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a b s t r a c t 

Maps of disease burden are a core tool needed for the control and elimination of malaria. Reliable rou- 

tine surveillance data of malaria incidence, typically aggregated to administrative units, is becoming more 

widely available. Disaggregation regression is an important model framework for estimating high resolu- 

tion risk maps from aggregated data. However, the aggregation of incidence over large, heterogeneous 

areas means that these data are underpowered for estimating complex, non-linear models. In contrast, 

prevalence point-surveys are directly linked to local environmental conditions but are not common in 

many areas of the world. Here, we train multiple non-linear, machine learning models on Plasmodium fal- 

ciparum prevalence point-surveys. We then ensemble the predictions from these machine learning mod- 

els with a disaggregation regression model that uses aggregated malaria incidences as response data. We 

find that using a disaggregation regression model to combine predictions from machine learning models 

improves model accuracy relative to a baseline model. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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i An update to this article is included at the end
. Introduction 

High-resolution maps of malaria risk are vital for control and 

limination ( Battle et al., 2019; Weiss et al., 2019 ). However, map- 

ing malaria in lower burden countries presents new challenges as 

raditional mapping of prevalence from cluster-level surveys ( Battle 

t al., 2019; Bhatt et al., 2017; 2015; Weiss et al., 2019 ) is often

ot effective for two reasons. Firstly, so few individuals are in- 

ected that most surveys will detect zero positives ( Sturrock et al., 

016 ). Secondly, there is a lack of nationally representative preva- 

ence surveys in low burden countries ( Sturrock et al., 2016; 2014 ). 

outine surveillance data of malaria case counts, often aggregated 

ver administrative regions defined by geographic polygons, is be- 

oming more reliable and more widely available ( Sturrock et al., 

016 ) and recent work has focussed on methods for estimating 

igh-resolution malaria risk from these data ( Johnson et al., 2019; 
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aw et al., 2018; Li et al., 2012; Sturrock et al., 2014; Taylor et al.,

017; Wilson and Wakefield, 2018 ). However, the aggregation of 

ases over space means that the data may be spatially uninforma- 

ive, especially if the case counts are aggregated over large or het- 

rogeneous areas, because it is unclear where within the polygon, 

nd in which environments, the cases occurred. This data is there- 

ore often under-powered for fitting flexible, non-linear models as 

s required for accurate malaria maps ( Bhatt et al., 2017; 2015 ). 

 method that combines prevalence point-surveys and aggregated 

urveillance data, and therefore leverages the strength of both, has 

reat potential. 

Here we propose a two-stage method. In the first stage we 

rain a suite of machine learning models, using point-level, bino- 

ial prevalence data and environmental covariates. In the second 

tage we combine predictions from these models by using them 

s covariates in a polygon-level, disaggregation regression model 

hat uses malaria incidence (aggregated to administrative units) as 

he response. Unlike joint likelihood models ( Wang et al., 2018 ), 

his method does not combine both prevalence and incidence data 

ithin one model. Instead the aim is to use the prevalence data 
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o find useful non-linear transformations of the environmental co- 

ariates which are then subsequently used in the disaggregation 

egression models. 

Stacking, or stacked generalization, uses a second-stage model 

o combine predictions from a number of models by training 

he second-stage model using out-of-samples predictions from the 

rst-stage models ( Wolpert, 1992 ). The modelling scheme pro- 

osed here has similarities to stacking methods used for malaria 

apping ( Bhatt et al., 2017 ) and elsewhere ( Breiman, 1996b; Hao 

t al., 2019; Sill et al., 2009; Wolpert, 1992 ). However, as the re-

ponse data in the machine learning models and the disaggre- 

ation regression models are on different scales (prevalence is a 

roportion while incidence is a rate) we cannot simply take a 

eighted average of the predictions from the machine learning 

odels as in a standard stacking scheme ( Hao et al., 2019; Sill 

t al., 2009 ). Instead the predictions need to be transformed to 

he incidence scale with a seperately fitted model ( Cameron et al., 

015 ). Applications in other disease contexts have used a simi- 

ar stacking scheme where data from vector or wild-animal host 

pecies are used to train models, the predictions from which are 

hen used as covariates in a final model ( Pigott et al., 2014; Shearer

t al., 2016 ). In such applications we would always expect to need 

dditional covariates as well as the modelled distributions of hosts 

r vectors. However, in the case examined here, both sets of data 

re direct measures of some aspect of malaria transmission rate, 

nd therefore it is possible, though not guaranteed, that we would 

ot need any further covariates. 

Model stacking ( Wolpert, 1992 ) has proven effective in many 

ealms ( Bhatt et al., 2017; Breiman, 1996b; Hao et al., 2019; Sill 

t al., 2009 ). Stacking improves predictions by controlling bias and 

ariance; as long as suitably diverse models are averaged, they will 

ave different biases while high variance in models should be av- 

raged out. This understanding of how stacking improves model 

erformance indicates that diversity in models is important for 

tacking to be effective. Diversity in models is typically created in 

wo ways: by using diverse training datasets ( Breiman, 1996a ) (as 

n Random Forests for example) and by using functionally differ- 

nt models (for example by averaging tree based models and neu- 

al networks) ( Breiman, 1996b ). One important trade-off in spatial 

odelling is whether to use local data (with a smaller sample size 

ut that is likely to be representative of the area of study) or global

ata that have a larger sample size but a less close association with 

he areas of study. For the application of malaria mapping, we can 

hink about diversity of training data in this context and expect 

hat stacking separate models trained on local and global data will 

lso increase the diversity of predictions in a useful way. 

To test the effectiveness of the proposed approach we used data 

rom four countries with relatively complete surveillance data: 

adagascar, Colombia, Indonesia and Senegal. We focused our 

nalysis on comparing the predictive performance of disaggrega- 

ion regression when given different sets of covariates. Therefore 

e keep the structure of the disaggregation regression model the 

ame and only vary the covariates provided to the model. In each 

ountry we fitted stage 1 machine learning models trained on 

revalence data and raw environmental covariates. We made new 

ovariates using predictions from these models. We then tested 

hether stage 2 disaggregation regression models with these new 

ovariates performed better than a baseline disaggregation regres- 

ion model that directly used the raw environmental covariates. 

e tested this approach using machine learning models trained 

n local prevalence data as well as models trained on a global 

revalence dataset. While there was no consistently best model 

e found that, in most cases, the two stage method worked bet- 

er than the single stage baseline disaggregation regression models. 

sing predictions from machine learning models, trained on local 

revalence data as covariates improved the performance of disag- 
2 
regation regression models relative to the disaggregation regres- 

ion models that only used the raw environmental covariates. In 

ontrast, using predictions from machine learning models trained 

n the global prevalence dataset rarely improved predictive perfor- 

ance. 

. Methods 

.1. Epidemiological data 

We used two data sources that reflect P. falciparum malaria 

ransmission; point-prevalence surveys and polygon-level, aggre- 

ated incidence data. We selected Madagascar, Colombia, Indone- 

ia and Senegal as case examples as they all have fairly complete, 

ublicly available, surveillance data at a finer geographical resolu- 

ion than administrative level one (i.e. higher resolution than state 

r province). The prevalence survey data were extracted from the 

alaria Atlas Project prevalence survey database using only data 

rom 1990 onwards ( Bhatt et al., 2015; Guerra et al., 2007; Pfef- 

er et al., 2018 ). While the data covered a large time period, we 

id not model time explicitly as we are here focussed on spatial, 

ather than temporal modelling. Although we have not accounted 

or time in the models, as long as sampling in space is indepen- 

ent of time, the correct relationships should be recovered. The 

revalence points were then standardised to an age range of 2–

0 using the model from ( Smith et al., 2007 ). This data was used

s both a global dataset and as regional subsets. The global dataset 

ontains 55,914 surveys in 44,842 distinct locations and represents 

amples from 5,687,304 individuals. As there were relatively few 

urveys in Colombia we used all points from South America (7,719 

ndividuals from 522 locations) while for the other countries we 

sed only data from that country (Madagascar: 89,381 individuals 

rom 1505 locations. Indonesia: 1,512,888 individuals from 4778 lo- 

ations. Senegal: 80,896 individuals from 1762 locations). 

The polygon incidence data (i.e. malaria incidence aggre- 

ated to administrative units) were collected from government 

eports ( Colombian National Institute of Health, 2016; Indone- 

ia Ministry of Health, 2013; Rakotorahalahy, 2009; Senegal Min- 

stry of Health, 2009 ) and standardised using methods defined 

n Cibulskis et al. (2011) . This standardisation step accounts for 

issed cases due to lack of treatment seeking, missing case re- 

orts, and cases that sought medical attention outside the pub- 

ic health systems ( Battle et al., 2016 ). For reports where cases 

ere not reported at the species level, national estimates of the 

atio between P. falciparum and Plasmodium vivax cases from the 

orld Malaria Report were used to calculate P. falciparum only 

ases ( World Health Organization, 2016 ). For incidence rates we 

ivide by 10 0 0 to give the Annual Parasite Index (API). To keep 

he analysis focused on spatial estimates we selected one year of 

urveillance data for each country. We used annual surveillance 

ata from 2013 for Madagascar (110 districts), 2015 for Colombia 

952 municipalities), 2013 for Indonesia (244 regencies and cities) 

nd 2009 for Senegal (34 departments). These years were selected 

s they had the most complete data in each case. 

Raster surfaces (i.e. population gridded to 5 × 5 km pixels) 

f population for the years 2005, 2010 and 2015, were created 

sing data from WorldPop ( Gaughan et al., 2013; Linard et al., 

012; Sorichetta et al., 2015 ) and from GPWv4 ( NASA, 2018 ) where

orldPop did not have values. Population rasters for the remaining 

ears were created by linear interpolation. 

.2. Raw environmental covariates 

We considered a suite of environmental and anthropological co- 

ariates, at a resolution of approximately 5 × 5 kilometres that in- 

luded the annual mean and log standard deviation of land surface 
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emperature, enhanced vegetation index, malaria parasite temper- 

ture suitability index, elevation, tasseled cap wetness, log acces- 

ibility to cities and log night lights ( Gething et al., 2011; Weiss 

t al., 2014; 2015; 2018 ). All covariates were aligned in their native 

esolution (500 m or 1 km) and then aggregated to 5 km resolu- 

ion, therefore there should be minimal effects from spatial mis- 

lignment. The covariates were standardised and centered to have 

 mean of zero and a standard deviation of one. We refer to this 

et of transformed variables as the raw environmental covariates 

even though some of the covariates are anthropogenic rather than 

nvironmental) to distinguish them from other covariates created 

rom predictions from stage 1 machine learning models. The raw 

nvironmental variables were used as covariates in the stage 1 ma- 

hine learning models as well as being used directly as covariates 

n the baseline stage 2 disaggregation regression models. 

.3. Stage 1 machine learning models 

For each country specific dataset and for the global dataset we 

tted 5 stage 1 models via caret ( Kuhn et al., 2017 ): elastic net

 Zou and Hastie, 2012 ), Random Forest ( Wright and Ziegler, 2015 ),

rojection pursuit regression ( Friedman and Stuetzle, 1981 ), neural 

etworks ( Venables and Ripley, 2002 ) and boosted regression trees 

gradient boosted models, subsequently GBM) ( Ridgeway, 2017 ). 

hese models were fitted to both the full malaria prevalence 

ataset and to the regional subsets of the data. Our response vari- 

ble was prevalence and we weighted the data by sample size 

i.e. the number of people tested for malaria in each survey). We 

sed the raw environmental covariates described above as covari- 

tes in these machine learning models. This process can therefore 

e seen as creating non-linear transformations of the raw covari- 

tes that are hopefully better correlated with malaria incidence 

han the raw environmental covariates are. For each model we ran 

ve-fold cross-validation to select hyperparameters using random 

earch for Random Forest and boosted regression trees and grid 

earch for the other models. Root mean square error (RMSE) was 

sed to select the best performing model. We note that spatial 

r random cross-validation could have been used in this step. The 

hoice is less critical than for the cross-validation scheme used to 

est model performance but using random cross-validation might 

elect for hyperparameters giving more complex or flexible mod- 

ls. To an extent, when ensembling models, high variance is better 

han high bias as the variance gets averaged out ( Breiman, 1996b ). 

Predictions from these models were then made across each 

ountry respectively. These predictions were empirical logit trans- 

ormed so that they were on the linear predictor scale of the dis- 

ggregation regression model. An empirical logit was used rather 

han a standard logit as there were many predictions of exactly 

ero. These predicted surfaces were subsequently used as covari- 

tes in the stage 2 disaggregation regression models ( Fig. 1 ). Plots 

f the correlation matrices for all covariates can be seen in S46S49. 

he correlation between covariates varied from country to coun- 

ry. In general there is little correlation between global and local 

achine learning predictions. Accessibility is often strongly corre- 

ated with predictions from the machine learning models. In Sene- 

al there is a lot of correlation between variables. However, we 

ote that collinearity between variables is not as problematic in 

 predictive context as it is when interpreting regression coeffi- 

ients is the aim of the analysis, though it is still potentially a 

aste of degrees of freedom. The experiments that follow in this 

aper assess the performance of disaggregation regression models 

hen using the predictions from these machine learning models 

s covariates as compared to a baseline disaggregation regression 

odel using only the raw environmental covariates. See the sup- 

lementary material for plots of the grid search hyperparameter 
3 
erformance, out-of-sample scatter plots and plots of the predicted 

urfaces. 

.4. Stage 2 disaggregation regression 

The model fitted to aggregated incidence data was a disaggre- 

ation regression model ( Law et al., 2018; Li et al., 2012; Stur- 

ock et al., 2014; Taylor et al., 2017; Wilson and Wakefield, 2018 ). 

he models were implemented and fitted using Template Model 

uilder ( Kristensen et al., 2016 ) in R ( R Core Team, 2018 ) and we

ote that these models cannot be fitted using INLA ( Lindgren and 

ue, 2015 ) as we are not using a linear link function. This model is

efined by a likelihood at the level of the polygon with covariates 

nd a spatial random field at the pixel-level. Values at the polygon- 

evel are given the subscript a while pixel level values are indexed 

ith b . 

The aggregated incidence count data, y a is given a Poisson like- 

ihood 

 a ∼ Pois ( i a pop a ) 

here i a is the estimated polygon incidence rate and pop a is the 

bserved polygon population-at-risk. This polygon-level likelihood 

s linked to the pixel-level incidence and prevalence by 

 a = 

∑ 

( i b pop b ) ∑ 

pop b 

 b = 2 . 616 p b − 3 . 596 p 2 b + 1 . 594 p 3 b 

here the polynomial is a function from a previously published 

odel ( Cameron et al., 2015 ). The fact that the model is explicit 

bout the relationship between prevalence and incidence has two 

dvantages. Firstly, predictions of prevalence can be easily made 

irectly from the linear predictor of the model. Secondly, it means 

hat the logit-transformed predictions from the machine learning 

odels are correctly scaled. The linear predictor of the model is 

elated to prevalence by a typical logit link function and includes: 

n intercept, β 0 ; covariates, X , with a vector of regression param- 

ters, β; a spatial, Gaussian, random field, u b ( ρ , σ u ); and an iid 

andom effect, v a ( σ v ). 

p b = logit 
−1 

( β0 + βX + u b ( ρ, σu ) + v a ( σv ) ) 

The Gaussian spatial effect has a Matérn covariance function 

nd two hyperparameters: ρ , the nominal range (beyond which 

orrelation is < 0.1) and σ u , the marginal standard deviation. The 

id random effect models both unobserved explanatory factors and 

xtra-Poisson sampling error. As described in more detail below 

e do not vary the structure of this model in the methodologi- 

al comparison. The matrix of covariates, X , it the only component 

hat varies and is made up of various combinations of raw envi- 

onmental covariates and predictions from the machine learning 

odels. 

Finally, we complete the model by setting priors on the param- 

ters β 0 , β , ρ and σ u and σ v . We assigned ρ and σ u a joint 

enalised complexity prior ( Fuglstad et al., 2018 ) such that P (ρ < 

) = 0 . 0 0 01 (except for Indonesia where we set P (ρ < 3) = 0 . 0 0 01

ue to its much larger size) and P (σu > 1) = 0 . 0 0 01 . This prior en-

oded our a priori preference for a simpler, smoother random field. 

e set this prior such that the random field could explain most of 

he range of the data if required. 

We assigned σ v a penalised complexity prior ( Simpson et al., 

017 ) such that P (σv > 0 . 05) = 0 . 0 0 01 . This was based on a com-

arison of the variance of Poisson random variables, with rates 

iven by the number of polygon-level cases observed, and an in- 

ependently derived upper and lower bound for the case counts 

sing the approach defined in ( Cibulskis et al., 2011 ). We found 

hat an iid effect with a standard deviation of 0.05 would be able 
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Fig. 1. Schematic of the baseline disaggregation regression model (Enviro) and the two stage method (ML l ). Models are shown in yellow ovals, malaria data is shown 

in purple rectangles and covariates are shown in green rectangles. The baseline model (Enviro) uses aggregated incidence data and raw environmental covarates in a 

disaggregation regression model. In the two stage method (ML l ), new covariates are created in stage 1 by training machine learning models on prevalence data. Predictions 

from these machine learning models are used as covariates in the stage 2 disaggregation regression. Only one of the two stage models (ML l ) is shown for simplicity. If ML g 
was included as well for example, it would look the same as ML l except that the prevalence data (pink box in stage 1) would have the global database of prevalence surveys. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o account for the discrepancy between the assumed Poisson error 

nd the independently derived error. 

Finally, we set different priors on the regression coefficients de- 

ending on which covariates were used. When raw environmental 

ovariates or a mix of raw environmental covariates and predic- 

ions from machine learning models were used we set the prior to 

e weakly regularising, βi ∼ Norm (0 , 0 . 4) , such that it was unlikely

hat any single covariate could explain the full range of the re- 

ponse data. When only machine learning model predictions were 

sed we set βi ∼ Norm ( 1 M 

, 0 . 4) where M is the number of machine

earning models being used. This prior sets our a priori expecta- 

ion that all the machine learning prediction models are positively 

nd equally correlated with incidence i.e. this prior encodes stan- 

ard model averaging. It is important to note that this setup does 

ot constitute true stacking in which we would enforce 
∑ 

i βi = 1 

 Bhatt et al., 2017 ). In a preliminary analysis we tested the case

here we force β i > 0 which in practice is largely the same as the
 

i βi = 1 ( Breiman, 1996b ) but allows a small amount of flexibil- 

ty to handle mispecification in p2i. This analysis did not show any 

enefits to this approach so it was not considered further. 

.5. Experiments 

All experiments involve comparing predictive performance of 

tage 2 disaggregation regression models when different combina- 

ions of covariates are used. After model fitting we made predic- 

ions over the study areas and reaggregated back to the admin- 

strative level of the surveillance data. Our primary performance 

etric was correlation between observed and aggregated predic- 

ions. We also examined the calibration of models by calculating 

he proportion of held out data that were within their 80% credi- 

le intervals. We used the raw environmental covariates, centered 

nd standardised, as a baseline stage 2 model ( Fig. 1 ). We sub-

equently refer to this model as Enviro. We then performed two 
4 
xperiments. In the first (experiment 1) we tested whether using 

redictions from stage 1 machine learning models trained on local 

i.e. within-country) prevalence data improved predictions ( Fig. 1 ). 

n the second (experiment 2) we tested whether using predictions 

rom stage 1 machine learning models trained on global prevalence 

ata improved predictions. 

In experiment 1 we compared the baseline to two models that 

sed locally trained machine learning models ( Table 1 ). Firstly, we 

ombined the predictions from the machine learning models and 

he environmental covariates in one model (subsequently called 

nviro + ML l ). In this model therefore, the environmental covari- 

tes are effectively used twice, once in their raw form and once in 

ransformed form (i.e. the predictions from the machine learning 

odels). Secondly, we used only the predictions from the machine 

earning models ( Fig. 1 ) trained on local data (subsequantly called 

L l ). As the environmental covariates are used as covariates in the 

achine learning models, this model is still ultimately driven by 

he values of the raw environmental covariates. However, in this 

odel we are only using the environmental covariates in the trans- 

ormed space learned by the machine learning models. 

In experiment 2 we compared the baseline model to two mod- 

ls that used predictions from machine learning models trained on 

he global dataset of prevalence surveys ( Table 1 ). In the first, we 

sed only predictions from the machine learning models trained 

n the global data (ML g ). In the second, we combined predictions 

rom the machine learning models trained on regional data and 

redictions from the machine learning models trained on global 

ata (ML l + ML g ). 

In each experiment we used two cross-validation schemes. In 

he first, polygon incidence data was randomly split into six cross- 

alidation folds. In the second, polygon incidence data was split 

patially into k folds (via k-means clustering on the polygon cen- 

roids). We set k as 3 for Madagascar and Colombia. Due to its 

arge size we set k as 7 for Indonesia. Due to the small sample 
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Table 1 

Summary of stage 2 models and the experiments they are grouped into. All models are disag- 

gregation regression models fitted to aggregated incidence data. The only difference between 

the models is which covariates are being used. Environmental covariates includes the full set 

of eight variables. Local ML covariates are the predictions from stage 1 machine learning mod- 

els, trained with local prevalence data and the eight environmental covariates as inputs. The 

local prevalence datasets are data from within each country except for Colombia where local 

prevalence refers to South American data. Global ML covariates are the predictions from stage 1 

machine learning models, trained with global prevalence data (i.e. the full prevalence database) 

and the eight environmental covariates as inputs. Experiment 1 tests whether including Lo- 

cal ML covariates improves predictive performance while Experiment 2 tests whether including 

Global ML covariates improves performance. 

Model Environmental covariates Local ML covariates Global ML covariates 

Experiment 1 

Enviro 
√ 

Enviro + ML l 
√ √ 

ML l 
√ 

Experiment 2 

Enviro 
√ 

ML g 
√ 

ML l + ML g 
√ √ 

Table 2 

Pearson correlations between observed and predicted values for exper- 

iment 1. 

Country Cross-validation Enviro Enviro + ML l ML l 

Colombia Random 0.59 0.61 0.59 

Colombia Spatial 0.12 0.25 0.33 

Indonesia Random 0.52 0.59 0.48 

Indonesia Spatial 0.45 0.51 0.44 

Madagascar Random 0.70 0.69 0.68 

Madagascar Spatial 0.22 0.18 0.55 

Senegal Random 0.58 0.57 0.51 

Senegal Spatial 0.63 0.63 0.51 
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Table 3 

Pearson correlations between observed and predicted values for ex- 

periment 2. 

Country Cross-validation Enviro ML g ML l + ML g 

Colombia Random 0.59 0.55 0.58 

Colombia Spatial 0.12 0.12 0.33 

Indonesia Random 0.52 0.32 0.46 

Indonesia Spatial 0.45 0.41 0.45 

Madagascar Random 0.70 0.67 0.68 

Madagascar Spatial 0.22 0.51 0.55 

Senegal Random 0.58 0.50 0.49 

Senegal Spatial 0.63 0.55 0.52 
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ize, we set k as 5 for Senegal. This spatial cross-validation scheme 

s testing the ability of the different models to make predictions 

ar from data where the spatial random field is not informative. 

. Results 

Table 2 gives the correlation between observed and held out 

ata (under random and spatial cross-validation) for experiment 

 (models Enviro, ML l and Enviro + ML l ). Many of the differences 

n performance are rather marginal. Enviro was the best perform- 

ng model in two cases (random cross-validation in Madagascar 

nd Senegal). In one case, Enviro perfomed equally well as an- 

ther model; under spatial cross-validation in Senegal Enviro and 

nviro + ML l performed equally well. Of the remaining five cases, 

n two cases ML l performed best and in three cases Enviro + ML l 
erformed best. The greatest benefits to using prediction from ma- 

hine learning models instead of, or in combination with, the raw 

nvironmental variables occured under spatial cross-validation and 

n the cases when the Enviro model was particularly poor. 

Fig. 2 shows scatter plots of the model performance under ran- 

om cross-validation for experiment 1 while Fig. 3 shows scatter 

lots of the model performance under spatial cross-validation. It 

an be seen that without environmental covariates, the models in 

adagascar fail to predict very high or very low values correctly. 

ig. 4 shows the input data and spatial out-of-sample predictions 

f the Enviro model and ML l model in Colombia. 

Table 3 gives the correlation between observed and held out 

ata (under random and spatial cross-validation) for experiment 

 (models Enviro, ML g and ML l + ML g ). In six cases, Enviro was

he best or tied best performing model. The ML g model was never 

he best performing model and only outperforms Enviro in one 

ase (spatial cross-validation in Madagascar). In two cases ML + 
l 

5 
L g was the best performing model (spatial Colombia and spatial 

adagascar). Comparing across Tables 2 and 3 we can see that ML g 
utperforms ML l once (spatial cross-validation in Senegal). In only 

wo cases (Spatial Senegal and Spatial Indonesia) did ML l + ML g 
utperform ML l . 

Table 4 shows the out-of-sample coverage of the 80% credible 

ntervals for all models, countries and cross-validation schemes. 

he coverage in Colombia was very poor with no models achiev- 

ng a coverage above 0.4. The coverage was acceptable in the other 

hree countries with most values lying between 0.7 and 0.9. Over- 

ll there was a general tendency for models to be slightly over con- 

dent. 

We can examine the relationship between the RMSE of the 

achine learning models to their fitted regression coefficients 

weights). These values are given in Table 5 . In all five sets of ma-

hine learning models (four sets trained on local data and one set 

rained on global data), Random Forest performs the best. We have 

ot forced β i > 0 but we have set the priors for these coefficients 

ith a positive mean. In nearly all cases the fitted values are pos- 

tive. If the prevalence data and incidence data are not biased rel- 

tive to each other we would expect the models with the lowest 

MSE to also have the biggest regression coefficient. This occurs 

n three cases where Random Forest has the lowest RMSE and the 

iggest coefficient. In a further two cases, Random Forest has the 

owest RMSE but GBM has the highest coefficient. The predictions 

rom Random Forest and GBM are highly correlated in part be- 

ause they both perform well and in part because they are both 

ree based models. Finally, it can be seen that the relationship be- 

ween RMSE and regression coefficients was much weaker in In- 

onesia. For the models trained on local data a neural network has 

he highest fitted coefficient while for the models trained on global 

ata an elastic net has the highest fitted coefficient. 
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Fig. 2. Observed data against predictions for random cross-validation hold-out samples on a square root transformed scale. There are 12 cases composed of 4 countries 

(COL:, Colombia, IDN: Indonesia, MDG: Madagascar, SEN: Senegal) and three sets of covariates (Envir: raw environmental covariates only, Enviro + ML l : raw environmental 

covariates and machine learning covariates trained on local prevalence data combined, ML l : Machine learning models trained on local prevalence data only. 

Table 4 

Coverage of 80% credible intervals. Values outside 0.7–0.9 are shown in bold. 

Country CV Enviro ML l Enviro + ML l ML g ML l + ML g 

Colombia Random 0.28 0.28 0.29 0.28 0.30 

Colombia Spatial 0.30 0.33 0.33 0.33 0.34 

Indonesia Random 0.80 0.81 0.78 0.79 0.77 

Indonesia Spatial 0.80 0.78 0.78 0.76 0.75 

Madagascar Random 0.80 0.77 0.75 0.77 0.76 

Madagascar Spatial 0.65 0.74 0.70 0.75 0.76 

Senegal Random 0.79 0.79 0.79 0.79 0.82 

Senegal Spatial 0.85 0.91 0.85 0.94 0.85 
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. Discussion 

We have studied the predictive performance of disaggregation 

egression of malaria incidence when provided with different sets 

f covariates. In experiment 1 we compared a baseline model that 

sed only raw environmental covariates (Enviro) to two models 

hat used predictions from machine learning models trained on 

ocal prevalence points (ML l and Enviro + ML l ). Overall, experi- 

ent 1 suggests that the predictions from the disaggregation mod- 
6

ls were better when using covariates created using predictions 

rom machine learning models (trained on local prevalence points) 

han when using raw environmental covariates. This increased per- 

ormance comes despite the prevalence data being on a different 

cale (a proportion instead of a rate) and being measurements 

f a different aspects of malaria transmission (prevalence rather 

han incidence) as well as the fact that the model we have used 

o translate between the two scales is imperfect. However, there 

as no clear best model between ML and Enviro + ML . Therefore, 
l l 
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Fig. 3. Observed data against predictions for spatial cross-validation hold-out samples on a square root transformed scale. There are 12 cases composed of 4 countries 

(COL:, Colombia, IDN: Indonesia, MDG: Madagascar, SEN: Senegal) and three sets of covariates (Envir: raw environmental covariates only, Enviro + ML l : raw environmental 

covariates and machine learning covariates trained on local prevalence data combined, ML l : Machine learning models trained on local prevalence data only. 

Fig. 4. A) Observed data for Colombia (grey for zero incidence). B) Out-of-sample predictions for the spatial cross-validation, environmental covariates only model. C) Out- 

of-sample predictions for the spatial cross-validation, local machine learning only model. For each cross-validation fold, predictions are made for the held out data which 

are then combined to make a single surface. 

7 
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Table 5 

Machine learning model results and fitted parameters (i.e. model 

weights) of the machine learning predictions only models (i.e. ML l 
local only and ML g global only). For each dataset (the country 

and whether the data was local or global) the best model (low- 

est RMSE) is shown in bold. Similary, the largest coefficient within 

each disaggregation model is shown in bold. 

Country Model RMSE l β l RMSE g βg 

Colombia RF 0.068 0.625 0.169 0.180 

Colombia GBM 0.073 0.952 0.178 -0.218 

Colombia enet 0.070 0.219 0.233 0.183 

Colombia nnet 0.070 0.129 0.220 0.527 

Colombia ppr 0.070 0.667 0.205 0.546 

Indonesia RF 0.081 0.447 0.169 0.178 

Indonesia GBM 0.085 0.357 0.178 0.289 

Indonesia enet 0.091 0.303 0.233 0.526 

Indonesia nnet 0.089 0.506 0.220 0.316 

Indonesia ppr 0.089 0.364 0.205 0.089 

Madagascar RF 0.100 0.538 0.169 0.529 

Madagascar GBM 0.105 0.570 0.178 0.432 

Madagascar enet 0.116 0.301 0.233 0.262 

Madagascar nnet 0.113 0.033 0.220 0.364 

Madagascar ppr 0.109 0.469 0.205 0.403 

Senegal RF 0.092 0.339 0.169 0.425 

Senegal GBM 0.099 0.261 0.178 0.408 

Senegal enet 0.103 0.344 0.233 0.205 

Senegal nnet 0.099 0.254 0.220 0.190 

Senegal ppr 0.098 0.268 0.205 0.126 
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i

p

c

m

hen using these methods, both of these models should be fitted 

nd the model with the best predictive performance for a given 

ataset selected. 

Furthermore, many of the performance improvements are 

ather marginal. However, in a few cases such as Colombia and 

adagascar under spatial cross-validation the performance boost 

s large. For example, using just environmental covariates in Mada- 

ascar under spatial cross-validation gives a correlation between 

bserved and predicted data of 0.22. Such a model would be un- 

sable for any applied or policy work. In contrast, using the pre- 

ictions from the machine learning models trained on local data 

ives a correlation value of 0.55, which while still relatively poor 

s possibly a useful model. 

It is also of note that in two cases, the simplest model (Enviro) 

erformed the best. Given that Enviro + ML l includes the same 

ovariates (with some extra) this is likely explained by increased 

ariance. The model is trying to estimate a number of regres- 

ion parameters, a random field and hyperparameters so remov- 

ng extraneous covariates should help parameter estimation. This 

s particularly true in Senegal which only has 34 datapoints and 

igher correlation between covariates (S49). Future work should 

onsider joint models which use the prevalence and incidence data 

s response data so that the disaggregation has more degrees of 

reedom. This would hopefully allow the accurate estimation of 

ore regression parameters The prevalence to incidence relation- 

hip used in this paper could be used to link the two data types. 

urthermore, if the parameters in the prevalence incidence rela- 

ionship were treated as unknown parameters, with informative 

riors, this would allow three data to inform the relationship and 

or the uncertainty in the original model to be propagated prop- 

rly. 

As expected, the model performance was generally worse un- 

er spatial cross-validation than under random cross-validation. 

his implies that the models are still relying heavily on the spa- 

ial Gaussian random field. Furthermore, the difference between 

andom and spatial cross-validation is usually bigger than the dif- 

erence between different models. This suggests that better data 

overage is more important than which specific model is used and 

hat the models are still relying quite strongly on the random field. 
8 
Overall, the models fitted using predictions from machine 

earning models trained on the global database of prevalence 

oint-surveys were worse than those using either environmental 

ata alone or than those using predictions from machine learn- 

ng models trained on local data. This in itself is not particularly 

urprising. However, it does indicate that continental scale models 

hould consider using a mosaic of locally trained machine learning 

odels for example. What is more surprising is that using both 

he ML l and ML g covariates together did not improve performance, 

specially considering the relatively low correlation between the 

ocal and global predictions (Figure S46-49). Given that this ap- 

roach of creating diverse predictions is a core element of stacking 

ethodology we would expect this set of covariates to perform as 

ell or better than just the ML l covariates. 

We have demonstrated that using prevalence data alongside ag- 

regated incidence data can improve predictive performance. Un- 

ike the maps presented by Weiss et al. (2019) , the estimates pre- 

ented in this paper are intended for methodological research, not 

irectly for policy decisions. However, they do further demonstrate 

hat aggregated incidence data can be used to create high resolu- 

ion estimates of malaria incidence. Furthermore, in countries such 

s Senegal, the incidence data is much coarser than intervention 

mplementation units, so disaggregated maps like the ones here 

ave clear policy uses. It is important, however, to note that we 

re using out-of-sample prediction of aggregated polygon data as 

ur performance metric while the true target for prediction is the 

igh resolution risk surface. In rare cases there is both aggregate 

nd unaggregated data available so that the high resolution ac- 

uracy can be tested as well as the aggregate level performance 

 Sturrock et al., 2014 ). However, this case is rare. Some simulation 

tudies have been performed ( Johnson et al., 2019; Law et al., 2018; 

ilson and Wakefield, 2018 ) but these are often with few covari- 

tes and on correctly specified models. This is an important area 

or future research. 

While the approach presented here is related to stacking, it dif- 

ers in that we have not constrained the regression parameters to 

e positive nor included a sum-to-one constraint, i.e. the result is 

ot simply a weighted average of the level zero model predictions. 

e did not include these constraints because the first stage and 

econd stage models were trained on response data on different 

cales. However, given our priors, nearly all the fitted regression 

oefficients in models with only machine learning predictions were 

ositive. Therefore, in practice these models are working in a way 

imilar to standard stacking. However, the coefficients certainly do 

ot sum to one, and fitted intercepts are negative to account for 

his. 

One drawback of using predictions from machine learnings 

odels as covariates is that the uncertainties in the predictions 

re not propagated properly through to the final predictions. This 

ould be handled with an appropriate error model ( Richardson and 

ilks, 1993 ). Where the machine learning models explicitly pro- 

ide estimates of uncertainty, these could be used to inform such 

odels. In the absence of such individual-prediction estimates of 

ncertainty, the cross-validation error could instead be used to in- 

orm priors for error models. It is however worth noting that the 

nvironmental covariates used here are also modelled and there- 

ore similar care would ideally be taken in characterising the un- 

ertainty in their values. 

. Conclusions 

Overall we find that including predictions from machine learn- 

ng models trained on prevalence point-surveys can improve the 

erformance of disaggregation regression models for malaria in- 

idence relative to using raw environmental covariates. This extra 

odelling step can be seen as finding useful, non-linear transfor- 
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ations of the raw environmental covariates. This view is impor- 

ant for understanding how the model will predict in areas with no 

ncidence data; in this situation the data cannot inform the Gaus- 

ian random field and predictions are driven by this non-linear 

ransformation of the raw environmental covariates. Training the 

achine learning models on local data (i.e. prevalence data from 

he same country or region as the incidence data) shows much 

etter performance than when training the machine learning mod- 

ls on the full, global, dataset of prevalence point-surveys. More 

ountries, particularly those with medium or low malaria bur- 

ens, are providing timely and accurate routine surveillance data 

f malaria cases. Therefore it may be expected that disaggregation 

egression may become more popular and operationally relevant. 

ndeed, methods similar to ML g are already being used for global 

apping in malaria ( Battle et al., 2019; Weiss et al., 2019 ) though

he results here suggest that future global mapping effort s should 

llow local prevalence data to have a stronger influence on the es- 

imates. We have here presented a method for improving the pre- 

ictive performance of these models by using ancillary, prevalence 

oint-survey data. 
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