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a b s t r a c t

Riots originating during, or in the aftermath of, sports events can incur significant costs
in damages, as well as large-scale panic and injuries. A mathematical description of
sports riots is therefore sought to better understand their propagation and limit these
physical and financial damages. In this work, we present an agent-based modelling
(ABM) framework that describes the qualitative features of populations engaging in
riotous behaviour. Agents, pertaining to either a ‘rioter’ or a ‘bystander’ sub-population,
move on an underlying lattice and can either be recruited or defect from their re-
spective sub-population. In particular, we allow these individual-level recruitment and
defection processes to vary with local population density. This agent-based modelling
framework provides the unifying link between multi-population stochastic models and
density-dependent reaction processes. Furthermore, the continuum description of this
ABM framework is shown to be a system of nonlinear reaction–diffusion equations
and faithfully agrees with the average ABM behaviour from individual simulations.
Finally, we determine the unique correspondence between the underlying individual-
level recruitment and defection mechanisms with their population-level counterparts,
providing a link between local-scale effects and macroscale rioting phenomena.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sports riots are a worldwide phenomenon and great cause for concern, due to the financial and physical damages
hey can incur. Moreover, the occurrence of riots can incite a sense of fear amongst the public, with people concerned
or their well-being and safety. For example, the riots which occurred in June 2011 in Vancouver, upon the city home
eam losing the Stanley Cup ice hockey tournament, incurred approximately C$3.78 million in damages, 52 reported
ssaults, and 250 visits to emergency rooms at nearby hospitals [1]. In February 2012, 79 people were killed in a riot at
football match, when Al-Masry supporters charged the field after a victory over Al-Ahly club [2]. While public policies
ave been introduced with the intention of curbing hooliganism and anti-social behaviour arising from sporting events,
ncluding football banning orders in the UK [3–5], many of these policies have been criticised for their impact upon civil
iberties and human rights [3–5]. Furthermore, legitimate protests associated with social reform and activism have only
n rare occasions led to riotous behaviour, as the impetus of these riots is directly linked to aggressive intervention by
aw enforcement officials [4,6]. As such, we specifically focus on sports riots prior to police intervention, in an effort to
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istinguish illegitimate riotous behaviour arising in sporting events from actions linked to peaceful protest, with the goal
f better understanding the connections between individual-level riotous behaviour and population-scale public disorder.
In order to lessen and limit the negative impacts of sports riots, further understanding has been sought from

ocial-psychological [7–11] and physiological perspectives [12,13]. Theoretical studies and practical investigations have
imed to relate riot initiations and escalations to several variables, including environmental factors [14–16], situational
actors [17,18], the influence of alcohol [19–22], and a myriad of social factors [7–10,23–30]. These studies have been
onducted across a wide range of different sports, sporting events, level of play, and countries. As such, while studies
nvestigating the relation of some factors are in agreement, others stand in conflict. Nevertheless, a common element
n riotous behaviour is the emergence of a ‘crowd mentality’ that dominates any one individual’s decisions [31–33]. In
articular, [33] focuses on the idea of ‘thresholds’ for an individual’s participation in a group activity, suggesting that
ersonal thresholds can increase or decrease as other individuals participate.
More recently, mathematical modelling perspectives have been sought to understand riot dynamics and implement

ontrol measures with a view to reducing consequences such as property damage (c.f. [34–37]). Previous mathematical
odels of riots [35], urban crime [36], and communal disorder [37] fit deterministic models to realistic patterns and
btained data. Other mathematical models have focused on pedestrian-related dynamics, including crowd evacua-
ion, follow-the-leader motion, and aggregation [38–46]. While these models aim to reproduce the population-level
i.e., macroscale) behaviour of riot dynamics, few models have been proposed that emphasise the individual-level
i.e., microscale) interactions that give rise to rioting (c.f. [34,47]). One mathematical framework that is suitable for
escribing such individual-level interactions is by using stochastic agent-based models, whereby individuals (agents)
nteract with one another according to pre-defined processes on an underlying spatial grid. Such models have found
reat use in cell-level dynamics [48–51], ecology [52,53], and epidemic modelling [54,55].
In this work, we develop a stochastic agent-based model (ABM) that characterises individual-level mechanisms giving

ise to population-level riotous behaviour. Individual agents, classified as ‘rioters’ or ‘bystanders’, move on a two-
imensional square lattice restricted by exclusion processes to prevent agent overlap [48,49,53,56] and can either be
ecruited or defect from their respective sub-population [48]. This exclusion-process modelling framework stands in
ontrast to agent-based models that focus on velocity-driven processes, such as those presented in pedestrian dynamics
c.f. [38–46]). In this ABM framework, we also allow recruitment and defection processes to vary with local population
ensity: the recruitment of bystanders changes with the number of nearby rioters, while rioters defect based on the
umber of nearby bystanders (c.f. [53]). These neighbour-dependent transition rates are similar in framework to ‘‘contact
rocesses’’ that have been proposed in other cellular automata models (c.f. [57,58]). In our application, these density-
ependent processes are akin to the individual ‘thresholds’ of participation in crowds that are examined and discussed
n [33]. While multi-population stochastic ABMs (e.g. [48]) and density-dependent reaction processes in ABMs (e.g. [53,
9]) have been previously considered separately, the combination of these two ABM frameworks, as we present in this
ork, has not been previously examined. Consequently, this agent-based modelling framework provides the unifying link
etween multi-population stochastic models and density-dependent reaction processes. Following an examination of the
ualitative features of ABM simulations, we derive the continuum limit of the ABM in order to compare average individual-
evel dynamics with population-level descriptions of dynamics. The continuum description of this ABM framework is
etermined to be a system of nonlinear reaction–diffusion equations that describes the migration of both sub-populations,
s well as the recruitment of bystanders and defection of rioters. We demonstrate good agreement between the ABM and
ontinuum descriptions, which in turn provides further understanding of individual-level mechanisms that give rise to
acroscale rioting phenomena.

. Results

In this stochastic agent-based modelling framework, we consider the population of two classes of agents, termed as
rioters’ and ‘bystanders’, on an X∆ × Y∆ lattice, where ∆ is a typical amount of space an individual occupies. We focus
n non-dimensional lattices (i.e., ∆ = 1) and represent the location of the top right corner of each site in Cartesian

co-ordinates as (xi, yj) = (i, j), where i = 1, . . . , X and j = 1, . . . , Y . A rioter at lattice site (i, j) and time t is denoted
as ri,j(t) and can take either the value of 0 or 1 if a rioter is absent or present, respectively. Similarly, bi,j(t) represents a
bystander at lattice site (i, j) and time t . Furthermore, we employ exclusion processes to ensure that at most one agent can
occupy a lattice site at any given time [48,49,53,56].

The initial configuration of each sub-population, ri,j(0) and bi,j(0), is left to the user’s choice. If spatially uniform initial
conditions are desired, rioters and bystanders can be initially seeded on the lattice with constant probabilities r0 and b0.
Regardless of their initial configurations, individuals in both sub-populations move to adjacent lattice sites with unbiased
direction with a single motility rate m. Reflecting boundary conditions are employed on the boundaries of the lattice
domain for simplicity.

The ABM also incorporates agent recruitment (a bystander becoming a rioter) and defection (a rioter becoming a
bystander), where the recruitment and defection rates vary with local density [53]. As a simple metric of local density, the
recruitment and defection rates will change with how many rioters, from zero to four, are present at lattice sites in their
von Neumann neighbourhoods (i.e., the adjacent North, South, East, and West lattice sites). We consider the recruitment
processes to have non-negative rates λ , λ , λ , λ and λ , respectively. Similarly, the defection process have rates λ ,
r0 r1 r2 r3 r4 d0
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d1, λd2, λd3 and λd4, due to zero, one, two, three and four neighbouring bystanders, respectively. While the recruitment
nd defection rates λrn and λdn are explicitly related to local pairwise interactions of neighbours for n ≥ 1, the rates λr0

and λd0 can also represent global, non-local effects of recruitment and defection processes, including spontaneous rioting,
lack of interest that devolves into defection, and social media influences [60]. Similar to how we focus on non-dimensional
lattices, we will also assume that the recruitment and defection rates are non-dimensional. As such, the timescales (and
lengthscales) shown in subsequent simulations and figures are arbitrary and can be rescaled to translate the qualitative
features presented in this work to specific quantitative timescales and lengthscales.

Finally, we make the additional assumption that individuals move much more often than they are recruited or defect,
i.e. m ≫ maxn(λrn, λdn). This assumption is a standard model simplification for fast-moving populations [53]. Using a
Gillespie approach [61], we are able to simulate the number of both agent sub-populations as a function of time and space
(Algorithm 1); a MATLAB implementation of this algorithm can be found at https://github.com/nfadai/Clements2021.

Algorithm 1 Pseudocode for agent-based simulations of rioter and bystander dynamics
1: Set up an X × Y lattice and specify initial placement of rioters and bystanders;
2: Specify counters Qr (t) and Qb(t);
3: Specify recruitment rates λrn, defection rates λdn, and motility rate m;
4: Set t = 0 and specify terminating time tend;
5: while t < tend do
6: Calculate random variables u1 and u2, uniformly distributed on [0, 1];
7: Select an agent at random and determine its sub-population (rioter or bystander);
8: Compute the number of nearest neighbours n in the opposite sub-population of the chosen agent to determine λrn

and λdn;
9: Calculate propensity p = (m + λdn)Qr (t) + (m + λrn)Qb(t);

10: Calculate time step duration τ = − ln(u1)/p;
11: t = t + τ ;
12: Qr (t) = Qr (t − τ );
13: Qb(t) = Qb(t − τ );
14: if Agent is a rioter then
15: if u2 < m/(m + λdn) then
16: Choose a neighbouring site at random to move to;
17: if Neighbouring site is empty then
18: Move rioter to chosen site;
19: else
20: Nothing happens;
21: else
22: Rioter becomes a bystander;
23: Qr (t) = Qr (t) − 1;
24: Qb(t) = Qb(t) + 1;
25: else
26: if u2 < m/(m + λrn) then
27: Choose a neighbouring site at random to move to;
28: if Neighbouring site is empty then
29: Move bystander to chosen site;
30: else
31: Nothing happens;
32: else
33: Bystander becomes a rioter;
34: Qb(t) = Qb(t) − 1;
35: Qr (t) = Qr (t) + 1;

2.1. ABM simulations of riots

To examine the qualitative features of ABM simulations, we consider various choices of recruitment and defection
ates and observe the spatial and temporal evolution of the total agent population. In particular, we will focus our
imulations on a particular lattice configuration that represents a single street. This geometry is obtained by using the
omain 0 < x ≤ 200, 0 < y ≤ 20, which is equivalent to specifying the lattice dimensions as X = 200 and Y = 20.
urthermore, the sub-population densities ⟨R(t)⟩ and ⟨B(t)⟩ can be computed by averaging over multiple ABM simulations:

⟨R(t)⟩ =
1

PXY

P∑
Qr,p(t), (1)
p=1

3
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⟨B(t)⟩ =
1

PXY

P∑
p=1

Qb,p(t). (2)

Here, Qr,p(t) and Qb,p(t) are the total number of each sub-population on the lattice at time t , in the pth identically-
prepared realisation of the ABM. An identically-prepared realisation corresponds to an initial condition with the same
sub-population densities, while the initial configuration of agents remains randomly chosen. The total number of
identically-prepared realisations is P; we choose P = 20 throughout this work. Finally, when employing spatially-
dependent initial configurations that are spatially dependent in the x-direction alone, as will be examined in Section 2.5,
e will also consider the sub-population densities averaged over multiple simulations and averaged in the y-direction
lone:

⟨R(xi, t)⟩ =
1
PY

P∑
p=1

Y∑
j=1

ri,j,p(t), (3)

⟨B(xi, t)⟩ =
1
PY

P∑
p=1

Y∑
j=1

bi,j,p(t). (4)

Here, ri,j,p(t) and bi,j,p(t) are the rioter and bystander occupancies at lattice site (i, j) at time t in the pth identically-
prepared realisation of the ABM.

2.2. Spatially uniform initial conditions

We first consider results of the agent-based model for simulations beginning from spatially uniform initial conditions.
We present snapshots of the two agent sub-populations for initial densities r0 = 0.05 and b0 = 0.25, representing
situations where the majority of attendees at the sports event are not inclined to riot initially. We then consider three
representative parameter sets associated with different levels of recruitment and defection:

Mild Unrest: λrn =

{
0, n = 0, 1,
1, n = 2, 3, 4,

λdn ≡ 1. (5)

Moderate Unrest: λrn =

{
0, n = 0,
1, n = 1, 2, 3, 4,

λdn =

{
0, n = 0,
1, n = 1, 2, 3, 4.

(6)

Severe Unrest: λrn ≡ 1, λdn =

{
0, n = 0, 1,
1, n = 2, 3, 4.

(7)

In the Mild Unrest regime, rioters defect at the same rate regardless of how many bystanders are present, while bystanders
are only recruited when two or more rioters are nearby. The Severe Unrest regime swaps the recruitment and defection
processes: bystanders can become rioters regardless of the number of nearby rioters, while rioters only defect when two
or more bystanders are nearby. Finally, in the Moderate Unrest regime, bystanders can become rioters in the presence of
at least one rioter, and vice versa for the defection processes. For all simulations, we take m = 100maxn(λrn, λdn) = 100
to ensure spatial uniformity is retained throughout.

Depending on the level of unrest, three main qualitative features can be observed in the agent sub-populations. In the
Mild Unrest parameter regime, shown in Fig. 1, we observe that the population eventually all become bystanders. For
larger amounts of unrest, such as the Moderate Unrest scenario shown in Fig. 2, the rioting sub-population persists, but
the bystander population also persists in approximately equal numbers. Finally, in Fig. 3, we see that despite there being
many more bystanders than rioters initially, the Severe Unrest parameter regime overwhelms the defection processes
and leads to the entire population becoming rioters. While by no means a comprehensive list of phenomena, the three
unrest parameter regimes shown in Figs. 1–3 demonstrate that the ABM framework can give rise to three main qualitative
features: (i) the entire population becoming bystanders, (ii) a co-existence of rioters and bystanders, and (iii) the entire
population becoming rioters.

2.3. Spatially uniform continuum limit

While the ABM framework allows us to visualise individual simulations of rioting dynamics, it is often more convenient
to examine a simpler mathematical description of the average behaviour of the ABM, called the continuum limit
description [48,53,62]. The continuum limit description gives us the ability to study global, deterministic features of the
ABM when the number of lattice sites is large and the number of simulations being averaged is also large. As a result, we
can compare the average ABM sub-population densities, ⟨R(t)⟩ and ⟨B(t)⟩, with their continuum limit analogues, denoted
as r(t) and b(t) respectively.

When the ABM employs spatially uniform initial conditions and the motility rate of agents m is large, the net flux of
agents entering and leaving each lattice site due to motility events is, on average, zero [53]. Therefore, spatial derivatives
4
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Fig. 1. A single realisation of rioters (red) and bystanders (blue) in the Mild Unrest parameter regime with initial densities r0 = 0.05 and b0 = 0.25.

Fig. 2. A single realisation of rioters (red) and bystanders (blue) in the Moderate Unrest parameter regime with initial densities r0 = 0.05 and
0 = 0.25.

n the continuum limit will vanish, meaning that the continuum description of the average sub-population densities,
≤ r, b ≤ 1, are functions of time alone. Furthermore, due to the ABM reflecting boundary conditions and lack of any

ource or sink terms in the ABM framework, the total number of agents is conserved:

r(t) + b(t) = r + b := K ≤ 1. (8)
0 0

5



A.J. Clements and N.T. Fadai Physica A 597 (2022) 127279

F
d
c
n
n
o

T

2

t
c

c
(
o
i
U

Fig. 3. A single realisation of rioters (red) and bystanders (blue) in the Severe Unrest parameter regime with initial densities r0 = 0.05 and b0 = 0.25.

or the derivation of the continuum limit of each sub-population, we follow [53,62] and consider each recruitment and
efection processes individually. For recruitment of bystanders to rioters at rate λrn, we need to consider all the spatial
onfigurations for which a bystander has precisely n neighbouring sites occupied by rioters, and precisely 4 − n sites
ot occupied by rioters. Similarly, for the defection of rioters to bystanders at rate λdn, a rioter must have exactly n
eighbouring sites occupied by bystanders and the remaining 4 − n sites not occupied by bystanders. Accounting for all
f these possibilities leads to the following continuum limit descriptions for r(t) and b(t):

dr
dt

= −
db
dt

= b
4∑

n=0

λrn

(
4
n

)
rn(1 − r)4−n

  
recruitment

− r
4∑

n=0

λdn

(
4
n

)
bn(1 − b)4−n

  
defection

. (9)

herefore, using (8), we can rearrange (9) in terms of r(t) alone:

b(t) = K − r(t),
dr
dt

= (K − r)
4∑

n=0

λrn

(
4
n

)
rn(1 − r)4−n

− r
4∑

n=0

λdn

(
4
n

)
(K − r)n(1 − K + r)4−n. (10)

.3.1. Comparison of ABM agent density and continuum limit
To highlight the similarities between the continuum limit and the average behaviour of ABM simulations, we examine

he population density of each sub-population in the parameter regimes described in Eqs. (5)–(7). From (10), the
orresponding continuum limit descriptions of the rioter density for each parameter regime become the following:

Mild Unrest:
dr
dt

= f1(r) = (K − r)r2(3r2 − 8r + 6) − r, (11)

Moderate Unrest:
dr
dt

= f2(r) = (K − r)[1 − (1 − r)4] − r[1 − (1 − K + r)4], (12)

Severe Unrest:
dr
dt

= f3(r) = (K − r) − r(K − r)2[3(K − r)2 − 8(K − r) + 6]. (13)

In the Mild Unrest case, the only steady-state for r, b ∈ [0, K ] is (r, b) = (0, K ); similarly, the Severe Unrest
ase only has (r, b) = (K , 0) as a steady-state. Finally, in the Moderate Unrest case, there are three steady-states:
r, b) = (0, K ), (K/2, K/2), (K , 0). To determine the stability of these steady-states, we perform the standard calculation
f evaluating dfi/dr at each steady-state; positive derivatives indicate unstable steady-states, while negative derivatives
ndicate stable steady-states [63]. Consequently, we determine that the single steady-states of the Mild Unrest and Severe
nrest cases are both stable, while the three steady-states in the Moderate Unrest case are unstable, stable, and unstable,
6
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r

Fig. 4. Comparison of the average ABM behaviour over 20 identically-prepared simulations, ⟨R(t)⟩ (red) and ⟨B(t)⟩ (blue), with their continuum limit
descriptions, r(t) and b(t) (black dashed). All simulations begin with the initial densities r0 = 0.05 and b0 = 0.25 and the parameter regimes used
are: (a) Mild Unrest; (b) Moderate Unrest; and (c) Severe Unrest. Standard error bars are also included for ⟨R(t)⟩ and ⟨B(t)⟩. .

espectively. While only a small representative of the sample parameter space, the continuum limit equations for r and
b clearly show the possibility of three steady-state values for r: no rioters (r = 0), all rioters (r = K ) and an intermediate
rioter population density in the interval (0, K ).

In Fig. 4, we compare average ABM behaviour over 20 identically-prepared simulations, ⟨R(t)⟩ and ⟨B(t)⟩ defined in (1)
and (2), with their continuum limit descriptions, r(t) and b(t) defined in (10). The numerical solutions of (10) are computed
using ode45 in MATLAB. We observe excellent agreement between the ABM and continuum descriptions of agent densities
in the Mild and Severe Unrest regimes. In the Moderate Unrest regime, we note that while the same equilibrium density
value is achieved, there is some discrepancy between the two model descriptions for intermediate time. While some
of these discrepancies can be mitigated by increasing m (see Appendix), other discrepancies must be resolved by
incorporating additional refinements in the continuum limit derivation, include agent state space, agent adhesion, and
clustering effects (c.f. [53,62,64,65]). Nevertheless, the agreement between ABM simulations and the continuum limit
descriptions is generally very high, particularly when the motility rate increases relative to the recruitment and defection
rates.

2.4. Determining individual-level mechanisms from global population dynamics: inverse problem

It is important to emphasise at this point that the three parameter regimes considered in this section (Mild, Moderate
and Severe Unrest) are by no means an exhaustive list of potential phenomena that can occur as predicted via the
continuum limit. Since (10) reduces to a polynomial in r of degree 5, it is possible to have up to 5 equilibria in [0, K ].
Additionally, it is more likely that we will know the global trends in rioter and bystander populations rather than their
local, individual-based mechanisms of rioting or defecting. Consequently, we will now explore the inverse problem of
obtaining the local recruitment and defection rates, i.e. λrn and λdn, from a given continuum description of a particular
(spatially-uniform) rioter sub-population.
7
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To solve this inverse problem, we follow [53] and apply the same methodologies to relate the continuum limit of a
particular ABM parameter set to a given global population description of rioters. Firstly, we rewrite the continuum limit
system shown in (9) in terms of Bernstein basis polynomials of fourth degree [66]:

dr
dt

= −
db
dt

= b
4∑

n=0

λrnBn,4(r) − r
4∑

n=0

λdnBn,4(b), (14)

here

Bn,4(x) =

(
4
n

)
xn(1 − x)4−n, n = 0, 1, 2, 3, 4. (15)

e can then convert these Bernstein basis functions to the standard basis of monomials {x0, x1, x2, x3, x4}, by means of
the following transformation [67]:

xm =

4∑
n=m

(n
m

)(4
m

)Bn,4(x) ⇐⇒ x = Mb, (16)

here

x =

⎡⎢⎢⎢⎣
x0

x1

x2

x3

x4

⎤⎥⎥⎥⎦ , M =

⎡⎢⎢⎢⎣
1 1 1 1 1
0 1/4 1/2 3/4 1
0 0 1/6 1/2 1
0 0 0 1/4 1
0 0 0 0 1

⎤⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎣
B0,4(x)
B1,4(x)
B2,4(x)
B3,4(x)
B4,4(x)

⎤⎥⎥⎥⎦ . (17)

This one-to-one transformation enables us to directly identify population-level parameters with corresponding indi-
idual rates. In other words, if we assume that the population-level descriptions of recruitment and defection processes
re expressed as

dr
dt

= −
db
dt

= b
4∑

n=0

αnrn − r
4∑

n=0

δnbn, (18)

e are able to identify, by means of the Bernstein basis transformation, that
4∑

n=0

αnrn =

4∑
n=0

Bn,4(r)
[
α0 +

α1n
4

+
α2n(n − 1)

12
+

α3n(n − 1)(n − 2)
4!

+
α4n(n − 1)(n − 2)(n − 3)

4!

]
, (19)

hich immediately implies that

λr0 = α0, (20)

λr1 = α0 +
α1

4
, (21)

λr2 = α0 +
α1

2
+

α2

6
, (22)

λr3 = α0 +
3α1

4
+

α2

2
+

α3

4
, (23)

λr4 = α0 + α1 + α2 + α3 + α4. (24)

near-identical calculation can be used to relate the global defection rate parameters, δn, with their corresponding
ndividual-level parameters, λdn. For ease of computation, it is worth noting that the individual-level rates λrn can also be
obtained by multiplying each row of M in (17) by their corresponding αm values and summing the nth column.

2.4.1. A caveat on individual-level parameter identifiability
At this point, we should stress that the identifiability of these individual-level recruitment and defection mechanisms

can only be uniquely determined if the global recruitment and defection rates are known separately to one another.
Contrastingly, if only the net global sub-population growth rate is known, the majority of the individual-level rates cannot
be uniquely determined. To demonstrate this claim, suppose that the net sub-population growth of rioters is known to
be a polynomial of degree 5 or fewer:

dr
dt

= G(r) :=

5∑
βmrm. (25)
m=0

8
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s the continuum limit shown in (10), i.e., the rioter sub-population growth rate, is also a polynomial of degree 5 or fewer,
e can attempt to determine unique choices of λrn and λdn that will identically match G(r):

dr
dt

= (K − r)
4∑

n=0

λrn

(
4
n

)
rn(1 − r)4−n

− r
4∑

n=0

λdn

(
4
n

)
(K − r)n(1 − K + r)4−n

=

5∑
m=0

βmrm. (26)

It immediately follows that, due to 10 unknown parameters on the left hand side of (26) being matched to 6 known
arameters on the right hand side of (26), the associated inverse problem is underdetermined. However, by evaluating
26) at r = 0, K , we are able to uniquely determine two of the individual-level rates, λr0 and λd0:

λr0 =
β0

K
, λd0 = −

5∑
m=0

βmKm−1. (27)

ince all individual-level rates are assumed to be non-negative, it follows that two key constraints of the global
ecruitment rate are

β0 ≥ 0,
5∑

m=0

βmKm
≤ 0. (28)

n other words, the recruitment rate at r = 0 must be non-decreasing, while the recruitment rate at r = K must be
non-increasing; both of these constraints are expected since the total number of agents must remain constant [53].

The remaining eight individual-level recruitment and defection rates can be related by equating powers of rm, for
= 1, 2, . . . , 5. However, we will still have at least three degrees of freedom in this reduced underdetermined system.

s an illustrative example of the non-identifiability of the individual-level rates, let us consider a rioter growth rate that
ehaves akin to logistic growth (c.f. [52,53,68]):

dr
dt

= r(K − r). (29)

t can be shown that there are four freely chosen parameters, {A, B, C,D}, that emerge when decomposing this rioter
rowth rate into a difference of recruitment and defection rates:

dr
dt

= (K − r)[(1 + A)r + Br2 + Cr3 + Dr4] − r[A(K − r) + Br(K − r) + Cr2(K − r) + Dr3(K − r)]. (30)

urthermore, by using the aforementioned Bernstein basis transformation shown in (17), we determine that the
ndividual-level recruitment and defection rates are

λr0 = λd0 = 0,

λr1 =
1 + A
4

,

λr2 =
1 + A
2

+
B
6
,

λr3 =
3(1 + A)

4
+

B
2

+
C
4

,

λr4 = 1 + A + B + C + D,

λd1 =
A + KB + K 2C + K 3D

4
,

λd2 =
A + KB + K 2C + K 3D

2
−

B + 2KC + 3K 2D
6

,

λd3 =
3A
4

+
B(3K − 2)

4
−

C(1 − K )(1 − 3K )
4

+
3K (1 − K )2D

4
,

λd4 = A − (1 − K )B + (1 − K )2C − (1 − K )3D.

While we require that all of these individual-level rates are non-negative, there is still a considerable subspace within
{A, B, C,D}-space to pick different individual-level rates that give rise to the same rioter growth rate. As a means of
demonstrating this lack of identifiability, we examine Fig. 5 that compares the logistic growth continuum limit with two
sets of recruitment and defection rates. In Case 1, we have that no defection occurs (A = B = C = D = 0.) In Case 2,
we have that larger defection rates occur in the presence of many bystanders, but is dominated by low rioter-density
recruitment rates (A = 10, B = D = −2, C = 3). While both parameter regimes display some discrepancy between the
average ABM rioter density and the continuum limit, Case 2 displays larger discrepancies. We anticipate that this is due
to the higher frequency of sub-population ‘switching’ that can occur in Case 2; by contrast, in Case 1, no rioter can defect
while bystanders are continuously recruited.
9
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C

Fig. 5. Comparison of the average riot density behaviour over 20 identically-prepared simulations, ⟨R(t)⟩, with its continuum limit description, r(t),
that obeys logistic growth (Eq. (30)) with K = 0.3. All simulations begin with the initial density r0 = 0.05, and the parameter regimes used are (i)
ase 1: A = B = C = D = 0; (ii) Case 2: A = 10, B = D = −2, C = 3.

To summarise, the key features of the ABM while employing spatially uniform initial conditions give rise to three
main qualitative features: complete take-over by rioters, complete take-over of bystanders, or a co-existence equilibrium
of both sub-populations. All three qualitative features are faithfully reproduced in the continuum limit of the ABM, which
also gives rise to a systematic method of relating individual-level recruitment and defection rates to their analogous
population-level counterparts. However, these individual-level rates cannot be uniquely determined if only the net
growth mechanisms of either sub-population, i.e. the net difference between recruitment and defection rates, is known.
Nevertheless, the associated individual-level mechanisms can be obtained with the inclusion of a few freely-determined
parameters.

2.5. Spatially-dependent initial conditions

To incorporate spatial dependence within ABM simulations, we can employ spatially-dependent initial conditions in the
ABM framework to observe how sub-population densities evolve in both space and time. This is analogous to considering
situations whereby supporters of a particular sports team are grouped together and become riotous upon their team losing
the game. For this spatial configuration, we consider a ‘block’ of rioters with average population density r0 centred along
the street, while blocks of bystanders with average population density b0 are initially on either side of the rioters:

ri,j(0) =

{
r0, 91 ≤ i ≤ 110, 1 ≤ j ≤ 20,
0, otherwise.

(31)

bi,j(0) =

{
b0, 61 ≤ i ≤ 80 or 121 ≤ i ≤ 140, 1 ≤ j ≤ 20,
0, otherwise.

(32)

While the initial population densities r0, b0 can be set to 1, as is often chosen with spatially-dependent ABM simulations
(c.f. [48,53,62]), we will assign the initial population densities r0 = b0 = 0.5 for simulations shown in Figs. 6–8. This
reduced initial population density is to prevent any local clustering from hindering recruitment or defection processes at
the individual scale. Furthermore, it is unrealistic that groups of people will be packed as close as physically possible in a
block, whereas cells as other populations previously considered in similar ABM simulations can easily achieve maximum
population density in a given region (c.f. [48,62]).

To modify the continuum limit of the ABM to incorporate spatial dependence, we follow [48] to determine the effects
of diffusion and motility within the continuum limit. Combined with the aforementioned recruitment and defection
processes stated in Section 2.3, we have that the continuum limit description of the ABM is represented as a coupled
PDE system for r(x, y, t) and b(x, y, t):

∂r
∂t

= D∇ · [(1 − b)∇r + r∇b] + ρ(r, b), (33)

∂b
∂t

= D∇ · [(1 − r)∇b + b∇r] − ρ(r, b), (34)
10
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w

Fig. 6. A single realisation of rioters (red) and bystanders (blue) in the Mild Unrest parameter regime with initial conditions listed in (31)–(32).

Fig. 7. A single realisation of rioters (red) and bystanders (blue) in the Moderate Unrest parameter regime with initial conditions listed in (31)–(32).

here

D =
m∆2

4
and ρ(r, b) = b

4∑
λrnBn,4(r) − r

4∑
λdnBn,4(b). (35)
n=0 n=0

11
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Fig. 8. A single realisation of rioters (red) and bystanders (blue) in the Severe Unrest parameter regime with initial conditions listed in (31)–(32).

e note that, due to the reflecting boundary conditions and the initial conditions being independent of y, the solutions
or r and b will also be independent of y [69], i.e. r(x, y, t) = r(x, t) and b(x, y, t) = b(x, t). Additionally, the underlying
ecruitment and defection rates discussed previously do not influence the incorporation of linear and cross-diffusion terms
n these continuum limit descriptions. In other words, the continuum limit descriptions shown in (11)–(13) that describe
he Mild, Moderate, and Severe parameter regimes (5)–(7) continue to describe the reaction term ρ(r, b) present in the
nalogous PDE continuum limit. Furthermore, by combining (33) with (34), we note that the total number of agents,
= r + b, continue to be a conserved quantity within the domain, while the evolution of agents within the domain

ollows the standard linear diffusion equation:
∂T
∂t

= D∇
2T . (36)

inally, as discussed in [48], each sub-population density evolves according to standard linear diffusion when a single sub-
opulation is present, whereas cross-diffusion effects play a larger role when both sub-populations are present. Numerical
olutions of the PDE system (33)–(35), such as those presented in Fig. 4, are computed using pdepe in MATLAB.
With reference to Fig. 9, we observe that the continuum limit of the ABM faithfully reproduces the average behaviour

of ABM simulations employing spatially-dependent initial conditions. Like in the case where spatially uniform initial
conditions are employed, the Mild and Severe Unrest parameter regimes evolve over faster timescales than the Moderate
Unrest parameter regime, since agents in the Mild and Severe Unrest parameter regimes can undergo spontaneous
defection or recruitment without the requirement of agents from the opposing sub-population to be present.

3. Discussion

In this work, we propose a new agent-based model (ABM) that can be used to simulate individuals involved in sports
riots. Unlike other forms of rioting, which are often escalated and exacerbated due to the presence of law enforcement
officials, sports riots are generally initiated from within a sub-population of sports-goers. With a view to limit property
damage and contain anti-social behaviour resulting from sports riots, it is essential to understand the temporal and spatial
evolution of the aforementioned rioting sub-population.

To provide a qualitative understanding of the rioting phenomena that can arise from simulations of sports riots,
we consider an ABM with two sub-populations (rioters and bystanders), in which agents can move and change sub-
population type by means of recruitment and defection mechanisms. These individual-level mechanisms vary with the
local population density of the opposite sub-population and can be shown to be linked in one-to-one correspondence with
prescribed global recruitment and defection rates. Furthermore, these global continuum descriptions of the underlying
individual-level mechanisms faithfully capture the average behaviour of these agent-based simulations, providing not only
12
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Fig. 9. Comparison of the average ABM behaviour over 20 identically-prepared simulations, ⟨R(x, t)⟩ and ⟨B(x, t)⟩, with their continuum limit
descriptions, r(x, t) and b(x, t). All simulations begin with the initial conditions described in (31)–(32) and the three parameter regimes (Mild
Unrest, Moderate Unrest, and Severe Unrest) are described in (5)–(7).

more tractable and understandable mathematical models of sports riots, but also the crucial links between individual-level
mechanisms and population-level phenomena.

A natural question that arises from this modelling framework is how to determine ABM parameters from real-
life data. While specific experiments (c.f. [46]) can be created to observe specific pedestrian-related phenomena and
determine some model parameters (e.g. pedestrian movement rates), others like recruitment and defection rates are
much more difficult to identify and calibrate, let alone observe. While certain surveillance systems in public spaces are
able to detect ‘‘alarming and abnormal situations’’ [70] or pedestrian-related events like fasting-moving individuals [71],
it remains unclear how these systems could ‘‘detect’’ bystanders become rioters, let alone the riotous activity itself. While
more robust and sophisticated systems exist for detecting anti-social behaviour, including surveillance systems operated
by China’s Social Credit System [72,73], there is still much debate concerning the acceptable level of surveillance of
individuals in public spaces. As a result, we refrain from prescribing instructions to future researchers as to how to produce
experimental datasets that validate the behaviour characterised in our ABM modelling.
13
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In addition to the aforementioned connections to real-life data and experiments, there are several additional avenues
for further consideration that stem from the modelling frameworks presented here. For example, it should be noted that
the algorithms and modelling frameworks presented in this work only keep track of the total number of agents in each
sub-population, rather than track each agent individually. This choice was made to ensure computational efficiency as
well as emphasise the connections between average ABM simulations and their associated continuum limit descriptions.
An interesting related question would be to track each agent separately to see how many times each agent ‘‘switches’’
sub-population types, which in turn may help infer the underlying recruitment and defection rates that give rise to the
same global rates in the continuum limit.

Another area for future consideration is to extend the ABM domain and incorporate additional realistic features of
a city layout, including a road and sidewalk network, public transport lines, and buildings. These additional movement
augmentations and hindrances will clearly affect the direction and spread of riotous activity within the city structure.
Additionally, the incorporation of additional agent sub-populations, such as rival sports fans that are independently rioting,
would provide additional insight into the multifaceted nature of sports riots, such as to the relative effects between
property damage and violent activity from opposing fans. Another feature that can be included in this ABM framework
is the destructive nature of the rioters themselves. In this work, we simply consider the location and population density
of the rioter sub-population, rather than what the rioters themselves are doing. It would be beneficial to the application
of sports riots, both from a mathematical and social sciences perspective, to incorporate ‘targets’ of riotous activity, such
as rival sports fans or nearby buildings and businesses. Finally, the expansion of agent-based models into social science
applications need not be contained to sports riots alone. For example, the worldwide phenomena of panic-buying amidst
the COVID-19 pandemic also crucially hinges on what proportion of shoppers influence the recruitment or defection of
panic-buying activity [74]. The agent-based modelling framework presented in this work is an ideal starting point in terms
of incorporating further aspects characteristic of panic-buying, such as dispersion and aggregation of shoppers [46,75].
We leave these ABM extensions for future exploration.
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Appendix. Effects of fast motility on average ABM behaviour

In Section 2.3, it was noted that some discrepancies emerge between the average ABM behaviour in the Moderate
Unrest parameter regime and its associated continuum limit. One way to reduce these discrepancies is to increase the
agent motility rate, m, further increasing the validity of the continuum limit assumptions made in Section 2.3. As shown
in Fig. A.10, the agreement between average ABM simulations and the continuum limit improves as m increases. There are
still mild discrepancies at intermediate times as m increases; however, as mentioned in Section 2.3, these discrepancies
are resolved by incorporating additional refinements in the continuum limit derivation, include agent state space, agent
adhesion, and clustering effects (c.f. [53,62,64,65]).
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Fig. A.10. Comparison of the average ABM behaviour over 20 identically-prepared simulations, ⟨R(t)⟩ (red) and ⟨B(t)⟩ (blue), with their continuum
imit descriptions, r(t) and b(t) (black dashed), for varying motility rates m. All simulations begin with the initial densities r0 = 0.05 and b0 = 0.25
nd the Moderate Unrest parameter regime, with (a) m = 100; (b) m = 200; (c) m = 300.
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