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Abstract

Background The infection fatality ratio (IFR) is a key statistic for estimating the burden of

coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the

COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to

estimate total infections, but requires consideration of delay-distributions from time from

infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning)

alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully

propagated uncertainty or accounted for these potential biases, particularly seroreversion.

Methods We built a Bayesian statistical model that incorporates these factors and applied

this model to simulated data and 10 serologic studies from different countries.

Results We demonstrate that seroreversion becomes a crucial factor as time accrues but is

less important during first-wave, short-term dynamics. We additionally show that dis-

aggregating surveys by regions with higher versus lower disease burden can inform serologic

test specificity estimates. The overall IFR in each setting was estimated at 0.49–2.53%.

Conclusion We developed a robust statistical framework to account for full uncertainties in

the parameters determining IFR. We provide code for others to apply these methods to

further datasets and future epidemics.

https://doi.org/10.1038/s43856-022-00106-7 OPEN

1MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public
Health, Imperial College London, London, UK. 2 Department of Clinical Biochemistry, Royal Infirmary of Edinburgh, Edinburgh, UK. 3 Nuffield Department of
Clinical Neurosciences, University of Oxford, Oxford, UK. 4Department of Mathematics, Imperial College, London, UK. ✉email: l.okell@imperial.ac.uk

Plain language summary
Large-scale outbreaks of infectious

diseases such as COVID-19, known

as epidemics, can be monitored via

statistics like the probability of death

once infected, or infection fatality

ratio (IFR). Measuring the levels of

antibodies (proteins produced by the

immune system to target the virus) in

peoples’ blood can show how many

have been previously infected. The

number of deaths and infections are

used to calculate the IFR, but this

calculation is challenging due to time

delays during the natural course of

illness as well as imperfect antibody

tests and declining antibody levels

over time. We develop a mathema-

tical model that can account for these

factors to provide accurate IFR esti-

mates. We tested our model using

several different datasets. We pro-

vide code for other researchers,

which can be used to obtain more

accurate IFR estimates both during

COVID-19 and future epidemics.
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One of the most contested statistics during the coronavirus
disease 2019 (COVID-19) pandemic has been the infec-
tion fatality ratio (IFR): the proportion of those infected

who will go on to die from that infection. In the first general wave
of the pandemic, estimates of the overall COVID-19 IFR ranged
from <0.01 to 2.3%, with a review combining estimates across
studies reporting an overall estimate of 0.68% (0.53–0.82%)1–3. In
addition, an analysis using pooled data from national serologic
surveys to estimate age-specific IFRs found that the IFR rose
steeply with age, ranging from <0.01% in those aged under 30 to
7.3% in the 80 and older age group2, broadly consistent with
previous estimates4–6. IFRs are expected to vary across popula-
tions due to: the age distribution of the population, the dis-
tribution of infection across age groups, access to healthcare
resources, the prevalence of underlying health conditions in the
population, biological sex, and other factors. In addition, the
overall population IFR may differ depending on the magnitude of
outbreaks in care-home settings, where mortality has often been
high7. As a result, heterogeneity is expected between locations
and reflecting this variation is paramount for an accurate repre-
sentation of the global COVID-19 IFR.

Estimating the IFR requires two key pieces of information: data
on deaths and data on the number of infections in the population.
Although there are challenges with quantifying and defining
COVID-19 deaths, these data are widely reported and one of the
more reliable indicators of COVID-19 burden in countries with
good testing and reporting systems. However, determining the
cumulative number of people infected in a population has proved
to be far more challenging. Testing capacity has often been lim-
ited and many infections are asymptomatic8, which makes
laboratory confirmed symptomatic case numbers a poor estimate
of infection attack rates. As a result, serologic tests (detecting
antibodies) have been used to estimate cumulative infections
among populations. These tests have several limitations: (1) tests
rely on a humoral immune response and will miss infections that
do not mount a detectable antibody response or recent infections
where antibodies have not yet developed; (2) antibodies naturally
wane over time, which can lead to seroreversion (defined in this
context as an individual with a confirmed infection and positive
serologic test later testing negative); (3) tests will produce
imperfect results (i.e. sensitivity and specificity are <100%). Many
published studies reporting IFRs did not account for uncertainty
in serologic test sensitivity and specificity, nor delays from onset
to death and onset to seroconversion (although there are
exceptions2,9–11) and the possibility of seroreversion has not
usually been considered (again with exceptions11). Failing to
account simultaneously for these factors could potentially lead to
biased estimates of the IFR in directions that are hard to predict.

Here, we develop a novel flexible Bayesian statistical framework
for estimating the IFR that accounts simultaneously for all the
factors listed above. We show that accounting for these factors is
critical in accurately estimating the IFR, and that seroreversion
starts to significantly affect IFR estimates some months after the
start of the pandemic. Similar to previous studies, we find that
although overall IFR estimates vary substantially, with age-
specific IFRs demonstrating a nearly log-linear pattern. From
these updated calculations, we also show that early IFR estimates
were relatively accurate despite not incorporating seroreversion.
Our method and open-access code provide a tool for analysing
IFR using further serologic datasets in the future.

Methods
Crude and test-adjusted IFR estimates. The crude IFR was
calculated by dividing the number of observed cumulative deaths
at the serologic study midpoint by the cumulative number of

infections at the same time point. The number of infections was
estimated as the observed seroprevalence multiplied by the
population size, plus COVID-19 deaths occurring up to the
midpoint of the serosurvey to avoid survival bias. The 95%
confidence intervals on the crude IFR were calculated using a
Monte Carlo sampling approach, where the uncertainty in the
seroprevalence was propagated by drawing 100,000 values of the
expected seroprevalence based on the binomial distribution (i.e.
the number of test-positives given the total tested). For Denmark,
Italy, and Sweden where only the seroprevalence and confidence
intervals were reported (i.e. counts of test-positives and total
tested were not available) intervals were logit-transformed and
used to calculate variances directly. Test-adjusted simple IFR
estimates were calculated in the same way, but first adjusting the
seroprevalence for the sensitivity and specificity of the serologic
test used in the study12.

Statistical model for estimating IFR
Daily and age-stratified deaths. For individuals who die following
infection, we assume that the time from infection to death follows
a gamma distribution with shape α and rate β. If an individual is
infected at time t then the probability that they die at time td is:

Pr td jt; α; β
� � ¼ βα

Γ αð Þ ðtd � tÞα� 1e�βðtd � tÞ ð1Þ

We make the simplifying assumption that time is discrete and
measured in days, defining τðTjtÞ to be the probability of death
on day T 2 Z>0 given infection at the start of day t 2 Z>0 where
t ≤ T :

τ Tjtð Þ ¼
Z T

T � 1

βα

Γ αð Þ ðtd � t þ 1Þα� 1e�βðtd � tþ 1Þdtd ð2Þ

(the þ1 term in the above comes about because we assume
infections occur at the start of the day, but deaths can be
registered until the end of the day, hence τ 1ð Þ returns a positive
value).

Our population is split into different age strata, each with their
own probabilities of infection and death. Let there be A 2 Z>0 age
groups in total, and let pa be the proportion of the total
population in age group a 2 1 : A. In the simplest model we
would expect infections to occur in a given age group in
proportion to the number of people in that group. To allow for
variation in age-specific attack rates, and in order to fit to age-
specific seroprevalence data, we include a multiplicative attack
rate scalar ka within each group, allowing the final attack rate to
be higher or lower than expected from proportions alone. Hence
the overall probability of infection in age group a, which will be
written ρa, is given by:

ρa ¼ ρaka
∑A

i¼ 1piki
ð3Þ

Once infected, the probability of death in age group a (i.e. the
IFR in this age group) is defined as ma. Hence, the overall
probability of an individual in age group a dying on day T given
infection on day t can be written ρamaτðTjtÞ.

Our raw data do not consist of individual-level outcomes, but
rather aggregate counts. Specifically, two marginal distributions
were available for each study: (1) daily counts of the number of
COVID-19 deaths, summed over all age groups, and (2) the
cumulative number of COVID-19 deaths at a single point in time,
but broken down by age. Both marginal distributions were fit
within a single statistical framework.

Let It be the number of new SARS-CoV-2 infections in the
population on day t. The true infections curve is unknown, and
was modelled using an exponentiated natural cubic spline, subject
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to the constraint that the total number infected (i.e. the area
under the curve) could not exceed the total population size N . It
follows from the definitions above that the number of infections
in age group a on day t is given by ρaIt , and the number of
ultimately fatal infections is given by ρamaIt . The expected total
deaths on day T , denoted μT , is obtained by summing over all age
groups and all possible times of infection as follows:

μT ¼ ∑
A

a¼ 1
ρama ∑

T

t¼ 1
Itτ Tjtð Þ ð4Þ

The observed number of COVID-19 deaths on day T , denoted
DT , is assumed to be Poisson distributed around this expectation:

Pr DT j μT
� � ¼ ðμT ÞDT e�μT

DT !
ð5Þ

The likelihood for this part of the model is simply the product
of Poisson probabilities over all days in our time series:

L1 ¼
Y
T

PrðDT jμT Þ ð6Þ

Moving on to the second marginal distribution, the expected
cumulative deaths in age group a up until time Y can be written:

qa ¼ ρama ∑
Y

T ¼ 1
∑
T

t¼ 1
Itτ Tjtð Þ ð7Þ

These expected values are converted into expected proportions
of deaths in each age group as follows:

f a ¼ qa
∑A

i¼ 1qi
ð8Þ

Finally, the observed cumulative COVID-19 deaths up until
day Y , denoted by the vector C with elements Ca for a 2 1 : A,
are assumed to be multinomially distributed with these propor-
tions:

PrðC j f Þ ¼ ∑
A

a¼ 1
Ca

� �
!
YA
a¼ 1

f Ca
a

Ca!
ð9Þ

This is the second component of the likelihood:

L2 ¼ PrðC j f Þ ð10Þ
Incorporating serology data. The third data type used in fitting
comes from serological studies. For a given individual infected on
day t we model the probability of having seroconverted by day ts
using the following formula:

Pr X ¼ 1 jts; t; λ
� � ¼ 1 � exp

� ts � t
� �

λ

� �
ð11Þ

where X is a binary variable that equals 1 if the individual has
seroconverted and 0 otherwise. This is equivalent to assuming
seroconversion with a constant hazard 1=λ. Translating to the
population level, the expected number of people to have ser-
oconverted by time T in age group a, denoted θT;a, is given by:

θT;a ¼ ρa ∑
T

t¼ 1
ItPr X ¼ 1 jT; t; λð Þ ð12Þ

This can be translated to an expected proportion via the
expression θT;a=Na, where Na is the total population size in age

group a, such that ∑A
a¼ 1Na ¼ N .

The observed prevalence of seropositive individuals (the
seroprevalence) is expected to deviate from this proportion due
to both sampling effects and imperfect test characteristics. If γ 2
½0; 1� is the sensitivity of the test directly after seroconversion,
before antibody waning, and δ 2 ½0; 1� is the specificity then the
test-adjusted expected seroprevalence, ϕT;a, can be calculated

using the classic Rogan-Gladen correction12:

ϕT;a ¼ γ
θT;a
Na

� �
þ 1 � δð Þ 1 � θT;a

Na

� �
ð13Þ

Let the total number of people tested on day T in age group a
be denoted sT;a, and let the observed number of seropositives be
denoted nT;a. We model the observed counts as binomially
distributed around the Rogan-Gladen-corrected proportion:

Pr
�
nT;a

��ϕT;a� ¼ sT;a
nT;a

 !
ϕ
nT;a
T;a ð1� ϕT;aÞsT;a�nT;a ð14Þ

Finally, the likelihood for this component of the model is the
product of the binomial probability over all age groups, and over
all serology study dates Ty :

L3 ¼
Y
y

YA
a¼ 1

Pr nTy ;a
jϕTy ;a

� �
ð15Þ

The full likelihood is the product of the individual likelihood
components listed above.

Extension for seroreversion. As part of a sensitivity analysis, we
allowed for individuals to serorevert over time under an
assumption of natural waning antibodies. We assumed that
individuals experience a constant hazard 1=λ of seroconverting,
followed by a probability of seroreverting characterised by a
Weibull distribution with shape κ and scale μ. Under these
conditions, the probability of being seropositive by the end of day
ts following infection on day t is given by:

Pr X ¼ 1 jts; t; λ; μ
� � ¼

Z ts

t

1
λ
exp � x � t

λ

� �
� ts � x

μ

� �κ� �
dx ð16Þ

All subsequent steps are identical to those described above in
Eqs. (12–15), resulting in an alternative version of the likelihood
component L3.

Model fitting. We used informative priors for key parameters
where they were well characterised, such as the delay from
symptom onset to death. We fit the model using Metropolis-
Coupled Markov Chain Monte Carlo (MC3) using the drjacoby R
package (version 1.2.0)13. Full details of priors and model fitting
are provided in Supplementary Table 1 and Supplementary
Methods.

We re-estimated test specificity for serologic studies where
regional data were available, by fitting a simplified version of the
main model described above to seroprevalence and cumulative
regional deaths at the midpoint of the most recent serosurvey,
adjusting for age demographic differences within regions using
RStan14 (Supplementary Methods). These estimates were then
used as informative priors for the subsequent IFR analyses of each
survey.

Convergence of models was assessed by visualising the
posterior distributions as well as requiring the Gelman-Rubin’s
convergence diagnostic to be lower than 1.115. For the IFR model
using MC3, the metropolis coupling acceptance rate between
rungs was also examined.

Application to first-wave data. To estimate the time of seror-
eversion after symptom onset from longitudinal serology data
(see above), we fit a Weibull survival model using interval cen-
soring to account for the uncertainty in the observed time of
seroreversion. As a comparison to our parametric fit, we also fit a
Kaplan–Meier survival curve with interval censoring. Models
were fit using the ‘survival’ R-package16,17. The ‘survminer’
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R-package was used in plotting the Kaplan–Meier survival
curve18 (Supplementary Methods).

Serologic studies were selected from an existing, continuously
updated systematic review: the ‘SeroTracker’ dashboard19.
Estimates of the sensitivity and specificity of the serologic assay
were obtained preferentially from validation conducted as part of
each serosurvey, rather than external validation (e.g. by
manufacturers). We preferentially obtained data on COVID-19
deaths by age and date of death from Ministries of Health and
national public health agencies (Supplementary Table 2), and
when otherwise not available, used data from the COVID-19
Data Repository by the Centre for Systems Science and
Engineering at Johns Hopkins University (JHU CSSE COVID-
19 Data) up to August 17, 2020 (accessed September 14,
2020)20,21. Similarly, demographic information was extracted
from both governmental and non-governmental websites. Ethical
approval was not required because the data were publicly
available. Datasets are archived on Github22.

We calculated pooled-IFR estimates using a weighted log-linear
regression on the age-specific IFR posterior estimates. Weights
were incorporated as the precision from the age-specific 95%
credible intervals. Prediction intervals were calculated from the log-
normal density function using the mean from the model fit and
model variance. Overall pooled-IFR estimates were calculated by
standardising to the demographics of representative countries
within the low-income country (LIC), low-middle income country
(LMIC), upper-middle income country (UMIC), and high-income
country (HIC) bracket, respectively23 (Supplementary Note 4).

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Statistical framework and model overview. We constructed a
Bayesian statistical model to estimate IFR, incorporating a
number of key factors that can bias estimates away from the true
value, including: (1) the delay between infection and death, (2)
the dynamical process of seroconversion and seroreversion, (3)
differences in age-specific attack rates, and (4) serologic test
characteristics. This approach allows for full propagation of
uncertainty in all these factors. The full mathematical details and
model fitting process are available in Methods and Supplemen-
tary Methods. In brief, the model assumes that the observed
COVID-19 daily deaths are the result of infections at an earlier
point in time. This infection curve was estimated using an
exponentiated natural cubic spline, and projected forwards by an
infection-to-death delay distribution and age-specific IFR when
fitting to daily death data. The area under the infection curve,
equivalent to the cumulative incidence of infections, was then fit
to the age-specific seroprevalence data at the time of each ser-
osurvey. The model assumes that the temporal profile of the
infection incidence curve is the same for all age groups but that
total cumulative incidence per person can vary by age. The model
also assumes constant IFR over time. We included seroreversion
by assuming a distribution of times from the time of ser-
oconversion until becoming antibody negative, estimated from
published longitudinal antibody data in non-hospitalised cases
(see below). We included serologic test sensitivity and specificity
as parameters to be estimated in the model, using informative
priors based on validation studies.

The code for reproducing these results are available as a R
Research Compendium on Github: ‘mrc-ide/reestimate_covidI-
FR_analysis’. The IFR statistical model is available as a standalone
R-package on Github: ‘mrc-ide/COVIDCurve’ (v0.5.0)22.

Application to simulated data
Comparison of model-estimated IFR to simple IFR calculations.
The simplest IFR calculation takes the total number of deaths up
to a given time and divides by the number of infected individuals,
estimated as the percentage of seropositive individuals multiplied
by the population size. We used simulations to understand how
the delay from infection to outcomes and serologic test char-
acteristics can bias the simple, crude IFR compared with the true,
simulated IFR (Fig. 1). From simulations assuming no seror-
eversion, we found that the crude IFR tended to underestimate
the true IFR when the epidemic was growing, or overestimate the
true IFR when the epidemic was contracting (Fig. 1B). Moreover,
even after adjusting the IFR for test performance using the
Rogan-Gladen correction, a common approach to adjust for test
sensitivity and specificity12, the true IFR was only captured when
the epidemic was nearly over (Fig. 1B). These biases result from
failing to account for the delays from onset of infection to death
and seroconversion. When including seroreversion in the simu-
lation, both the crude IFR and the test-adjusted IFR increasingly
overestimated the true IFR as more time passed since the first
wave of the epidemic (Fig. 1C). This underestimation is expected,
since declining seroprevalence deflates the IFR denominator (i.e.
total number infected) while the numerator (i.e. cumulative
deaths) remains constant or increases. By contrast, our statistical
model was able to recover the true IFR accurately when analysing
simulated epidemics with and without seroreversion (Fig. 1B, C).

The statistical model is robust to different epidemic shapes and
seroreversion. We next assessed whether our model could accu-
rately infer IFR from epidemics with different shapes. Infection
curves were simulated with exponential (unmitigated) growth,
exponential growth followed by interventions that led to resolu-
tion of the outbreak, and epidemics with two waves (respectively
referred to as the Exponential Growth, Outbreak Control, and
Second Wave). In simulations we assumed two serosurveys were
conducted over days 120–130 and 170–180. The model was able
to capture the simulated true IFR value within the 95% credible
interval in all scenarios, when seroreversion was and was not
considered (Figs. 2, 3). In some instances, the model very slightly
overestimated the simulated true IFR in the younger age group
(e.g. 0.11–0.14% instead of 0.1%) whilst the older age groups’ true
IFR was always captured by the 95% credible intervals. This is
presumably due to the fewer deaths in the younger age groups.
Additionally, our model remains able to capture the true
underlying IFR in simulated data when only a single serosurvey is
conducted (Supplementary Fig. 1). Uncertainty in the IFR esti-
mates is appropriately propagated and increases when only one
survey is available.

Serologic test specificity can be informed by analysing serosurveys
by region. Correctly estimating serologic test specificity is critical
for accurately estimating IFR, particularly when seroprevalence is
low. Even an error of 1–2% in the specificity value can have a
substantial impact on IFR estimates24. However serologic test
validation studies are often based on relatively small samples
which can give misleading estimates by chance. For example, if
100 negative controls are used to measure test specificity, there is
a >20% chance of the test identifying all of these as negative, even
if the true specificity is only 98.5%. In large serosurveys where
seroprevalence varies across different regions within the survey,
serologic test specificity can be additionally informed based on
the relationship between seroprevalence and regional COVID-19
mortality. We generated the expected relationship for the simplest
case, where the IFR is constant in each region (Fig. 4A). Ser-
oprevalence and COVID-19 mortality are expected to have a
linear relationship in which the observed seroprevalence at zero
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deaths and zero infections captures the false positive rate of the
test (1-specificity). We simulated epidemics with varying
COVID-19 burdens across regions, with 0.1–10% of the popu-
lation infected (4B), and estimated test specificity from these data,
using simulated validation studies as priors (Methods). We show

that our analysis recovers a more accurate estimate of test spe-
cificity using regional data even when the validation study has by
chance generated an inaccurate result (4C).

Application to observed first-wave data
Time to seroreversion. To estimate a realistic distribution of times
to seroreversion, we used an extended set of published of long-
itudinal SARS-CoV-2 IgG N-antibody assay data collected for
~5.5–7.5 months among non-hospitalised participants with real-
time PCR-confirmed SARS-CoV-2 infections25. We fit a survival
model to these data and found the times to seroreversion could be
well characterised by a Weibull distribution. The mean time from
symptom onset to seroreversion was 190.93 days, well within
first-wave timeframes (Fig. 5, Weibull shape parameter: 2.32;
Weibull scale parameter 215.50). We selected Abbott assay data
as it demonstrated the greatest loss in sensitivity over time (i.e.
the most seroreversion), so as to look at a maximal effect of
seroreversion on IFR estimates.

First-wave data. We applied our model to 10 example serologic
surveys conducted after the first wave. These were selected for
being representative of the general population in a region or a
country, and for availability of information on COVID-19 deaths
in the area and the serologic test sensitivity and specificity
(Supplementary Table 2). We did not include surveys after
August 1st 2020, since dexamethasone and other changes in
clinical practice occurred after this time26. These changes may
have altered the IFR and our model assumes a constant IFR over
time, The overall observed seroprevalence among the studies at
the time ranged from ~1.6% in Zurich, Switzerland to 12% in
New York State, USA, while the overall crude IFR ranged from
0.33% in Denmark to 2.3% in Italy (Table 1). Age seroprevalence
did not follow a consistent pattern across settings: infection rates
were relatively constant in some studies (e.g. Brazil) while
increasing or decreasing with age in others (e.g. Spain and Eng-
land, respectively; Supplementary Fig. 2). Seroprevalence was
strongly correlated with cumulative mortality when data were
stratified by regions within a serologic study (median correlation
coefficient= 0.91, Fig. 6). However, the slope of the
seroprevalence-mortality relationship varied considerably
between studies (p < 0.001), suggesting differences in one or more
of: the serologic test performance, deaths reporting, true IFR, or
sampling bias (Fig. 6). Full model posterior estimates are given in
Supplementary Tables 3, 4, 5, 6, Supplementary Figs. 3, 4, 5 and
Supplementary Data 1.

First-wave IFR estimates. We first re-estimated the specificity of
the serologic assay for each study with regional data (Brazil,
England, Denmark, Italy, Spain, and New York State), based on
the relationship between seroprevalence and mortality (Supple-
mentary Fig. 7). We found that the estimated specificity often
differed from the reported values (Supplementary Table 5). For
example, the study in Spain reported 100% specificity (95% CI:
97.7–100%) but our estimated value was 98.79% (95% CI:
98.55–99.02%; Table 1; Supplementary Fig. 6). We used our
updated test performance estimates as informative priors in the
model-based analysis of the IFR in each survey.

Our statistical IFR model found that 2/10 included studies
(Denmark; Sweden) had highly uncertain IFRs. These results
were due to low sensitivity or specificity of the serologic tests,
leading to a large number of false positives or false negatives
relative to the observed seroprevalence (Table 1). The overall IFR
ranged from 0.49 to 2.53% (Table 1). In a subset of surveys
(Switzerland, Netherlands, Spain, and New York), the crude IFRs

Fig. 1 IFR estimates from serologic data. A Schematic showing cumulative
infections, deaths and seroprevalence with and without seroreversion over
time. We highlight the effects of delays from infection to seroconversion
(I–S Delay), to death (I–D Delay), and to seroreversion (I–R Delay) as well
as serologic test sensitivity (Sens.), serologic test specificity (Spec.) on the
observed data. The daily infection curve used as input for the simulation is
shown as the plot inset. Early in the outbreak, false positives dominate due
to low prevalence and imperfect specificity, whilst later the difference
between true cumulative incidence and observed seroprevalence is mainly
due to low sensitivity and/or seroreversion. The delays show how the
cumulative infection curve is lagged behind the observed seroprevalence.
Similarly, the contrast of the seroprevalence curve with (Obs serorev) and
without (Obs seroprev) seroreversion reveals the loss of sensitivity over
time. These simulations were used as the inputs for the results displayed in
(B, C). We used 0.1% of the simulated data at random (i.e. we do not
assume we observe the entire population through time). B Estimated IFR
over time based on a simulated epidemic that does not include
seroreversion. Here, the simulated IFR value is indicated by the dashed
black line and the grey lines indicate 100 posterior draws from the fitted
statistical model (based on the posterior probability), indicating the
capacity for our model framework to correctly recover the true IFR. Red and
yellow lines represent the simple and test-adjusted (Rogan-Gladen
correction) IFR estimates (see Main Text), calculated as if the serosurvey
had been conducted on each respective day (after day 50). In the case
without seroreversion, the IFR appears to be adequately captured by the
Rogan-Gladen correction once infections have stopped accruing (the
realised IFR appears to be slightly greater than the initial simulated true IFR
value of 0.1). C As for (B), but the simulation and statistical model both
include seroreversion. The IFR values are shown as a probability. In the case
that includes seroreversion, the Rogan-Gladen correction can no longer
adequately capture the IFR value, as seroprevalence estimates are
constantly changing. In addition, in the outbreak, when the true
seroprevalence is less than the false positive rate, adjusting for the
serologic test characteristics can result in unstable IFR estimates.
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closely matched the modelled IFRs, consistent with serologic
studies being conducted after the first wave. For Italy, where the
survey was conducted several months after the peak of the
epidemic, including seroreversion had some effect on the
estimated IFR (declining from 2.53 to 2.40%). Seroreversion
had relatively little effect on IFR estimates for other studies,
despite the assumption of rapid seroreversion in this sensitivity
analysis, which was likely to be faster than the true value in most
studies.

Age-stratified IFR estimates. We calculated a pooled IFR esti-
mate for 5-year age bands and predictive intervals, showing the
plausible range of IFRs that can be expected in a new study
population (Table 2, Supplementary Fig. 8). Analysis of first-wave
data showed that IFRs increased steeply with age, following an
approximately log-linear relationship (Fig. 7) with IFR in 5–9
year olds being around 0.01%, increasing to close to 1% in 60–65
year olds and >15% in over 90 year olds (estimates not allowing
for seroreversion). We standardised these age-specific IFR esti-
mates across four age-demographics representative of countries
in the LIC, LMIC, UMIC, and HIC wealth brackets, demon-
strating that the IFR is expected to range from 0.24% in an

average LIC to 1.1% in a HIC due to the age structure in the
population (Table 2; Supplementary Note 4). We also contrasted
our estimates to previous estimates of the IFR (Fig. 8).

Discussion
Estimating the IFR of a novel infectious disease is inherently
challenging due to the dynamic and imperfect nature of the
available data. Here we have developed a statistical framework to
account for key uncertainties in the data to provide robust esti-
mates of the IFR of COVID-19. We found that a model-based
approach was needed in order to account for biases in estimating
the IFR even after adjusting for test sensitivity and specificity. For
example, we found that the IFR was typically biased downwards
for serosurveys conducted early in the epidemic, when infections
are growing, whilst the IFR was typically biased upwards when
serosurveys were conducted after the initial epidemic wave passed
and seroreversion became more likely (i.e. decay in antibody titres
leading initially seropositive individuals to become seronegative).
As an epidemic progresses, seroreversion leads to an increasing
loss of sensitivity to detect previously infected individuals using
serologic surveys27,28. However, where data are available on the

Fig. 2 Posterior daily infections and IFR estimates from simulated data without seroreversion. A Using simulated data, we created three outbreak
scenarios where individuals who seroconverted could not serorevert: exponential growth, outbreak control, and second wave (grey lines are simulated
infection input) under two different serologic tests (Sensitivity: 85%; Specificity 95% vs. Sensitivity: 85%; Specificity 99%). The blue shading represents
100 posterior draws of the modelled infection curve, where draws were selected based on their posterior probability. B The inferred median and 95%
credible intervals (blue) versus the simulated true IFR (grey, dashed line) with two different serologic tests, in the oldest age group. For all epidemic
scenarios considered, we assume that there are two seroprevalence surveys that range over days 120–130 and 170–180 and that 0.1% of the population
was sampled.
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time to seroreversion among previously infected individuals, our
statistical framework is able to recover the correct IFR.

Our model showed that it propagated uncertainty as our esti-
mates of age-specific and overall IFRs were more uncertain
among first-wave studies reporting both a low seroprevalence and
low specificity. This increased level of uncertainty is appropriate,
as sensitivity and specificity can skew estimates of the cumulative
infection incidence derived from seroprevalence surveys, parti-
cularly when infection is not widespread and positive results may
be dominated by false positives. For example, Denmark appears
to have a lower IFR than other countries from crude IFR esti-
mates (0.33%) but was consistent with other countries after we re-
estimated test specificity from regional data and incorporated
uncertainty: 0.54% (0.38, 1.02). However, a limitation of our
model is that we did not explicitly account for death as a com-
peting hazard with seroconversion, as the observed ser-
oprevalence (i.e. model data input) is inherently calculated among
surviving individuals. As a result, if observed seroprevalences are
artificially low due to survivor bias, we may overestimate the IFR

in specific groups. Resolving this competing hazard likely requires
individual-level data but may benefit future IFR statistical models.

Applying our model to high-quality studies from the first-wave
of the COVID-19 pandemic, we found a comparatively consistent
pattern across ages, with age-stratified IFRs demonstrating an
approximately log-linear relationship with increasing age. These
results are consistent both with early reports4–6 and more recent
meta-analyses2,10, although our pooled estimate of the IFR in
high-income countries is slightly higher. Applying these estimates
directly to a specific country should be done cautiously, as factors
other than age (e.g. healthcare capacity, intervention uptake, etc.)
will affect the IFR. In addition, our selected studies do not include
representation from LMICs, which further limits generalisability.
However, comparing IFR estimates amongst different demo-
graphies does capture and explain some of the observed IFR
global variation.

Importantly, our model demonstrated that first-wave estimates
of the IFR were relatively similar when seroreversion was and was
not accounted for in the analysis. Our seroreversion parameters

Fig. 3 Posterior daily infections and IFR estimates from simulated data with seroreversion. A Three simulated epidemics were generated (exponential
growth, outbreak control, and second wave) as in Fig. 2, but now with the additional feature that individuals who seroconverted would eventually
serorevert. Grey lines indicate the simulated true infection curve under two different serologic tests (Sensitivity: 85%; Specificity 95% vs. Sensitivity: 85%;
Specificity 99%). The blue shading represents 100 posterior draws (based on the posterior probability) of the modelled infection curve (using an
exponentiated natural cubic spline), where draws were selected based on their posterior probability. B The inferred median and 95% credible intervals
(blue) versus the simulated true IFR (grey, dashed line) in the oldest age group for each of the outbreak scenarios with respect to the two different
serologic test characteristics. As above, the model accurately captures both the simulated infection curve and the simulated IFR while accounting for
seroreversion. For all epidemic scenarios considered, we assume that there are two seroprevalence surveys that range over days 120–130 and 170–180 and
that 0.1% of the population was sampled.
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were estimated using data on serial antibody titres with the
Abbott N-antibody assay from previously diagnosed non-
hospitalised COVID-19 patients25. These parameter estimates
likely represent the maximum effect of seroreversion given that

non-hospitalised individuals tend to serorevert faster than their
severe disease counterparts29, the Abbott assay has known
decreases in sensitivity over time, and our model assumption that
everyone will serorevert. Within this framework, we estimated
that over 6 months, an average of 48.25% individuals would
serorevert after seroconverting when tested with the Abbott assay.
This loss of sensitivity over 6 months exceeds that of a recent
estimate of 33% for the Abbott N-antibody assay, which may be
due to differences in disease severity and age between the study
populations30. Despite this deliberately pessimistic approach the
IFR was only marginally decreased when considering serorever-
sion, indicating that not enough time had passed for a substantial
proportion of infected people to serorevert. This suggests that
first-wave estimates of the IFR were not biased despite not
explicitly encoding this observed phenomenon into their
models2,4,10. Our model was able to accurately infer IFR from
many epidemic shapes, and only inferred IFR less accurately
when there was exponential growth and fewer deaths in younger
age groups. This limitation is largely mitigated by the con-
sideration that none of the included first-wave studies had
uncontrolled exponential growth over the first wave.

Accounting for seroreversion is becoming increasingly
important as time passes since the first epidemic waves of SARS-
CoV-2. To estimate IFR up to the current day, our model needs
further development to incorporate potential change in IFR over
time. For example in the UK, IFR was approximately halved by
the end of 2020 compared to the first wave31, likely due to
improvements in treatment and clinical practice. IFR could
potentially also increase, for example when health systems
become overwhelmed. Time-varying IFR estimates require repe-
ated serosurveys over time in the same population.

Models can only perform as well as their inputted data, and
there are limitations in the serologic and death data we used from
the first wave. We made the deliberate decision to focus on ser-
oprevalence studies that met a high bar for inclusion to limit the
amount of sampling bias introduced into our overall IFR

Fig. 4 Estimating serologic test specificity from regional data. A Expected relationship between seroprevalence and deaths per 100,000 under different
values of serologic test sensitivity and specificity, when overall IFR= 0.7% and both IFR and population age structure are constant. B Example simulation of
seroprevalence and deaths per 100,000 in different regions within a serosurvey (black), assuming varying burden of COVID-19 and population sizes
between regions, but constant test performance and IFR. Model-estimated mortality and seroprevalence (adjusted for test performance) for each region
when fitting to the simulated data (blue; error bars= 95% CrI). Serologic test performance is simultaneously estimated by the model, using informative
priors from a simulated validation study and the relationship between seroprevalence and mortality. C Initial prior specificity estimate based on a simulated
validation study including 100 true negative cases (black dashed line); by chance 100% specificity was measured in the simulated validation study,
although the true value is 98.5% (blue dashed line). The model fitted to simulated regional data is able to infer a much more accurate posterior specificity
estimate (black solid line shows posterior distribution).

Fig. 5 Seroreversion data and model fit. Persistence of seropositive test
results with the Abbott assay among an extended cohort of 101 COVID-19
patients (extended dataset based from Muecksch et al.25). The interval-
censored Kaplan–Meier survival curve with 95% confidence intervals (blue)
with censored observations (ticks) and seroreversion events (circles) is
shown for comparison. Both censoring (range 1–4) and seroreversion
events (range 0–16.16) are scaled according to the number of observations
on the given day. The fitted Weibull survival function (red) of persistence of
a serologic positive result is shown in red. The fit was estimated from
symptom onset to time of seroreversion, where the time of seroreversion
was estimated incorporating interval censoring. The mean time from
symptom onset to seroreversion was 190.93 days.
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calculations compared to other studies32. For example, we
excluded samples of patients attending clinical settings during the
pandemic, judging that they were more likely to be exposed to the
virus. This may explain why our estimates of IFR are slightly
higher than another meta-analysis2. Despite this high threshold,

several included studies were not ideal due to numerous factors:
4/10 (Denmark; Netherlands; Sweden; Zurich, Switzerland) had
seroprevalence data from blood donors, which may not be
representative of the general population. In addition, the ser-
oprevalence study in New York State recruited participants at
grocery stores, which may represent a biased study population
(Supplementary Table 2). A recent study estimated a higher IFR
in New York City based on case data and assuming the ser-
oprevalence in shoppers was higher than the general
population33. Similarly, quantifying deaths from COVID-19 has
been challenging for many countries, due to death counts being
revised over time or countries differing in approaches to counting
COVID-19 deaths. In some instances, particularly in LICs and
LMICs, deaths have been underreported34,35. Large increases in
excess deaths have also been noted during COVID-19 epidemic
waves, suggesting under-diagnosis36–38. Most countries included
in our study reported deaths amongst test-positive cases only, but
England also reported probable COVID-19 deaths39. In England,
most probable deaths without laboratory confirmation occurred
in care homes, so the difference between using probable and
confirmed deaths is likely to be greater for IFR estimates
including care-home deaths. Separately, an analysis found a
positive relationship between COVID-19 mortality rates and
excess deaths mortality rates in high-income countries, suggesting
that missed COVID-19 deaths did not explain differences in the
mortality rates between these countries2. Inclusion of non-
representative data can lead to biased fits given the limitations of
seroprevalence study designs during the first-wave19,40. Including
a larger number of studies does not make a better meta-analysis,
and future studies should carefully assess potential bias caused by
seroprevalence sampling strategies or regions with known death
underreporting.

We showed that information on the specificity of a seroassay in
the general population could be determined by contrasting trends
of cumulative deaths versus seroprevalence across regions. Iden-
tifying the specificity of a seroassay in the general population is
critical particularly when seroprevalence is low and may consist
of more false than true positives. In addition, we found that our
model was sensitive to the prior placed on specificity. Among the
studies that had region-disaggregated seroprevalence data, our
estimates of test specificity were sometimes different from esti-
mates derived from assay validation studies. Collectively, this
suggests that the large heterogeneities in the IFR between popu-
lations may in part be due to differences in serologic assay per-
formance. Serologic test sensitivity may also be lower in the
general population than in assay validation studies, as assays are
often validated in hospitalised patients with more recent severe
disease, whilst the majority of infections in the general population
have milder disease and may produce a lower41 or sometimes no
antibody response42. Additionally, assay sensitivity may be lower
in the general population due to cross-reactive antibodies and/or
a cell-mediated immune response43,44.

In summary, we provide a statistical framework to estimate
COVID-19 IFR that accounts for seroreversion as part of the IFR
estimation as well as simultaneously accounting for uncertainty in
serologic test characteristics, variation in age-specific attack rates,
and delays from infection to death and seroconversion. We
additionally show the possibility of estimating test specificity from
regional data breakdowns. We estimate that the overall COVID-
19 IFR ranges from 0.15–0.43% in low-income countries to
0.79–1.82% in high-income countries, with the differences in
those ranges reflecting the older demography of high-income
settings. The IFR is also likely to vary depending on available
healthcare and underlying health conditions. Our results suggest
that the overall risk of death from COVID-19 doubles with

Fig. 6 First-wave data: mortality versus seroprevalence. Relationship
between seroprevalence and COVID-19 mortality per 1,000,000 among
surveys which could be broken down by region.

Table 2 Pooled estimates of the infection fatality ratio.

Age-band
(years)

IFR (%) without
seroreversion (95% PI)

IFR (%) with
seroreversion (95% PI)

0–4 0 (0, 0.04) 0 (0, 0.04)
5–9 0.01 (0, 0.07) 0.01 (0, 0.07)
10–14 0.01 (0, 0.12) 0.01 (0, 0.11)
15–19 0.02 (0, 0.2) 0.02 (0, 0.19)
20–24 0.03 (0, 0.32) 0.03 (0, 0.31)
25–29 0.04 (0, 0.5) 0.04 (0, 0.48)
30–34 0.07 (0.01, 0.75) 0.06 (0.01, 0.72)
35–39 0.1 (0.01, 1.09) 0.1 (0.01, 1.05)
40–44 0.16 (0.02, 1.54) 0.16 (0.02, 1.47)
45–49 0.25 (0.03, 2.11) 0.24 (0.03, 2.02)
50–54 0.4 (0.06, 2.84) 0.38 (0.05, 2.7)
55–59 0.62 (0.1, 3.75) 0.59 (0.1, 3.56)
60–64 0.96 (0.19, 4.9) 0.92 (0.18, 4.64)
65–69 1.5 (0.35, 6.38) 1.43 (0.34, 6.03)
70–74 2.34 (0.66, 8.31) 2.23 (0.63, 7.85)
75–79 3.66 (1.23, 10.9) 3.47 (1.18, 10.27)
80–84 5.71 (2.26, 14.44) 5.41 (2.16, 13.59)
85–89 8.9 (4.09, 19.37) 8.43 (3.91, 18.21)
90+ 17.36 (9.73, 30.97) 16.4 (9.25, 29.08)
Overall (LIC) 0.24 (0.15, 0.43) 0.23 (0.14, 0.41)
Overall
(LMIC)

0.4 (0.27, 0.68) 0.39 (0.25, 0.65)

Overall
(UMIC)

0.62 (0.41, 1.01) 0.59 (0.39, 0.97)

Overall (HIC) 1.16 (0.79, 1.82) 1.1 (0.75, 1.72)

Bold and Italic values represent the overall numbers at the end.
IFR estimates were calculated by combining study- and age-specific IFR estimates in a log-linear
model. The median predicted estimate and corresponding 95% prediction intervals (PIs) are
shown above. Predictive intervals were used to express the plausible range of IFRs that can be
expected in a new study population, rather than showing our degree of certainty of our
estimates with confidence intervals. For the 90+ age group, we assumed a maximum age of 100
years. The overall IFR estimates were standardised by the population structure in a
representative low-income country (LIC), low-middle income country (LMIC), upper-middle
income country (UMIC), and high-income country (HIC), assuming equal attack rates across
age groups.
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approximately every 8 years of age. Our estimates of the IFR of
COVID-19 are consistent with early estimates and remain sub-
stantially higher than IFR estimates for seasonal influenza (<0.1%
in the USA)45. As the pandemic wanes and vaccines are allocated,
it is important to update previous IFR estimates from the first-
wave of the pandemic to reflect on and justify past interventions
and risk mitigation analyses23,46.

Data availability
All of the data, including source data for the figures and tables, are publicly available on
Github (https://github.com/mrc-ide/reestimate_covidIFR_analysis)22, and original
sources are provided in Supplementary Table 2, with the exception of raw data for the
onset to seroreversion analysis. The onset to seroreversion data cannot be made public as
it contains individual-level and identifiable patient data and is available on request (S.J.).

Code availability
The IFR statistical model, and accompanying code, is available as a standalone R-package
at Github: ‘mrc-ide/COVIDCurve’ (v0.5.0)22.
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