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Abstract

Influenza and Respiratory Syncytial Virus (RSV) interact within their host posing the concern

for impacts on heterologous viruses following vaccination. We aimed to estimate the popula-

tion level impact of their interaction. We developed a dynamic age-stratified two-pathogen

mathematical model that includes pathogen interaction through competition for infection

and enhanced severity of dual infections. We used parallel tempering to fit its parameters to

11 years of enhanced hospital-based surveillance for acute respiratory illnesses (ARI) in

children under 5 years old in Nha Trang, Vietnam. The data supported either a 41% (95%

CrI: 36–54) reduction in susceptibility following infection and for 10.0 days (95%CrI 7.1–

12.8) thereafter, or no change in susceptibility following infection. We estimate that co-infec-

tion increased the probability for an infection in <2y old children to be reported 7.2 fold (95%

CrI 5.0–11.4); or 16.6 fold (95%CrI 14.5–18.4) in the moderate or low interaction scenarios.

Absence of either pathogen was not to the detriment of the other. We find stronger evidence

for severity enhancing than for acquisition limiting interaction. In this setting vaccination

against either pathogen is unlikely to have a major detrimental effect on the burden of dis-

ease caused by the other.

Author summary

Influenza and Respiratory Syncytial Virus (RSV) cause large burdens of disease. Instead of

acting independently, there may be short term cross-protection between them. The evi-

dence of this to date comes from ecological studies which are unable to test the mecha-

nism, or biological studies that are unable to determine the population level impacts of

such cross-protection. We create a mathematical model that simulates the circulation of

these two viruses, and allows for cross-protection between them. We then fit this model to

hospital reported cases of confirmed infection from Nha Trang, Vietnam in order to esti-

mate whether any cross-protection exists in this setting. We show that there are two
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possibilities—either no interaction or moderate interaction that can result in the observed

circulation patterns. However, we further show that co-infection results in an increased

reporting rate, presumably due to increased severity.

Introduction

Influenza and Respiratory Syncytial Virus (RSV) have large health and economic impacts glob-

ally, particularly in young children where they cause 870 000 [1] and 3.2 million [2] hospitali-

sations in <5 year olds per year respectively. While pediatric influenza vaccines are licensed

for use in some countries, global uptake is poor and efficacy depending on the match to the cir-

culating strains. RSV vaccines are in development, with close to 20 vaccine candidates being

evaluated in pre-licensure trials [3].

The impact of vaccination may be enhanced if concurrent co-infections increase the pro-

pensity of severe disease beyond that of either pathogen [4]. However, the impact of vaccina-

tion may be lessened if vaccination reduces competitive pressure between influenza and RSV

and thus leads to increased circulation of the other pathogen. Such competitive pressure has

been observed in the form of cross protection in mouse studies that showed e.g. a protective

effect of live attenuated influenza vaccine administration on RSV replication [5] and influenza

infection on RSV severity [6], mediated by the innate immune system. Population level evi-

dence for the effect of cross-protection on influenza and RSV epidemiology, however, is largely

of observational nature: a lack of coincidence in peak timings [7,8], changes in RSV peak tim-

ing following unusual influenza seasons [9–14] and alternating infection patterns [15].

Cross-protection following a primary infection could occur through a variety of mecha-

nisms including viral competition for resources in the host [16], the activation of the innate

immune system such as through toll-like receptors (TLRs) 3 and 7 [17,18] or short term

immune memory through surviving cells in an antiviral state (e.g. epithelial cells following

influenza infection [19]). These interactions could result in a reduction in subsequent infection

with the other viruses, and estimates of the duration of cross-protection and its biological path-

way vary. Experimental infection of ferrets estimated less than 2 weeks protection between

influenza A and B viruses [20], yet cells forming the respiratory epithelium can survive in a

state of heightened antiviral activation for 3 to 12 weeks after influenza A infection, with wan-

ing of the conferred protection observable at 6 weeks [19].

In Nha Trang, Vietnam, for more than 10 years children admitted to the single public hos-

pital with acute respiratory illness have been tested for presence of influenza and RSV infection

as part of an enhanced surveillance. RSV circulation is highly seasonal, and influenza circula-

tion varies year on year, thus giving a unique opportunity to systematically investigate evi-

dence for their interaction at population level. We use this data in combination with a

dynamic transmission model to estimate the strength of cross-protection and the effects of co-

infections on disease severity (defined as the proportion of infections that require hospital

attendance).

Methods

Ethics statement

This study was approved by the Institutional Review Boards of the London School of Hygiene

& Tropical Medicine (16166 /RR/12988) and the National Institute of Hygiene and Epidemiol-

ogy in Vietnam (VN01057-28/2015).
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Study population

We used data from a hospital-based enhanced surveillance study of children with respiratory

disease, as previously described [21,22]. In brief, children younger than 5 years old who resided

in 16 out of the 27 communes of Nha Trang (resident population of 210’739) and attended he

paediatric ward in Khanh Hoa General Hospital (KHGH) in Nha Trang, central Vietnam,

with Acute Respiratory Infection (ARI) were enrolled and offered a suite of additional diag-

nostics. ARI was defined as Cough and / or difficulty breathing. Khanh Hoa hospital is a ter-

tiary care facility and is the only public hospital for the catchment area of the study. More than

94% of all pediatric ARI admissions are typically enrolled. Upon admission, Nasopharyngeal

(NP) samples were taken from patients, nucleic acid was extracted and multiplex-PCR assays

were performed in order to detect infection with up to 13 respiratory viruses, including influ-

enza A and RSV. Positive samples underwent a second, confirmatory PCR test and only indi-

viduals who tested positive in both PCRs were included. We use aggregate weekly data, from

5th February 2007 until 4th December 2017. We assumed that an ARI episode, for which Influ-

enza or RSV were detected from the nasopharynx on admission, was caused by the respective

pathogen. The dataset excludes neonatal cases under 28 days old.

To inform transmission pathways in the population we used age specific contact-patterns,

based on a contact study in the same area, conducted in 2010[23]. In total 2002 Nha Trang res-

idents of all ages participated in the study. A contact was defined as either skin-to-skin contact

or a two-way conversation.

Data analysis

We calculated the correlation between all reported influenza and RSV cases each week using a

Pearson’s Correlation test.

Assuming no interaction (in susceptibility to or severity of dual infections), we calculated

the required annual RSV infection attack rate in order to observe the reported number of dual

infections (Eqs 1–3). We estimate the RSV attack rate rather than the influenza attack rate, as

RSV is more consistent year on year (see section 1 in S1 Text for influenza equivalent). Using a

negative binomial likelihood with Brent optimization we estimated the RSV reporting rate that

would correspond to the maximum likelihood of observing the reported weekly number of

dual infections. We then used this estimate of the reporting rate to calculate the annual RSV

population attack rate required in order to observe this many coinfected ARI admissions. The

credible intervals for the attack rate were calculated using the Hessian matrix from the optimi-

sation. If the estimated attack rate is high, this may suggest that influenza and RSV co-infection

increase severity (and hence reporting). If the estimated attack rate is low, this could suggest

that co-infection is less likely that at random due to competition between the viruses.

IDual ’ IInfluenza � PRSV ð1Þ

PRSV ’ IRSV � 1=gRSV=uRSV ð2Þ

ARRSV ’ IRSV=uRSV ð3Þ

With parameters: Incidence of reported cases (I), Prevalence of Infection (P), Duration of

Infection (1/γRSV, 9 days—see Table 1), attack rate (AR) and estimated reporting rate (υ).
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Model

We created an age-structured deterministic transmission model for influenza and RSV, allow-

ing for short-term cross-protection. Individuals are either Susceptible (S), Infectious (I), cross-

Protected (P) and Recovered (R) for influenza (INF) and (RSV).

Susceptibles become infected at force of infections λINF and λRSV, and move into the I states.

They then remain infectious for 1/γINF and 1/γRSV days and during the infectious period and

1/ρ days thereafter they are cross-protected and thus their propensity for heterologous infec-

tion is reduced by factor σ, the strength of cross-protection. There is no difference in inherent

susceptibility by age for influenza, but there is reduced susceptibility to RSV in older age

groups, determined by parameter τi.
The force of infection includes age-specific contact rates derived from a local contact survey

[23]. Modelled age-groups are: 0–1 years (infants), 2–4 years (pre-school), 5–15 years (school),

16–64 years (adults) and 65 + (older adults). Infection reporting rates vary by age-group and

virus, and for RSV reporting rates are increased by a multiplier from 2012 onwards, due to the

circulation of a new genotype that has increased the average severity of infection and thus the

proportion of reported infections (ON-1) [24]. There is also a multiplier on the RSV reporting

rates for dual infections, allowing them to be reported more frequently, for example because of

increased propensity for respiratory disease that would require healthcare seeking (as observed

in adults [4]). Model equations are shown in section 3 in S1 Text.

We model the persisting immunity to influenza at the start of each season individually, with

an initial proportion susceptible. This allows for a different immunity profile at the start of

each season, without needing to account for waning of immunity, dynamics across virus

Table 1. Parameter definitions, values and priors.

Parameter Symbol Value Prior Source

Transmission rate INF βINF Fitted Based on R0,INF See section 4 in S1 Text for calculations

Basic Reproduction Rate Influenza R0,INF Fitted Between 1 and 8 [26]

Transmission rate RSV βRSV Fitted Based on R0,RSV See section 4 in S1 Text for calculations

Basic Reproduction Rate RSV for strain y R0,RSV,y Fitted Between 1 and 8 [26]

RSV age group susceptibility (0–1, 2–4, 5–15, 16–64,65+ τi Fixed 1, 0.75, 0.65, 0.65,

0.65

Based on Henderson et al (1979) [27], see section 5 in

S1 Text

Infectious period Influenza 1/γINF 3.8

days

- Cauchemez et al (2004) [28]

Range from published papers: 1–4.5 days [28–31]

Infectious period RSV 1/γRSV 9 days - Weber et al (2001) [25]

Range from published papers 6.7–12 days [25,32,33]

Strength of cross-protection σ Fitted 0–1 Assuming competitive [34]

Duration of cross-protection 1/ρ Fitted 0—Inf days

Proportion of each age group infected with Influenza, at the start of

the season

δINF,s Fitted 0–1

Proportion of each age group infected with RSV, at the start of the

season

δRSV,s Fitted 0–1

Proportion susceptible to influenza at the start of the season ηs Fitted 0–1 Exponential function, see section 6 in S1 Text for

details

Influenza proportion reported in ages 0–1 κINF Fitted 0–0.4

Influenza multiplier for proportion reported ages 2–4 vs 0–1 κINF,m Fitted 0–5

RSV proportion reported in age group i κRSV,i Fitted 0–0.4 No additional severity from dual infection [35]

RSV ON-1 reporting multiplier κRSV,2012 Fitted 1–5 ON-1 clinically more severe [24]

Dual infection multiplier on RSV proportion reporting κDual Fitted 1—Inf Based on analysis of expected RSV Attack Rate above.

Overdispersion parameter k Fitted 0-Inf

https://doi.org/10.1371/journal.pcbi.1010234.t001
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subtypes and seasonality specifically. [25]. Due to infections in previous influenza seasons and

potential vaccination, susceptibility to influenza is assumed to decline exponentially at rate η
with age (see section 6 in S1 Text). This is modelled as non-leaky cross-protection, due to the

combination of different exposures. For RSV we assume the only immunity at the beginning

of the season is the age-specific reduction in susceptibility (leaky immunity), as immunity to

reinfection typically lasts less than a year. Due to the short-time period modelled (max 66

weeks), we do not include births, deaths or ageing, but instead hold the age-group specific pop-

ulation sizes constant at the levels of 2010. Parameter definitions and values are shown in

Table 1.

To capture the annual influenza and RSV epidemics despite regular changes, particularly in

the timing of influenza circulation, we defined the annual start of the season as the minimum

number of combined RSV and Influenza cases (on a 4 week rolling mean) between the 1st of

November and the 1st of May each season. If one or more weeks had the same rolling average,

we took the first occurrence within the time window.

Likelihood

We fitted the model to the age-stratified weekly number of ARI cases with nasopharyngeal car-

riage of either influenza or RSV using a negative binomial likelihood. To fit the allocation of

those cases into influenza, RSV or dual infections we added a multinomial component to the

likelihood, resulting in an overall log likelihood of:

LLðyjxÞ ¼
XN¼2

j¼1

Xn

i¼1

ðNBðmi;j; kÞ þMNðpRSVi;j; pFlui;j; pDuali;jÞÞ ð4Þ

Where x are the reported infections, θ are the parameters, j are the two age groups 0–1 and

2–4, and i are the weeks, with n being the total number of weeks. NB is the likelihood of the

observed number of cases being a random draw from a negative binomial distribution with

the total number of modelled infections as the mean, μ, and the fitted overdispersion parame-

ter, k. MN is the multinomial likelihood, with pRSV, pFlu and pDual being the respective prob-

abilities of the infection with influenza, RSV or both, calculated from the ratio of model

reported cases.

Inference

We used parallel tempering to fit the model. This method involves running multiple markov

chains simultaneously, with different ‘temperatures’ that place a weighting on the likelihood.

Swaps between the chains are then proposed every x (in this case 5) iterations, and accepted

with acceptance ratio:

R ¼ eððLLðiÞ� LLðjÞÞ�ðtj � tiÞÞ

Where

ti ¼
1

Ti

For full details of the method see Vousden et al (2016)[36] We ran the parallel tempering

algorithm with 12 chains and 450,000 iterations. The initial 250,000 iterations were discarded

as burn-in. Accepted samples from the first chain were then thinned to 1 in 10 for analysis,

resulting in a final sample size of 20’000.
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Single pathogen simulations

To assess the maximal indirect heterologous effect an intervention against either pathogen

(e.g. widespread vaccination)could have in this environment, we assumed that complete

absence of one of the viruses. We then calculated the relative change in the number of cases in

the pathogen not targeted by the intervention. Estimates are based on model simulations using

1000 posterior parameter samples of the fitted model.

Sensitivity analyses

We assessed the sensitivity of our estimates of the strength of interaction of influenza and RSV

to the prior on the interaction parameter and to the reporting rates of dual infections. We

reran the model with a prior on the interaction parameter for strong interaction, using a nor-

mal distribution with mean 0.8 and standard deviation of 0.15. In addition, we ran a version of

the model which did not allow an increased reporting rate for dual infections, as it has been

reported that in this setting there is no increased severity of dual infections among hospitalised

children [35]. Instead, it was assumed that the reporting rate for dual infections was the same

as that for RSV-only infections.

Software

All analysis except for the fitting was done in R version 4.0.0. The fitting was done on R 3.4 on

AWS ec2 machines. Code is available at https://github.com/NaomiWaterlow/NhaTrang_flu_

rsv_interaction

Results

Descriptive analysis

A total of 788 influenza and 1687 RSV hospitalised paediatric ARI cases were reported between

5th February 2007 and 4th December 2017; 78 (9% of influenza cases and 4% of RSV cases) of

these were dual infections (Fig 1A and 1B). The mean age of at admission was 22 months and

16 months for influenza and RSV cases respectively. RSV notifications showed strong consis-

tent seasonality across years, peaking usually in the 34th week of the year, whereas influenza

showed less seasonality, but typically occurs after Té̂t Nguyên Ðán holidays and before the

RSV epidemic (Fig 1C).

There was a small, not statistically significant, negative correlation between weekly influ-

enza and RSV incidence, with the Pearson correlation coefficient -0.074 (95% CrI:-0.160 to

0.009). (Figure A in S1 Text)

We estimated that in order to observe the weekly reported number of dual infections when

assuming independence of influenza and RSV infection, the annual RSV attack rate needed to

be 720% (95% CrI: 560–1000) in ages 0-1y and 430% (95% CrI: 270–980) in ages 2-4y. The

high attack rate suggests that in fact influenza and RSV infections are not independent but that

co-infection is likely to substantially enhance the propensity for hospitalisation with ARI in

this setting.

Model inference

The model was able to fit the case data for influenza and RSV well (Fig 2, see section 7 in S1

Text for further fitting and convergence details). The posterior estimates for the relative reduc-

tion in heterologous acquisition rates during and following Influenza or RSV infection was

bimodal, with one mode at 0.004 (95%CrI 0.000–0.046), indicating hardly any competition for

infection, and one mode at 0.41 (95%CrI 0.36–0.54), indicating moderate competition,
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assuming a cut-off between modes at 0.2 (Fig 3). The posterior for the duration of interaction

also had multiple modes, with the mode corresponding to moderate competition at 10.0 days

(95%CrI 7.1–12.8 days).

The main differences between modes for other parameters were in the detection rate of

influenza, which ranged from 13 to 21% of infections reported (section 8 in S1 Text) and the

increased reporting for dual infections. We estimate that in the moderate competition mode

the observation of influenza and RSV coinfection among ARI cases was 8.2 (95%CrI 6.9–9.9)

times more likely than would have been expected by chance in ages 2–4 and 16.6 (95%CrI

14.5–18.4) in ages 0–1. This compares to the no competition scenario where the observation of

influenza and RSV coinfection among ARI cases was 3.6 (95%CrI 2.5–5.8) and 7.2 (95%CrI

5.0–11.4) times more likely than would have been expected by chance in ages 2–4 and 0–1

respectively.

To assess the relevance of RSV and influenza interaction on population level in this setting

we simulated single pathogen versions of the parameterised model. In the case of no competi-

tion, absence of influenza (e.g. through widespread vaccination) reduced RSV hospitalisations

by 4.1% (95%CrI 3.3–7.1%) due to a lack of co-infections with higher propensity for severe dis-

ease and absence of RSV reduced influenza hospitalisations by 7.2% (95%CrI 4.4–7.2%) in the

study period. In the moderate competition mode, absence of influenza reduced RSV hospitali-

sations by 5.7% (95%CrI 4.9–6.5%). In the absence of RSV 1.8% (95%CrI -0.7–7.2%) more

hospitalised cases for influenza occurred (Fig 4).

Fig 1. Data. A) Weekly reported infections of children under 5 years old infected with influenza and RSV over the study period. B) Total number of cases

reported over the entire study period by age group and virus. C) Percentage of reported cases by week of the year for RSV and Influenza. The thick lines show

the combined total reported across all years, the semi-transparent lines show the 4-week moving average per year.

https://doi.org/10.1371/journal.pcbi.1010234.g001
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Sensitivity

As a sensitivity analysis, we assumed that co-infection will not modulate the propensity to be

admitted to the local hospital with ARI symptoms (see section 9 in S1 Text), which pushed the

posterior to the no competition mode. Further, we reran the model with a prior for strong

competition through cross-protection, which pushed the posterior to the moderate interaction

mode (see section 10 in S1 Text).

Discussion

We use data from more than 10 years of enhanced surveillance in Nha Trang, Vietnam to esti-

mate the interaction of influenza and RSV epidemiology. We find that the observed data is

consistent with infection reducing heterologous acquisition either by 41% (95%CrI 36% -

54%) for 10.0 days (95%CrI 7.1–12.8 days) after infection or hardly at all. We estimate that

influenza-RSV co-infection increases the propensity of an infection to be reported through the

ARI hospital surveillance by between 2.5 and 18.4 times. We go on to show that control of one

virus in this setting may have little impact on the circulation of the other but can have an

added benefit in reducing hospitalisations with co-infections.

A key strength of this dataset is the inclusion of cases infected with both influenza and RSV.

Surprisingly though, some dual infections are reported at times when the two viruses seldom

found in the hospital setting individually which may be a result of stochastic effect owing to

the low number of observed dual infections and has limited the strength of inference from

them. While many papers reporting co-infections do not include timings of the co-infections

Fig 2. Model Fit: Black lines are the data, coloured lines are the 95% CrI posterior predictive interval. Panels show the fit by age group and Virus.

https://doi.org/10.1371/journal.pcbi.1010234.g002
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Fig 3. Posterior estimates for parameters sigma and rho, and the corresponding likelihood values. Colour is split by sigma value of 0.2. B) Goodness of Fit:

Observed cases by season against Modelled cases by season by virus and age group. The black line indicates the same value.

https://doi.org/10.1371/journal.pcbi.1010234.g003

Fig 4. Vaccination scenarios: Number of cases modelled over all seasons, with different vaccination assumptions.

Dots represent the median and lines the 95% CrI.

https://doi.org/10.1371/journal.pcbi.1010234.g004
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[37–39], these off-peak co-infections were not observed in Texas [40]. In addition, in Nha

Trang influenza circulates continuously at low prevalence with small epidemics, which would

result in constant low-level cross-protection, rather than a short-term more concentrated

interaction after a large epidemic, such as in the UK [41]. This low-level cross-protection

could have been absorbed into the transmission rate of RSV, explaining the low estimate of the

RSV R0 (1.24 compared to a range of 1.2–9.1 in published papers [26]). These location-specific

features will need to be considered when generalising the findings. However, in general, the

setting of this study is a strength of the paper, as many of the countries where respiratory

viruses circulate at low levels year-round are the same countries with limited influenza vaccine

uptake. This study also has a high participation rate, however we do not have information on

participants who declined to take part in the study, and this may bias the results.

Much of the evidence for cross-protection is on an individual, biological level [5,6,20].

However the impact of this individual level cross-protection on population level has been

unclear, due to relatively small infection prevalence at any point in time (we estimate the sea-

sonal attack rate for influenza as 0.011–0.15, and that peak prevalence never exceeded 0.8%),

and thus a low propensity for co-infection with RSV. This may be exaggerated by clustering

factors such as household transmission, reducing the opportunity for cross-infection. As an

example in Kilifi, Kenya, household transmission of RSV contributed about 50% of all RSV

transmission in households with young children [42]. Our model assumes a well-mixed popu-

lation, so does not account for any population clustering beyond the age-specific contact

matrices. In addition, we assume that risk of infection is age-dependent, but otherwise homo-

geneous. However, increased risk of influenza infection may be correlated with increased risk

of RSV infection, due to demographic factors such as poor hygiene and household clustering.

This may overestimate the effect of dual infections on reporting.

In our model we assumed the cross-protection between the two viruses to be bi-directional,

having the same impact irrelevant of which virus caused the first infection. This assumption is

based on the mechanism of cross-protection being the activation of the innate immune system

into a general antiviral state. However, in the study site the influenza epidemic occurs before

the RSV epidemic, therefore our estimate of the strength of cross-protection on susceptibility

to the second virus is mainly an estimate of the impact of influenza on RSV and does not nec-

essarily capture any dynamics in the other direction. In addition, our model is not able to cap-

ture delays in the timing of cross-protection, which could potentially occur when considering

other mechanisms of cross-protection.

Evidence of cross-protection between influenza and RSV also comes from shifts in epi-

demic peaks, particularly after the 2009 influenza pandemic [10–13]. However these studies

are observational, and cannot test mechanisms. As the SARS-CoV-2 pandemic has demon-

strated, behavioural responses can have huge impacts on viral circulation, with many geogra-

phies seeing shifts in epidemic peaks for usually consistent viruses, such as RSV [43,44], due to

limitations on social contacts. Fear generated from high infection rates can also drastically

alter individuals behaviour [45], even without wide-spread implementations of restrictions.

Our model does not take into account different subtypes of influenza or RSV, due to the

added complexity, additional parameters required and the lack of subtype specific data. We

therefore assume that any cross-protection between influenza and RSV does not vary by sub-

type. We account for different immunity levels to circulating influenza subtypes by fitting a

susceptibility parameter at the start of each season. This is necessary because we fit to each sea-

son, rather than including immunity waning and fitting over the time period combined. In

addition, the dual infections appear to cluster in certain years, and a different explanation of

this could be interaction between different viral subtypes each year. While the start weeks of

our season are fixed manually, we account for any impacts of this by fitting the proportion
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infected at the start of each season for each virus. While most of the posterior estimates are rea-

sonable, the reporting rate for influenza infections is high, between 13 and 21%, compared to

estimated 12% from data in Yoshida et al. (2013). However, many milder cases (including out-

patients) are included in the reports as they may seek healthcare at the hospital, thereby

increasing the expected reporting rate in this context. The posterior for the detection rate of

influenza is one of the few parameters that, like the strength of cross-protection parameter, is

bimodal. However these were not greatly different, with the medians of the two priors only dif-

fering by 3.6% and therefore not substantially different to help us distinguish between the two

modes. Overall therefore, our model estimates fit the data well, as well as known aspects of

influenza and RSV transmission, such as high influenza attack rates in children [46,47], and

higher RSV severity in the youngest children [48].

Conclusions

In summary, we use a novel modelling framework to interrogate a unique case time-series for

single and dual infection from Nha Trang, Vietnam. We find that influenza and RSV co-infec-

tion substantially increases hospitalisation rates in children. In addition we show that the data

supports either no or moderate individual-level cross protection against infection but either

way with relatively little population level impact. This alleviates some concerns of heterologous

effects of RSV or influenza vaccination, however, particularly in settings with more pro-

nounced and overlapping RSV and influenza seasons the impact of vaccination on the other

pathogen’s epidemiology may be more noticeable.
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44. Gomez GB, Mahé C, Chaves SS. Uncertain effects of the pandemic on respiratory viruses. Science.

2021; 372: 1043–1044. https://doi.org/10.1126/science.abh3986 PMID: 34083477
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