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Abstract Background and aims: Obesity is one of the leading causes of non-communicable dis-
eases (NCD). Thus, NCD risk varies in obese individuals based on the location of their fat depots;
while subcutaneous adiposity is protective, visceral adiposity increases NCD risk. Although, pre-
viously anthropometric traits have been used to quantify body shape in low-income settings,
there is no consensus on how it should be assessed. Hence, there is a growing interest to evaluate
body shape derived from the principal component analysis (PCA) of anthropometric traits; how-
ever, this is yet to be explored in individuals of African ancestry whose body shape is different
from those of Europeans. We set out to capture body shape in its multidimensional structure
and examine the association between genetic variants and body shape in individuals of African
ancestry.
Method and results: We performed a genome-wide association study (GWAS) for body shape
derived from PCA analysis of anthropometric traits in the Ugandan General Population Cohort
(GPC, n Z 6407) and the South African Zulu Cohort (SZC, n Z 2595), followed by a GWAS
meta-analysis to assess the genetic variants associated with body shape. We identified variants
in FGF12, GRM8, TLX1NB and TRAP1 to be associated with body shape. These genes were different
from the genes been associated with BMI, height, weight, WC and waist-hip ration in continental
Africans. Notably, we also observed that a standard deviation change in body shape was associ-
ated with an increase in blood pressure and blood lipids.
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Conclusion: Variants associated with body shape, as a composite variable might be different for
those of individual anthropometric traits. Larger studies are required to further explore these
phenomena.
ª 2022 The Author(s). Published by Elsevier B.V. on behalf of The Italian Diabetes Society, the
Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the
Department of Clinical Medicine and Surgery, Federico II University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1 Participant characteristics.

Variables Ugandan
study (n Z 6407)
median (IQR)

South African
Zulu (n Z 2595)
median (IQR)

Female, n (%) 3660 (57.1) 1919 (73.8)
Age, years 29.8 (17.8e46.1) 52.0 (39.0e60.0)
BMI, kg/m2 20.7 (18.8e23.0) 31.4 (26.1e36.9)
Height, m2 1.57 (1.51e1.63) 1.60 (1.55e1.65)
Weight, kg 52.0 (45.0e60.0) 80.0 (67.5e93.6)
WHR 0.84 (0.80e0.88) 0.92 (0.85e1.00)
HC, cm 89.0 (83.5e94.5) 109 (100e120)
WC, cm 74.0 (69.1e79.5) 103 (91.0e113)

IQR; interquartile range, BMI; body mass index, WHR; waist-hip-
ratio, HC; hip circumference, WC; weight circumference.
1. Introduction

The prevalence of obesity has tripled since 1975, ac-
counting for over 650 million obese individuals, globally. It
is now one of the leading causes of non-communicable
diseases, such as cardiovascular diseases (CVDs), metabolic
diseases and cancer [1,2]. Anthropometric traits provide
information about an individual’s obesity through body
shape, size and adiposity [3]. Body shape indicates body fat
distribution and different types of adiposity that can reveal
an individual risk of developing certain diseases [4]. The
gold standard methods of measuring adiposity include
dual-energy X-ray absorptiometry (DXA) and magnetic
resonance imaging (MRI) [5]. However, these methods are
often not available in most low-income clinical settings
and are also expensive to run. Whereas inexpensive
methods of measuring body fat include the use of
anthropometric traits such as weight, height, body mass
index (BMI), waist circumference (WC), hip circumference
(HC), waist to hip ratio (WHR) and a body shape index
(ABSI), derived from weight, height, and WC.

Although inexpensive measures of body fat are readily
available in most clinical settings from lower-to-high in-
come and even rural-to-urban, these measures are often
not robust enough to differentiate between fat and muscle
mass, nor visceral adiposity and peripheral adiposity;
therefore, poorly predicting body shape as an index for
obesity. Thus, there is a growing interest to evaluate body
shape derived from the principal component analysis
(PCA) of anthropometric traits in large diverse datasets of
uncorrelated variables that are combined to denote body
shape. Only a few studies have applied a PCA approach to
investigate genetic loci associated with a complex trait
like body shape, predominately in Europeans [6e8].
However, due to the history of steatopygia and its elevated
prevalence in Africans, a PCA approach assessing body
shape as an index of obesity is needed in continental
Africans.

To capture body shape in its multidimensional structure
and to identify genetic loci associated with body shape in
individuals of African ancestry, we applied PCA to several
anthropometric traits, including weight, height, BMI, WC,
HC and WHR. Herein, we performed a GWAS meta-
analysis from two African cohorts to identify genetic loci
associated with body shape as an index of obesity in in-
dividuals of African ancestry.
2. Results

Overall, our study had 6407 Ugandans from the general
population cohort (GPC) and 2598 South African Zulu
cohort (SZC). The majority of our study participants were
females in both the GPC (57.1%) and SZC (73.8%) datasets
(Table 1). The median age of our study participants was
29.8 years in the Ugandan GPC and 52.0 years in the SZC,
indicating SZC was predominately made up of older
women. Moreover, we observed SZC had a higher median
BMI, height, weight, WHR, HC, and WC compared with the
Ugandans (Table 1).

2.1. PCA and body shape

In the Ugandans, our first PC explained 61.93% of the
variation for all anthropometric traits. We noted that the
first PC has high loadings for BMI, weight, HC and WC, thus
capturing body fatness among Ugandans from GPC and we
named it “weight driven body shape” (Fig. 1). In the SZC,
our first PC explained 56.41% of the variation and had high
loadings for BMI, weight, HC and WC (Fig. 2). This PC also
driven by weight, BMI, HC and WC, among the SZC and it
was also named “weight driven body shape” to match with
the one retained for the Ugandans. Based on the Kaiser
rule, which chooses only PCs with eigenvalues >1 (to retain
only PCs that explain more than one variable) [9], we chose
to retain the first and second PCs after PCA. We used the
first PC of both Ugandans and Zulus, because of the similar
anthropometric variables that were driving these principal
components, which are the proxy for body shape in our
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Figure 1 First PC was used to capture body shape in its multidimensional structure showing loadings for Ugandan and Zulu cohorts. (A) Loading for
all participants in the Ugandan cohort, (B) loadings for male-Ugandan cohort (C) loading for female Ugandans. (D) Loading for all participants in the
South African Zulu cohort, (E) loadings for male Zulus (F) loadings for female Zulus.

Figure 2 PC loadings for Zulu in South Africa using six anthropometric traits to capture body shape in its multidimensional structure. (A) The first
PC shows high loading for weight, BMI, WC and HC, (B) The second PC shows high loading for height, (C) The third PC shows high loading for WHR
and height, (D) The fourth PC shows high loading WC, but opposite loading for HC, (E) The fifth PC shows high loading for BMI and opposite loadings
for WC and HC (F) The sixth PC shows high loading for weight but opposite loading for BMI.
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analysis (Table S1, Fig S1). We then averaged loadings of
first PC for Ugandans and Zulus to generate the PC which is
representative of the most common body shape in Uganda
and South African Zulu (Fig.S1). This first PC explained 60%
of the variation for all anthropometric traits and had high
loadings for weight, BMI, HC and WC; highlighting weight,
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BMI, HC and WC, as the main drivers of body shape in this
context. The same approach was repeated for the sex
stratified analysis. The male PC1 body shape was similar
that of the combined analysis, while the female pc1 body
shape, had increased loadings in the for waist-hip ration
compared to the male and the combined PC1 body shape
(Fig. 1).

2.2. Body shape association with cardiometabolic traits

We performed a linear regression to assess whether any
changes in body shape in both the Ugandans and Zulus
were associated with blood pressure (systolic and dia-
stolic) and blood lipids (low-density lipoprotein choles-
terol, triglycerides, total cholesterol, and high-density
lipoprotein cholesterol) traits in individuals of African
ancestry. In our analysis, we observed that body shape
changes were positively associated with blood pressure
and blood lipids traits in Ugandans after adjusting for age
and sex (Table.S2). Similarly, in the Zulus, the body shape
was also positively associated with blood pressure traits,
however, for blood lipid traits, the body shape was only
positively associated with low-density lipoprotein choles-
terol (Table.S2).

2.3. Discovery of body shape genetic loci

We then performed genome-wide association analyses for
body shape in Ugandans and Zulus and meta-analysed the
summary statistics to identify genetic loci associated with
body shape, as an indexof obesity inboth cohorts (Methods).
Furthermore, we performed a meta-analysis using the
summary statistics from the Ugandans and Zulus to identify
additional genetic loci associated with body shape. We
Table 2 Genetic loci associated with body shape composite phenotype in

SNP Annotation/
tissue

Effect
Allele

Non-Effect
Allele

EAF Nearest
Gene

Combined
rs150717769 Intron/

Enhancer/
Adipose Tissue

A G 0.73 TRAP1

Females
rs111783937 Inron/Enhancer/

Central Nervous
Tissue

A G 0.73 FGF12

rs17867127 Intron/
Enhancer/Stem
Cell

A G 0.14 GRM8

rs75156321 Intron A G 0.73 FGF12
rs17126580 Intron/

Enhancer/
central nervous
system

T C 0.02 RNU4ATAC

Males
rs7089940 Intron/Binding

site/Mammary
gland

A G 0.12 TLX1NB

CHR; chromosome, SNP; single nucleotide polymorphisms, BP; base pair
UGR; Uganda Cohort, Zulu; South African Zulu Study. Annotation based in
identified rs150717769 to be associated with body shape at
genome-wide significance,P-valueZ4.01e-09 (Table2). The
Manhattan and QQ plot for the meta-analysis of body shape
in individuals of African ancestry is shown in Fig. 3. More-
over, rs150717769 is mapped onto the intron in the TRAP1
gene (Table 2). For the sex stratifiedmeta-analysis we found
four variants that were significant associated (p < 5e-08)
with body shape in women and one in men. These were
rs111783937 (TRAP1), rs17867127 (FGF12), rs17867127
(GRM8), rs75156321 (FGF12), rs17126580 (RNU4ATAC ) in
females and rs7089940 (TLX1NB) inmen. These variants and
their related genes were different from those identified for
the individual traits (Fig. S4). We explored other traits these
SNPs had been associated with in the Europeans using a
PHEWAS approach and the TRAP1 variant was associated
with anthropometric trails. This variant based on the Dia-
betesEpigenomeatlaswas is involved in regulatoryactivities
as an enhancer in the adipose tissues. The other variants
were involved in the regulation of the central nervous sys-
tem as enhancers and binding sites in the mammary glands
(Table 2) (see Fig. 4).

3. Discussion

In this study, we performed a GWASs of PC derived body
shape in two different Africanpopulations, aswell as ameta-
analysis of the most similar PCs, which presented several
novel genetic loci associated with body shape in individuals
of African ancestry. BMI, weight, WC and HC contributed the
most indriving bodyshapepatterns and theyexplainedmost
of the variances for all the six anthropometric traits
measured.We identifiedHNRNPC andGBE1 genetic loci to be
associated with body shape in Ugandans and Zulus, respec-
tively. Overall, our meta-analysis of the Ugandan and Zulu
individuals of African ancestry.

Zulu UGR Meta-analysis

Beta P Beta P Beta P Direction

�0.58 2.50e-03 �0.58 4.96e-07 0.58 4.01e-09 þþ

�0.43 1.17e-02 �0.12 7.41e-07 �0.21 4.32e-08 ��

0.21 3.14e-03 0.14 1.12e-07 0.12 1.74e-09 þþ

�0.32 1.42e-02 �0.31 4.32e-07 �0.25 3.43e-08 ��
0.24 7.33e-04 0.18 1.40e-05 0.25 3.79e-08 þþ

0.18 1.34e-02 0.09 8.03e-07 0.29 3.43e-08 þþ

position, MAF; minor allele frequency, SE; standard error, P; p-value,
the Diabetes Epigenome Atlas.



Figure 3 Meta-analysis association between genetic variants and body shape in individuals of African ancestry. (A) Manhattan plot, (B) QQ plot.

Figure 4 Locus zoom plot for meta-analysis association between genetic variants and body shape showing rs150717769 mapped within the
intergenic region between TRAP1 and DNASE1.

Genetic loci implicated in Africans 1515
GWASs identified TRAP1 as amutual, additional genetic locus
associatedwithbodyshape, using the average loadings of the
first PC for our six anthropometric traits.

Using average PC from 20 studies, Reid et al. (2016)
reported body shape characterised by high loadings for all
traits (weight, BMI, WC, WHR, and HC), except height in
individuals of European ancestry [6]. Subsequently, in our
analysis of continental Africans, we observed that the PC1
had high loadings for weight, BMI, WC and HC, and not in
height nor WHR, thus, overall adiposity/body fatness in
body shape in Africans is mostly driven by the former four
traits. The loadings are in the same direction; meaning
that the average PC1 captures inter-individual variation in
either increased or decreased BMI, weight, WHR, HC and
WC. Interestingly, we observed that the first PC loadings in
both Ugandans and Zulus were consistent in weight, BMI,
WC and HC, even though the exact variances were
different. This observation suggests that the body shape as
an index of adiposity has predominantly common mea-
sures and features with variability in individuals of African
ancestry residing in southern and eastern parts of Africa,
as well as Europeans.

On the other hand, the notable differences between
Reid et al. (2016), and our meta-analysis in the average PC1
are the low loadings of WHR in individuals of African
ancestry. Since the majority of our study participants were
women, hence, the observed differences those are prob-
ably true for women of African ancestry, as they often tend
to have wider hips, a lower WHR, and a higher prevalence
of steatopygia, than women of European ancestry [10,11].
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Furthermore, we also observed that both the WHR and
height in both Ugandans and South African Zulus had low
loadings in opposite directions, suggesting the average PC1
does not capture inter-individual variation in either
increased or decreased WHR/height. However, the cause is
not clear. For example, our second PCs in Ugandans and
South African Zulus were driven more by WHR (and then
height) and height (and then WHR, both in the opposite
direction), respectively, compared to other anthropometric
traits, Thus, our individual cohort loadings for our second
to sixth PCs were not consistent between Ugandans and
South African Zulus to use for meta-analyses.

After linear regression, with blood pressure and blood
lipids traits in individuals of African ancestry in Uganda,
our first PC was positively associated with adiposity
derived body shape. However, in the Zulus, our PC1 was
positively associated with blood pressure traits and only
LDL; whereas, HDL exerted a protective effect. The
observed differences in cardiometabolic trait prediction
using PC1 between Ugandans and Zulus may be due to
genetic and some environmental exposure differences
between these cohorts [12e14] and future studies are
needed to examine this association further.

.Using PC GWAS meta-analysis we identified
rs150717769 (p Z 4.01e-09) to be associated with body
shape in individuals of African ancestry. This variant is
mapped in the intergenic region between TRAP1 (Table 2).
TRAP1 acts as a key regulator of mitochondrial homeo-
stasis, bioenergetics and metabolism, thus contributing to
the regulation of the body shape. Moreover, TRAP1 have
been previously identified to be associated with BMI in
individuals of diverse ancestry population [17]; and TRAP1
was also associated with height in individuals of European
ancestry [18]. Using the GTEx Portal, we observed that
TRAP1 is strongly expressed in visceral and subcutaneous
adipose tissue, supporting our findings that the average
PC1 captures largely adiposity in both Ugandans and South
African Zulu. The other variants associated with sex
stratified body shape located in GRM8, TLX1NB, FGF12were
noted to be involved in the regulatory activities in the
central nervous system as enhancers. This is similar to
what has been reported in related anthropometric GWAS
where variants with function in the central nervous sys-
tem have been implicated with obesity.

The main strength of this study is that our PC1 which
explains much of anthropometric traits variation was
associated with cardiometabolic traits including blood
pressure and blood lipids traits in individuals of African
ancestry. However, our study was limited by a few SNPs
reaching genome-wide significance in both cohorts and
our analyses were limited to PC1. Nevertheless, the other
PCs have loadings similar to the single-trait GWASs and
they do not explain much of the variation for anthropo-
metric traits.

In summary, we identified five genomic loci to be
associated with body shape in individuals of African
ancestry that are different from those identified for indi-
vidual traits in this population group. Our findings suggest
that the body shape assessed by PCs provide more detailed
information about an individual’s body shape, size and
adiposity that is not fully captured by individual anthro-
pometric traits. If applied to other highly correlated phe-
notypes, PCA might reveal novel genetic loci and pathways
that have not been identified in single-trait GWAS.

4. Methods

4.1. Study population

The Medical Research Council (MRC) United Kingdom,
together with the Uganda Virus Research Institute (UVRI)
launched the General Population Cohort in the 1980s with
the primary aim of investigating the epidemiology of
Human Immunodeficiency Virus (HIV) infection in Ugan-
da’s. In 2011, the University of Cambridge, Wellcome
Sanger Institute (WSI), in collaboration with the MRC/UVRI
began the GPC round 22 studies to investigate the genetics
and epidemiology of communicable and non-
communicable diseases in Uganda’s, using both pop-
ulations’ genetic and epidemiological approaches. A total
of 4778 Uganda’s from the GPC round 22 study and 1629
individuals from the Uganda 2000 Genomes project
(UG2G) [19,20], making up a total of 6407 individuals were
used as the discovery cohort.

The South African Zulu study, is a combination of the
Durban Diabetes Study (DDS) and the Durban Case-Control
Study (DCC) in KwaZulu-Natal, South Africa. DDS is a
population-based cross-sectional study of individuals aged
>18 years residing in the urban black communities in
Durban, KwaZulu-Natal, South Africa. DCC is a case-
econtrol study of individuals aged >40 years with dia-
betes recruited from tertiary hospitals in Durban. Data
collection was conducted from 2009 to 2013 for the DCC
and from 2013 to 2014 for the DDS. The survey question-
naire included socioeconomic factors, health information,
lifestyle factors, anthropometric measurements (including
height, weight, systolic blood pressure, diastolic blood
pressure, and hip and waist circumferences), biomarkers
for communicable and non-communicable diseases, and
genetic data. Of the 2804 individuals surveyed, 1204 were
from the DDS and 1600 were from the DCC; more detailed
information on the study design and quality controls have
been published previously [21]. The DDS was approved by
the University of KwaZulu-Natal Biomedical Research
Ethics Committee (UKZN BREC) (BF030/12) and the UK
National Research Ethics Service (14/WM/); the DCC was
approved by UKZN BREC (BF078/08) and the UK National
Research Ethics Service (11/H0305/6). All study partici-
pants in the GPC Ugandan and Zulu cohorts had anthro-
pometric measurements and provided written informed
consent to participate in the studies.

4.2. Anthropometric traits measurements

At recruitment anthropometric traits including height,
weight, WC and HC were measured from all the study
participants. Height and weight were measured using the
Leicester stadiometer and the Seca 761 class III mechanical
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flat scales, respectively [19]. WC and HCs were measured
using the non-stretch Seca 201 ergonomic circumference
measuring tape. WC was measured at the mid-point be-
tween the lower costal margin and the level of the anterior
superior iliac crests. HC was measured at the greater
trochanter of the femur as previously described [19]. BMI
values were derived from weight over height whilst WHR
was derived from WC values over HC values.

4.3. Genotype data

Information on sample collection, genotyping, imputation
and quality control procedures were described in detail by
previous studies [8,19] Participant samples from the Uganda
GPC were genotyped on the Illumina Human Omni 2.5M
Bead Chip array at the Wellcome Trust Sanger Institute
(WTSI). The samples were chosen as a subset of the survey
population with the most complete phenotype data on the
traits measured. Samples from the South African Zulu study
were genotyped on the consortium-driven Illumina
HumanOmni Multi-Ethnic GWAS/Exome Array (MEGA pre-
commercial v1) using the Infinium Assay. Quality control
was carried out collectively, with sample QC including
filtering for called proportion (<97%), heterozygosity (>4SD
frommean), sexcheck fails (F statistic<0.8 formen, and>0.2
for women). Sample QC was followed by SNP QC, including
filtering for called proportion (<97%), Hardy Weinberg
disequilibrium (p < 1e-06), and relatedness (IBD >0.90).
Samples and variants that did not pass the quality thresholds
for the SNP and samples quality control were excluded.
Principal Component Analysis (PCA) was carried out to cor-
rect for population/ancestry outliers. Following quality con-
trol, phasing and imputation for both cohorts were carried
out with SHAPEIT2 using default parameters and IMPUTE2
respectively. Transformation of traits was carried out uni-
formly foreach cohort tomakeeffect sizes comparable across
cohorts, allowing meta-analyses of summary results.

4.4. Estimation of PCs loadings and association testing

To capture body shape in its multidimensional structure, we
carried out PCA on six anthropometric traits. For each study,
we performed a PCA on the standardized residuals of the
anthropometric traits and adjusted for age and sex for the
Uganda study.Diabetes status in addition to age and sexwere
corrected for in the SouthAfrican Zulu study in the combined
analysis. In the sex stratified analysis age and diabetes status
were corrected for. The standardized residuals were
decomposed into six principal components (PCs) according
to eigenvectors, and principal loadings. The six resulting PCs
is an aggregate and an orthogonal linear representation of
individual PCs of the six anthropometric traits. Inour analysis
loadings is used to describe the weight of each PCs. The
loadings and explained variances were comparable between
Uganda’s and Zulu from South Africa. The association be-
tween genetic variants and body shape was tested using the
linear mixed model implemented in genome-wide efficient
mixed-model analysis (GEMMA) [22]. In our analysis, we
used PC1 as the phenotype of interest in both Uganda’s and
Zulu. Furthermore, we adjusted for cryptic relatedness by
including a kinship matrix in the model. The kinship matrix
was estimated using genetic variants with MAF >1% and
pruned to an r2 threshold of 0.5.

4.5. Meta-analysis and annotation of genetic variants

Meta-analyses of 8769 participants was performed on the
summary statisticsof thePC1of theUgandanGPC (NZ6178)
and South African Zulu cohort (NZ 2591), using the inverse
variance weighted fixed-effects model as implemented in
Metal. We also lated conducted meta-analysis in men and
women for the PC1 body shape.This is a free, efficient, and
open-sourcemeta-analysis software tool for GWASs analysis
[23]. We used FUMA [24], to annotate, prioritize, visualize,
and interpret GWASs results for body shape. Genetic variants
withp<5�10�8were selectedas signalswithgenome-wide
significance. The SNP2GENE function within FUMA takes
GWAS summary statistics as an input and provides extensive
functional annotation in genomic areas identified by lead
SNPs, while the GENE2FUNC annotates genes in a biological
context [24].

4.6. Body shape and cardiometabolic traits

Based on the Kaiser rule, we chose to retain the first and
second PCs after PCA. However, in our analysis, we focused
on the first PC in Ugandans as it was similar to the first PC
in the South African Zulu dataset. We further evaluated
whether our PC1 in both cohorts are associated with car-
diometabolic traits, we then performed a linear regression
analysis in both Ugandans and South African Zulu. In both
cohorts, we adjusted for age and sex. We further adjusted
for T2D in the South African Zulu dataset. In this analysis,
our cardiometabolic traits were blood pressure (systolic
and diastolic) and blood lipids (low-density lipoprotein
cholesterol, triglycerides, total cholesterol, and high-
density lipoprotein cholesterol) traits. The linear regres-
sion analysis was performed using the generalised linear
model (GLM) and all statistical analyses were performed
using the R language [25].
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