,869 (diverticular disease), and 106,432 (hernia) patients. The instrument was found to be
strong and to minimize covariate imbalance. For diverticular disease, the results differed by method; although the
traditional approaches reported that, overall, ES was not cost-effective, the LIV approach reported that ES was
cost-effective but with wide statistical uncertainty. For all 3 conditions, the LIV approach found heterogeneity in the
cost-effectiveness estimates across population subgroups: in particular, ES was not cost-effective for patients with
severe levels of frailty. Conclusions. EHRs can be combined with LIV methods to provide evidence on the cost-
effectiveness of routinely provided interventions, while fully recognizing heterogeneity.
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Highlights

� This article addresses the confounding and heterogeneity that arise when assessing the comparative
effectiveness from electronic health records (EHR) data, by applying a local instrumental variable (LIV)
approach to evaluate the cost-effectiveness of emergency surgery (ES) versus alternative strategies, for
patients with common acute conditions (appendicitis, diverticular disease, and abdominal wall hernia).

� The instrumental variable, the hospital’s tendency to operate, was found to be strongly associated with ES
receipt and to minimize imbalances in baseline characteristics between the comparison groups.

� The LIV approach found that, for each condition, there was heterogeneity in the estimates of cost-
effectiveness according to baseline characteristics.

� The study illustrates how an LIV approach can be applied to EHR data to provide cost-effectiveness
estimates that recognize heterogeneity and can be used to inform decision making as well as to generate
hypotheses for further research.
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Introduction

Electronic health records (EHRs) offer important oppor-
tunities for comparative effectiveness research that can
directly inform medical decision making.1,2 EHRs offer the
possibility of evaluating interventions as provided in prac-
tice to all eligible patients. Agencies, such as the National
Institute for Health and Care Excellence (NICE), recognize
the potential of EHRs,3 but to provide useful evidence
about comparative effectiveness, two major concerns must
be addressed. First, treatment selection according to
unmeasured baseline prognostic measures (e.g., disease
severity) can make results subject to unmeasured con-
founding.4,5 Second, there may be treatment effect hetero-
geneity according to patient and contextual characteristics.
While approaches for handling heterogeneity according to
measured covariates (effect modification) are commonly
used, less attention has been given to ‘‘essential heterogene-
ity,’’ that is, heterogeneous gains according to unmeasured
characteristics that influence selection into treatment.6,7

The first challenge is unlikely to be addressed by stud-
ies that apply traditional risk adjustment methods to
provide estimates of comparative effectiveness, as EHRs
tend to have inadequate information on case severity.8,9

A valid instrumental variable (IV) design can provide
accurate estimates of treatment effectiveness, even when

there are unmeasured differences between the compari-
son groups.10 If the IV is valid, it encourages receipt of
the treatment, but does not have an effect on the out-
come, except through treatment receipt. However, a
major concern with applying traditional IV approaches,
such as 2-stage least squares (2SLS) in the presence of
essential heterogeneity, is that the resultant estimates are
unlikely to apply to the overall populations or subpopu-
lations of decision-making interest.10–13

Local instrumental variable (LIV) approaches can
provide estimates of comparative effectiveness that apply
to policy-relevant populations.14–16 LIV methods can
estimate individual-level treatment effects, known as
person-centered treatment (PeT) effects, which can then
be aggregated over relevant subgroups. LIV methods
make the same underlying assumptions as all IV methods
but also require that the instrument be continuous.16

LIV approaches have been used for comparative effec-
tiveness research as part of bespoke observational studies
of educational reforms,17 cardiovascular and bariatric
surgery,18,19 and transfers to intensive care units,20 but
they have not been applied to EHR data, nor to an eco-
nomic evaluation. In EHR settings, it is particularly chal-
lenging to identify and assess the validity of an IV, given
that the data are collected for clinical or administrative
rather than research purposes.
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These major challenges of using EHRs for compara-
tive effectiveness research are exemplified by the ESORT
study,21 which aims to evaluate the effectiveness and
cost-effectiveness of ES versus nonemergency surgery
(NES) strategies, which include antibiotic therapy, non-
surgical procedures (e.g., drainage of abscess), or surgery
deferred to the elective (planned) setting. The question as
to whether ES or NES strategies are more cost-effective
is important, given the high burden of emergency general
surgical services and the lack of evidence to inform clini-
cal decision making.22–24 Here, an unmet challenge is to
identify those patient groups for whom ES is most cost-
effective, and conversely those for whom NES alterna-
tives, such as later surgery, may be more worthwhile.
Randomized controlled trials (RCTs) have been underta-
ken for some acute conditions such as acute appendicitis
and diverticular disease, but these have included highly
selective or small patient samples, whereas for other
acute conditions, such as abdominal wall hernia, no
RCTs of ES have been conducted.25–28

Faced with this evidence gap, the ESORT study uses
records from England’s Hospital Episode Statistics
(HES) database on emergency admissions to acute
National Health Service (NHS) hospitals from 2009 to
2019, for common acute conditions, including the 3 con-
sidered in this article, acute appendicitis, diverticular dis-
ease, and abdominal wall hernia.21 HES for admitted
patient care is a database containing administrative,
patient, and clinical details of all admissions to hospitals
in England’s NHS.29 Clinical data on diagnoses and pro-
cedures are routinely extracted from discharge summa-
ries for inclusion in local patient information databases,
and transferred to HES. The HES database is primarily
used for administrative and payment purposes. HES
lacks detailed clinical data held locally but has been used
widely for research purposes. The ESORT study previ-
ously used HES data and found no evidence of differ-
ences in the overall clinical effectiveness of ES versus
NES strategies.30 However, this earlier article did not
consider alternative approaches for tackling the con-
founding that arises with HES data or provide the esti-
mates of relative cost-effectiveness that are essential for
decision making.

The aim of this article is to critically examine LIV
methods for addressing unmeasured confounding and
heterogeneity in evaluating the cost-effectiveness of ES
for patients with these 3 conditions from EHR data. The
article is structured as follows. First, we provide an over-
view of the ESORT study. Second, we define the main
aspects of the LIV methodology, including application to
the ESORT study. Third, we present the results. Fourth,

we discuss the key findings, strengths, and limitations of
the article and the implications for further research.

Methods

Essential Features of the ESORT Study

Data sources and study population. The ESORT study
uses HES data to evaluate the relative effectiveness and
cost-effectiveness of ES versus alternative strategies from
the hospital perspective over a 1-y time horizon. The
study protocol and statistical analysis plan were devel-
oped following the principles of the target trial emulation
framework.21,31 Briefly, the ESORT study includes
patients aged 18 y or older, admitted as an emergency
admission via an accident and emergency department, or
primary care referral, who were admitted to 175 NHS
hospitals in England from April 1, 2010, to December 31,
2019; had the relevant ICD-10 diagnostic codes; and met
other inclusion criteria (see Supplementary Table S1).21,32

Comparator strategies. Admissions were defined as
receiving the ES strategy if, according to Office of Popu-
lation Censuses and Surveys (OPCS) codes, they had a
relevant operative procedure within time windows desig-
nated by a clinical panel of 3 d (hernia), 7 d (appendici-
tis), or any time within the emergency admission
(diverticular disease).32 The NES strategies included
medical management, interventional radiology, and
operative procedures that did not meet the ES criteria
(see Supplementary Table S1).

Covariates. Baseline covariates were extracted from
HES and included age, sex, ethnicity, the Index of Multi-
ple Deprivation, the Charlson Comorbidity Index,33 the
secondary care administrative records frailty (SCARF)
index,34 and teaching hospital status. The SCARF index
uses ICD-10 codes to define 32 deficits that cover func-
tional impairment, geriatric syndromes, problems with
nutrition, cognition and mood, and medical comorbid-
ities, with severe frailty defined as the presence of 6 or
more deficits.34 Information was taken from HES data
to derive proxy measures of the quality of acute care in
each hospital according to rates of 90-d all-cause mortal-
ity and emergency readmissions in preceding periods.
Subgroups of interest were defined ex ante, drawing on
clinical judgment to define those strata anticipated to
modify the relative effectiveness and cost-effectiveness of
ES. Subgroup definitions were based on the following
baseline characteristics: age group, sex, Charlson
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comorbidity index, SCARF index, diagnostic subcate-
gories, and year of admission.

Outcomes. The CEA took an intention-to-treat approach,
whereby all patients contributed to the treatment group to
which they were assigned at baseline, irrespective of the
subsequent treatments received (e.g., planned or unplanned
surgery). We reported the mean (95% confidence interval)
incremental costs, quality-adjusted life-years (QALYs),
and net monetary benefit (INB) at 1 y. Individual-level
resource use was extracted from HES data for the index
emergency admission and for all subsequent hospital
readmissions up to the end of follow-up (death or
December 31, 2019). Resource use included the length
of the hospital stay, including time in intensive care
units, and the use of diagnostic and operative proce-
dures. Resource use items were combined with unit
costs (£ GDP, 2019/20) to calculate total costs per patient
(see section 1 and Tables S2, S3, and S4 in the supplemen-
tary materials). All unit costs were inflated to 2019–20
prices (£ GBP) using UK’s GDP deflator published by
HM Treasury.35

Survival time up to 1 y was calculated for all patients
from HES records linked to the Office for National Sta-
tistics death data. Health-related quality of life (HRQoL)
data were not available from HES, and so QALYs were
calculated by combining the survival time with HRQoL
estimates from the literature (see sections 2 and 3 and
Tables S5 and S6 in the supplementary materials). We
derived each patient’s QALYs at 1 y using the area under
the curve approach,36 which allowed HRQoL to decrease
to baseline levels following an emergency readmission,
but assumed that HRQoL levels recovered following hos-
pital discharge. HRQoL levels were adjusted to reflect
the patient’s age and gender, and were assumed to be
zero for patients who died over the follow-up period.37,38

The study’s cost-effectiveness metric was the INB of ES
versus NES, calculated by multiplying the incremental
QALYs by a NICE recommended willingness-to-pay
threshold of £20,000 per QALY and subtracting from
this the incremental cost.3

We now present the main elements of the LIV design
(in the following section). We then discuss how PeT
effects, average treatment effect (ATE), and conditional
ATEs (CATEs) were estimated using LIV and contrast
the results against 2 alternative methods for estimating the
ATE—2-stage residual inclusion and GLM regression—
which make different assumptions about confounding and
heterogeneity.

IV Estimation

Overview. A valid instrument must be associated with
treatment assignment (relevance condition) (i), the IV
must be independent of unmeasured confounders
(exchangeability condition) (ii), the IV must influence
the outcomes only through treatment assignment (exclu-
sion-restriction assumption) (iii), and the IV must have the
same direction of effect on the probability of which treat-
ment is received, irrespective of the level of the IV (mono-
tonicity) (iv).10,12 The most widely used IV approach,
2SLS, estimates the average treatment effect (ATE) when
effects are homogeneous. If there are heterogeneous treat-
ment effects, and the IV is binary, 2SLS reports a local
ATE (LATE) or a weighted average of LATEs with a con-
tinuous IV,39,40 requiring careful interpretation of the esti-
mated effects in light of the LATE estimand.

Two-Stage Residual Inclusion

2-stage residual inclusion (2SRI) is an IV approach that
relies on concepts that support control function methods
in an attempt to control for unmeasured confounding.41

This approach uses residuals from a first-stage regression
for treatment assignment, in a second-stage outcome
model.41 Unlike 2SLS, the 2SRI approach, when applied
to a binary treatment, aims to estimate the ATE rather
than LATEs. However, concerns have been raised that
this approach may provide biased estimates of the ATE
due to the necessity to extrapolate the residuals when
constructing counterfactuals, and that it is sensitive to
misspecification of the functional form underlying the
residuals.42 Here, we address the latter concern by using
generalized residuals, which have been shown to mini-
mize the bias in estimating the ATE.42 Nonetheless,
although 2SRI can, in some circumstances, provide accu-
rate estimates of the ATE, it is not specifically recom-
mended for exploring heterogeneity.41

Estimating person-level effects using LIV methods. We
also consider an LIV method that can estimate ATEs,
subgroup effects, and personalized treatment effects, in
the presence of unmeasured confounding and heteroge-
neity, and can extend to nonlinear outcomes such as costs
and QALYs.6,43

Heckman and Vytlacil14–16 showed that LIV methods
can identify effects for ‘‘marginal’’ patients, those who
are in equipoise with respect to the treatment assignment
decision, provided a valid, continuous instrument is
available. These individuals’ propensity for treatment
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(PS), based on the levels of their observed covariates and
IV, just balance with a normalized version of the unmea-
sured confounders (V) discouraging treatment, such that
a small (marginal) change in the IV is sufficient to nudge
them into the treatment group (where D = 1 [i.e., ES] if
PS . V and 0 [NES] otherwise). Contrasting outcomes
for individuals with marginally different values of the
IV, but who are otherwise identical in measured and
unmeasured covariates at different levels of the IV, iden-
tifies a series of marginal treatment effects (MTEs). The
MTE is equivalent to the conditional LATE for infinite-
simally small changes in the normalized unobserved con-
founder, V.44 MTEs can then be aggregated to obtain
the ATE and CATEs for subgroups.16

The LIV method relies on correctly modeling the rela-
tionships of the covariates and the IV with both the treat-
ment and the outcome, typically using parametric
models.45,46 If the treatment assignment model is misspe-
cified, the second-stage model will use biased estimates of
the PS, thus introducing bias into the subsequent effect
estimates. Similarly, if the outcome model is misspecified,
the estimated MTEs may not represent the true MTEs,
as they will have been derived as the derivative of an
incorrect outcome model ðsinceMTE = ∂E(Y Xj = x, Z = z)

∂ps
Þ:

While the ‘‘true’’ model specifications are unknown, con-
sidering alternative specifications, visually inspecting the
models’ predictions versus actual values, and considering
the root mean squared error (RMSE) of the predictions,
in addition to using standard model diagnostic
approaches such as Hosmer-Lemeshow47 and Pregibon48

tests for generalized linear models (GLMs), can be help-
ful in minimizing the risk of misspecification.

Basu43,49 extended the LIV approach by using the
individual patient’s observed treatment status to obtain
personalized effect estimates. The key insight underlying
this approach is that for each individual patient, some
levels of the normalized unobserved confounder would
be inconsistent with the observed treatment decision for
that individual, given their observed characteristics and
the level of the IV.43 For instance, if an individual with
high propensity for ES according to observables (e.g.,
age) were observed to receive NES, it is reasonable to
assume that the discouragement according to unobserved
confounders must have exceeded the propensity for ES
(i.e., PS \ V if D = 0). MTEs that imply a lower level
of unobserved confounding can thus be ruled out, nar-
rowing the set of MTEs that could plausibly represent
the individual’s effect. The PeT effect for an individual is
obtained by aggregating the remaining MTEs. PeT
effects therefore account for individual treatment choices

and the circumstances under which individuals are mak-
ing those choices. The PeT effects can then be aggregated
to obtain higher-level estimands (e.g., ATE and
CATEs).43,49 (For full details and implementation in this
study, see section 4 of the supplementary materials).

Developing IV and LIV approaches within the ESORT
study. The ESORT study adopted an IV approach to
evaluate ES from US claims data,50 following pharma-
coepidemiological research in taking clinician preference
as an instrument for treatment receipt.51,52 In the
ESORT study, the IV was the hospital’s tendency to
operate (TTO), which reflects practice variation across
hospitals in ES rates for these conditions (see Supple-
mentary Figure S1). For each qualifying emergency
admission, the TTO was defined as the proportion of eli-
gible emergency admissions in that specific hospital who
received ES in the previous 12 mo, thus requiring that
the hospital’s past preference for ES strongly predicts
treatment choice for the current patient. The rationale
for the IV design is that, after adjustment for observed
characteristics, the patients’ baseline prognosis is similar
across hospitals with different TTO levels.51 Hence, the
patients can be ‘‘randomized’’ between the ES and NES
strategies according to the hospital’s TTO.

While Keele et al.50 validated this IV within US claims
data, we carefully considered whether each of the above
underlying assumptions were met within the EHR data
for the ESORT study. We assessed the relevance of the
hospital’s TTO with a weak instrument test that is robust
to heteroscedasticity and clustering (see Supplementary
Table S7 in Supplemental materials).53 Assumptions (ii),
(iii), and (iv) are untestable. The IV would fail the
exclusion-restriction condition (assumption iii) if patients
admitted to hospitals with high TTO received better care
(e.g., postoperative care) leading to lower mortality or
shorter stays (and hence costs), regardless of the treat-
ment received, which seems unlikely. However, to
increase the plausibility of assumptions (ii) and (iii), we
adjusted for a rich set of potential confounders, including
proxies for the quality of acute care in each hospital (see
section S5 in the supplementary materials). We assessed
the extent to which observed prognostic covariates dif-
fered across levels of the instrument (see Figure 1).
Imbalances observed in measured covariates across levels
of the TTO would raise concerns about assumptions (ii)
and (iii). We also observed a strong positive, linear rela-
tionship between the hospital-level TTO and receipt of
ES for all 3 conditions, providing support for assumption
(iv).
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Statistical and Sensitivity Analyses

The LIV estimated the PeT effects of ES versus NES on
costs and QALYs for each individual, allowing for treat-
ment effect heterogeneity and confounding.27–30 These
were aggregated to report the effects of ES overall and
for each prespecified subgroup of interest. Probit regres-
sion models were used to estimate the initial propensity
score (first stage), whereas GLMs were applied to the
cost and QALY data, with the most appropriate chosen

according to RMSE (see Supplementary Table S7).
Hosmer-Lemeshow and Pregibon tests were also used to
check the model fit and appropriateness.47,48 For the
QALY endpoint, the logit link and binomial family were
selected (all 3 conditions) and, for costs, the log link and
Gaussian family (appendicitis and diverticular disease)
and the identity link and gaussian family (hernia). Mod-
els at both stages adjusted for the above baseline mea-
sures, time period, and proxies for hospital quality,

Figure 1 Mean level of rescaled baseline covariates according to the level of the instrumental variable.
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defined by rates of emergency readmission and mortal-
ity in 2009 to 2010 (time constant) and in the year prior
to the specific admission concerned (time-varying; see
section 5 of the supplementary materials).

Overall estimates of incremental costs, QALYs, and
INB were reported with standard errors and confidence
intervals (CIs) obtained with the nonparametric boot-
strap (300 replications), allowing for the clustering of
individuals within hospitals and the correlation of
individual-level costs and effects. The individual-level
estimates of incremental costs and QALYs were also
plotted on the cost-effectiveness plane, stratified by sub-
groups of policy relevance.

The 2SRI and risk-adjustment (GLM regression)
approaches took the same approach to model specifica-
tion and selection (including covariates used for con-
founding adjustment) to report overall estimates of
incremental costs and QALYs and INB. The proportion
of missing data across the 3 cohorts was low, with less
than 5% missing values for all baseline covariates, other
than ethnicity (10% in the appendicitis cohort); thus, a
complete case analysis was performed.54

Sensitivity analyses. Sensitivity analyses were underta-
ken to assess whether the results from the main analysis
were robust to alternative definitions and assumptions.
First, the study adjusted for ‘‘quality of care’’ using exter-
nal hospital performance measures from the National
Emergency Laparotomy Audit (NELA).55–57 Second, we
considered the sensitivity of our findings to the potential
for under- or overestimating costs from EHR data by
increasing all costs by 10% (SA2) and to reducing them
by 10% (SA3). Third, we considered an alternative
approach to QALY calculation that used linear interpo-
lation between the baseline admission, and 1-y follow-up
(SA4). Fourth, we considered a longer time horizon of 5
y, by restricting the sample to those patients who were
admitted from 2010 to 2014 (SA5).

Ethics approval. The research was approved by the Lon-
don School of Hygiene and Tropical Medicine ethics
committee (ethics reference No. 21687). The study
involved the secondary analyses of existing pseudo-
anonymized data and did not require UK National
Ethics Committee approval.

Results

The study included 268,144 (appendicitis), 138,869
(diverticular disease), and 106,432 (hernia) patients. The
proportions of patients who had ES were 92.3%

(appendicitis), 11.4% (diverticular disease), and 58.8%
(hernia). The patients with acute appendicitis who had
ES were on average younger and more likely to be fit
and without comorbidities as compared with those who
had NES strategies. For patients with diverticular dis-
ease, patients who had ES were less likely to be fit but
were of similar age and comorbidity profile to those in
the NES groups. For patients with hernia, a higher pro-
portion of women had ES. Other baseline characteristics
were similar between the comparison groups (Table 1).

The most prevalent forms of ES are listed in Supple-
mentary Table S8. Most patients in the NES strategy
groups did not have an operative procedure.

Table 2 presents the unadjusted costs of ES and NES.
For patients with diverticular disease, the average total
costs for the ES group at 1 y were higher than for the
NES group (£16,498 v. £4673), reflecting the higher ini-
tial admission costs, including operative costs. For the
other 2 conditions, the average 1-y costs of ES versus
NES were similar, with the higher operative costs of ES
offset by higher readmission costs following the NES
strategy (see Supplementary Table S8). For patients with
diverticular disease, before any case-mix adjustment, the
proportion of patients who had died by 1 y was higher in
the ES versus NES group (see Supplementary Figure S2).

IV Diagnostics

The hospital’s TTO was strongly correlated with ES
receipt for all 3 conditions, after case-mix adjustment
(see Table 3). For the 3 conditions, the F statistic ranged
from 135 (appendicitis) to 735 (hernia) versus the com-
monly applied threshold of 10.58 Thus, the hospital’s
past preference for ES strongly predicts treatment choice
for the current patient. The mean levels of the baseline
covariates (rescaled) were similar across the TTO levels
(see Figure 1), which makes it more plausible that the IV
also balances unobserved covariates.

Overall Cost-Effectiveness Results by Method

Table 4 reports the estimated incremental costs and
QALYs and the INB according to the intention-to-treat
principle for the overall population using regression
adjustment, 2SRI, and the LIV approach. For patients
with appendicitis and hernia, all 3 methods reported
mean INBs close to zero. For patients with diverticular
disease, the results differed by method. The regression
adjustment and the 2SRI approaches reported that ES
has positive incremental costs, negative incremental
QALYs, and negative INBs with 95% CIs below zero
(Table 4). By contrast, the LIV results show that there
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Table 1 Baseline Characteristics of Patients in the Cohorts

Acute Appendicitis (n = 268,144) Diverticular Disease (n = 138,869) Abdominal Wall Hernia (n = 106,432)

ES
(n = 247,506)

NES
(n = 20,638)

ES
(n = 15,772)

NES
(n = 123,097)

ES
(n = 62,559)

NES
(n = 43,873)

Gender, n (%)
Male 134,270 (54) 10,409 (50) 7,074 (45) 49,922 (41) 37,522 (60) 31,341 (71)
Female 113,224 (46) 10,228 (50) 8698 (55) 73,172 (59) 25,035 (40) 12,530 (29)

Age, y, mean 38 47 64 64 63 62
SCARF index, n (%)
Fit 206,796 (84) 15,015 (73) 6197 (39) 65,911 (54) 33,014 (53) 23,871 (54)
Mild frailty 34,544 (14) 4052 (20) 5631 (36) 38,851 (32) 19,608 (31) 13,104 (29)
Moderate frailty 5041 (2) 1155 (6) 2706 (17) 13,433 (11) 7360 (12) 4987 (11)
Severe frailty 1125 (0) 416 (2) 1238 (8) 4902 (4) 2577 (4) 1911 (4)

Charlson index, n (%)
0 comorbidities 207,525 (84) 15,321 (74) 9789 (62) 73,457 (60) 39,216 (63) 26,297 (60)
1 35,721 (14) 3989 (19) 4482 (28) 35,106 (29) 17,494 (28) 12,163 (28)
2 3715 (2) 1035 (5) 1222 (8) 11,454 (9) 4792 (8) 4169 (10)
3+ comorbidities 545 (0) 293 (1) 279 (2) 3080 (3) 1057 (2) 1244 (3)

ES, emergency surgery; NES, nonemergency surgery; SCARF, secondary care administrative records frailty.

Table 2 Unadjusted Costs of ES and NES Strategies (£GBP 2019–2020)

Acute Appendicitis
(n = 268,144)

Diverticular Disease
(n = 138,869)

Abdominal Wall Hernia
(n = 106,432)

ES
(n = 247,506)

NES
(n = 20,638)

ES
(n = 15,772)

NES
(n = 123,097)

ES
(n = 62,559)

NES
(n = 43,873)

Index admission
Bed-day costs (£), mean (s) 1613 (2080) 1850 (3147) 10,637 (12,919) 1880 (2511) 2249 (7036) 1181 (3853)
Cost of diagnostic
procedures (£), mean (s)

28.0 (54.2) 57.8 (69.1) 108 (104) 86.5 (81.4) 20.3 (52.3) 18.2 (45.1)

Cost of operative
procedures (£), mean (s)

1132 (127) 192 (429) 1947 (938) 1.68 (32.8) 809 (244) 42.3 (209)

Total costs in index
admission (£), mean (s)

2774 (1974) 2101 (3213) 12,690 (13,124) 1967 (2537) 3079 (7066) 1242 (3938)

Readmissions up to 1 y
Patients with 1+
readmissions, n (%)

66,446 (26.8) 10,895 (53.0) 10,100 (64.2) 90,300 (74.4) 25,947 (41.5) 31,997 (72.9)

Bed-day costs (£), mean (s) 541 (2594) 1408 (4208) 3444 (8028) 2422 (6167) 1786 (5998) 2581 (7413)
Cost of diagnostic
procedures (£), mean (s)

22.5 (80.2) 70.2 (142) 94.4 (149) 146 (174) 33.5 (100) 45.7 (120)

Cost of operative
procedures (£), mean (s)

18.5 (139) 178 (419) 270 (628) 137 (496) 62.7 (242) 406 (457)

Total costs in readmissions, mean (s) 582 (2650) 1656 (4338) 3808 (6374) 2706 (6743) 1882 (6061) 3033 (7468)
Total costs at 1 y, mean (s) 3355 (3519) 3757 (5658) 16,498 (16,027) 4673 (7145) 4961 (9666) 4275 (8680)

ES, emergency surgery; NES, nonemergency surgery.

Table 3 Instrumental Variable Strength for the Hospital-Level Tendency-to-Operate within the HES Data (2009–2019) for
Emergency Admissions That Met the ESORT Study Inclusion Criteria for Each of the 3 Conditions

Condition Montiel-Pflueger Robust Weak Instrument Test F-Statistic

Appendicitis 135
Diverticular disease 206
Abdominal wall hernia 735

8 Medical Decision Making 00(0)



was considerable uncertainty in the overall cost-
effectiveness estimates for all 3 conditions, with 95% CIs
around the INBs that included zero (Table 4). For acute
appendicitis, the incremental QALYs and costs were also
close to zero (Table 4). For patients with diverticular dis-
ease, the LIV approach reported that, on average, ES led
to a cost reduction (2£1724), QALY gain (0.047), and a
positive INB (£2664). For patients with abdominal wall
hernia, the LIV approach reported that the positive
incremental costs of ES (£891) were offset by moderate
QALY gains (0.0386; see Supplementary Figure S3).

Subgroup analysis of cost-effectiveness of ES. Figure 2
reports that beneath the overall LIV results, there is
underlying heterogeneity in the INB estimates according
to subgroup. For patients with acute appendicitis, ES
appears less cost-effective for women, older patients, and
those with 2 or 3 comorbidities. For each condition, ES
is less cost-effective on average, according to increasing
frailty levels. For example, for appendicitis, the estimated
INBs for patients with moderate and severe frailty were
2£5750 (2£7810, 2£3692) and 2£18,723 (2£23,886,
2£13,561) versus £369 (2£728, £1467) for patients who
were fit (see also Supplementary Figure S3).

Estimated individual-level effects of ES on costs and out-
comes. Figure 3 reports the individual-level estimates of
incremental costs and QALYs for the 3 conditions. Here,
for illustration, the results are stratified by frailty level.

For those with severe frailty, the proportion of patients
for whom ES is estimated to be cost-effective is 0.0657%
(appendicitis), 46.9% (diverticular disease), and 0.00%
(hernia), whereas for patients who were fit, the corre-
sponding proportions were 59.0% (appendicitis), 87.1%
(diverticular disease), and 82.0% (hernia).

Sensitivity Analyses

The overall results were robust to alternative assump-
tions (see Supplementary Table S9), including alternative
definitions of hospital quality of care (SA1), higher (SA2)
or lower (SA3) unit costs, and the use of linear interpola-
tion for calculating QALYs (SA4). The extension to a 5-y
time horizon resulted in a negative INB for appendicitis
and diverticular disease (SA5), but the sample size was
much reduced (; 50%), and the CIs surrounding the
INB estimates over this extended time horizon were wide
and, like the base case, included zero.

Discussion

This article critically examines LIV methods for com-
parative effectiveness research using EHRs in the context
of a CEA. We evaluate the cost-effectiveness of ES com-
pared with NES alternatives for emergency admissions
with common acute conditions. The IV design exploited
the wide variations in ES rates across hospitals. The
LIV method was chosen because it can address con-
founding and treatment effect heterogeneity, and

Table 4

Acute Appendicitis
(n = 268,144)

Diverticular Disease
(n = 138,869)

Abdominal Wall Hernia
(n = 106,432)

INB
Unadjusted differences 1431 (1259, 1603) 213,088 (213,509, 212,668) 2303 (2469, 2137)
GLM 2165 (2287, 242) 212,381 (212,848, 212,058) 250.1 (2241, 141)
GLM-2SRI 281 (2743, 1306) 27496 (212,230, 22763) 21474 (23038, 2995)
LIV 286.2 (21163, 991) 2664 (24298, 9626) 2119 (21282, 1043)

Incremental costs
Unadjusted differences 2413 (2513, 2312) 11,857 (11,486, 12,228) 674 (548, 800)
GLM 318 (213, 424) 11,266 (10,905, 11,626) 483 (318, 649)
GLM-2SRI 762 (273.5, 1598) 5990 (1371, 10,609) 1645 (295, 2995)
LIV 2109 (21130, 913) 21724 (27878, 4430) 891 (20.7, 1,762)

Incremental QALYs
Unadjusted differences 0.0509 (0.0462, 0.0556) 20.0616 (20.0672, 20.0559) 0.0186 (0.0150, 0.0221)
GLM 0.00767 (0.00550, 0.00983) 20.0594 (20.0653, 20.0534) 0.0216 (0.018, 0.0253)
GLM-2SRI 0.0522 (0.0294, 0.0750) 20.0753 (20.116, 20.0343) 0.0085 (20.0240, 0.0411)
LIV 20.00973 (20.0226, 0.00316) 0.0471 (20.0829, 0.177) 0.0386 (0.00430, 0.0729)

2SRI, 2-stage residual inclusion; ES, emergency surgery; GLM, generalized linear model; LIV, local instrumental variables; NES, nonemergency

surgery; QALYs, quality-adjusted life-years.
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provide cost-effectiveness estimates for the overall pop-
ulation as well as subpopulations of decision-making
relevance, provided the models for the outcome and
the treatment assignment are correctly specified. For
diverticular disease, the results differed by method.
Whereas the traditional approaches reported that,

overall, ES was not cost-effective, the LIV approach
reported that the overall results were highly uncertain.
For appendicitis and hernia, all 3 approaches reported
that the overall cost-effectiveness results were uncer-
tain. For all 3 conditions, the LIV approach found
heterogeneity in the cost-effectiveness estimates; in

Figure 2 (continued)
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particular, ES was not cost-effective for patients with
severe levels of frailty.

This article makes 3 important contributions to the
literature. First, we add to the literature using IV
methods for the evaluation of routinely provided inter-
ventions.6,52,59–61 In the EHR context, given that data
are not collected for research purposes, finding a valid
IV is especially challenging. This article exemplifies the
use of EHRs to substantiate and assess the underlying
assumptions of an IV design. For example, to address

potential violations of the exclusion restriction, we
examined whether the hospital’s TTO could minimize
imbalances in measured covariates with balance plots
and used ‘‘internal’’ (i.e., EHR data) and ‘‘external’’
(i.e., NELA55–57) information to adjust for the quality
of acute care, and improve the plausibility of the exclu-
sion restriction.

Second, this article constitutes a novel application of
LIV to a CEA that uses EHR data. We show how EHRs
can offer large sample sizes, enabling a CEA to provide

Figure 2 (continued)
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precise cost-effectiveness results at the subgroup level,
and to reflect the range of patients presenting in routine
practice. This article also highlights major challenges of
using EHR data for CEA, namely, unmeasured con-
founding and treatment effect heterogeneity. Although

both IV methods considered rely on parametric assump-
tions and the validity of IV assumptions to address con-
founding, 2SRI can also fail to identify the ATE in the
presence of essential heterogeneity.62,63 Hence, one inter-
pretation of the differences between the estimates from

Figure 2 Estimated incremental net monetary benefit (INB) of emergency surgery (ES) versus nonemergency surgery (NES)
strategies for (A) acute appendicitis, (B) diverticular disease, and (C) and abdominal wall hernia.
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2SRI and LIV for patients with diverticular disease is
that the estimated effects may differ between marginal
patients and the overall population.62 For patients with
diverticular disease, patients may well have been selected
to receive ES according to measures that were not avail-
able in these EHR data, such as the severity of the dis-
ease, and so the 2SRI approach may have failed to
validly identify the ATE.

Third, this article contributes to the limited previous
literature evaluating the cost-effectiveness of ES for these
common acute conditions. Some previous studies have
also suggested that NES strategies can result in similar
outcomes and costs for patients with appendicitis,25,28,64

whereas others have found NES to be more cost-effective
than ES.65 Published RCTs evaluating ES strategies for
acute diverticular disease have failed to recruit suffi-
ciently large populations to explore heterogeneity across
population subgroups26 and are nonexistent for acute
hernia. Unlike previous studies,25–28,65–72 the ESORT
study included large sample sizes (.100,000 for each
condition) and subgroups (e.g., those with severe frailty)
excluded from RCTs. These results can help decision
makers identify subgroups for whom NES strategies are
relatively cost-effective (e.g., patients with severe frailty),
those for whom ES is more cost-effective (e.g., ‘‘fit’’
patients), and those for whom there is residual uncer-
tainty and for whom further research may be most
valuable.73,74

This study has several strengths. First, the study
extended a previously validated IV approach by using
large-scale EHR data.50 Second, the HES data, while
having common features of EHR data (notably the
potential for confounding and heterogeneity), were of
generally high quality with baseline covariates, all-cause
mortality, and resource use data available for ; 95% of
patients. Third, the study considered 3 different condi-
tions for which it was anticipated there would be hetero-
geneous treatment effects according to patient subgroups.

While we address some of the challenges of using
EHRs for CEA, others remain. First, HRQoL data were
not available from HES and had to be obtained from the
literature. Granular baseline measures of disease severity
(e.g., size of abscess) were not available to provide more
nuanced subgroup definitions. Second, it is possible that
coding errors within the HES data were incorporated
into the estimates of cost and cost-effectiveness, although
previous research found that costs estimated from HES
data were very similar to those derived from medical
records.75 Third, in common with any approach to
address confounding, the implementation of the LIV
methods made assumptions, in particular, that the rela-
tionships of the covariates and the IV, with both the

Figure 3 Cost-effectiveness plane of person-centered treatment
effects on costs and quality-adjusted life-years (QALYs) for
appendicitis (A), diverticular disease (B), and abdominal wall
hernia (C). Person-centered treatment effects of emergency
surgery on costs and for appendicitis, diverticular disease, and
abdominal wall hernia, where each data point relates to 1
patient in the data set and each color to 1 band of the
secondary care administrative records frailty (SCARF) index
(fit is light gray, severe frailty is black).
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treatment receipt and the outcomes, were correctly speci-
fied. Here, more flexible data-adaptive approaches may
be helpful, although they have not yet been extended to
this context. A further consideration is that subgroup
analyses presented here represent the average estimated
effect for individuals within the group rather than the
causal effect of group membership per se. While the sub-
groups used here were prespecified within a statistical
analysis plan, in other contexts spurious subgroup effects
may be obtained by ‘‘P-hacking.’’

This article identifies areas for future research. First,
future research could build on this work by incorporat-
ing data-adaptive methods such as generalized random
forests or lasso into the LIV estimation, or by using
methods such as causal rule ensembles for exploring het-
erogeneity,76 while recognizing interactions among prog-
nostic variables. Second, the methods used in this study
could be extended to chronic diseases by considering
other preference-based instruments (e.g., tendency to
prescribe), or multiple IV such as genetic markers, which
will raise new issues for the LIV approach. Finally, our
results can be used to target future trials. For instance,
for patients with abdominal wall hernia, there appears to
be equipoise about the choice of strategy (; 50% in each
comparison group). A future trial could collect granular
information on patient subgroups, longitudinal HRQoL
measures, and be nested within the EHR data to help
ensure the results are directly applicable to clinical deci-
sion making.

Authors’ Note

Earlier versions of this article were presented at the 2021 Sum-
mer Health Economics Study Group, and 2021 international
Health Economics Association (iHEA) congress.
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