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Exploring agricultural land‑use 
and childhood malaria associations 
in sub‑Saharan Africa
Hiral Anil Shah1,2*, Luis Roman Carrasco3, Arran Hamlet1 & Kris A. Murray1,4,5

Agriculture in Africa is rapidly expanding but with this comes potential disbenefits for the environment 
and human health. Here, we retrospectively assess whether childhood malaria in sub-Saharan Africa 
varies across differing agricultural land uses after controlling for socio-economic and environmental 
confounders. Using a multi-model inference hierarchical modelling framework, we found that rainfed 
cropland was associated with increased malaria in rural (OR 1.10, CI 1.03–1.18) but not urban areas, 
while irrigated or post flooding cropland was associated with malaria in urban (OR 1.09, CI 1.00–1.18) 
but not rural areas. In contrast, although malaria was associated with complete forest cover (OR 1.35, 
CI 1.24–1.47), the presence of natural vegetation in agricultural lands potentially reduces the odds of 
malaria depending on rural–urban context. In contrast, no associations with malaria were observed for 
natural vegetation interspersed with cropland (veg-dominant mosaic). Agricultural expansion through 
rainfed or irrigated cropland may increase childhood malaria in rural or urban contexts in sub-Saharan 
Africa but retaining some natural vegetation within croplands could help mitigate this risk and provide 
environmental co-benefits.

Although sub-Saharan Africa has made remarkable gains in many areas of health, such as reduced smoking rates 
and reductions in maternal mortality, the region has many continuing health challenges to resolve, particularly 
at the interface of the environment and health1–3. Foremost among them is the elimination and eradication of 
malaria. Although there have been several years of continuous decline in malaria prevalence and incidence across 
Africa, reductions in malaria cases have recently stalled. Africa accounts for 93% of all malaria cases worldwide, 
among which children aged under 5 years are the most vulnerable group4,5.

At the same time, the current population across sub-Saharan Africa is projected to roughly quadruple to ~ 4 
billion by 2100, with much of this growth occurring in rural areas6–8. Such growth places considerable demand on 
the region’s food supply and governments are now considering or implementing large-scale agricultural projects 
to meet this increased need. At the same time, increasing international trade in agricultural products is a favoured 
development objective but similarly contributes to further agricultural expansion and its corresponding impacts 
such as deforestation, which has in turn been linked to malaria risk9,10. Hence, agricultural development may 
undermine efforts to eliminate malaria; for example, by bolstering mosquito populations or accelerating chemi-
cal use and resistance6,11–13. Although there is considerable urban to rural migration in the region, projections 
suggest that unescapable circular migration of urbanites to rural areas during crop growing seasons to generate 
income and reduce dependence on the market for food will continue into the future8. Agriculture may therefore 
continue to influence malaria risk in the future and limit achievement of specific malaria related global goals6,14.

Better resolving the links between differing agricultural land-uses and malaria risk in humans could help 
policy makers identify to what extent expansion of specific agricultural land uses may impact malaria in the 
region, thereby improving agricultural productivity and sustainability14. For instance, expansion of differing 
agricultural land uses may have varied impacts on habitat suitability of specific malaria transmitting mosquitoes 
and subsequent malaria transmission15. Frontier malaria may also occur, where a change in spatial or temporal 
malaria risk of previously undeveloped areas occurs as a result of large-scale land-use transformations due to 
agriculture15–21.
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Many studies have previously focussed on the relationships between agriculture and malaria vectors or 
parasites15,22–26. Some studies have also focussed on the links between water movement such as dam construc-
tion for agriculture and malaria27–32. However, fewer studies have assessed the relationships between differing 
agricultural land uses and malaria outcomes in humans6,26,33–35, and those that have tend to be of limited spatial 
scale with minimal controlling for confounding factors such as socio-economics, demographics (e.g., urban vs 
rural) or climate. For example, Ijumba et al. found that the incidence of clinical episodes of malaria in Tanzania 
was significantly less in children living close to a large area of irrigated rice production than in other communi-
ties without rice33, while Klinkenberg et al. found urban agriculture was marginally associated with childhood 
malaria risk in Ghana35. In contrast, Janko et al. found that increased exposure to agriculture increased malaria 
risk in children younger than 5 years across rural settings6. However, here the authors did not assess the rela-
tionship between childhood malaria and specific agricultural land use types (e.g. irrigated vs rainfed croplands 
or cropland with and without areas of natural vegetation)6, limiting the extent to which the results can inform 
agricultural development and land-use decision making.

Here, we aimed to explore and quantify associations between differing agricultural land uses and childhood 
malaria across Sub-Saharan Africa. Specifically, we combined remotely-sensed land cover and land use data 
with a large geo-referenced malaria dataset from the Demographic and Health Surveys (DHS), comprising 
24,034 children across 12 countries, to ask: what impact does increasing exposure to differing agricultural land 
cover types (including rainfed, irrigated/post flooding and cropland-natural vegetation mosaics with varying 
levels of coverage (i.e., dominated by either cropland, hereafter crop-dominant mosaics, or natural vegetation, 
hereafter veg-dominated mosaics)) have on the odds of childhood malaria in rural and urban households across 
sub-Saharan Africa?

We use a multi-model inference hierarchical modelling framework to retrospectively assess relationships 
between malaria infection status and agricultural covariates while controlling for a number of important indi-
vidual (age and sex of child), household (education level of the mother, wealth of household, access to improved 
sanitation and water sources, whether the child slept in a bed-net and whether the dwelling was sprayed with 
insecticide within the last 12 months)36 and extrinsic or environmental confounders (population density, forest 
cover, forest loss, temperature, precipitation and elevation)18,37–44.

Results
Descriptive analysis and multicollinearity.  Our final data set sourced from the DHS consisted of 
24,034 individuals in 14,281 households in 4028 clusters located in 12 countries (Fig. 1). Of these individuals, 
22.14% tested positive for malaria using either a blood smear test (BST) or rapid diagnostic test (RDT) (Table 1). 

Figure 1.   Location of household rural and urban clusters. Our georeferenced dataset includes 24,034 children 
in 14,281 households in 4028 clusters located in 12 countries between 2010 and 2015. The dataset links geo-
referenced Demographic and Health Surveys (DHS) individual and household information with data on 
agricultural land uses, forest cover, forest loss and climate.
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Malaria (-ve) Malaria (+ ve)

Socioeconomic variables

Total sample (n) (%) 18,712 (77.85%) 5322 (22.14%)

Age (years) (VIF = 1.03)

 Mean 2.35 2.52

 SD 1.49 1.39

Cluster type (n) (%) (VIF = 1.39)

 Urban 7500 (40.08%) 1126 (21.16%)

 Rural 11,212 (59.92%) 4196 (78.84%)

Country (n) (%)

 Angola 1176 (6.28%) 184 (3.46%)

 Burkina Faso 417 (2.23%) 843 (15.84%)

 Benin 958 (5.12%) 260 (4.89%)

 Burundi 1800 (9.62%) 227 (4.27%)

 Cote D’Ivoire 637 (3.40%) 407 (7.65%)

 Ghana 344 (1.84%) 273 (5.13%)

 Guinea 391 (2.09%) 167 (3.14%)

 Mali 900 (4.81%) 466 (8.76%)

 Mozambique 1261 (6.74%) 634 (11.91%)

 Nigeria 1901 (10.16%) 1448 (27.21%)

 Senegal 5906 (31.56%) 129 (2.42%)

 Tanzania 3021 (16.14%) 284 (5.34%)

Dwelling sprayed in last 12 months (n) (%) (VIF = 1.02)

 Yes 16,980 (90.74%) 5034 (94.59%)

 No 1732 (9.26%) 288 (5.41%)

Mothers education (n) (%) (VIF = 1.02)

 No education 18,514 (98.94%) 5283 (99.27%)

 Primary 196 (1.05%) 38 (0.71%)

 Secondary and Higher 2 (0.01%) 10.02%)

Population density ((number of persons per km2) (VIF = 1.34)

 Mean 858.94 303.67

 SD 2106.17 867.49

Sanitation (n) (%) (VIF = 1.79)

 Improved 11,355 (60.68%) 2417 (45.42%)

 Unimproved 7357 (39.31%) 2905 (54.58%)

Sex (n) (%) (VIF = 1.00)

 Female 9461 (50.56%) 2743 (51.54%)

 Male 9251 (49.43%) 2579 (48.46%)

Used a bed net (n) (%) (VIF = 1.02)

 Did not use a bed net 7501 (40.09%) 2273 (42.71%)

 Some children used a bed net 2152 (11.50%) 663 (12.46%)

 All children used a bed net 9059 (48.41%) 2386 (44.83%)

Wealth index (n) (%) (VIF = 1.42)

 1 = Poorest 3390 (18.12%) 1386 (26.04%)

 2 = Poorer 3519 (18.81%) 1309 (24.60%)

 3 = Middle 3739 (19.98%) 1244 (23.37%)

 4 = Richer 4097 (21.90%) 903 (16.97%)

 5 = Richest 3967 (21.20%) 480 (9.02%)

Water source (n) (%) (VIF = 1.92)

 Improved 9359 (50.02%) 1063 (19.97%)

 Unimproved 9353 (49.98%) 4259 (80.03%)

Year (n) (%) (VIF = 1.09)

 2010 1578 (8.43%) 1407 (26.44%)

 2011 2087 (11.15%) 683 (12.83%)

 2012 4641 (24.80%) 1340 (25.18%)

 2013 1549 (8.28%) 215 (4.04%)

 2014 1966 (10.51%) 296 (5.56%)

Continued
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Data were collected between the years of 2010 until 2015, with 12.42% of samples collected in 2010, 11.53% in 
2011, 24.89% in 2012, 7.34% in 2013, 9.41% in 2014 and 34.42% in 2015.

Countries include Angola (5.66%), Burkina Faso (5.24%), Benin (5.07%), Burundi (8.43%), Cote D’Ivoire 
(4.34%), Ghana (2.57%), Guinea (2.32%), Mali (5.68%), Mozambique (7.88%), Nigeria (13.93%), Senegal 
(25.11%) and Tanzania (13.75%). No variables within our dataset presented problems of multicollinearity. We 
therefore included all variables for analysis (Table 1). Further details including a data flow diagram, additional 
descriptive results and a correlation matrix of all variables can be found in Supplementary Information Dataset 1.

Sub‑Saharan Africa multivariate analysis.  At the regional level across all 12 countries, a “U-Shaped” 
relationship was found across land use classes and the odds of childhood malaria, when ordered to reflect the 
transitions from natural to fully converted land; that is, natural forest cover (highest odds) to mosaics (low-
est odds) through to intensive agriculture (intermediate odds) (Fig. 2). Here, the greatest odds were observed 
for exposure to complete forest cover (no agricultural land use), which was associated with 35% (OR 1.35, CI 
1.24–1.47) increased odds of childhood malaria. In contrast, mosaic vegetation structures that include cropland 
but remain dominated by natural vegetation were not associated with childhood malaria, and mosaics that are 
dominated by crops but also include natural vegetation were marginally negatively associated with the odds of 
childhood malaria (OR 0.96, 0.92–1.00). This represents the only land use class that potentially neutralises or 
even reduces the odds of childhood malaria overall. Exposure to irrigated or post-flooding cropland resulted in 
a generally positive but non-significant association with the odds of childhood malaria (OR 1.03, CI 0.99–1.06), 
while exposure to rainfed cropland was significantly associated with increased childhood malaria (OR 1.13, CI 
1.05–1.21).

When considering environmental confounders, no significant associations were found between malaria infec-
tion and forest loss (OR 0.98, CI 0.96–1.01), mean temperature (OR 1.01, CI 1.00–1.01), precipitation (OR 1.00, 
CI 1.00–1.00), or elevation (OR 1.02, CI 0.87–1.19) (Fig. 2). With respect to potential socio-economic and other 
confounders, unimproved water sources and unimproved sanitation were associated with a 32% (OR 1.32, CI 
1.11–1.57) and 19% (OR 1.19, CI 1.02–1.38) increased odds of childhood malaria when compared to improved 

Table 1.   Descriptive statistics. Descriptive statistics of all variables included in the geo-referenced dataset. VIF 
denotes Variance Inflation Factor.

Malaria (-ve) Malaria (+ ve)

 2015 6891 (36.83%) 1381 (25.95%)

Environmental variables

Elevation (m) (VIF = 1.58)

 Mean 453.54 392.50

 SD 595.10 367.20

Forest loss (%) (VIF = 1.16)

 Mean 0.15 0.18

 SD 0.36 0.43

Mean temperature (°C) (VIF = 1.48)

 Mean 24.93 25.33

 SD 3.47 2.59

Precipitation (mm) (VIF = 1.13)

 Mean 77.57 86.09

 SD 91.77 98.48

Agricultural land use variables

Crop-dominated mosaics (%) (VIF = 1.16)

 Mean 5.96 7.31

 SD 9.22 9.19

Forest cover (%) (VIF = 1.38)

 Mean 12.84 16.41

 SD 13.42 16.25

Irrigated/post-flooding cropland (%) (VIF = 1.10)

 Mean 2.53 2.77

 SD 9.37 11.46

Rainfed cropland (%) (VIF = 1.15)

 Mean 26.29 35.17

 SD 27.84 30.53

Veg-dominated mosaics (%) (VIF = 1.22)

 Mean 3.57 5.93

 SD 6.52 9.49
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water sources or sanitation, respectively. Age (OR 1.28, CI 1.24–1.32) was also positively associated with a higher 
odds of childhood malaria. Higher maternal education (OR 0.41, CI 0.26–0.65), wealth (OR 0.67, CI 0.64–0.71) 
and population density (OR 0.69, CI 0.60–0.78) were all associated with considerable reductions in malaria 
infection. Urban areas had a considerable reduction in the odds of childhood malaria compared to rural areas 
(OR 0.48, CI 0.41–0.57) (Fig. 2). Finally, no associations were found between the odds of childhood malaria 
and spraying the dwelling with insecticide (OR 0.87, CI 0.70–1.08), using a bed net (OR 1.00, CI 0.95–1.06) 
or a child’s sex (OR 0.99, CI 0.91–1.09) (Fig. 2). Full details of these results are summarised in Supplementary 
Information Table S1.

Figure 2.   Sub-Saharan regional multivariate analysis—a multivariate analysis that assesses the factors 
associated with the odds of childhood malaria. Error bars are defined as the 95% confidence interval. Variables 
increasing childhood malaria have odds ratios greater than 1 to the right of the vertical line. Crop-dominated 
mosaic denotes mosaic cropland and veg-dominated mosaic denotes mosaic natural vegetation within the 
European Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) dataset.
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Univariate sensitivity analysis.  The marginal effect of a continuous independent variable (e.g. rainfed 
cropland) is the instantaneous rate of change (e.g. the change in the probability of malaria) given very small 
changes (close to zero) in that variable45. Here, results suggest that the global model was most sensitive to forest 
cover and population density with the instantaneous rate of change in the probability of malaria increasing and 
decreasing substantially for these two predictors, respectively (Fig. 3) (note, here forest cover does not reflect 
reforestation but rather the static extent of forest cover in the dataset).

For the human-modified landscape variables, the probability of malaria steadily increased when small 
increases were made in rainfed, irrigated or post-flooding cropland and veg-dominated mosaics (Fig. 3). When 

Figure 3.   Univariate sensitivity analysis for continuous predictors. Marginal effects curves for continuous 
predictors included within the global model. This is a univariate sensitivity analysis that generates predictions 
generated by a model when one holds the non-focal variables constant and varies the focal variable. The global 
model consists of all variables within our georeferenced dataset and represents the most complex model. 
Marginal effects measure the instantaneous effect that a change in a particular explanatory variable has on the 
predicted probability of malaria when the other covariates are kept fixed.
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stratifying by cluster type, we found that childhood malaria risk was most sensitive to continuous predictors 
especially in rural clusters thereby warranting subgroup analysis. Marginal effects for socio-economic interven-
tions were consistent and expected at the overall level (Fig. 4).

Stratified multivariate analysis of urban and rural households.  The overall effects of differing 
agricultural land uses did in some cases vary considerably between rural and urban clusters, as shown by the 
subgroup analysis (Fig. 5). Specifically, a positive association was found for rainfed cropland in rural clusters 
(OR 1.10, CI 1.03–1.18) but not in urban areas (OR 0.99, CI 0.97–1.01). On the other hand, irrigation or post-
flooding cropland was marginally associated with the odds of childhood malaria in urban clusters (OR 1.09, CI 
1.00–1.18) but not in rural areas (OR 1.01, CI 0.97–1.05). In rural clusters, crop-dominant mosaics (OR 0.91, 
CI 0.85–0.97) were negatively associated with the odds of childhood malaria, whereas veg-dominant mosaics 
in rural clusters were not associated with childhood malaria (OR 1.04, CI 0.99–1.09). No effect was found for 
either mosaic classes in urban clusters (veg-dominant (OR 1.00, CI 0.98–1.01), crop-dominant (OR 1.00, CI 
0.99–1.02)).

The overall effect of forest cover was emphasised in urban vs rural clusters (urban: OR 1.62, CI 1.40–1.87; 
rural: OR 1.23, CI 1.10–1.36) (Fig. 5); however, no association was found between exposure to forest loss and 

Figure 4.   Univariate sensitivity analysis for discrete predictors. Marginal effects curves for discrete predictors 
included within the global model. This is a univariate sensitivity analysis that generates predictions generated 
by a model when one holds the non-focal variables constant and varies the focal variable. The global model 
consists of all variables within our georeferenced dataset and represents the most complex model. Marginal 
effects measure the instantaneous effect that a change in a particular explanatory variable has on the predicted 
probability of malaria when the other covariates are kept fixed.
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the odds of childhood malaria across urban (OR 0.97, CI 0.92–1.02) or rural clusters (OR 0.98, CI 0.96–1.01). 
When assessing climatic factors, no associations were found for mean temperature (rural (OR 1.01, CI 1.00–1.01), 
urban (OR 1.00, CI 0.99–1.00)), precipitation (rural (OR 1.00, CI 1.00–1.00), urban (OR 1.00, CI 1.00–1.00)), or 
elevation (rural (OR 1.01, CI 1.00–1.01), urban (OR 1.00, CI 0.99–1.00)) across rural or urban clusters.

Associations between childhood malaria and water, sanitation, and hygiene (WaSH) related socio-economic 
variables also varied across rural and urban households (Fig. 5). Unimproved sanitation in urban households 
was associated with higher odds of childhood malaria (OR 1.64, CI 1.18–2.28) compared to improved sanitation, 
whilst no association was found for unimproved sanitation in rural areas (OR 1.02, CI 0.85–1.22). On the other 
hand, unimproved water sources in rural areas had a higher odds of childhood malaria compared to improved 
water sources (OR 1.39, CI 1.12–1.73), whereas no association was found in urban areas (OR 1.04, CI 0.75–1.45).

In contrast, consistent patterns were found across both urban and rural settings for maternal education 
(urban OR 0.28, CI 0.11–0.70; rural OR 0.50, CI 0.29–0.84), wealth (urban OR 0.52, CI 0.46–0.57; rural OR 0.76, 
CI 0.72–0.81) and population density (urban OR 0.83, CI 0.73–0.94; rural OR 0.27, CI 0.16–0.44), all of which 
resulted in reduced odds of childhood malaria in both rural and urban clusters (Fig. 5). Age was positively associ-
ated with childhood malaria in both rural (OR 1.28, CI 1.24–1.33) and urban clusters (OR 1.26, CI 1.19–1.34). On 
the other hand, we found that between 2010 and 2015 (equivalent to year of survey), childhood malaria decreased 
for urban clusters (OR 0.78, CI 0.67–0.90) but not in rural clusters (OR 1.00, CI 0.95–1.06) (Fig. 5). Spraying the 
dwelling with insecticide (rural (OR 0.81, CI 0.63–1.06), urban (OR 1.11, CI 0.73–1.68)), use of a bed net (rural 
(OR 1.00, CI 0.93–1.06), urban (OR 1.01, CI 0.92–1.11)) and a child’s sex (rural (OR 1.01, CI 0.91–1.12), urban 
(OR 0.91, CI 0.77–1.08)) were not associated with the odds of childhood malaria across either rural or urban 
clusters (Fig. 5). Full results are presented in tabular format in Supplementary Information Table S2.

Discussion
Overview.  We investigated the impact of land cover on the odds of childhood malaria, a key issue in sub-
Saharan Africa at the nexus of agricultural development and human health. We found that childhood malaria 
was generally associated with exposure to complete forest cover (~ 35%). However, the retention of natural veg-
etation in cropland (crop-dominated mosaics) potentially reduces or even protects against malaria, especially in 
rural areas (~ − 9%). On the other hand, rainfed cropland was associated with increased malaria in rural (~ 10%) 
but not urban areas, while irrigated or post flooding cropland was associated with malaria in urban (~ 9%) 
but not rural areas. In contrast, no associations with malaria were observed for natural vegetation interspersed 
with cropland (veg-dominant mosaics). Together, the results suggest a potential role for shifting from rainfed to 
irrigated cropland in rural areas or for greater natural vegetation in croplands to potentially moderate or even 
reduce the odds of malaria.

Agricultural land use and its impact on childhood malaria.  Rainfed cropland is the most common 
agricultural method used by marginal or smallholder subsistence farmers across sub-Saharan Africa. With the 
sub-Saharan African population projected to quadruple by 2100, there will likely be a vast expansion or inten-
sification of rainfed cropland across the region46. Here we find these areas are associated with the highest odds 
of malaria generally outside forested areas, as well as primarily within rural clusters after controlling for other 
factors. Mechanisms by which rainfed cropland could influence malaria transmission may include slash and 
burn practices for shifting agriculture, where an area of ground is cleared of vegetation and cultivated for a few 
years and then abandoned for a new area until its fertility has been naturally restored47. This process could influ-
ence malaria transmission through changing habitat suitability of mosquito vectors through increasing sunlight, 
standing water and high temperatures, which favour some types of malaria transmitting mosquitoes. In addi-
tion, rainfed landscapes may also have fewer insectivores, greater competition among remaining species for 
resources and fewer dead-end hosts to dilute malaria, thereby suggesting that rainfed cropland is particularly 
impactful on biodiversity42,48,49.

Irrigated cropland, on the other hand, only accounts for approximately 6% of all agriculture across sub-
Saharan Africa8, and therefore represents a relatively limited fraction of our dataset. Nevertheless, we found a 
marginal positive association between irrigation or post-flooding cropland and childhood malaria within urban 
clusters but not in rural clusters or at the regional level. Here, previous research suggests that mosquito biting 
rates increase in urban areas where irrigated farming takes place due to mosquito vectors adapting to more pol-
luted larval habitats, susceptible humans being in near proximity to peri-urban forest cover or the intensive use 
of pesticides in urban agriculture likely increasing the speed with which insecticide resistance develops26,35,50–53. 
On the other hand, Ijumba and Lindsay (2001) suggest that crop irrigation has little impact on malaria trans-
mission and is dependent on endemic or non-endemic setting status12. Such heterogeneity in effects is likely 
attributable to a range of environmental or socioeconomic factors that may vary geographically (e.g. proximity 
to peri-urban forests, crop type, humidity, highlands, desert fringes, improvements in wealth, housing, access 
to care, water, sanitation, seasonality the widespread use of bed-nets and the antimalarials in villages and so 
on)1,12,54,55. Although we provide further evidence on the association between irrigation and childhood malaria 
in urban areas whilst attempting to account for most of these confounders in our analysis, further research is 
required to untangle the specific contexts and causal mechanisms linking irrigation to malaria.

Mosaic landscapes, which consist of varying mixes and degrees of cropland or natural vegetation, may occur 
due to frontier clearing for agricultural, subsistence or smallholder farming, or associated with restoration efforts 
in previously degraded agricultural areas (e.g., agroforestry). Our results suggest a fine balance in mechanisms 
that may either increase or decrease disease risk in complex landscapes, depending on majority land-cover 
classes and their associated factors as well as a potential interaction with rural vs urban status. Specifically, 
crop-dominated mosaics interspersed with natural vegetation reduced the odds of childhood malaria in rural 



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4124  | https://doi.org/10.1038/s41598-022-07837-6

www.nature.com/scientificreports/

but not urban areas, while no association was found between veg-dominated mosaic systems and the odds of 
childhood malaria in either rural or urban clusters. In all mosaic areas, the odds of malaria was lower than for 
both forested and more intensive cropping areas.

Identifying potential explanations for this intriguing result is a challenge given current knowledge on dis-
ease ecology in forested vs artificial vs more complex, potentially fragmented but otherwise more biodiverse 
landscapes (i.e., compared to crop monocultures). Forest conservation has often been suggested as a potential 

Figure 5.   Stratified multivariate analysis of rural and urban households. Factors associated with the odds of 
childhood malaria differ between rural and urban households. Error bars are defined as the 95% confidence 
interval. Variables increasing childhood malaria have odds ratios greater than 1 to the right of the vertical line. 
Crop-dominated mosaic denotes mosaic cropland and veg-dominated mosaic denotes mosaic natural vegetation 
within the European Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) dataset.
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anti-malarial intervention42. However, our analysis suggests that childhood malaria is positively associated with 
forest cover (natural vegetation) in both rural and urban clusters, yet there is no association between forest loss 
and childhood malaria42. Our results also suggest that childhood malaria is most sensitive to forest cover and 
population density. The majority of previous research that has explored the links between forest loss, forest 
cover and malaria has led to contradictory answers with some studies also suggesting that risk or incidence of 
malaria first increases and then decreases as deforestation proceeds20,56,57. Forest disturbance can increase the 
risk of malaria by increasing human exposure, changing habitat suitability, reducing potential sinks of malaria 
transmission, or modifying diversity of mosquito species. However, forest loss can also lead to economic devel-
opment, improved housing, livelihoods, sanitation, education and wealth48,56,58.

Given the strong association between forest cover and the odds of childhood malaria, it is perhaps unsurpris-
ing to observe lower odds in mosaic landscapes and even a marginal negative association in crop dominated 
mosaics. However, that this effect increases again in more intensively cropped areas suggests something of a ‘sweet 
spot’ in terms of overall odds of infection that makes picking apart specific mechanisms of malaria transmission 
in fragmented landscapes a particular challenge. Previous research suggests that species diversity within mosaic 
systems can act differently on competing drivers of disease transmission (host density, vector biting rates, vec-
tor habitat suitability and transmissibility) and may cause simultaneous increases (amplification) and decreases 
(dilution) in malaria transmission59,60. For example, increasing vegetation can lead to increases in humidity 
which favours mosquito survival and increases biting rates61. Specific crops may be linked to increased (e.g. sweet 
potatoes or yams) or decreased (e.g. millet) malaria transmission due to respective water or feeding require-
ments thereby impacting mosquito habitat suitability62. Subsistence or small-holder farming can also include 
the use of livestock, which is known to be a zoo-prophylaxis for malaria63. More broadly, dilution effects may be 
more pronounced in or even restricted to systems in which biodiversity loss generates biodiversity gradients, as 
opposed to biodiversity gradients generated via other mechanisms64.

In any case, until further studies shed greater light on the causes of apparent reductions in malaria in mosaic 
landscapes as reported here, it remains prudent to prioritize proven anti-malarial interventions such as improve-
ments in education and wealth, insecticide treated nets, spraying of dwellings, and housing improvements. For-
est conservation efforts in Africa should instead focus on securing known and proven benefits such as carbon 
storage, clean water provision, biodiversity, food provision, and other aspects of human health (e.g. diarrheal 
disease)42,45,65, while associated costs including increases in other disease risks, such as malaria, may require more 
targeted research to resolve and interventions to offset. Nevertheless, targeting less major factors either individu-
ally or in combination (e.g., via complex interventions) could represent novel areas to further reduce malaria risk 
in children in Sub-Saharan Africa. Even relatively small reductions in risk would potentially translate into a large 
number of lives protected given the ongoing high burden of this disease in this region. This could be important 
particularly where residual transmission persists despite already strong management intervention efforts. Given 
the heterogeneity we observed within mosaic systems, to contribute to management further research is required 
to assess whether such effects are real or spurious and further disentangle how ecological drivers of malaria 
transmission mechanistically relate to changes in disease risk across landscape types in agricultural systems.

Environmental and socio‑economic confounding.  Agricultural-malaria relationships are influenced 
by many differing environmental and socio-economic factors66. Our results are broadly highly consistent with 
expected confounding effects at the general level and across rural and urban clusters when aiming to isolate 
the specific effect of agricultural land use, which increases our confidence in the more rarely addressed agri-
cultural land-cover associations reported here. For example, we found no association between environmental 
confounders such as mean temperature, precipitation or elevation at the general level or across a rural urban 
stratification40,42,67–69. Socioeconomic confounding effects were also generally consistent with previous research, 
showing that improvements in maternal education70–72, wealth73,74, sanitation, and water sources75,76 alongside 
increasing urbanisation or population density77 all were negatively associated with childhood malaria. Increases 
in child age increased odds of malaria whereas child sex had no association with malaria, which also follow 
previous research78–80.

One potential exception to this is that we found that spraying dwellings for mosquitoes and using a bed net 
were not strongly associated with reduced childhood malaria. In contrast, previous research has shown that bed 
net usage and indoor residual spraying are extremely effective in reducing the burden of childhood malaria when 
administered concomitantly as opposed to in isolation81. This apparent inconsistency could be resolved by con-
sidering potential proxy effects of other variables included in our framework; for instance, improving maternal 
education and wealth can improve adherence of malarial interventions such as bed-net usage70–74. Alternatively, 
our modelling framework may be less well suited to detecting such complex interactions or the presence of 
strongly non-linear effects81,82. Hence, it would be premature to suggest our results run contrary to studies that 
show high adherence to well supported malarial interventions, such as spraying dwellings and bed-net use39.

Limitations.  Our analysis is a retrospective cross-sectional analysis that is limited to the countries that have 
been included in DHS surveys between 2010 and 2015 that had no missing data on the variables we deemed 
important and incorporated within our analysis. Hence, our complete case analysis leads to exclusion of other 
countries such as Rwanda, Democratic Republic of Congo, and Uganda and for datasets conducted post 2015 
given that these datasets may not hold data on key variables. For example, malaria control in Democratic Repub-
lic of Congo does not include indoor residual spraying and hence this survey will have been excluded as we 
aim to test for agriculture-disease associations whilst controlling for as many confounders as possible. In this 
instance, we assume that the exposure and/or confounders used within our analysis are missing not at random 
and therefore a complete case analysis is a valid approach83.
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Although we have a strong underlying conceptual framework and aimed to control for a large number of 
potential confounders due to socio-economic and environmental factors, our analysis is still correlational in its 
approach and should be interpreted as such, preventing us from firmly implying causal relationships20,45,56,82. In 
addition, we chose to exclude interactions and focus on main effects in this study, and we did not explore the use 
of squared terms for key environmental variables such as temperature or precipitation to retain model simplicity 
but at the potential expense of overlooking strongly non-linear associations42,67,84.

Two key confounders that were also not controlled for was the type of crop and the presence or abundance 
of livestock. Previous research suggests that mosquitoes readily feed on natural sources of plant sugars, hence 
crop type could be an important confounder as mosquitoes feeding on peri-domestic plant- and fruit-derived 
sugar sources can change malaria transmission dynamics62,85. Livestock were not incorporated as a variable 
considering our analysis focusses on specific agricultural land uses (e.g., rainfed). However, it is important to 
note that livestock have been shown to be a zoo-prophylaxis for malaria in certain locations and livestock are also 
important as sources of income and nutrition that improve the well-being of the populations who have access 
to them45,86. We also conducted our analysis using temperature and precipitation variables from the WorldClim 
v1 dataset to control for climate conditions of each survey month based on long-term monthly averages. This 
assumes that the 2010–2015 period does not depart from long-term (1950–2000) climate in a given region for 
any sample within the included DHS dataset45.

Changes in agricultural systems have profound economic and demographic effects affecting malaria which 
may be bidirectional, non-linear, and cyclical. For instance, displacement of subsistence agriculturalists can 
lead to urbanisation. Adoption of more efficient agricultural techniques could also increase household wealth. 
Yet, improvements in housing due to improvements in wealth are likely to further accompany improvements in 
agricultural techniques14. Although we aimed to incorporate some of these factors (e.g., wealth, maternal educa-
tion, sanitation, water source) as covariates in our analyses, our framework is limited to providing conditional 
estimates (i.e., estimates of what would be the effect if wealth were not modified) and does not estimate the 
overall effect of changes in agricultural techniques. Here, dynamic modelling which considers non-linearity, bi-
directionality and cyclical processes may be useful in assessing the impact of changes in agricultural techniques 
on malaria transmission in future20.

Another limitation is the spatial resolution within our analysis and its impact on selecting explanatory vari-
ables. Deforestation across sub-Saharan Africa is largely due to shifting agriculture by marginal or smallholder 
farmers who employ agricultural methods on small (e.g., 1–100 ha) plots of land87. Although the maximum 
flight distance of a female, human blood-fed A. gambiae mosquito is around 10 km, field studies have shown 
that flights beyond 1.5 km are rare88. As stated in the methods, the displacement of rural clusters up to 5 km and 
urban clusters up to 2 km by the DHS is conducted for confidentiality reasons. However, this displacement along-
side the use of 10 km resolution data within this analysis may not adequately capture the association between 
agriculture, malaria ecology or epidemiology and potential confounders at finer spatial scales and could also 
artificially amplify the relationship between agriculture and malaria or could lead to spatial autocorrelation89. 
Hence, further research is required to understand spatial displacement and whether such agriculture-malaria 
associations remain constant when factoring in spatial measurement bias90.

Conclusion
On the basis of the associations we uncover in this analysis, agricultural expansion has the potential to increase 
childhood malaria across sub-Saharan Africa, which may undermine efforts to achieve malaria eradication. 
Rainfed cropland is often regarded as a more extensive and therefore sustainable land use, yet here is associated 
with increased odds of childhood malaria in rural areas91,92. On the other hand, irrigating cropland, which often 
serves to intensify agriculture but which has barriers to implementation (e.g. agronomic, hydrologic and eco-
nomic), is often regarded as more environmentally unsustainable93, and could confer a somewhat reduced odds 
or not be associated with childhood malaria in rural areas94–96.Environmental interventions such as shifting from 
rainfed to irrigated cropland in rural areas or creating mosaics of natural vegetation within intensive cropland 
systems may reduce the burden of malaria that is attributable to specific agricultural land uses. Decision makers 
now require further evidence on the causality of the agriculture-malaria relationship which can aid in optimal 
design and cost-effectiveness of land use policy options in rural and urban systems and how these measures will 
impact multiple aspects of sustainability including but not limited to water availability, biodiversity loss, malaria 
eradication, carbon emissions, soil health and economic productivity.

Methods
Data.  We used the Demographic and Health Surveillance Data (DHS) and Malaria Indicator Surveys (MIS) 
to compile datasets for analysis. These are nationally-representative household surveys that provide data for a 
wide range of monitoring and impact evaluation indicators in the areas of population, health, socio-economics 
and nutrition1,42,45,65,97. We analysed data for 12 sub-Saharan countries (consisting of 12 mutually exclusive data-
sets) from the years 2010 to 2015 with all variables that were hypothesised (see below) to be important risk fac-
tors for the childhood malaria whilst controlling for potential confounders. More countries are included in these 
datasets, but we restricted our analyses to those for which covariate data were the most complete (see Table 1).

The final dataset included 24,034 cases from respondents of households within clusters within each country 
between 2010 and 2015. For analysis, we compiled 27 socio-economic, environmental, and agricultural land use 
variables based on their hypothesised or known links to malaria from previous studies. Socio-economic variables 
included age, sex, education, whether a bed-net was used, whether the dwelling was sprayed with insecticide, 
wealth index, urban/rural, water source, sanitation type and population density (all extracted from the DHS 
data except for population density, which came from the Gridded Population of the World, Version 4 (GPWv4) 
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dataset)98. Environmental variables included forest cover, forest loss, temperature, precipitation and elevation, all 
extracted from the Global Forest Change and WorldClim datasets99–101. Agricultural land use variables included 
rainfed cropland, irrigated or post flooding cropland and crop-dominated or veg-dominated mosaics (see below), 
extracted from the European Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) dataset102.

The DHS program does not report exact coordinates for the clusters included in the survey, but randomly 
displaces the cluster coordinates up to 2 km for urban clusters and up to 5 km for rural clusters, with a further 
1% of rural clusters displaced up to 10 km. This is done to ensure privacy protections of survey participants45,65. 
Hence, to address the possible displacement of the exact locations, all environmental data were resampled to a 
resolution of 10 km to approximate the environmental conditions for each household in the year of sampling. A 
10-km radius also corresponds to the maximum flight distance of a female, human blood-fed A gambiae mos-
quito, representing the maximum extent at which human and specific mosquito populations can be expected 
to interact6.

Variables.  Malaria outcome variable.  The DHS and MIS survey explicitly test for the presence or absence 
of malaria in children under 5 years using blood smear tests (BSTs) or rapid diagnostic tests (RDTs)103–105.

Typically, RDTs detect the HRP2 protein encoded by pfhrp2 and pfhrp3 genes. However, recent research sug-
gests that specific populations in the Horn of Africa experience more than 90% gene deletion. Hence, in these 
populations, sensitivity of the RDT is limited and therefore not useful for detecting P. falciparum malaria106. 
Given that the selection of countries in our dataset did not include countries that experience high gene dele-
tion and gene deletion was lower in the timeframe of timeframe of sampling (2010–2015), we opted to include 
malaria presence or absence detected by RDTs. Research further suggests that the two outcome variables (BSTs 
and RDTs) are well correlated (r = 0.58)42. Hence, we constructed a binary outcome variable that is equal to 1 if 
the child had malaria either diagnosed by BSTs or RDTs and 0 otherwise.

Agriculture variables.  Agriculture has consistently been considered a potential risk factor for malaria infection 
in multiple geographical contexts6,16,20,66,107. However, research that investigates specific agricultural land use 
types (e.g., rainfed vs irrigated or post-flooding vs mosaic systems) and malaria infection is limited. To test the 
associations between differing agricultural land uses, we extracted land-use classifications for each cluster in 
the survey year from the ESA CCI-LC dataset102. Within this analysis, we focused on three agricultural produc-
tion methods (rainfed, irrigated or post-flooding, and mosaic systems) as potential risk factors of malaria and 
therefore exclude all other land-cover classes that were no agricultural land uses or potential confounders (e.g., 
shrubland, grasslands, lichens, and mosses).

Rainfed cropland is defined as agriculture that relies on rainfall for water. Irrigated or post-flooding cropland 
is defined as land that is customarily supplied with water by artificial means or through flood mechanisms for 
growing plants. Cropland-natural vegetation mosaics with varying levels of coverage in the CCI-LC dataset are 
further stratified into either crop-dominant mosaic (i.e., more than 50% of the mosaic is dominated by cropland) 
or veg-dominant mosaics (i.e., more than 50% of the mosaic is dominated by natural vegetation) (Bontemps 
et al., 2013).

Forest cover and forest loss.  Forest loss and forest cover have similarly been considered important factors in 
malaria ecology across sub-Saharan Africa15,18,42,43. In addition, agriculture is considered the leading driver of 
forest loss in sub-Saharan Africa87. We extracted forest loss and forest cover data from the Global Forest Change 
Dataset for each cluster in the survey year to capture forest cover change for pre-production agriculture99. This 
dataset is a published high resolution spatially explicit global raster of twenty-first century forest cover change 
at a 30-m resolution from 2001 to 2017. We do not include forest gain due to concerns on the reliability of these 
data, following previous studies108.

Socio‑economic variables.  Age and sex.  Our dataset specifies the age (years) and sex of each child, allowing us 
to control for their commonly reported effects on malaria109.

Education and wealth.  Education and wealth have previously been found to be important variables in malaria 
epidemiology and ecology across sub-Saharan Africa73. Therefore, maternal education and wealth were included 
as potential confounders. Maternal education is defined as the level of education of the mother of each child 
and was classified into three categories: No education, Primary, and Secondary. Wealth within the DHS data is 
a composite measure of a household’s living standard and is considered to be a surrogate of a household’s eco-
nomic status45,55. The index places households into categories representing wealth quintiles, where the higher the 
wealth quintile, the higher the economic status of the household.

Rural/urban.  Within our dataset, children are classified as either living in rural or urban clusters. The rural–
urban context has also previously been shown to be a major determinant of malaria where the risk of malaria 
infection was shown to decline from rural areas through peri-urban settlements to urban central areas44. In addi-
tion, most of the global population growth this century is predicted to occur in Africa with dramatic changes 
to population densities in both rural and urban landscapes expected. Given the importance of the rural–urban 
context, in addition to the primary analyses, we performed an additional subgroup analysis to determine how 
the agriculture-malaria relationship may differ across rural or urban landscapes (see ‘Statistical analysis’ section 
below for further details).
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Water source and sanitation.  Drinking water and poor sanitation have previously been found to be risk fac-
tors of malaria infection in sub-Saharan Africa76. DHS identifies the main source of drinking water used by the 
household, and the type of sanitary facility primarily used by each household. We grouped the type of water and 
sanitation used by the household into dichotomous measures reflecting improved or unimproved sanitation and 
water source based on existing peer-reviewed literature45.

Bed‑net use and spraying of dwellings.  Insecticide-treated mosquito nets (ITNs) and indoor residual spraying 
(IRS) are the two most frequent interventions used to combat malaria in Africa81,110. Such interventions may 
confound the agriculture-malaria relationship and therefore have been included as potential confounding vari-
ables. The DHS and MIS datasets provide discrete variables for whether a child slept in a bed-net for sleeping 
(0 = no, 1 = all children, 2 = some children, 3 = no net in household) and whether the dwelling has been sprayed 
against mosquitoes in the last 12 months (0 = no, 1 = yes). We further recode whether a child slept in a bed net to 
whether a bed net was used (0 = no, 1 = some children used a bed net, 2 = all children used a bed net) where we 
assume no net in the household was equivalent to no use of a bed net.

Population density.  Population density is an important factor in malaria epidemiology and the process of 
urbanization and accompanying demographic change is associated with decreased risks of infection due to 
reduction of suitable breeding grounds for malaria vectors through reduction of vegetative cover, water sur-
faces and other natural surfaces with building structures and other paved surfaces as well as through pollution 
of available breeding sites44,111. To control for potential confounding, we extracted and included data for each 
cluster using 2010 as an average year for population density using the Gridded Population of the World, Version 
4 (GPWv4))98.

Environmental variables.  Mean temperature and precipitation have been shown to be significant predictors 
of malaria in sub-Saharan Africa16,40,84,112,113. The temperature and precipitation variables in our dataset are the 
long-term (1950–2000) mean temperature (degrees Celsius) and precipitation (millimetres) in the cluster during 
the survey month. Both variables were sourced from the WorldClim v1 dataset, which provides monthly mean 
precipitation from interpolated station data over the period 1950–2000100. Although we extract precipitation 
and temperature data in the month and year of the conducted survey, we do not explicitly control for any other 
seasonal factors (e.g., crop seasonality)88.

Elevation is an appealing environmental proxy for a variety of fundamental dynamic ecological factors (e.g. 
temperature, humidity, precipitation, air pressure, sunshine, wind velocity, altitudinal farming) critical for mos-
quito development69,114. For these reasons, elevation also relates to both where certain crops are grown (e.g., in 
highland vs lowland regions) as well as suitability for malaria transmission101. While we aimed to include some 
of the proximal factors proxied by elevation directly into the analyses, we retained elevation in analyses to control 
for these other elevation-related potential confounders. We extracted elevation measurements from the Amazon 
Web Services Terrain Tiles dataset using the ‘elevatr’ package within R.

Statistical analysis.  Descriptive analysis.  Our initial dataset consisted of approximately 2.3 million re-
spondents based on all DHS and MIS surveys extracted in 2018. We excluded surveys that had no geo-referenced 
presence/absence of malaria tested through BSTs or RDTs alongside socio-economic variables. Variables (e.g., 
presence of specific malaria species, presence of soap/detergent, main housing material used, and type of bed 
net used) that were correlated with existing socio-economic variables such as sanitation, water sources, bed-net 
ownership were excluded. Variables describing livestock ownership type (e.g., cows, chickens, goats etc.) were 
also excluded due to a high level of missingness (> 95%) which was not random. Finally, we removed duplicate 
records and performed a complete case analysis that only included participants for which we had no missing 
data on the variables of interest. Baseline characteristics and descriptive characteristics were computed and are 
presented in the results115.

Multicollinearity.  Multicollinearity arises in statistical models when two or more covariates are not statistically 
independent (i.e., correlated), leading to unstable estimates of variances of regression coefficients. To control for 
multi-collinearity we calculated the variance inflation factor (VIF), which represents the amount of variability 
of a covariate which is explained by other covariates116. We calculated the VIF for the candidate set of environ-
mental, agricultural, and socio-economic variables. A methodological rule-of-thumb suggests that variables that 
have a VIF greater than 10 should be excluded117. No variables met this threshold for exclusion and VIF scores 
are presented alongside the results.

Hierarchical modelling.  Data were analysed within a multi-model inference framework45,65,118, chosen to reduce 
the risk of overfitting, avoid the arbitrary stepwise approach to model selection and allow for the simultaneous 
assessment of different models and their associated hypotheses119. Within this framework, we used hierarchical 
models to control for covariates measured at different levels within the hierarchical dataset, thereby allowing the 
correction of biases in parameter estimates due to clustering of observations45,120.

The dataset is structured as individuals (level 1) that reside in households (level 2) that are in clusters (level 3) 
located within countries (level 4). Hence, we fitted a four-level hierarchical model using a binomial distribution 
for malaria presence/absence with a logit link function. We assume that there may be random variability across 
households, clusters and countries and therefore added a random effect at each of the four levels45,121.
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We specified 81 candidate models using a priori hypotheses. These models included various combinations 
of socio-economic, agricultural land use, forest cover, forest loss, and climate explanatory variables. To specify 
an example candidate model (with all covariates), we observe Mijkl, a binary variable for malaria presence or 
absence for child i in household j in cluster k in country l. We define the probability of malaria equal to 1 as 
Pijkl = Pr(Mijkl = 1) and let Pijkl be modelled using a logit link function. The four-level global model can be written 
as:

where ∈0jkl = household-level random intercept, independent across households, within clusters, within countries, 
∈0kl = cluster-level random intercept, independent across clusters, within countries, ∈0kl = country-level random 
intercept, independent across countries.

To assess predictive accuracy, model averaging was conducted based on Akaike’s Information Criterion (AIC), 
where predictions were combined using Akaike weights based on the inclusion of all candidate models with an 
AIC less than 5 compared to the best performing model (defined as the model with the lowest AIC value)122–125.

As with demographic and economic transitions, landscapes often also follow a sequence of different land-
use regimes: from pre-settlement natural vegetation to frontier clearing, then to subsistence agriculture and 
small-scale farms, and finally to intensive agriculture, urban areas, and protected recreational lands126. Hence, 
initial results at the regional level are expressed in odds ratios across differing land use segments reflecting this 
successional transition process, starting with natural vegetation, through to the mosaic (crop-dominated or 
veg-dominated) systems and finally intensive agricultural land use systems (rainfed, irrigated or post-flooding).

To assess the sensitivity of each variable to the probability of childhood malaria, we conducted a marginal 
effects analysis using a global model (e.g., using all available variables). Marginal effects measure the instanta-
neous effect that a change in a particular explanatory variable has on the predicted probability of the outcome 
(here malaria occurrence), when the other covariates are kept fixed127, equivalent to a univariate sensitivity 
analysis. In nonlinear models the marginal effects differ from the estimated coefficient as these depend on the 
values of the other explanatory variables, and in our case, also depend on the estimated random effects of the 
hierarchical model45.

Here, we calculated marginal effects using a global model to estimate the impact on the probability of child-
hood malaria of increasing exposure to each of the agricultural, environmental, forest cover change and socio-
economic variables. The interpretation of marginal effects differs for discrete and continuous variables. For 
discrete variables, the marginal effect corresponds to changes in each of these variables from 0 to 1 (e.g., no to 
yes responses or unimproved to improved states).

To assess whether geographical heterogeneity may influence or explain the association between differing 
agricultural land uses and the odds of childhood malaria, we finally performed a subgroup analysis within the 
multi-inference modelling and within the marginal effects’ analysis. This was done by stratifying our regional 
data set into rural and urban subgroups and re-running both model averaging and marginal effects analysis. 
Supplementary Information Table S3 provides a description of the variables included within each of the 81 a 
priori models. All analyses were conducted in R version 4.1.2 with the “lme4” package128,129. Finally, all methods 
were performed in accordance with relevant guidelines and regulations.

Data availability
The code and environmental data that support the findings of this study are available from the corresponding 
author upon suitable request. The primary health data used in this analysis are available from http://​dhspr​ogram.​
com/​Data.
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