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Abstract

Predicting vector abundance and seasonality, key components of mosquito-borne disease

(MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effec-

tively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encepha-

lopathy in Asia with 100,000 cases estimated annually, but data on the principal vector

Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that

combined information from available vector occurrence and abundance data to predict sea-

sonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India,

as well as examining the environmental drivers of these patterns. Using data collated from

57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector

abundance influenced by climatic and land use factors. Lagged precipitation, temperature

and land use intensity metrics for rice crop cultivation were the main drivers of vector abun-

dance, independent of seasonal, or spatial variation. The inclusion of environmental factors

and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for

random cross validation = 0.48) compared to a baseline model representative of static haz-

ard predictions (MAE = 0.95), signalling the importance of seasonal environmental condi-

tions in predicting JE vector abundance. Vector abundance varied widely across India with

high abundance predicted in northern, north-eastern, eastern, and southern regions,

although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g.,

Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant pre-

dictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the

possible development of vector abundance as a proxy for JE hazard. We demonstrate a

novel approach that leverages information from sparse vector surveillance data to predict

seasonal vector abundance–a key component of JE hazard–over large spatial scales, pro-

viding decision-makers with better guidance for targeting vector surveillance and control

efforts.
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Author summary

Japanese encephalitis (JE) is the leading cause of viral encephalopathy in Asia with an esti-

mated 100,000 annual cases and 25,000 deaths. However, insufficient data on the predom-

inant mosquito vector Culex tritaeniorhynchus–a key component of JE hazard–precludes

hazard estimation required to target public health interventions. Previous studies have

provided limited estimates of JE hazard, often predicting geographic distributions of

potential vector occurrence without accounting for vector abundance, seasonality, or

uncertainty in predictions. This study details a novel approach to predict spatiotemporal

patterns in JE vector abundance using a joint-likelihood modelling technique that lever-

ages information from sparse vector surveillance data. We showed that patterns in JE vec-

tor abundance were driven by seasonality and environmental factors and so demonstrated

the limitations of previously available static vector distribution maps in estimating the vec-

tor population component of JE hazard. One-month lagged vector abundance predictions

showed a positive relationship with JE outbreaks, signalling the potential use of vector

abundance as a proxy for JE hazard. While vector surveillance data are limited, joint-like-

lihood models offer a useful approach to inform vector abundance predictions. This study

provides decision-makers with a more complete picture of the distribution of JE vector

abundance and can be used to target vector surveillance and control efforts and enhance

the allocation of resources.

Background

Mosquito-borne diseases (MBDs) pose a substantial global health concern due to their ongo-

ing geographic expansion and increasing incidence [1, 2]. Identifying hotspots of MBD risk is

critical in informing effective interventions and safeguarding public health [3]. This is particu-

larly important for understudied diseases, such as neglected tropical diseases, because

resources for disease surveillance and control are often limited [4]. Mosquito-borne disease

risk can be understood as the likelihood of an outbreak due to exposure of a susceptible popu-

lation to an infected mosquito vector (hazard) [5]. Defining areas of MBD hazard requires

knowledge of pathogen prevalence in reservoir host and vector populations however, these

data are often not available. Therefore, models that predict how vector populations may vary

over space and time, thereby estimating a key component of hazard, have become vital tools in

MBD epidemiology [6, 7]. Nevertheless, considerable costs associated with vector sampling [8]

have resulted in the limited availability of long-term vector surveillance datasets over large spa-

tial scales, hindering the ability to predict vector abundance accurately and inform

interventions.

Vector abundance i.e., the number of individuals in a site at a given time, and seasonality

i.e., intra-annual change in abundance, are important contributors to pathogen establishment,

persistence and transmission [6, 8, 9]. For example, regions with high vector abundance and a

low seasonality (i.e., longer periods when adult vectors are active) will lead to increased likeli-

hood of pathogen establishment and persistence [8]. Longer periods of high vector abundance

may also increase the likelihood of pathogen transmission between vectors and hosts due to

increased contact rates that could lead to pathogen exposure i.e., via vector feeding [8, 10].

Despite the epidemiological importance of vector abundance, most commonly available vector

surveillance data consist of categorical information on occurrence (i.e., presence/absence) and

rarely provide quantitative information on abundance [11].
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The relative availability of vector occurrence data has contributed to the popularity of spe-

cies distribution models (SDMs) in MBD research [6, 7, 12]. These statistical models typically

correlate the presence of a species at multiple locations with environmental covariates to pre-

dict species distributions [13]. Although they provide valuable information on potential vector

geographic distributions, knowledge of where vectors can occur is insufficient to provide an

accurate estimation of MBD hazard [8] particularly because these models do not consider spa-

tial and temporal dynamics [14]. In addition, for widely-used SDM approaches such as

boosted regression tree (BRT) models and MaxEnt, uncertainty estimates are produced by

bootstrapping data which can be computationally prohibitive [15, 16]. Without predictive

uncertainty metrics, results may be misleading for decision-makers since it may be difficult to

distinguish between regions with accurate predictions and those that have a high degree of

uncertainty [17]. Alternatively, seasonal vector abundance has been estimated using mechanis-

tic models of vector populations based on a system of differential equations depicting each life

stage [10, 18]. However, these models rely on large amounts of experimental or empirical data

[6] which can be expensive to obtain and are often sparse for many vector species [19]. The

lack of long-term abundance data [1, 9] has also meant that statistical models of seasonal vec-

tor abundance often exist for local [20–22] rather than for national or regional geographic

scales. Overall, there is a need for improved estimates of components of MBD hazard which

also account for uncertainty to enable a better understanding of seasonal patterns in the risk of

disease transmission.

One of the most important yet relatively understudied MBDs is Japanese encephalitis (JE),

the leading cause of viral encephalopathy in Asia [23–25]. JE accounts for over 100,000 human

cases and 25,000 deaths annually, primarily affecting children and those living in rural, agricul-

tural areas [25, 26]. Although the disease is endemic in 24 countries [25], the majority (87%) of

cases in Asia are reported from India, Nepal, China and Vietnam [27, 28]. The causative patho-

gen, Japanese encephalitis virus (JEV) is maintained in an enzootic transmission cycle between

mosquitoes and a range of amplifying hosts including domestic pigs and ardeid wading birds

[29]. Agricultural practices such as rice cultivation and pig breeding provide an ideal environ-

ment for human exposure to JEV, however other factors such as population immunity due to

vaccination will also influence the risk of disease outbreaks [30]. The virus is predominantly

transmitted by the mosquito vector Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae)

[31] and JE outbreaks are reported to be strongly associated with vector abundance [32–34].

Despite C. tritaeniorhynchus being a major threat to human health and wellbeing, there are

limited surveillance data for this species [35] which has impeded knowledge on spatiotemporal

trends in vector abundance, a constituent of JE hazard.

C. tritaeniorhynchus population dynamics are strongly linked to climatic conditions, such

as temperature and rainfall [36, 37], and to anthropogenic activities that increase standing

water, such as irrigated agriculture [38–41]. Experimental studies on other Culex species have

found important life history traits such as development rate and survival generally peak at

15.7–38.0˚C (mean thermal optimum = 28.4˚C) and then decline to zero for thermal minima

(mean = 9.5˚C) and maxima (mean = 39.5˚C) [19]. Rainfall can both positively influence C.

tritaeniorhynchus abundance via the creation of standing water for vector breeding [37, 42, 43]

and negatively impact abundance during the monsoon [44] via the destruction of breeding

sites [45]. Irrigated agriculture provides suitable habitat for vector development and C. tritae-
niorhynchus is reported to breed preferentially in rice paddy fields [38, 39]. Indeed, previous

studies have shown that vector abundance is positively associated with rice field density [46],

rice crop growth stage [40, 41] and standing water availability [38, 47]. Interestingly, the avail-

ability of standing water due to irrigation practices may lead to a reduction in vector seasonal-

ity (i.e., by extending vector breeding seasons), especially in arid regions which would
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otherwise be unable to sustain vector development during summer months [40, 41, 48–50].

Although environmental conditions are known to underpin the seasonal dynamics of many

vector populations [18, 51], the importance of these factors in driving broad-scale spatial and

temporal patterns of JE vector populations remains poorly defined.

Previous studies have investigated the spatial distribution of C. tritaeniorhynchus occur-

rence using SDMs [35, 52–54] however, there is a paucity of data on seasonal vector abun-

dance. Bayesian hierarchical modelling approaches have been used widely for other animal

species to estimate biodiversity trends by integrating multiple data types in a single estimator

[55, 56]. This joint-likelihood approach has also been used in MBD research to explicitly

account for differences in data quality and structure (i.e., different probability distributions)

and can handle and quantify sources of uncertainty associated with each data type [57, 58].

Here, we use this approach to develop a joint-likelihood Bayesian hierarchical model that

leverages spatial information from vector occurrence probability to estimate seasonal vector

abundance for principal JE vector, C. tritaeniorhynchus across India. Firstly, our study aims to

quantify the importance of different environmental drivers of C. tritaeniorhynchus abun-

dance–a key component of JE hazard. We hypothesise that a critical driver of vector abun-

dance is standing water provided by rice crop irrigation practices and periods of heavy rainfall

during the winter and monsoon seasons. Secondly, we aim to construct seasonal vector abun-

dance maps for India that account for uncertainty in predictions. Thirdly, we use logistic

regression to test whether there is a relationship between mosquito abundance estimates and

JE cases and discuss the potential for vector abundance to be used as a proxy for JE hazard.

The purpose of this research is to provide decision-makers with useful information that will

assist in their resource allocation for intervention strategies and highlight areas to target for

future vector surveillance. India is used as a case study since it has one of the highest JE bur-

dens in Asia [26–28] and reports both endemic and epidemic epidemiological patterns

[59, 60].

Materials and methods

Datasets

Vector data. We assembled a database of geo-referenced, spatially, and temporally unique

C. tritaeniorhynchus vector occurrence and abundance records in India from published litera-

ture. A systematic literature search was conducted in PubMed and Web of Science using the

search terms “Culex tritaeniorhynchus” and “India”. The search was limited to articles pub-

lished in English between 1st January 1990 and 31st December 2017 and returned 101 unique

citations. Article abstracts were screened to meet the following criteria for inclusion; (i) the

reported study was undertaken after 1990, (ii) surveys provided species-level information at

the studied location, and (iii) the surveys were conducted in the mainland of India. The full

text articles were then reviewed and excluded if they pooled observations for more than one

month since this would increase uncertainty in the associations between vector occurrence

and abundance and predictor variables. The resulting 24 studies that met the inclusion criteria

were used to build the dataset. The database included 340 unique records of adult vectors

which ranged from 1990–2012 from 57 sampling locations resulting in data from 352 location-

months (see S1 Table). Of the 340 unique records, 74 were occurrence-only records and 266

included occurrence and abundance data (Fig 1). Records that included occurrence and abun-

dance data were used twice in the analysis; once as occurrence data and once as abundance

data (total occurrence data n = 340, total abundance data n = 267) (see S1 Table). The study

period was chosen to maximise the number of vector surveillance records whilst enabling the

use of high-resolution land cover datasets that were available from 1990s. We built on previous
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Fig 1. Spatial and temporal distribution of vector surveillance dataset used in model. (A) Points show the geographical sampling locations (n = 57) of the

C. tritaeniorhynchus records across India�, with occurrence-only records coloured orange (n = 74), records which included occurrence and abundance data in

green (n = 266), and pseudoabsence records in purple (n = 20). Stacked barplots show the temporal distribution of the total vector occurrence (orange) and

abundance data (green) used in the analysis per month (B) and year (C). �Abbreviations for Indian states and union territories: AP—Andhra Pradesh, AR—

Arunachal Pradesh, AS—Assam, BR—Bihar, CH–Chandigarh, CT- Chhattisgarh, DD—Daman and Diu, DL—Delhi, DN—Dadra and Nagar Haveli, GA–Goa,

GJ–Gujarat, HP—Himachal Pradesh, HR—Haryana, JH—Jharkhand, JK—Jammu and Kashmir, KA—Karnataka, KL–Kerala, MH—Maharashtra, ML—

Meghalaya, MN—Manipur, MP—Madhya Pradesh, MZ—Mizoram, NL—Nagaland, OR—Odisha, PJ—Punjab, PY—Puducherry, RJ—Rajasthan, SK—Sikkim,

TL–Telangana, TN–Tamil Nadu, TR—Tripura, UP—Uttar Pradesh, UT—Uttarakhand, WB–West Bengal. Source of base layer https://gadm.org.

https://doi.org/10.1371/journal.pntd.0010218.g001
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C. tritaeniorhynchus occurrence datasets developed by Miller et al., [52] and Longbottom

et al., [35] to include information on mosquito presence, absence, and abundance, collection

method, collection year and month, and habitat descriptions. Mosquito sampling locations in

each study were identified as point locations. We calculated effort-corrected abundance values

of C. tritaeniorhynchus from the raw measurement values by aggregating monthly counts and

standardising them to survey effort (one survey hour) abundance measure for each month.

Most abundance data (86%; n = 228) were recorded from the state of Tamil Nadu (Fig 1A) and

only four studies performed continuous abundance measurements over consecutive months

(see S1 Table). Survey effort (one survey hour) vector abundance measures were transformed

to logscale to conform to normality and ranged from 0 to 6.49 (0 to 655 true scale) with a

mean of 3.61. The occurrence and abundance data used in the models were evenly distributed

across all study months (Fig 1B). However, there is a lack of vector data from 1992 to 1998 and

most abundance data were recorded from 2006 to 2012 (Fig 1C).

Additional inferred absence vector data. We randomly generated additional absence

data for regions above 3500m since to our knowledge, this is above the altitude that C. tritae-
niorhynchus mosquitoes have been recorded [61]. To limit artefactual spatial and temporal

autocorrelation in model residuals, we limited these data to a total of 20 records from 12 loca-

tions which were randomly selected from high altitude regions in the states of Arunachal Pra-

desh, Himachal Pradesh, Jammu and Kashmir and Sikkim (Fig 1A) and randomly assigned a

date from the study period.

Seasonal, environmental and land use data. We selected environmental variables

hypothesised or reported to influence the presence or abundance of C. tritaeniorhynchus popu-

lations (see S2 Table and S1 Fig). For instance, temperature is known to influence the develop-

ment and survival rates of mosquito vectors and the availability of standing water provided

from precipitation or irrigated agricultural practices is required for mosquito breeding [41, 50,

62]. The full suite of covariates tested across all analyses, data sources and associated hypothe-

ses, including those considered but then dropped from the model, are described as follows:

Climate variability was incorporated through inclusion of TerraClimate [63] high-spatial

resolution rasters (1/24˚, ~4-km) for monthly cumulative precipitation (mm), monthly maxi-

mum and minimum temperatures (0C). We calculated monthly mean temperature (0C) from

the maximum and minimum temperature datasets. Mean monthly precipitation was log trans-

formed to represent the nonlinear effect reported between rainfall and vector abundance [64].

To represent the lag association between weather conditions and mosquito abundance [30],

we also calculated average temperature and precipitation data for the two months prior to the

vector observation (henceforth referred to as two-month lagged variables in this study) to

account for the period for mosquito larval habitat to increase and the development period of

the mosquito.

We obtained annual land cover data from the European Space Agency (ESA) Climate

Change Initiative Land Cover dataset (version 3.14) for 1992–2012 (ESA; http://maps.elie.ucl.

ac.be/CCI/viewer/index.php) with a spatial resolution of 300m. The 37 original land cover

classes were reclassified into six broad groups (agricultural, mixed agricultural, forest, mixed

vegetation, urban and water) since the land cover types associated with the vector surveillance

data were not varied enough to evaluate the importance of more diverse land classes (i.e.,

rainfed versus irrigated cropland). Zonal statistics function was used to determine the percent

cover of each of land cover class within 1km buffer around each location, with the buffer size

based on previous analyses [65]. Since ESA land cover data were missing for 1990 and 1991,

we assessed changes in the proportion of land cover classes for the period 1992 to 1995 and

found strong significant correlation between the years (Mantel statistic R: 0.99, p = 0.001), so

we used land cover data for 1992 for the missing years. Agricultural land use intensity can be
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assessed via three categories: input metrics (e.g., irrigation), output metrics (e.g., yields) and

system level metrics (e.g., actual vs. attainable yield) [66]. Due to the strong positive associa-

tions reported between C. tritaeniorhynchus abundance and rice paddy cultivation, we used

the RiceAtlas database of global rice production [67] to extract district-level data for the agri-

cultural intensification input metric of total annual rice area cultivated (hectares) and for the

output metrics of total annual rice produced (tonnes) and average number of crops harvested

per year. To assess seasonal variation in rice cropping practices, district-level data on the rice

planting and harvesting months were also extracted from the RiceAtlas dataset.

All raster data layers were manipulated and resampled to a 0.2080 (~23km) grid cell size

using a World Geodetic System 84 projection using the ‘raster’ package in R [68]. We exam-

ined all covariates for collinearity and excluded covariates that were collinear with one or

more others (Pearson correlation coefficient >0.8).

Japanese encephalitis human case data. Monthly JE human cases recorded were

retrieved from the Indian Government’s Ministry of Health and Family Welfare [69]. Data

were obtained for the period January 2009 to December 2015 and were converted to geo-

graphic point locations (n = 123) from their village level description using online gazetteers

(e.g., Google Maps). The data comprised of the number of confirmed cases rather than sus-

pected cases since clinical signs for JE may overlap with several other diseases [70]. Confirmed

cases correspond to those confirmed by laboratory tests using JE-ELISA on serum or cerebro-

spinal fluid samples.

Statistical analysis

Statistical modelling was conducted using Bayesian hierarchical regression using Integrated

Nested Laplace Approximation (INLA). This framework enables the development of spatio-

temporal models that address data sparsity and spatial bias whilst also being computationally

tractable [71, 72].

Model specification. We developed a joint-likelihood Bayesian spatiotemporal model of

C. tritaeniorhynchus with separate likelihoods for occurrence and abundance data. The first

model tier estimates vector occurrence probability with species presence/absence (0, 1) as

response ypa using a Binomial distribution with a logit link function, such that pi denotes the

expected probability of vector occurrence and ni is the observed survey sample size at observa-

tion i:

ypa � Binomðpi;niÞ ð1Þ

pi is modelled as a function of environmental covariates and spatial, seasonal, and random

effects:

logitðpiÞ ¼ aþ apa þ
PK

k¼1
bkXk;i þ ti þ gi þ ui þ viþdi ð2Þ

where α is the intercept; αpa is an occurrence data specific intercept; X is a matrix of the envi-

ronmental covariates at each observation, with vector of linear coefficients β; ti is a nonlinear

effect for mean monthly temperature smoothed using a second-order random walk to repre-

sent expected nonlinear relationships between temperature and vector occurrence and abun-

dance [19]; seasonality was included as an effect of reporting month specified as a second-

order random walk (γi); and spatial variation was included using state-level spatially-struc-

tured (conditional autoregressive; vi) and unstructured i.i.d. (ui) effects jointly specified as a

Besag-York-Mollie (BYM) model [73]. Finally, δi is an independent, identically distributed (i.i.

d.) random effect of source study to enable the model to account for between-study variation

in sampling effort that might otherwise confound inferences.
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The second tier in the joint-likelihood model estimated relative vector abundance as

response variable yabun using a Gaussian distribution such that μi denotes the expected mean

of vector abundance with standard deviation, σ:

yabun � Normðmi;sÞ ð3Þ

The same shared covariates and spatial, seasonal, and random effects parameters were

included as for the first tier model apart from the occurrence specific intercept:

expðmiÞ ¼ aþ
PK

k¼1
bkXk;i þ ti þ gi þ ui þ viþdi ð4Þ

Prior to being included in the model, all continuous predictor covariates were standardised

(to mean = 0, SD = 1) and log vector abundance was rescaled from 0–1 (to preserve zero as a

reference point) to help with assigning model priors [74]. Weakly informative prior probability

distributions (priors) were assigned for the intercept, α ~ N(0,0.6) and fixed effects, β ~ N

(0,0.3) to constrain the position and scale of the outcome of interest (yabun) to fall within a rea-

sonable range. The intercept for occurrence data αpa is a single, fixed parameter that was only

added in the first tier of the model when modelling occurrence data. It acts as a varying inter-

cept so that all occurrence data are modelled as a separate cluster to abundance data and there-

fore allows some flexibility in the joint modelling of both data types. Fixed effects priors were

centred on 0 to allow for positive or negative relationships between environmental covariates

and vector abundance. We assigned penalized complexity (PC) priors [75] to hyperparameters

of the month, state-level and study-level effects. PC priors were used to penalise the complexity

resulting from deviating from a simple base model. The PC priors are defined such that the

probability that a given hyperparameter (ρ) exceeds an upper limit (ρ0) is χ (i.e., P(ρ> ρ0) = χ).
The PC priors in the model include:

Seasonal effects : Pðri > 0:05Þ ¼ 0:01

Unstructured state� level effects : Pðui > 0:175Þ ¼ 0:01

Study� level random effects : Pðdi > 0:175Þ ¼ 0:01

These values were chosen by comparing the variance of the effect variables and the resulting

difference in log vector abundance observed. For example, an i.i.d. effect with a SD of 0.175

would typically (95% probability interval) yield intercepts between -0.34 and 0.34. Transform-

ing these values through a log link gives abundances between 0.71 and 1.4 and therefore the

effect allows a variation in abundance of about 100%. We based the values on assumptions

from the data that log vector abundance may vary by up to 33% between one month and the

previous two months (order-two random walk), whereas it may vary by 100% between studies.

A conservative PC prior (mean 0.5, precision 0.667) was assigned to the structured state-level

effect to account for the assumption that the unstructured effect accounts for more of the vari-

ability than the spatially structured effect.

Model selection. Collinearity was detected between temperature variables therefore only

monthly mean temperature was used in the final model to capture long term associations with

vector abundance (i.e., reduced effect of temperature extremes). We conducted model selec-

tion on model covariates (all fixed and spatial, seasonal and study-level random effects), evalu-

ating their contribution to the model fit by removing each component in turn from the full

model and examining the effect on the Bayesian pointwise diagnostic metric Watanabe-Akaike

Information Criterion (WAIC) [76]. We tested 17 environmental variables (see S2 Table). We

screened variables using a single pass whereby we removed each variable in turn from the

model and assessed the change in WAIC. Covariates that did not improve model parsimony
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by a threshold of at least 2 WAIC units were excluded. We used this screening procedure to

remove variables which were not improving model parsimony rather than searching for a best

subset of variables as is performed in stepwise selection. The models were examined for fit and

adherence to assumptions which included testing the model residuals for spatial autocorrela-

tion using Moran’s I [77]. Temporal autocorrelation could not be assessed since the data were

not sampled at regular intervals over the whole study period. In addition, to assess the influ-

ence of additional inferred absence data on model fit, we repeated the process of randomly

selecting 20 inferred absence data points 25 times and examined the impact on WAIC.

We further evaluated the predictive ability of the models using random (10-fold) cross-vali-

dation which involved fitting separate models holding out data from each fold in turn. The

random assignment of data to folds was chosen to represent the spatiotemporal variation in

predictor space in all folds. The spatial clustering in abundance data meant that spatially struc-

tured cross-validation by state was not used for model evaluation [78]. The final model was

selected by comparing models of increasing complexity, in terms of input variables and model

structure, to a baseline model which only included spatial effects and study-level random

effects. This baseline model represents static vector abundance predictions that do not account

for seasonality. We compared the baseline model to a seasonal model which also included the

addition of a seasonal effect to account for seasonality in vector abundance and an environ-

mental model which included spatial, seasonal, and random effects and environmental covari-

ates. The ability of the models to predict log vector abundance (unscaled) was compared using

the mean absolute error (MAE) between the predicted posterior mean values and the corre-

sponding observed log vector abundance [79] where lower values indicate a smaller difference

between the predictions and the observations. In addition, we used conditional predictive

ordinates (CPO) [80] and predictive integral transform (PIT) [81] as cross-validatory criterion

for model assessment. For CPO, a value is computed for each observation with small values

indicating a bad fitting of the model to that observation and the potential for it to be an outlier.

Predictive integral transform provides a version of CPO that is calibrated so that values like

between 0 and 1. A histogram of PIT values that appears approximately uniform indicates the

model represents the observation well. We also compared the direction and magnitude of

fixed effects for hold-out models to examine the robustness of vector-environment relation-

ships. The fixed effects parameter estimates were assessed using the posterior mean and 95%

credible interval which is interpreted as the interval that covers the true parameter value with a

probability of 95%, given the evidence provided by the observed data.

Spatiotemporal predictions of JE vector abundance and uncertainty. The best-fitting

model was used to predict seasonal relative vector abundance (logscale) per (0.2080) grid cell

across India for the three main seasons: winter (October to February), summer (March to

May), monsoon (June to September). The seasons were chosen for their distinct climatic char-

acteristics with heavy rainfall in central regions and the eastern coast during the winter, heavy

rainfall in southwestern and north-eastern India during monsoon and high temperatures with

little to no rainfall during summer [82]. We evaluated the uncertainty in model predictions by

mapping the SD in estimated vector abundance per grid cell for each season. A narrow SD

(SD< 1) indicated low uncertainty and a wide SD (SD> 1) indicated high uncertainty.

Model-outbreak data comparison. To examine whether predicted mosquito abundance

is correlated to JE cases, we compared observed human outbreaks of JE with model predictions

for vector abundance at the same geographic location and calendar month. We define a JE out-

break as one or more confirmed or suspects cases of JE occurring in the same village within

the same month. We converted JE outbreak data to binomial (presence/absence) data that a JE

outbreak occurred in a particular geographic location and calendar month. We randomly gen-

erated pseudoabsence JE case data for 1000 locations for the 12 months (n = 12000) to assess
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the ability of the model to correctly predict the probability that an outbreak occurred (which

we describe as JE outbreak probability). We fitted a logistic regression of the probability of JE

outbreak occurrence as a function of model-predicted vector abundance with and without a

one-month lag using glm in R [83]. A null model (i.e., intercept only) was developed to repre-

sent predictions expected at random so that the effect of vector abundance predictions in

explaining JE outbreaks could be assessed via comparing model Akaike Information Criterion

(AIC) values. All data processing was conducted in R v.4.0.3 [83] with the packages R-INLA

(http://r.inla.org) [84] and raster [68].

Results

Model selection

Table 1 shows model predictive accuracy statistics for a series of models of increasing complex-

ity. The most complex model structure (Model 3), which contained spatial, seasonal, and ran-

dom effects and environmental factors, achieved superior model fit (ΔWAIC from baseline

model = -77.53) (and see S2 Fig). Comparison of out-of-sample predictive ability showed that

the inclusion of seasonality in the model (Model 2) improved predictions of vector abundance

by decreasing MAE by 15% (ΔMAE = -0.14) when compared to the baseline model (Model 1).

The addition of environmental covariates (Model 3) led to a further 40% decrease in MAE

when compared to seasonal Model 2 (ΔMAE = -0.33). As well as spatial, seasonal, and random

effects, the final selected environmental model (Model 3) included six covariates after account-

ing for collinearity and covariate selection as described. The fixed effects in the final model

included two-month lagged precipitation, proportion of land under agricultural use in 1km

radius, annual number of rice crops, rice area cultivated, and rice produced per district and a

nonlinear function for mean temperature. The CPO and PIT histograms demonstrated that

addition of environmental covariates in Model 3 led to a better fit of the model to the data and

a superior representation of the observations when compared to the other models (S3 Fig).

Model residuals displayed no significant (p<0.05) spatial autocorrelation among sites. The

random selection of inferred absence data points was found to have no substantial impact on

the ΔWAIC values for the different models (S3 Table).

Associations between environmental variables and vector abundance

We found that C. tritaeniorhynchus abundance was influenced by climatic and land use factors

(Fig 2B). We found positive associations between vector abundance and two-month lagged

precipitation, number of rice crops and annual rice production. The annual area under rice

cultivation had a negative effect on vector abundance and the proportion of land under

Table 1. Model selection results for models of increasing complexity. The table details the structure of the joint-likelihood models and their corresponding within-sam-

ple predictive accuracy assessed on Watanabe-Akaike Information Criterion (WAIC) values. Best models were selected based on minimising WAIC while adhering to

model assumptions. Out-of-sample predictive accuracy was compared using mean absolute error (MAE) statistic for random cross validation. Fixed effects included two-

month lagged precipitation, proportion of land under agricultural use in 1km radius and district-level measures for annual number of rice crops and total rice area culti-

vated and rice produced per year. Mean temperature was included as a second-order random walk function to represent the nonlinear relationship between temperature

and vector population dynamics. Non-environmental effects considered were for month (M) and state-level spatial (ST) effects specified as a BYM model and study-level

(S) random effects.

Model Non-environmental

effects

Environmental effects WAIC MAE

1 Baseline model ST, S - 722.15 0.95

2 Seasonal model M, ST, S - 651.14 0.81

3 Environmental

model

M, ST, S Precipitation, Agri. land proportion, Annual rice crops, Annual rice area, Annual rice production,

Nonlinear temp. function

644.62 0.48

https://doi.org/10.1371/journal.pntd.0010218.t001
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agricultural use had a weakly positive but uncertain association. Annual rice area and annual

rice production had relatively wide credible intervals (CIs) for their parameter estimates when

compared to the other covariates making the effect of these parameters on vector abundance

more uncertain. These fixed-effects estimates were robust to randomly structured sensitivity

tests (S4 Fig). We found that the inclusion of a nonlinear effect for mean monthly temperature

without a lag improved model predictive ability when compared to the nonlinear effect with

two-month lagged temperature (ΔWAIC = -81.83). The resulting temperature function sug-

gests an increase in vector abundance from 9˚C with a peak at around 23˚C (Fig 2C). CI

widths were low for this function at high temperature values.

Fig 2. Spatiotemporal correlates of JE vector abundance across India averaged over the period 1990–2012. Map to

show predicted C. tritaeniorhynchus abundance (maximum annual value) and vector seasonality (intra-annual

variance in abundance) (A). These measures were calculated from the scaled abundance predictions and ranged from 0

to 7 logscale for maximum abundance and 0 to 3 logscale for seasonality. The map displays areas of high perennial

vector abundance as orange, high seasonal vector abundance as pink, low perennial vector abundance as green and low

seasonal vector abundance as blue. The fixed-effect parameter estimates and 95% credible intervals for the joint

likelihood model (B) show that vector abundance is strongly influenced by climatic and land use variables. The

nonlinear relationship between monthly mean temperature and vector abundance for the observed range of

temperatures (C) where 95% CI is shown shaded and peaks at around 23˚C and then declines. The reported thermal

minima (9.5˚C) for important Culex species life history traits [19] is indicated with a dashed line. Source of base layer

https://gadm.org.

https://doi.org/10.1371/journal.pntd.0010218.g002
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Spatiotemporal predictions of JE vector abundance and uncertainty

Spatially projecting the final model predictions revealed differences in predicted areas of high

(i.e., hotspots) or low (i.e., coldspots) C. tritaeniorhynchus abundance between seasons (Fig 3).

Peaks in vector abundance were found in the northern, eastern, north-eastern, and southern

regions, with highest levels predicted during the winter months (October to February) and

lowest levels during the summer months (March to May). Hotspots of vector abundance were

predicted with low uncertainty (i.e., narrow SD) in northern, southern, and north-eastern

India during the winter (Fig 3A) and in north-eastern and southern India during the summer

(Fig 3B) and monsoon (June to September) seasons (Fig 3C). By contrast, hotspots were pre-

dicted with high uncertainty (i.e., wide SD) for all seasons in the northern state of Punjab, the

eastern state of West Bengal and the south-eastern state of Andhra Pradesh. Areas predicted

with low vector abundance (i.e., coldspots) were predicted throughout the year in the

Fig 3. Predicted seasonal abundance of C. tritaeniorhynchus across India for the period 1990–2012. Average vector

abundance (logscale) for the (A) winter (October to February), (B) summer (March to May) and (C) monsoon (June to

September) seasons. The figure legend is scaled from 0 to 7 logscale, with light yellow colours signifying low vector

abundance and dark purple emphasising high abundance. Uncertainty in predictions was estimated from standard

deviation (range 0–2 SD) and is represented in the maps by transparency, (high uncertainty is more transparent). The

black circles represent the location and magnitude (i.e., number of cases) for JE human outbreaks per season during

the period 2009–2015 across India [68]. Source of base layer https://gadm.org.

https://doi.org/10.1371/journal.pntd.0010218.g003
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Himalayas, and in central and north-western states, and eastern state of Odisha. Uncertainty

in coldspot predictions was low for the Himalayas throughout the year (likely as a result of

inferred absence data) whereas summer predictions for Odisha, central and north-western

states and monsoon predictions for Rajasthan were more uncertain (represented as increased

transparency in Fig 3). Assessing vector abundance and seasonality simultaneously reveals hot-

spots of high perennial vector abundance in north-eastern areas and the southern tip of the

country (Fig 2A). Conversely, high seasonal vector abundance is predicted in northern and

southern regions (Fig 2A).

Model-outbreak data comparison

The results for the comparison between predicted mosquito abundance and JE cases is sum-

marised in S4 Table. Logistic regression of JE outbreak probability as a function of model pre-

dicted vector abundance with a one-month lag month showed superior predictive ability

(AIC = 144.17) when compared to the same analysis with vector abundance predicted in the

same month as the outbreak (AIC = 147.66) and to the null model (AIC = 168.02). Both

model-predicted vector abundance with and without a one-month lag had a significant posi-

tive effect on human JE outbreaks however, the lagged variable had a stronger association

(odds ratio [OR] 2.45, 95% confidence interval: 1.52–4.08) than the variable without a lag (OR

2.25, 95% confidence interval: 1.35–3.74) (see S4 Table). Plotting predicted JE outbreak proba-

bility against log-scaled vector abundance for the best-fitting model (S5 Fig) illustrates that the

strong association between these variables is non-linear and plateaus at high levels of vector

abundance lagged by one month.

Discussion

This study details a novel approach to predict spatiotemporal patterns in C. tritaeniorhynchus
abundance–a key component of JE hazard—using a joint-likelihood modelling technique that

leverages information from sparse vector surveillance data. We show that the addition of envi-

ronmental covariates in the model substantially improved out-of-sample predictive ability,

highlighting the importance of environmental and climate data in driving JE vector abun-

dance. This provides strong justification for producing spatiotemporal vector predictions to

focus future work efforts and build towards forecasts of JE risk. This framework provides a

powerful and flexible method to define seasonal JE vector abundance over large spatial scales

and assist in guiding future surveillance efforts where long-term and large spatial scale data are

not available or could not be practically acquired. This analysis builds on previous correlative

studies of C. tritaeniorhynchus which have mapped vector occurrence but have overlooked sea-

sonal variation in population dynamics and have not accounted for uncertainty within the pre-

dictions [35, 52–54].

A distinct temporal pattern was observed across India in predicted vector abundance with

peaks in the winter (October to February), reductions during the summer (March to May) and

increased vector abundance again during the monsoon (June to September). This temporal

pattern can be explained by seasonality in climatic factors during the year which supports find-

ings in previous studies [37, 42, 85] and our hypothesis that vector abundance would be

strongly influenced by seasonal rainfall. During the monsoon, heavy rainfall moving in a

south-westerly direction across the country has been reported to enhance the availability of

vector breeding habitats [44] and causes a reduction in local temperatures [86] which provide

suitable environments for vector development. The peaks in vector abundance observed dur-

ing the winter months probably reflect the post-monsoon rice cultivation period when water

availability is high in the paddy fields [87]. This translates to the strong positive influence of
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lagged precipitation on JE vector abundance found in this analysis and in other studies [30].

Conversely, high temperatures and low rainfall during the summer months probably limits

vector survival and breeding [37], especially in areas with low levels of irrigated agriculture.

Climatic conditions will also influence areas with predicted low perennial vector abundance

such as arid regions in the northwest and northern states in the Himalayas which record tem-

peratures beyond the thermal limit for Culex species vectors [19].

In addition to precipitation and temperature, land use and rice cultivation metrics were

identified as important drivers of broad-scale spatiotemporal patterns of vector abundance.

The importance of land use factors is illustrated by comparing hotspots of JE vector abundance

in southern and north-eastern India which have high levels of irrigated agriculture despite dif-

fering climates (i.e., tropical in south, temperate in northeast) [88]. Regions with high propor-

tions of agricultural land allocated to intensive irrigated agriculture provide suitable vector

breeding habitats for extended periods which undoubtedly influence vector abundance and

seasonality. Indeed, regions that cultivate rice biannually report lower vector seasonality com-

pared with those that have a single annual crop [89]. The positive relationship between land

use intensity metrics for rice crop cultivation (i.e., number of rice crops cultivated and amount

of rice produced per year) and vector abundance detected in this study, supports previous

research that has found a strong positive association between vector abundance and rice irriga-

tion practices at local scales [38, 41, 46, 90]. Surprisingly, we found that the annual area under

rice cultivation was negatively associated with vector abundance, albeit with wide CIs. This

result may be spurious due to data quality issues or could be explained by unmeasured under-

lying factors such as agrichemical use (i.e., fertilisers and pesticides) [91], methods of irrigation

(i.e., surface, sprinkler or drip irrigation) or use of fallow periods between crops which may

lead to changes in local ecology (e.g., biotic interactions such as competition and predation)

[92]. Indeed, local changes in ecology due to rice crop phenology are also likely to influence

the presence of JE hosts since wading bird use irrigated rice paddies as feeding habitat [93] and

fallow fields may be used to graze livestock. Understanding these relationships would require

improved understanding of rice crop phenology together with biodiversity monitoring in rice

fields. Our findings highlight the impact of land use practices on JE vector abundance which

may have implications for the predicted expansion of flooded areas for rice cultivation needed

to improve food security [38, 94] and the ongoing intensification of rice production in India

[95].

Spatiotemporal patterns in JE vector abundance varied widely across India with seasonal

hotspots predicted in northern, eastern, and southern regions and perennial hotspots pre-

dicted in north-eastern regions and the southern tip of India (Fig 2). These results support the

spatial pattern in endemic regions of India which report particularly high endemicity in the

states of Uttar Pradesh in the north, Bihar and West Bengal in the east, Assam in the northeast,

and Tamil Nadu in the south [96]. In addition, vector abundance predictions reflected the

described seasonality in JE transmission with increased outbreaks reported during the mon-

soon and winter seasons (Fig 3). However, predicted seasonal hotspots in the southeast did not

correspond to high cases, which could reflect factors not accounted for in the analysis such as

unmeasured environmental factors affecting transmission, spatial biases in different datasets

or differing vaccination and vector control measures. In addition, it may also reflect the impor-

tance of vertical transmission for this disease which is selected for when there is seasonality in

vector abundance [97]. We found a positive correlation between one-month lagged vector

abundance predictions and the occurrence of human JE outbreaks when using a simple correl-

ative analysis (S4 Table). This analysis assumes that the location of the vector abundance will

also be the location in which exposure occurred which may be inaccurate. Indeed, to fully

gauge the strength of this association and assess the usefulness of vector abundance as potential

PLOS NEGLECTED TROPICAL DISEASES Predicting Japanese encephalitis vector abundance in India

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010218 February 22, 2022 14 / 23

https://doi.org/10.1371/journal.pntd.0010218


proxy for JE hazard would require a more complex model that accounts for temporal and spa-

tial autocorrelation in model residuals and uncertainty in the model. The development of a

reliable proxy for JE hazard would be invaluable since data on pathogen prevalence in both

animal reservoir host populations and vector populations that is required to define areas of JE

hazard remains scarce. The further translation of hazard to disease risk requires additional

knowledge about the potential exposure and susceptibility of human populations. For example,

data on human demography, socioeconomics and vaccination coverage will provide informa-

tion on contact with pathogens (exposure) and likelihood of infection (susceptibility) [5]. Fur-

thermore, potential lags between peak vector abundance and human cases that occur due to

transmission dynamics or timeliness of reporting need to be considered [98]. Indeed, future

studies could extend this analysis by including further information on hazard, exposure, and

vulnerability of human populations as well as any potential time lags to determine spatiotem-

poral predictions of JE risk [12].

A significant limitation of this study was related to the spatial and temporal biases of avail-

able C. tritaeniorhynchus surveillance data which is likely connected to the high costs associ-

ated with vector sampling studies [8]. Although data paucity leads to less accurate predictions

in data-poor regions, we accounted for this by presenting the level of uncertainty within pre-

dictions on the vector abundance maps. Furthermore, it should be acknowledged that model

predictions will not provide accurate data at the local level, instead they reveal broad scale eco-

logical patterns that can help to direct future research efforts. In addition, the generation of

additional absence data assumes that vectors do not occur at altitudes above 3500m which may

need to be reviewed overtime with future surveillance studies and the influence of climate

change [99]. This study highlights the need for improved vector surveillance for JE, with the

potential for future surveillance efforts to be targeted in those areas with high predicted vector

abundance to validate our results with independent data and improve predictions in areas that

have not been surveyed. In addition, we find that despite JE vector abundance predictions

being relatively focal (Fig 2), the spatiotemporal distribution of vector sampling in the data are

more evenly distributed across India (Fig 1), suggesting that spatial bias is not driving model

predictions (Fig 3). A further limitation of this study was the coarse spatial resolution of rice

cultivation data used in the model [67]. The data were provided at district-level which may

have been too coarse to detect an accurate relationship between land use intensity metrics and

vector abundance [98] and may have prevented the detection of a correlation between vector

abundance and rice cropping calendar data [40]. Future studies could explore the use of vege-

tation datasets such as normalized difference vegetation index (NDVI) at high spatial and tem-

poral resolution to provide more accurate information on rice cultivation metrics [100] and

rice crop phenology [101] in India. Investigating the lagged effects of these land use factors on

vector abundance [30] may also help to elucidate the unexpected negative association between

area for rice crop cultivation and vector abundance.

Despite these limitations, this work provides a framework to monitor and predict the sea-

sonal abundance of JE vectors which will be crucial for public health bodies in their objective

“to strengthen surveillance, (and) vector control” [96]. Current management for JE varies

regionally across India depending on socioeconomic factors and whether areas have histori-

cally recorded high cases [96]. With ongoing environmental change, we believe the Indian

public health bodies cannot afford to continue to focus their vector surveillance efforts on cur-

rently endemic regions, and instead need to establish a broader scanning surveillance system

which can assist in developing early warning signals for predicting and mitigating JE outbreaks

nationally. The maps produced in this study could be especially useful to guide public health

actors in targeting future vector surveillance in understudied regions predicted to have high

vector abundance with varying uncertainty. These data could then be used to inform the
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model and improve and update predictions. Our work may also be used to improve the effec-

tiveness of vector control measures especially in areas predicted high seasonal vector abun-

dance, so that instead of being employed during JE outbreaks as is current practice [96],

measures could be employed prior to an outbreak when vector abundance is high.

Conclusions

In this study we provided i.e. scale estimates of the variation in vector abundance across space

and time by leveraging different types of data sources for C. tritaeniorhynchus, an understudied

JE vector. We showed that distinct spatiotemporal patterns of JE vector abundance were driven

by seasonality and environmental factors and so demonstrated the limitations of previously

available static vector distribution maps estimating vector occurrence across large geographic

ranges [35, 52, 54]. In addition, we showed that model predictions of vector abundance were

positively correlated with JE outbreaks, highlighting the possible development of vector abun-

dance as a proxy for JE hazard. We propose that the joint-likelihood model used in our

research will be easily adaptable for other mosquito vectors and enable other vector abundance

estimations to be made from limited vector surveillance data. Furthermore, this novel

approach can be used to help guide future vector surveillance programmes by targeting data

collection. Understanding the timing and drivers of patterns in vector abundance and season-

ality offers important insights into how and when intervention measures should be applied to

reduce JE risk and how disease risk may vary with future environmental changes.

Supporting information

S1 Fig. Maps of covariates used in models. (A) average mean temperature per month (0C)

(example given for the year 2005); (B) average precipitation per month (mm) (example given

for the year 2005); (C) number of rice crop rotations per year (average for period 2010–12);

(D) total annual rice area cultivated per year in hectares (average for period 2010–12); (E) total

rice produced per year in tonnes (average for period 2010–12); (F) land use classes (example

given for the year 2005). Source of base layer https://gadm.org.

(TIF)

S2 Fig. Diagnostic plots for joint likelihood models; scatterplot of predicted versus

observed vector abundance (logscale) data. Plots show observed data against model predicted

values, and the red line shows the expectation if observed equals predicted for each model: (A)

baseline (spatial effects and study- level random effects), (B) seasonal (spatial, seasonal, and

random effects), (C) environmental (spatial, seasonal, and random effects and environmental

covariates).

(TIF)

S3 Fig. Histograms of CPO and PIT values for joint likelihood models. Plots show CPO

and PIT histograms, with the red line indicating the level of the of the different values if their

distribution was uniform: (A) baseline (spatial effects and study- level random effects), (B) sea-

sonal (spatial, seasonal and random effects), (C) environmental (spatial, seasonal and random

effects and environmental covariates).

(TIF)

S4 Fig. Random spatiotemporal cross-validation of the final model. We tested the sensitiv-

ity of fixed effects estimates to random (10-fold) subsampling. Points and error bars show pos-

terior marginal parameter distributions for each hold-out model (median and 95% quantile

range), with colour denoting hold-out group. Directionality and magnitude of fixed-effects
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estimates are robust to all tests.

(TIF)

S5 Fig. Association between one-month lagged vector abundance and predicted JE out-

break probability. Vertical axis displays model predicted JE outbreak probability, and vertical

axis gives predicted vector abundance on the log scale. Smooth line highlights the non-linear

relationship of JE outbreak probability to predicted vector abundance with a one-month lag.

(TIF)

S1 Table. Vector surveillance data used in analyses. The table includes the study from which

the data were extracted, the state or union territory in India in which the survey was con-

ducted, the year of the survey, the type of data collected, the survey method, the total number

of months that were surveyed, the number of sampling sites per study and the total number of

datapoints (occurrence and abundance) generated from the study.

(DOCX)

S2 Table. Data and rationale for covariates included in analyses. The table includes the

sources and rationale (hypothesises) for inclusion of covariates in spatiotemporal models of

vector abundance.

(DOCX)

S3 Table. Impact of additional inferred absence data on selection results for models of

increasing complexity. The table details the structure of the joint-likelihood models and the

difference between their corresponding within-sample predictive accuracy assessed on Wata-

nabe-Akaike Information Criterion (WAIC) values when additional absence data are

excluded. The differences (Δ) in WAIC from the baseline for the environmental and seasonal

models are still equivalently large when compared to the ΔWAIC values when the additional

absence data are included.

(DOCX)

S4 Table Model comparison results for observed JE outbreaks AIC, odds ratio and 95%

confidence intervals reported from logistic regression of JE outbreak probability as a func-

tion of model predicted vector abundance Vector abundance predictions were generated

from the final model with and without a one-month lag A null model (ie, intercept only)

was developed to assess the ability of vector abundance predictions in estimating JE out-

breaks when compared to predictions expected at random.

(DOCX)
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18. Ewing DA, Purse BV, Cobbold CA, Schäfer SM, White SM. Uncovering mechanisms behind mosquito

seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in

the UK. Parasit Vectors. 2019 Dec; 12(1):74. https://doi.org/10.1186/s13071-019-3321-2 PMID:

30732629

19. Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal biology of

mosquito-borne disease. Ecol Lett. 2019 Oct 1; 22(10):1690–708. https://doi.org/10.1111/ele.13335

PMID: 31286630

20. Walsh AS, Glass GE, Lesser CR, Curriero FC. Predicting seasonal abundance of mosquitoes based

on off-season meteorological conditions. Environ Ecol Stat. 2008 Sep 1; 15(3):279–91.

21. Chaves LF, Morrison AC, Kitron UD, Scott TW. Nonlinear impacts of climatic variability on the density-

dependent regulation of an insect vector of disease. Glob Change Biol. 2012; 18(2):457–68.

22. Jian Y, Silvestri S, Belluco E, Saltarin A, Chillemi G, Marani M. Environmental forcing and density-

dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy). Ecol

Model. 2014 Jan 24; 272: 301–10.

23. LaBeaud AD. Why Arboviruses Can Be Neglected Tropical Diseases. PLOS Negl Trop Dis. 2008 Jun

25; 2(6). https://doi.org/10.1371/journal.pntd.0000247 PMID: 18575597

24. Campbell G, Hills S, Fischer M, Jacobson J, Hoke C, Hombach J, et al. Estimated global incidence of

Japanese encephalitis: Bull World Health Organ. 2011; 89(10):766–74. https://doi.org/10.2471/BLT.

10.085233 PMID: 22084515

25. Quan TM, Thao TTN, Duy NM, Nhat TM, Clapham H. Estimates of the global burden of Japanese

encephalitis and the impact of vaccination from 2000–2015. eLife. 2020; 9: e51027. https://doi.org/10.

7554/eLife.51027 PMID: 32450946

26. Baig S, Fox KK, Jee Y, O’Connor P, Hombach J, Wang SA, et al. Japanese encephalitis surveillance

and immunization—Asia and the Western Pacific, 2012. MMWR Morb Mortal Wkly Rep. 2013 Aug 23;

62(33):658–62. PMID: 23965828

27. Heffelfinger JD, Li X, Batmunkh N, Grabovac V, Diorditsa S, Liyanage JB, et al. Japanese encephalitis

surveillance and immunization—Asia and Western Pacific Regions, 2016. MMWR Morb Mortal Wkly

Rep. 2017 Jun 9; 66(22):579–83. https://doi.org/10.15585/mmwr.mm6622a3 PMID: 28594790

28. Lindquist L. Recent and historical trends in the epidemiology of Japanese encephalitis and its implica-

tion for risk assessment in travellers. J Travel Med. 2018; 25(Suppl 1):S3–9. https://doi.org/10.1093/

jtm/tay006 PMID: 29718434

29. Le Flohic G, Porphyre V, Barbazan P, Gonzalez JP. Review of climate, landscape, and viral genetics

as drivers of the Japanese encephalitis virus ecology. PLOS Negl Trop Dis. 2013; 7(9):5–11.

30. Tian HY, Bi P, Cazelles B, Zhou S, Huang SQ, Yang J, et al. How environmental conditions impact

mosquito ecology and Japanese encephalitis: An eco-epidemiological approach. Environ Int. 2015;

79:17–24. https://doi.org/10.1016/j.envint.2015.03.002 PMID: 25771078

31. Pearce JC, Learoyd TP, Langendorf BJ, Logan JG. Japanese encephalitis: the vectors, ecology and

potential for expansion. J Travel Med. 2018 May 1; 25(suppl_1):S16–26. https://doi.org/10.1093/jtm/

tay009 PMID: 29718435

32. Wada Y, Oda T, Mogi M, Mori A, Omori N, Fukumi H, et al. Ecology of Japanese encephalitis virus in

Japan. II. The population of vector mosquitoes and the epidemic of Japanese encephalitis. Trop Med.

1975; 17(3):111–27.

33. Matsuzaki S. Population dynamics of Culex tritaeniorhynchus in relation to the epidemics of Japanese

encephalitis in Kochi Prefecture, Japan. Jpn J Sanit Zool. 1990; 41(3):247–55.

34. Kim N-H, Lee W-G, Shin E-H, Roh JY, Rhee H-C, Park MY. Prediction forecast for Culex tritaenior-

hynchus populations in Korea. Osong Public Health Res Perspect. 2014 Jun; 5(3):131–7. https://doi.

org/10.1016/j.phrp.2014.04.004 PMID: 25180145

35. Longbottom J, Browne AJ, Pigott DM, Sinka ME, Golding N, Hay SI, et al. Mapping the spatial distribu-

tion of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae)

PLOS NEGLECTED TROPICAL DISEASES Predicting Japanese encephalitis vector abundance in India

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010218 February 22, 2022 19 / 23

https://doi.org/10.1038/s41564-019-0476-8
https://doi.org/10.1038/s41564-019-0476-8
http://www.ncbi.nlm.nih.gov/pubmed/31182801
https://doi.org/10.1186/s13071-019-3321-2
http://www.ncbi.nlm.nih.gov/pubmed/30732629
https://doi.org/10.1111/ele.13335
http://www.ncbi.nlm.nih.gov/pubmed/31286630
https://doi.org/10.1371/journal.pntd.0000247
http://www.ncbi.nlm.nih.gov/pubmed/18575597
https://doi.org/10.2471/BLT.10.085233
https://doi.org/10.2471/BLT.10.085233
http://www.ncbi.nlm.nih.gov/pubmed/22084515
https://doi.org/10.7554/eLife.51027
https://doi.org/10.7554/eLife.51027
http://www.ncbi.nlm.nih.gov/pubmed/32450946
http://www.ncbi.nlm.nih.gov/pubmed/23965828
https://doi.org/10.15585/mmwr.mm6622a3
http://www.ncbi.nlm.nih.gov/pubmed/28594790
https://doi.org/10.1093/jtm/tay006
https://doi.org/10.1093/jtm/tay006
http://www.ncbi.nlm.nih.gov/pubmed/29718434
https://doi.org/10.1016/j.envint.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25771078
https://doi.org/10.1093/jtm/tay009
https://doi.org/10.1093/jtm/tay009
http://www.ncbi.nlm.nih.gov/pubmed/29718435
https://doi.org/10.1016/j.phrp.2014.04.004
https://doi.org/10.1016/j.phrp.2014.04.004
http://www.ncbi.nlm.nih.gov/pubmed/25180145
https://doi.org/10.1371/journal.pntd.0010218


within areas of Japanese encephalitis risk. Parasit Vectors. 2017 Mar; 10(1):148. https://doi.org/10.

1186/s13071-017-2086-8 PMID: 28302156

36. Suryanarayana Murty U, Satyakumar DVR, Sriram K, Rao KM, Singh TG, Arunachalam N, et al. Sea-

sonal prevalence of Culex vishnui subgroup, the major vectors of Japanese encephalitis virus in an

endemic district of Andhra Pradesh, India. J Am Mosq Control Assoc. 2002; 18(4):290–3. PMID:

12542185

37. Suryanarayana Murty U, Srinivasa Rao M, Arunachalam N. The effects of climatic factors on the distri-

bution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh, India. J

Vector Borne Dis. 2010;(47):26–32. PMID: 20231770

38. Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, et al. Effect of irrigated rice agricul-

ture on Japanese encephalitis, including challenges and opportunities for integrated vector manage-

ment. Acta Trop. 2005; 95(1):40–57. https://doi.org/10.1016/j.actatropica.2005.04.012 PMID:

15878762

39. Sabesan S, Raju Konuganti HK, Perumal V. Spatial Delimitation, Forecasting and Control of Japanese

Encephalitis: India—A Case Study. Open Parasitol J. 2008 Sep 25; 2(1):59–63.

40. Raju HK, Sabesan S, Rajavel AR, Subramanian S, Natarajan R, Thenmozhi V, et al. A preliminary

study to forecast Japanese Encephalitis vector abundance in paddy growing area, with the aid of radar

satellite images. Vector-Borne Zoonotic Dis. 2016; 16(2):117–23. https://doi.org/10.1089/vbz.2014.

1757 PMID: 26824289

41. Raju HK, Sabesan S, Subramanian S, Jambulingam P. Validating the association of Japanese

encephalitis vector abundance with paddy growth, using MODIS data. Vector-Borne Zoonotic Dis.

2018; 18(10):560–2. https://doi.org/10.1089/vbz.2017.2250 PMID: 30016208

42. Reisen W, Aslamkhan M, Basia R. The effects of climatic patterns and agricultural practices on the

population dynamics of Culex tritaeniorhynchus in Asia. Southeast Asian J Trop Med Public Health.

1976; 7(61–71). PMID: 1027111

43. Vythilingam I, Oda K, Mahadevan S, Abdullah G, Thim CS, Hong CC, et al. Abundance, parity, and

Japanese encephalitis virus infection of mosquitoes (Diptera: Culicidae) in Sepang District, Malaysia.

J Med Entomol. 1997; 34(3):257–62. https://doi.org/10.1093/jmedent/34.3.257 PMID: 9151487

44. Balasubramanian R, Nikhil TL. Effects of rainfall and salinity increase on prevalence of vector mosqui-

toes in coastal areas of Alappuzha district, Kerala. J Environ Biol. 2015 Nov; 36(6):1325–8. PMID:

26688968

45. ICMR. Centre for Research in Medical Entomology Annual Report 2000–2001. Madurai, India; 2001.

46. Richards EE, Masuoka P, Brett-Major D, Smith M, Klein TA, Kim HC, et al. The relationship between

mosquito abundance and rice field density in the Republic of Korea. Int J Health Geogr. 2010 Jun 23; 9

(1):32. https://doi.org/10.1186/1476-072X-9-32 PMID: 20573242

47. Rajagopalan PK, Panicker KN. A note on the 1976 epidemic of Japanese encephalitis in Burdwan dis-

trict, West Bengal. Indian J Med Res. 1978 Sep; 68: 3938. PMID: 33894

48. Mukhtar M, Herrel N, Amerasinghe FP, Ensink J, Van Der Hoek W, Konradsen F. Role of wastewater

irrigation in mosquito breeding in south Punjab, Pakistan. Southeast Asian J Trop Med Public Health.

2003; 34(1):72–80. PMID: 12971517

49. Baeza A, Bouma MJ, Dobson AP, Dhiman R, Srivastava HC, Pascual M. Climate forcing and desert

malaria: the effect of irrigation. Malar J. 2011; 10(1):190. https://doi.org/10.1186/1475-2875-10-190

PMID: 21756317

50. Bashar K, Rahman MS, Nodi IJ, Howlader AJ. Species composition and habitat characterization of

mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh. Pathog Glob Health.

2016; 110(2):48–61. https://doi.org/10.1080/20477724.2016.1179862 PMID: 27241953

51. Lord CC. Seasonal population dynamics and behaviour of insects in models of vector-borne patho-

gens. Physiol Entomol. 2004; 29(3):214–22. https://doi.org/10.1111/j.0307-6962.2004.00411.x PMID:

20041037

52. Miller RH, Masuoka P, Klein TA, Kim HC, Somer T, Grieco J. Ecological niche modeling to estimate

the distribution of Japanese encephalitis virus in Asia. PLoS Negl Trop Dis. 2012; 6(6). https://doi.org/

10.1371/journal.pntd.0001678 PMID: 22724030

53. Masuoka P, Klein TA, Kim H-C, Claborn DM, Achee N, Andre R, et al. Modeling the distribution of

Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea. Geos-

patial Health. 2010 Nov 1;45–57. https://doi.org/10.4081/gh.2010.186 PMID: 21080320

54. Samy AM, Alkishe AA, Thomas SM, Wang L, Zhang W. Mapping the potential distributions of etiologi-

cal agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop. 2018 Dec

1; 188: 108–17. https://doi.org/10.1016/j.actatropica.2018.08.014 PMID: 30118701

PLOS NEGLECTED TROPICAL DISEASES Predicting Japanese encephalitis vector abundance in India

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010218 February 22, 2022 20 / 23

https://doi.org/10.1186/s13071-017-2086-8
https://doi.org/10.1186/s13071-017-2086-8
http://www.ncbi.nlm.nih.gov/pubmed/28302156
http://www.ncbi.nlm.nih.gov/pubmed/12542185
http://www.ncbi.nlm.nih.gov/pubmed/20231770
https://doi.org/10.1016/j.actatropica.2005.04.012
http://www.ncbi.nlm.nih.gov/pubmed/15878762
https://doi.org/10.1089/vbz.2014.1757
https://doi.org/10.1089/vbz.2014.1757
http://www.ncbi.nlm.nih.gov/pubmed/26824289
https://doi.org/10.1089/vbz.2017.2250
http://www.ncbi.nlm.nih.gov/pubmed/30016208
http://www.ncbi.nlm.nih.gov/pubmed/1027111
https://doi.org/10.1093/jmedent/34.3.257
http://www.ncbi.nlm.nih.gov/pubmed/9151487
http://www.ncbi.nlm.nih.gov/pubmed/26688968
https://doi.org/10.1186/1476-072X-9-32
http://www.ncbi.nlm.nih.gov/pubmed/20573242
http://www.ncbi.nlm.nih.gov/pubmed/33894
http://www.ncbi.nlm.nih.gov/pubmed/12971517
https://doi.org/10.1186/1475-2875-10-190
http://www.ncbi.nlm.nih.gov/pubmed/21756317
https://doi.org/10.1080/20477724.2016.1179862
http://www.ncbi.nlm.nih.gov/pubmed/27241953
https://doi.org/10.1111/j.0307-6962.2004.00411.x
http://www.ncbi.nlm.nih.gov/pubmed/20041037
https://doi.org/10.1371/journal.pntd.0001678
https://doi.org/10.1371/journal.pntd.0001678
http://www.ncbi.nlm.nih.gov/pubmed/22724030
https://doi.org/10.4081/gh.2010.186
http://www.ncbi.nlm.nih.gov/pubmed/21080320
https://doi.org/10.1016/j.actatropica.2018.08.014
http://www.ncbi.nlm.nih.gov/pubmed/30118701
https://doi.org/10.1371/journal.pntd.0010218


55. Pagel J, Anderson BJ, O’Hara RB, Cramer W, Fox R, Jeltsch F, et al. Quantifying range-wide variation

in population trends from local abundance surveys and widespread opportunistic occurrence records.

Methods Ecol Evol. 2014; 5(8):751–60.

56. Humphreys JM, Murrow JL, Sullivan JD, Prosser DJ. Seasonal occurrence and abundance of dabbling

ducks across the continental United States: Joint spatio-temporal modelling for the Genus Anas.

Divers Distrib. 2019; 25(9):1497–508.

57. Lucas TCD, Nandi AK, Chestnutt EG, Twohig KA, Keddie SH, Collins EL, et al. Mapping malaria by

sharing spatial information between incidence and prevalence data sets. J R Stat Soc Ser C Appl Stat.

2021; 00:1–17.

58. Amoah B, Diggle PJ, Giorgi E. A geostatistical framework for combining spatially referenced disease

prevalence data from multiple diagnostics. Biometrics. 2020; 76(1):158–70. https://doi.org/10.1111/

biom.13142 PMID: 31449327

59. Vaughn DW, Hoke CH. The epidemiology of Japanese encephalitis: prospects for prevention. Epide-

miol Rev. 1992 Jan 1; 14(1):197–221. https://doi.org/10.1093/oxfordjournals.epirev.a036087 PMID:

1337744

60. Misra UK, Kalita J. Overview: Japanese encephalitis. Prog Neurobiol. 2010 Jun 1; 91(2):108–20.

https://doi.org/10.1016/j.pneurobio.2010.01.008 PMID: 20132860

61. Devi NP, Jauhari RK. Altitudinal distribution of mosquitoes in mountainous area of Garhwal region:

Part–I. J Vector Borne Dis. 2004; 41:17–26. PMID: 15332482

62. Niaz S, Reisen WK. Culex tritaeniorhynchus Giles: some effects of temperature and photoperiod on

larval development and selected adult attributes. Jpn J Med Hyg. 1981; 9(1):37–47.

63. Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global data-

set of monthly climate and climatic water balance from 1958–2015. Sci Data. 2018 Jan 9; 5(1):1–12.

https://doi.org/10.1038/s41597-018-0002-5 PMID: 30482902

64. Valdez LD, Sibona GJ, Diaz LA, Contigiani MS, Condat CA. Effects of rainfall on Culex mosquito popu-

lation dynamics. J Theor Biol. 2017; 421: 28–38. https://doi.org/10.1016/j.jtbi.2017.03.024 PMID:

28351704

65. Trawinski PR, Mackay DS. Identification of environmental covariates of West Nile virus vector mos-

quito population abundance. Vector-Borne Zoonotic Dis. 2010 May 19; 10(5):515–26. https://doi.org/

10.1089/vbz.2008.0063 PMID: 20482343
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