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Background Dyslipidaemia is highly prevalent in individuals with type 2 diabetes mellitus (T2DM). Numerous stud-
ies have sought to disentangle the causal relationship between dyslipidaemia and T2DM liability. However, conven-
tional observational studies are vulnerable to confounding. Mendelian Randomization (MR) studies (which address
this bias) on lipids and T2DM liability have focused on European ancestry individuals, with none to date having
been performed in individuals of African ancestry. We therefore sought to use MR to investigate the causal effect of
various lipid traits on T2DM liability in African ancestry individuals.

Methods Using univariable and multivariable two-sample MR, we leveraged summary-level data for lipid traits and
T2DM liability from the African Partnership for Chronic Disease Research (APCDR) (N = 13,612, 36.9% men) and
from African ancestry individuals in the Million Veteran Program (Ncases = 23,305 and Ncontrols = 30,140, 87.2%
men), respectively. Genetic instruments were thus selected from the APCDR after which they were clumped to
obtain independent instruments. We used a random-effects inverse variance weighted method in our primary analy-
sis, complementing this with additional sensitivity analyses robust to the presence of pleiotropy.
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Findings Increased genetically proxied low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels
were associated with increased T2DM liability in African ancestry individuals (odds ratio (OR) [95% confidence inter-
val, P-value] per standard deviation (SD) increase in LDL-C = 1.052 [1.000 to 1.106, P = 0.046] and per SD increase in
TC = 1.089 [1.014 to 1.170, P = 0.019]). Conversely, increased genetically proxied high-density lipoprotein cholesterol
(HDL-C) was associated with reduced T2DM liability (OR per SD increase in HDL-C = 0.915 [0.843 to 0.993,
P = 0.033]). The OR on T2DM per SD increase in genetically proxied triglyceride (TG) levels was 0.884 [0.773 to
1.011, P = 0.072] . With respect to lipid-lowering drug targets, we found that genetically proxied 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMGCR) inhibition was associated with increased T2DM liability (OR per SD decrease in
genetically proxied LDL-C = 1.68 [1.03-2.72, P = 0.04]) but we did not find evidence of a relationship between geneti-
cally proxied proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and T2DM liability.

Interpretation Consistent with MR findings in Europeans, HDL-C exerts a protective effect on T2DM liability and
HMGCR inhibition increases T2DM liability in African ancestry individuals. However, in contrast to European
ancestry individuals, LDL-C may increase T2DM liability in African ancestry individuals. This raises the possibility
of ethnic differences in the metabolic effects of dyslipidaemia in T2DM.

Funding See the Acknowledgements section for more information.

Copyright � 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context

Evidence before this study

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder
characterized by insulin resistance, hyperglycaemia, and
pancreatic b-cell dysfunction. Dyslipidaemia is frequent
in people with T2DM and has been linked to the patho-
genesis of T2DM. Several research have investigated
the link between dyslipidemia and T2DM risk, utilizing
either traditional observational or more contemporary
Mendelian Randomization approaches. However, there
are some significant flaws in the existing corpus of
research. Confounding and reverse causality are inher-
ent risks in traditional observational research. Adiposity
and a variety of other metabolic variables, for example,
are likely to muddle the link between dyslipidemia and
T2DM risk.

Added value of this study

In this MR study we used univariable and multivariable
two-sample MR, by leveraging on summary-level data
for lipid traits and T2DM liability of African ancestry indi-
viduals. We highlight the negative causal effect of
increased genetically proxied LDL-C, TC and HMGCR
inhibition on T2DM liability and, a protective causal
effect of HDL-C on T2DM liability in individuals of Afri-
can ancestry. Our finding that increased genetically
proxied HMGCR inhibition is associated with increased
T2DM liability in African ancestry individuals is also con-
sistent with MR findings in European ancestry individu-
als and large-scale randomized data from clinical trials
of statin efficacy.
Implications of all the available evidence

Our study was the first to shed light on the causal rela-
tionship between lipid traits and T2DM liability in Afri-
can ancestry individuals including importance of statin
therapy for primary and secondary cardiovascular dis-
ease prevention in African, adding to existing knowl-
edge in etiology of T2DM.
Introduction
Type 2 Diabetes Mellitus (T2DM) is a metabolic disor-
der characterized by insulin resistance, hyperglycaemia,
and pancreatic b-cell dysfunction.1 Dyslipidaemia,
which consists of increased LDL-C, increased TG, and
reduced HDL-C levels, is common in individuals with
T2DM and is implicated in the pathogenesis of T2DM.2

For example, experimental evidence suggests that dysli-
pidaemia may impair normal pancreatic b-cell function,
in part by affecting protein folding and trafficking in
b-cell endoplasmic reticulum.1,2 In Africa alone, there
are more than 19 million people with T2DM and num-
bers in sub-Saharan Africa are projected to increase by
47.5% by 2030.2 As the economies of African countries
become increasingly urbanized, the clinical burdens of
dyslipidaemia and T2DM will grow throughout the con-
tinent. Accordingly, there is a clinical imperative to
understand the relationship between dyslipidaemia and
T2DM in African ancestry individuals.
www.thelancet.com Vol 78 Month April, 2022
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Characteristic MVP APCDR

MVP cohort size, n 53,445 (23,305 cases;

30,140 controls)

13,612

Age at enrolment, mean 61.7 44.82

Male gender, n (%) 87.2 36.9

BMI (kg/m2), mean 30.8 26.3

LDL-C (mmol/L) NA 2.54

HDL-C (mmol/L) NA 1.63

Triglycerides (mmol/L) NA 2.85

Dyslipidemia, n 28,689 NA

T2DM Diagnosis (MVP)

Case T2D based on � 2 diagnosis codes for T2D,

excluding T1D and other diabetes-

inducing conditions.

Control No T2D, T1D, or diabetes-related conditions

Table 1: Demographic characteristics of the exposure and
outcome study cohorts.
*MVP: Million Veteran Program; APCDR: African Partnership for Chronic

Disease Research; BMI: body mass index; LDL-C: low-density lipoprotein

cholesterol; HDL-C: high-density lipoprotein cholesterol; T2D:Type 2 Diabe-

tes, T1D:Type 1 Diabetes, NA: Non-Applicable
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Numerous studies using either conventional obser-
vational2�6 or more recent Mendelian Randomization
methods7�14 have investigated the relationship
between dyslipidaemia and T2DM liability. However,
the existing body of evidence has some important limi-
tations. Conventional observational studies are inher-
ently vulnerable to confounding. For instance, the
relationship between dyslipidaemia and T2DM liabil-
ity is likely confounded by adiposity and a range of
related metabolic factors.2,15 Altered lipid concentra-
tions may also be a consequence, rather than a cause,
of insulin resistance.15 By virtue of the random inheri-
tance of genetic variants, their presence in the germ-
line and their non-modifiable nature, MR studies are
comparatively less vulnerable to confounding16�18 and
thus, under specific assumptions,18 are capable of iso-
lating and estimating the causal effect of dyslipidae-
mia on T2DM liability. However, MR studies
addressing this question have primarily focused on
European ancestry individuals and none to date have
been performed in individuals of African ancestry.
This is important because the frequency and distribu-
tion of genetic variants may differ across populations
and so the extent to which findings in European ances-
try individuals are applicable to African ancestry indi-
viduals is uncertain.

In this study, we used two-sample MR to investigate
the effect of genetically proxied levels of circulating lipid
traits (LDL-C, HDL-C, TC and TG) and genetically
proxied levels of two lipid-lowering drug targets
(HMGCR and PCSK9) on T2DM liability in African
ancestry individuals.
Methods

Data sources
We obtained genetic association estimates from sum-
mary statistics of large-scale genome-wide associa-
tion studies (GWAS). For the exposures, the genetic
associations are based on up to 13,612 individuals
(36.9% men) from the African Partnership for
Chronic Disease Research (APCDR).19 Genetic asso-
ciation estimates for T2DM liability were obtained
from 23,305 cases and 30,140 controls of African
American ancestry individuals in the Million Veteran
Program (MVP) (87.2% men)16 (Table 1). Participant
consent and ethical approval were obtained in the
original studies.
Genetic instruments
The genetic instruments for each exposure were
selected as single-nucleotide polymorphisms (SNPs)
that are associated with the corresponding exposure
at p<10�6 in the APCDR dataset and that were also
available in the outcome summary statistics
www.thelancet.com Vol 78 Month April, 2022
(Supplementary1: ST1-ST4). Such p-value threshold
was used to enable a sufficient number of genetic var-
iants for MR sensitivity analyses. For the drug tar-
gets, we examined LDL-C associated variants within
§250kb of HMGCR and PCSK9. To identify instru-
ments for HMGCR inhibition, we used a more
lenient threshold of p<10�4 (Supplementary1: ST5,
ST6).

We harmonized the effect alleles in the exposure and
outcome datasets, and excluded palindromic variants
with MAF>0.4. The remaining variants were clumped
at linkage disequilibrium (LD) r2<0.001 (based on the
1000 Genomes African reference panel) within a 10 Mb
window. For the drug targets, the clumping was done at
r2<0.1.20 F-statistics was calculated for the individual
variants used as instruments to quantify instrument
strength using method described Burgess et al.21 The
statistical power was evaluated by calculating the
approximate minimum detectable odds ratio (OR) for
each lipid trait at a power of 0.8, given the sample size
of the exposure, total variance explained by the instru-
ments and type 1 error rate of 0.05.22 To examine poten-
tial ancestral differences in the variants used as
instruments, we compare the effect sizes used here to
the effect sizes of these variants in European ancestry
GWAS.23
Statistical analysis
In this two-sample MR analysis, the random-effects
inverse-variance weighted (IVW) method implemented
in the Mendelian Randomization R package24 was used
as the main analysis. This method gives a consistent
3



NSNPs Median F (range) Approximate
minimum
detectable
Odds Ratio

Primary exposures

HDL-C 18 32 (23�270) >1.10 or <0.91

LDL-C 23 33 (24�1050) >1.06 or <0.94

Total C 18 33 (14�461) >1.09 or <0.92

TG 11 28 (22�114) >1.14 or <0.87

Secondary exposures

HMGCR inhibition 1 18 >1.90 or <0.53

PCSK9 inhibition 8 47 (26�86) >1.14 or <0.87

Table 2: Instrumental variables for the exposures.
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causal estimate if the genetic variants employed as
instruments meet the instrumental variable assump-
tions.17 Horizontal pleiotropy, where the variants affect
the outcome independently of the exposure, is a com-
mon violation of the assumptions required by the IVW
method. Therefore, we used MR-Egger, weighted
median and weighted mode methods as sensitivity anal-
yses, as these methods are more robust to potential
pleiotropic effects of the variants employed as instru-
mental variables.18

As the lipid traits are both genetically and pheno-
typically correlated with each other, we accounted for
this by conducting multivariable MR (MVMR)25 to
examine the mutually adjusted direct effects of the
lipid traits. TC was omitted from the MVMR due to its
collinearity with the sum of HDL-C and LDL-C. The
considered instruments in MVMR were SNPs that
associated with any of HDL-C, LDL-C, or TG at
p<10�6 in the APCDR dataset (Supplementary1: ST7),
with similar exclusions as in univariable MR described
above, and clumping conducted based on the lowest
SNP-wise p-value with the considered lipid traits. We
calculated the conditional F-statistics for each exposure
as described in Sanderson et al.26 with the covariance
between the effect of genetic variants on each exposure
fixed at 0.

For drug targets with MR evidence at P<0.05, we
performed colocalization analysis as a sensitivity analy-
sis. Coloc method27 applied here is a Bayesian method
which, assuming a maximum of one causal variant per
locus, calculates posterior probabilities (PP) for the com-
peting models of (i) no causal variants, (ii) causal variant
on the exposure, (iii) causal variant on the outcome, (iv)
distinct causal variants, and (v) shared causal variant. A
high PP for model (v) (PPshared) gives support to the
obtained MR results, while a high PP for model (iv)
(PPdistinct) would suggest that the MR results are due to
confounding by LD, that is, the observed MR result is
not causal, but due to LD between two distinct variants.
We set the prior probabilities of any variant in the
region associated with exposure, outcome, or both traits,
at 10�4. The liberal prior was used as colocalization was
done as a sensitivity analysis, after evidence for associa-
tion in MR.

To evaluate the possibility of reverse causality, we
conducted MR analysis treating T2DM liability as the
exposure, and each lipid trait as an outcome in turn.
The genetic instruments for T2DM liability were
selected as variants associated with risk of T2DM at
p<5e-8 in the MVP GWAS summary statistics, with
harmonisation and clumping done as in the main
analysis.
Role of funding source
Funding sources had no role in the conduct or reporting
of the research.
Results
Table 2 shows the summary of the instruments for each
exposure. The F-statistics for individual variants ranged
between 14 and 1050, indicating a low risk of substantial
weak instrument bias. The comparison of the effect
sizes between African and European ancestries are
given in Supplementary 2.

In the main analysis, we found evidence of associa-
tions between genetically predicted LDL-C and T2DM(
[OR] per 1-standard deviation increase in the genetically
proxied exposure 1.05, 95% CI 1.000 to 1.106,
P = 0.046). Genetically predicted TC was also associated
with increased risk of T2DM (OR = 1.089 (1.014 to
1.170, P = 0.019). Genetically predicted HDL-C
(OR = 0.915 (0.843 to 0.993, P = 0.033)) and TG
(OR = 0.884 (0.773 to 1.011, P = 0.072)) associated with
lower T2DM risk (Figure 1). The results were robust in
the sensitivity analyses employing different MR meth-
ods more robust to horizontal pleiotropy (Figure 1, Sup-
plementary 3:ST1).

MVMR analyses showed similar estimates for HDL-
C and LDL-C as in the univariable MR, while the associ-
ation between genetically predicted TG and T2DM risk
was notably attenuated towards the null (Figure 2, Sup-
plementary 3:ST2).

In the drug target analyses, we found evidence for
genetically predicted HMGCR inhibition being associ-
ated with increased T2DM risk (OR per 1-SD decrease
in genetically proxied reduction in LDL-C via HMGCR
inhibition 1.68, 95% CI =1.03-2.72, P=0.04; Supple-
mentary 3:ST3). Colocalization analysis showed some
support for shared causal variant (PPshared=0.18;
PPshared/(PPshared+PPdistinct) = 0.81), and deemed con-
founding by LD unlikely (PPdistinct=0.04). There was no
evidence for association between genetically predicted
PCSK9 inhibition and T2DM risk (OR [95% CI] 0.94
[0.82-1.08], P=0.41).

The reverse MR analyses did not show evidence of
genetic liability to T2DM being associated with lipid lev-
els (Supplementary 4).
www.thelancet.com Vol 78 Month April, 2022



Figure 1. Forest plot of the odds ratios and their 95% confidence intervals between lipid traits and genetically predicted T2DM risk
using different MR methods. IVW-RE = inverse-variance weighted random-effects. HDL-C: high-density lipoprotein cholesterol; LDL-
C: low-density lipoprotein cholesterol; Total C: total cholesterol.

Figure 2. Forest plot showing the odds ratios and their 95% confidence intervals of univariable and multivariable MR of lipid traits vs
T2DM. *Total C omitted from multivariable MR due to collinearity with the sum of HDL-C and LDL-C. HDL-C: high-density lipoprotein
cholesterol; LDL-C: low-density lipoprotein cholesterol; Total C: total cholesterol.
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Discussion

Principal findings in context
This study provides genetic evidence in support of a del-
eterious causal effect of increased genetically proxied
LDL-C, TC and HMGCR inhibition on T2DM liability
and, conversely, a protective causal effect of HDL-C on
T2DM liability in individuals of African ancestry.
Although the effect of both LDL-C and HDL-C on
T2DM liability were somewhat attenuated after mutual
adjustment in our MVMR model, MR estimates were
similar in both univariable and multivariable MR. In
contrast, the effect of genetically proxied TG on T2DM
was inconsistent across univariable and multivariable
MR. We did not find evidence to support a causal effect
of genetically proxied PCSK9 levels on T2DM liability.

Our univariable MR result of increased genetically
proxied HDL-C levels being associated with a decreased
risk of T2DM in African ancestry individuals is consis-
tent with previous MR studies in European ancestry
individuals.7,9,12,14 Although the effect was slightly
attenuated in MVMR such that the 95% CI included the
null, the magnitude of the MR estimates was similar in
direction and magnitude across both univariable and
multivariable MR (see Figure 2). This attenuation there-
fore likely reflects insufficient statistical power as
opposed to measured horizontal pleiotropy being
accounted for and identified during MVMR, though
repeating the MVMR analysis once more summary-level
data are available for African ancestry individuals will be
necessary to confirm this. Indeed, the same phenome-
non of directionally consistent albeit attenuated MR
estimates for HDL-C has been observed in MVMR anal-
yses in European ancestry individuals.9 In addition to
MR, genetic support for a causal effect of HDL-C on
T2DM liability comes from experimental studies of
monogenic disease. The mutations in the ABCA1 gene
that characterize Tangier disease cause both low levels
of plasma HDL-C and abnormal insulin secretion in
humans.28,29 Thus, our study adds weight to the
increasing genetic evidence to support the importance
of HDL-C as a therapeutic target in treating the diabeto-
genic side effects of statins and, potentially, in the treat-
ment of T2DM itself.9,13

In contrast, the effect of TG on T2DM liability
was significantly attenuated in our MVMR model
after adjusting for LDL-C and HDL-C, suggesting
that TG does not exert a direct causal effect on
T2DM liability independently of LDL-C and HDL-C.
Consistent with our study, the same attenuation has
been observed in MVMR studies in European ances-
try individuals11 and numerous previous MR studies
did not detect a causal effect of genetically proxied
TG on T2DM liability.7,9,14 It should, however, be
noted that targeting TG may yet be of therapeutic
value in Type 2 Diabetics with dyslipidaemia in light
of data suggesting that hypertriglyceridaemia may
contribute to residual cardiovascular risk in statin-
optimized patients with T2DM.30

Comparatively, similar associations have not been
reported in other non-European populations. In the
study by Sobrin et al.,8 there was no evidence of geneti-
cally predicted plasma lipid levels being associated with
risk of diabetic retinopathy in Chinese ancestry popula-
tions. In a bidirectional MR study exploring the causal
relationships between lipid and glycemic levels in
Indian population by Agarwal et al.,31 the authors report
evidence of only genetically predicted TG levels being
associated with glycemic traits.

Our finding that increased genetically proxied
HMGCR inhibition is associated with increased T2DM
liability in African ancestry individuals is also consistent
with MR findings in European ancestry individuals9

and large-scale randomized data from clinical trials of
statin efficacy.32 Clinically, this implies that it is equally
important to counsel African ancestry individuals on
the small increase in the risk of T2DM upon commenc-
ing statin therapy for primary and secondary cardiovas-
cular disease prevention. Interestingly, mediation
analysis has shown that obesity is a mediator of the dia-
betogenic effect of LDL lowering.33 We could not
include obesity in our MVMR model due to insufficient
GWAS data on obesity in individuals of African ances-
try, but it will be interesting to explore in future studies
whether this finding extends to African ancestry individ-
uals, in whom differences in the cardiometabolic effects
of adiposity are well-documented.

Strikingly, in contrast to findings in European ances-
try individuals, we found that increased genetically
proxied LDL-C levels were associated with an increased
risk of T2DM in African ancestry individuals9,13,32 an
association that was attenuated, albeit similar in magni-
tude, after adjusting for HDL-C and TG in our MVMR
model. In other words, our study suggests that in Afri-
can ancestry individuals, elevated LDL-C levels increase
T2DM liability and yet lowering LDL-C levels via the
HMGCR pathway also increase T2DM liability. Taken
together, this raises the possibility of diabetogenic, LDL-
C-increasing pathways, acting independently of
HMGCR, that exist in African ancestry individuals but
not in European ancestry individuals. In this regard, it
is clinically and biologically plausible that the effect of
LDL-C on T2DM liability differs across ancestries. Lon-
gitudinal data from the Isfahan cohort study support a
positive association between LDL-C and T2DM liability
in a non-European population.27 African ancestry indi-
viduals have been shown to exhibit insulin resistance in
the absence of the typical profile of dyslipidaemia and
central adiposity observed in European ancestry individ-
uals and indeed, lipid metrics adept at detecting T2DM
liability in European ancestry individuals often fail to do
so African ancestry individuals.34�36 Moreover, despite
having a more favourable atherogenic profile, consisting
of lower small LDL-C, higher HDL-C and lower TG
www.thelancet.com Vol 78 Month April, 2022
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levels, African Americans have a lower angiographic
burden of coronary artery disease37 and a 2-4-fold
greater risk of cardiovascular disease outcomes in com-
parison to white Americans.37,38 Hence, if the atheroge-
nicity of certain lipid subfractions and their
corresponding propensity to cause downstream cardio-
metabolic sequalae differs between African ancestry
and European ancestry individuals, so too may the dia-
betogenicity of LDL-C. If, for example, individuals carry-
ing more LDL-C-increasing alleles are on average more
likely to be prescribed statins, which are themselves dia-
betogenic, then this might induce a spurious associa-
tion between increased genetically proxied LDL-C levels
and T2DM liability.39 However, it is very unlikely that
all people with high LDL-C in the African study were
treated with statins, these differences could equally be
present in MR studies in European ancestry individuals
where the opposite effect is seen. We therefore do not
believe that such confounding explains this finding,
although future GWAS studies incorporating longitudi-
nal data may provide further clarity. In summary,
observed differences in the propensity of LDL-C to cause
T2DM in African ancestry individuals vs European
ancestry individuals may reflect the dissimilarity in the
underlying biology of diabetic dyslipidaemia across
ancestries but more studies are necessary to explore this
further. Another possible explanation for this observed
differences across ancestries may be that the pathophys-
iology of T2DM vary across populations and different
socio-economic settings.40 However, it is worthy to note
that even if the disease pathophysiology is the same,
changing levels and manifestations of risk variables in
both populations can also influence these observed dif-
ferences.

Our findings in examining the link between T2DM
and lipid levels do not indicate a causal effect of
increased T2DM on lipid levels as reported in observa-
tional studies,41,42 which could be attributable to poten-
tial confounders in observational studies. Our findings
are consistent with those of Vatner et al., where they
demonstrated that TG synthesis and levels are unaf-
fected by insulin resistance, insulin action, or insulin
levels.43
Strengths
Our study has number of strengths. Under certain
assumptions,18 MR is more resistant to confounding
and is therefore better able to distinguish causation
from correlation in comparison to traditional observa-
tional studies.44,45 SNPs that were employed as instru-
ments were all from genetic regions encoding LDL-C,
HDL-C, TG, HMGCR and PCSK9 or from proximate
genetic loci; thus, a strong biological link between our
genetic instruments and exposures of interest strength-
ens the validity of these variants with respect to the
assumption of relevance in the IV framework. Given
www.thelancet.com Vol 78 Month April, 2022
the propensity of certain genetic variants associated
with one lipid fraction to also associate with another,
the use of multivariable MR is particularly suited to dis-
entangling the direct causal effect of different lipid frac-
tions on T2DM liability. MVMR enables us to
incorporate a degree of measured horizontal pleiotropy
into our analysis, which, in comparison to univariable
analyses, reduces bias owing to violation of the exclu-
sion-restriction assumption.25 We also interrogated the
robustness of our IVW estimates to the presence of
pleiotropic variants using a range of sensitivity analyses
and our MR estimates were consistent across these dif-
ferent robust methods. Whilst previous MR studies on
this question have focused on European ancestry indi-
viduals, ours is the first to focus on African ancestry
individuals. Given that African ancestry individuals are
underrepresented in cardiovascular disease randomized
clinical trials and observational studies, there is a risk of
inappropriately generalizing findings in European
ancestry to African ancestry individuals.46,47 To this
end, our study provides valuable genetic evidence that
pertains directly to the effect of lipid traits and lipid-low-
ering therapies on T2DM liability in African ancestry
individuals.
Limitations
Our study has limitations. We used a more lenient sig-
nificance threshold of p<10�6 to select SNPs in our
genetic instruments, which may lead to inclusion of
weak or invalid instruments. Despite this, the F-statis-
tics of the genetic instrument for each outcome were all
> 10. Statistical power may have been insufficient to
detect a causal effect for genetically proxied TG and
PCSK9 levels on T2DM liability in our univariable anal-
ysis and for LDL-C and HDL-C in our multivariable
model. Genetic association estimates used in this study
were derived from meta-analyzing studies with demo-
graphically heterogenous populations and so despite
adjusting for age, sex and population stratification, such
heterogeneity may introduce bias into MR estimates.47

Our MR estimates should not be extrapolated to esti-
mate the effect of changing circulating lipid levels in
subgroups of African ancestry individuals with par-
ticularly high or low circulating lipid levels.45 Despite
finding no evidence of significant pleiotropy in our
sensitivity analyses, we cannot definitively exclude
the possibility of horizontal pleiotropy whereby var-
iants in our genetic instrument influence T2DM lia-
bility via pathways independent of the lipid traits
investigated here.44 We also did not have informa-
tion available on statin use among the participants
in MVP, and its potential impact on our results is
unclear. In addition, the peculiarities of the MVP,
including the use of a single genotyping array for
the diverse ethnicities48 may have influenced the
genetic association estimates.
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The APCDR cohort had only about one-third of men,
whereas the MVP had 87.2 percent men, implying that
the effect of lipids on T2DM liability was primarily
assessed by comparing lipid levels in females to T2DM
liability in males. As a result, the results presented in
this study should be interpreted in the context of T2DM
liability in men.
Conclusion
Overall, we found MR evidence of a protective effect of
HDL-C and an adverse effect of HMGCR inhibition on
the risk of T2DM. Our finding of higher genetically
proxied LDL-C levels increasing T2DM liability in Afri-
can ancestry individuals raises the possibility of ances-
tral differences in the metabolic effects of dyslipidaemia
in T2DM.
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