
1 
 

 

Covariate adjustment in cardiovascular randomised controlled trials: its 

value, current practice and need for improvement 

Running title: Covariate adjustment in cardiovascular randomised controlled trials 

Leah Pirondini MSc a, John Gregson PhD a, Ruth Owen MSc a , Tim Collier MSc a, Stuart Pocock PhD a 

a Department of Medical Statistics, London School of Hygiene and Tropical Medicine 

Word Count: 5,043 (From Introduction, including references) 

Disclosures: John Gregson has received consultancy fees from Boehringer-Ingelheim. 

Address for correspondence 

Professor Stuart Pocock 
Department of Medical Statistics 
London School of Hygiene and Tropical Medicine 
Keppel Street 
London 
WC1E 7HT 
United Kingdom 
Stuart.pocock@lshtm.ac.uk 
 
Twitter: @pocock_stuart 
Tweet: Covariate adjustment in cardiovascular randomised controlled trials: its value, current 
practice and need for improvement (121 characters with spaces) 

mailto:Stuart.pocock@lshtm.ac.uk


2 
 

Abstract 

In randomised controlled trials, patient characteristics are expected to be well balanced between 

treatment groups. However, adjustment for characteristics which are prognostic can still be 

beneficial with a modest gain in statistical power. Nevertheless, previous reviews show that many 

trials use unadjusted analyses. In this article, we review current practice regarding covariate 

adjustment in cardiovascular trials among all 84 randomised controlled trials relating to 

cardiovascular disease published in the New England Journal of Medicine, The Lancet, and the 

Journal of the American Medical Association during 2019. We identify trials where use of covariate 

adjustment led to a change in the trial conclusions. By using these trials as case studies, along with 

data from the CHARM trial and simulation studies we demonstrate some of the potential benefits 

and pitfalls of covariate adjustment. We discuss some of the complexities of using covariate 

adjustment, including how many covariates to choose, how covariates should be modelled, how to 

handle missing data for baseline covariates, and how adjusted analyses are viewed by regulators. 

We conclude that contemporary cardiovascular trials do not make best use of covariate adjustment 

and that more frequent use could lead to improvements in the efficiency of future trials.  
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Abbreviations 

RCT  Randomized controlled trial 

NT-proBNP N-terminal pro b-type Natriuretic Peptide 

EMA  European Medicines Agency 

US FDA  United States Food and Drug Administration 

SAP  Statistical analysis plan 

Trial acronyms 

CHARM  Candesartan in Heart failure: Assessment of Reduction in Mortality and Morbidity 

EXTEND  Extending the Time for Thrombolysis in Emergency Neurological Deficits 

SYNTAXES Synergy between PCI with Taxus and Cardiac Surgery Extended Survival  

REGROUP Randomized Endovein Graft Prospective 

ARTEMIS Affordability and Real-World Antiplatelet Treatment Effectiveness After Myocardial 
Infarction Study 
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Highlights 

• Too many contemporary cardiovascular trials do not use covariate adjustment in the primary 

analysis 

• Adjustment for a limited number of prognostic covariates is simple, has few risks and is 

viewed as appropriate by regulators 

• Covariates used for adjustment should be pre-specified prior to unblinding 

• Adjustment for prognostic covariates can offer a meaningful gain in statistical power  

 
Central illustration 
 
The value of covariate adjustment in clinical trials 
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Introduction 

Randomised controlled trials (RCTs) are considered the gold-standard for assessing the effect of a 

new treatment. A major reason for this is that randomisation ensures that patients receiving the 

treatment or control do not differ systematically with respect to their characteristics. It therefore 

follows that statistical adjustment for baseline covariates is not necessary to obtain an unbiased  

comparison between treatment groups. However, such adjustment for baseline covariates can often 

be beneficial, as it tends to result in a gain in statistical power [1] [2] [3] [4]. Although the theoretical 

benefit of covariate adjustment is well established within the statistical community [5] [6], previous 

surveys conducted between 2000-2013 showed that a substantial proportion of major RCTs do not 

use covariate adjustment [7] [8] [9].   

In this article we aim to review how covariate adjustment is being used in contemporary major RCTs 

by performing a survey of clinical trials published in major medical journals in 2019. We then 

illustrate some of the benefits and difficulties of using covariate adjustment. To do this we use case 

studies identified from our survey, individual patient data from the CHARM (Candesartan in Heart 

failure: Assessment of Reduction in Mortality and morbidity) trial, and simulation studies.   
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Survey of cardiovascular trials 

We surveyed all randomised controlled trials relating to cardiovascular disease published in New 

England Journal of Medicine, The Lancet, and Journal of the American Medical Association (JAMA) 

during 2019 using a standard proforma. We collected information on the study design, type of 

covariate adjustment used and number of covariates adjusted for using a standardised form. All 

studies were assessed by two authors (LP, RO).   

We identified 84 trial reports in New England Journal of Medicine (n=41), The Lancet (n=23) and 

JAMA (n=20). The majority of trials (81 out of 84) used individual patient randomisation; the 

remaining three were cluster randomised trials. 61 were superiority trials, 18 were non-inferiority 

trials, and the remaining 5 examined both. 52 trials performed time-to-event analyses using Cox 

proportional hazards models. Other common outcome types were binary (n=16) and continuous 

(n=14), which were typically analysed using logistic or linear regression, respectively. The most 

common primary outcomes were a composite of major cardiac events (n=42) or mortality (n=7).  

Of the 84 trials surveyed, 31 performed only a simple treatment comparison, unadjusted for 

baseline covariates, whereas 53 used covariate adjustment as part of their primary or secondary 

analyses (table 1). Of these 53 trials, 39 gave primary (or equal) emphasis to the adjusted results. 

Covariate adjustment was performed using either multivariable or stratified regression modelling. 

The number of covariates included in the adjusted analysis varied, with a median of two and a 

maximum of 13. Reasons for the choice of covariates were not always clearly explained but common 

themes were adjusting for variables used in the randomisation procedure, covariates expected to be 

predictive of the outcome, adjusting for the baseline value of a continuous outcome, and, to a lesser 

extent, covariates imbalanced between groups. 66 of the 84 trials reported using some form of 

stratified randomisation; of these 28 stratified by centre only. Of the 66 trials using stratified 

randomisation, 51 (77%) performed a covariate-adjusted analysis which adjusted for all (or all but 

centre) of the covariates used in the stratified randomisation (one trial was unclear). Of 53 trials 

where covariate-adjustment was performed, 22 adjusted exclusively for variables used in the 

stratified randomisation. A further 8 trials adjusted exclusively for the baseline value of a continuous 

outcome, or a combination of the baseline value of a continuous outcome and the variables used in 

stratified randomisation. 
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Of 22 trials reporting both unadjusted and adjusted results, there was a smaller p-value for 16 trials 

with covariate adjustment and 6 trials with unadjusted analyses (Supplementary Table 1). In two 

trials the adjustment affected whether the result was significant at the conventional p<0.05 

threshold, with both examples showing a significant result only after covariate adjustment.  

Case studies: We now present two examples of trials where covariate adjustment altered the 

significance of the treatment effect and two examples of trials which adjusted for a large number of 

covariates.  

The Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) trial [10] 

randomly assigned 225 patients to intravenous alteplase or placebo between 4.5 and 9 hours after 

the onset of stroke. The primary outcome was a binary 90-day score of 0 or 1 on the modified Rankin 

scale (mRS). The pre-specified primary analysis used a modified Poisson regression with robust error 

estimation [11], with age and clinical severity of stroke (National Institute of Stroke Severity (NIHSS) 

score) at baseline as covariates, with an equivalent unadjusted analysis also performed. The authors 

prespecified these covariates because they were expected to be predictive of the outcome. By 

chance, the mean age in the alteplase group was higher than in the placebo group (73.7 vs 71.0 

years) and the median NIHSS score was also higher (12.0 vs 10.0). Using an unadjusted analysis, the 

proportion of patients with an mRS score of 0 or 1 was 1.20 times higher in the treatment group 

than in the placebo group (95% CI: 0.82-1.76, p=0.35), but in the pre-specified adjusted primary 

analysis this ratio was statistically significant: 1.44 (95% CI: 1.01—2.06, p=0.04). This trial provides an 

example where appropriate use of covariate adjustment made a marked difference to the results 

and trial conclusions. The particularly strong impact of covariate adjustment in this instance 

occurred because the covariates were both strongly predictive and were, by chance, imbalanced 

such that, on average, patients in the alteplase group had a worse prognosis at baseline.  

The Synergy between PCI with Taxus and Cardiac Surgery Extended Survival (SYNTAXES) study [12] is 

a 10-year follow-up of the SYNTAX trial which compared percutaneous coronary intervention (PCI) vs 

coronary artery bypass graft (CABG) in 1,800 patients with three-vessel or left-main coronary artery 

disease. The primary outcome was all-cause death at 10 years and was analysed using Cox 

proportional hazards models in 1,689 patients with available data. The unadjusted results showed 

no significant effect: HR for PCI vs. CABG of 1.17 (95% CI: 0.97-1.41, p=0.092). An exploratory  

sensitivity analysis was performed using a multivariable Cox model with adjustment for 8 prognostic 

covariates identified using forward stepwise selection. It is unclear whether or not these covariates 

were selected using treatment-blinded data. Following adjustment the results were statistically 

significant (HR 1.23, 95% CI: 1.02-1.48, p=0.028) but as they were not pre-specified they were not 
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emphasized by the investigators. We consider in more detail how to pre-specify covariate adjusted 

analyses in the discussion section.  

The Randomized Endovein Graft Prospective (REGROUP) trial [13], which randomly assigned 1150 

patients undergoing CABG to either open or endoscopic vein-graft harvesting provides an example 

of the practical difficulty caused by missing data in covariate adjusted analyses. The primary 

outcome was the first occurrence of a major adverse cardiac event (a composite of death from any 

cause, non-fatal myocardial infarction and repeat revascularisation). The primary analysis used the 

log-rank test (unadjusted), and a sensitivity analysis used a multivariable Cox proportional-hazards 

model, adjusted for other potentially influential baseline characteristics.  Neither the unadjusted 

analysis (HR 1.12, 95% CI 0.83-1.51) nor the adjusted analysis (HR 1.07, 95% CI 0.71-1.62) showed a 

significant difference between the two treatments. However, the adjusted results were based on a 

model including complete records only (n=714), thereby excluding over a third of patients with 

missing data for any of the 13 covariates (n=436), which reduces statistical power and may affect the 

generalisability of results. We consider how to handle missing data on covariates in the Discussion.  

The Affordability and Real-World Antiplatelet Treatment Effectiveness After Myocardial Infarction 

Study (ARTEMIS) [14] was a cluster randomised trial carried out in the United States which 

investigated the effect of medication co-payment vouchers on the co-primary endpoints of 

persistence (continuation of treatment for the prescribed duration) of P2Y12 inhibitors and MACE at 

1 year. In cluster randomised trials the unit of randomisation is the entire cluster (each hospital was 

one cluster in ARTEMIS), and because there are fewer clusters than patients there is less opportunity 

for baseline characteristics to “balance out” between groups. Some baseline differences were 

therefore expected between treatment groups and the primary model was adjusted for 9 patient 

and hospital characteristics (including a propensity score containing 50 covariates prospectively 

selected based on their clinical relevance). Co-payment vouchers significantly improved persistence 

of P2Y12 inhibitors, although adjustment for patient and hospital characteristics decreased the 

strength of the effect (unadjusted OR 1.31 [95% CI 1.12-1.54, p=0.001], adjusted OR 1.19 [95% CI 

1.02-1.40. p=0.03]). There was no statistically significant effect on the MACE outcome before or after 

adjustment (unadjusted HR 0.96 [95% CI 0.80-1.15, p=0.65], adjusted HR 1.07 [95% CI 0.93-1.25. 

p=0.35]). 
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Adjusted and unadjusted analyses of the CHARM trial 

To demonstrate in more detail the impact of covariate adjustment in the context of a large 

cardiovascular trial, we used individual patient data from the CHARM trial.  

CHARM was a programme of 3 clinical trials designed to examine the effect of candesartan on 

mortality and heart failure hospitalisation in patients with chronic heart failure (CHF) [15]. The 

CHARM-Overall programme contains the data from all 3 trials and included 3803 patients 

randomised to candesartan and 3796 patients randomised to placebo. Patients were followed for a 

median of 37.7 months and the primary outcome was all-cause mortality, which occurred in 886 

(23%) patients in the candesartan group and 945 (25%) patients in the placebo group. Published 

results give an unadjusted hazard ratio of 0.91 [95% CI 0.83-1.00], p=0.055; and a covariate adjusted 

hazard ratio of 0.90 [95% CI 0.82-0.99], p=0.032. Unadjusted results were calculated using a Cox 

proportional hazards model, with stratification only by component trial. Covariate-adjusted results 

were reported to include all baseline covariates presented in Table 1 of the published report 

referenced above. Here we explore the impact of covariate adjustment (i) adjusting for each single 

covariate (one-at-a-time) and (ii) adjusting for multiple covariates via a stepwise addition of 

covariates in order of their predictive strength (from strongest to weakest).  This analysis is intended 

to demonstrate the effect of covariate adjustment. We do not propose that one needs to adjust for 

as many covariates as are given here, nor that they should be included based on their predictive 

strength in univariate analyses. 

Many baseline covariates were significantly associated with all-cause mortality (Supplementary 

Table 2), and the vast majority were well balanced between the treatment groups (Supplementary 

table 3). Table 2 provides hazard ratios and p-values before and after covariate adjustment, and the 

results are largely consistent with the expected effects of covariate adjustment. Overall, adjustment 

for prognostic risk factors tended to increase statistical power. This is reflected by the gradual 

reduction in p-value with stepwise addition of covariates, with p=0.055 in an unadjusted analysis to 

p=0.017 in an analysis containing all covariates. Adjustment for the most highly prognostic 

covariates had the greatest impact on the results. This can most easily be seen by comparing results 

when adjusting for only one covariate at a time. For 6 of the 10 most prognostic covariates (at the 

top left side of Table 2) the p-value after adjustment was less than 0.05, whereas this was the case 

for only 6 of the remaining 23 covariates. However, our analysis also shows how, for any particular 

covariate, the impact of covariate adjustment depends not only on its prognostic strength, but also 

on any slight difference in covariate values between treatment groups. As an example, age is the 

most highly prognostic covariate, but adjustment for age increases the p-value from 0.055 to 0.07. 
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This occurs because the average age is (non-significantly) higher in the control group, and therefore 

on the basis of age alone we would expect death to occur slightly less often in treated patients (i.e. 

making the observed lower death rate less surprising under the null hypothesis of no treatment 

effect). In contrast, there are slightly more patients with diabetes in the treated group, and so 

adjustment for diabetes reduces the p-value (to 0.036). In general, adjustment for the most highly 

prognostic covariates has the greatest impact on the reduction in p-value, however, for any 

particular covariate, slight chance imbalances between treatment groups also play a role. 
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Simulation study 

To gain a greater understanding of the potential gain in statistical power from covariate adjustment 

in cardiovascular trials, we performed simulation studies to mimic realistic clinical trials. We 

simulated 1:1 RCTs of either 2,000 or 8,000 patients. A treatment effect of hazard ratio 0.75 was 

chosen for the N=2,000 trial and 0.85 for the N=8,000 trial to represent realistic assumptions for 

moderate and large heart failure trials. We simulated a single continuous normally distributed 

prognostic covariate which was associated with the primary outcome with hazard ratios ranging 

from 1.25 to 2.25 per 1-SD increase in the covariate. Survival times were generated from an 

exponential distribution with a rate chosen to achieve a target power of approximately 80% in the 

N=2,000 trial and 90% in the N=8,000 trial (see Statistical Appendix for further details). For simplicity 

we assumed a fixed follow-up time of one year with no early censoring. For each treatment and 

covariate effect size, we generated 10,000 datasets, and for each dataset we used adjusted and 

unadjusted Cox proportional hazards models to calculate hazard ratios and their 95% confidence 

intervals and p-values. For each scenario we report the mean hazard ratio and 95% confidence 

interval (averaged across all simulations), statistical power (the proportion of simulations with a 

significant treatment effect at p<0.05), and the equivalent effective increase in sample size 

corresponding to the gain in power (see Statistical Appendix for details). 

Table 3A shows simulation results for the 2,000 patient trial where approximately 20% of control 

patients have the primary outcome and treatment is associated with a hazard ratio of 0.75. In each 

scenario, the adjusted analysis was more statistically powerful than the unadjusted analysis, and the 

gain in statistical power was larger when the prognostic covariate was more strongly associated with 

outcome. The gains in statistical power from using covariate adjustment in the 2,000 patient trial 

were 0.5%, 1.4%, 3.0%, 4.9% and 7.0% for the covariate’s standardised hazard ratios of 1.25, 1.5, 

1.75, 2.0 and 2.25, respectively. Another way to express this is to instead consider how many more 

patients we would need to recruit in a trial not using covariate adjustment to achieve the same 

statistical power as a trial using covariate adjustment. This ‘effective increase in sample size’ was 

1.0%, 3.6%, 7.5%, 12.7% and 19.1% for the covariate’s standardised hazard ratios of 1.25, 1.5, 1.75, 

2.0 and 2.25, respectively.  Table 3B shows very similar results for the simulated trials of 8,000 

patients.  
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Discussion 

Our survey, case studies and simulations studies demonstrate the potential benefit that can be 

achieved by adjusting for prognostic covariates in cardiovascular trials.  

Our survey found that over half of trials published in 2019 did not use covariate adjustment in their 

main analysis of the primary outcome and fewer than 10% of studies made it clear that the basis for 

adjustment was that the covariate was expected to be prognostic. The value of covariate adjustment 

can be seen in the EXTEND study where unadjusted results were by some margin not statistically 

significant, whereas they became significant in the pre-specified primary analyses which adjusted for 

baseline disease severity and age. Likewise results from CHARM-Overall were statistically significant 

following covariate adjustment whereas unadjusted results were not. HF-ACTION is another 

analogous example of a cardiovascular trial where covariate adjustment altered the trial conclusions 

[16]. Our results from CHARM also show how adjustment for the covariates most strongly prognostic 

of the outcome has the greatest impact on the results.  

Previous studies have demonstrated the benefit of adjustment for prognostic covariates on 

statistical power for trials using continuous, binary and time-to-event outcomes [5] [17] [3]. Our 

simulation study presents a simple example tailored to a typical cardiovascular randomised trial, and 

is consistent with previous work. For continuous outcomes an increase in statistical power occurs 

because adjustment reduces the standard error of the estimated treatment effect, whereas for 

binary and time-to-event outcomes the increase in power occurs due to an increase in the estimated 

treatment effect (i.e. odds ratios or hazard ratios further from the null value of 1) with a very slight 

increase in the standard error of the estimated treatment effect, leading overall to a smaller p-value. 

We found the benefits in terms of statistical power can be substantial when strong prognostic 

markers exist, as is often the case in cardiovascular trials. For example in recent trials of SGLT2 

inhibitors, each 1-SD higher NT-proBNP is associated with a hazard ratio for cardiovascular death or 

heart failure hospitalisation of roughly 1.75 [18] [19]. Inferring from our simulation results, statistical 

adjustment for NT-proBNP in trials with 80-90% power would therefore be expected to further 

increase power by around 3%, which is equivalent to recruiting around 7.5% more patients, i.e. 300 

more patients in a trial of 4,000 patients. We also found that the benefit of covariate adjustment 

was similar in simulated trials of size 2,000 or 8,000. This seems to suggest, at least for reasonably 

large trials, that the benefits of covariate adjustment are not strongly linked to trial size which is in 

line with previous research on this topic [5].  

Recently, the European Medicines Agency (EMA) [20] and US FDA [21] have both published draft 

guidance regarding the use of covariate adjustment in clinical trials. Both regulators emphasise the 
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need to pre-specify unambiguously which covariates will be included in the statistical model and 

what their form will be (e.g. linear, non-linear forms such as log-transformed, or categorical) in order 

to maintain credibility and to control the risk of false positive results. This information should be 

recorded in the SAP which should be registered publicly at sites such as clinicaltrials.gov. They also 

recommend avoiding analyses which either use post-hoc adjustment to correct for chance 

imbalances in baseline covariates, or analyses which adjust for covariates measured after 

randomisation as these may be influenced by the treatment. The EMA recommends that covariates 

that are used for stratified randomisation should also be adjusted for unless the strata were chosen 

purely for “administrative purposes”. Factors used for stratification are often chosen to balance out 

characteristics which are expected to be strongly related to outcome, so failure to adjust for such 

factors may lead to analyses which are unnecessarily conservative [22].  There is also guidance about 

the number of covariates to adjust for. The EMA suggests only adjusting for a few covariates, 

whereas the FDA simply states that the number of covariates should be “small relative to the size of 

the trial”. Our results show that it is adjustment for the most highly prognostic covariates which 

matters most, and these are often small in number. In our experience, there would be little gain in 

adjusting for more than a handful of strongly prognostic covariates in the majority of cardiovascular 

trials. 

It is important to consider the additional complexities caused by using covariate adjustment, 

although it is notable that these are usually easy to handle. The sensitivity analysis of the REGROUP 

trial shows that missing data has the potential to complicate the use of covariate adjustment. 

Missing data in covariates can be minimised by pre-specifying adjustment only for covariates where 

missing data is expected to be rare. However, in large trials some missing data is inevitable so a clear 

plan of how to handle missing data is needed. Patients with missing data on baseline covariates 

should not be excluded from intention-to-treat analyses [20], and covariates with missing data 

should not be removed from the statistical model unless the extent of missingness is substantial, and 

this has been clearly pre-specified in the SAP. Instead, one can perform imputation in order to 

incorporate such patients and/or covariates. Very simple strategies (e.g. imputing the mean value or 

using the missing-indicator method [23]) have been shown to yield unbiased estimates for 

randomised comparisons [24] [25] [26]. This makes missing data less problematic than in 

observational studies where a more sophisticated approach may be required. A further issue is how 

to choose the correct form of adjustment (e.g. linear, log-transformed or categorical).  To gain 

maximum benefit from covariate adjustment, one needs to choose the form which best represents 

the true association between the covariate and outcome. For strongly prognostic covariates the 

correct form may be well-established from previous studies. However, even if the wrong form is 
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chosen or the covariate turns out not to be prognostic, for large trials this does not cause bias or 

inflation of the risk of Type I error [27]. As it is difficult to know in advance the impact of covariate 

adjustment on statistical power, and hence sample size, we do not recommend amending sample 

size calculations, but rather allowing covariate adjustment to provide a boost to detect a true 

treatment effect. 

In our example using CHARM we demonstrated inclusion of covariates using a stepwise addition of 

covariates based on their predictive strength in the trial database. Although we are unaware of any 

reason to suspect this approach would be unreliable in similar trials, it is difficult to pre-specify 

exactly the form of each covariate and one would need to wait for events to occur in order to know 

which covariates to fit. Given that any very strongly prognostic covariates are usually known or 

suspected prior to enrolment, stepwise addition of covariates would be unlikely to offer any 

meaningful benefit to statistical power beyond our favoured approach, which is to select covariates 

based on pre-existing clinical knowledge. 

Our study has limitations. Our survey was limited to cardiovascular trials published in three medical 

journals and therefore may not be representative of all trials in a broader class of diseases and 

journals. We demonstrated the detailed effects of covariate adjustment using only one trial example 

(CHARM), but the principals are generic. Our simulation study was limited to a simple example using 

one continuous covariate, and a time-to-event outcome with fixed follow-up. However, previous 

studies have reached broadly similar conclusions when using continuous or binary outcomes. 

Previous studies have also suggested that non-informative censoring does not materially affect the 

impact of covariate adjustment on statistical power for time-to-event outcomes. Our study is limited 

to investigating the impact of prognostic covariates. Previous studies have investigated adjustment 

for imbalances in baseline covariates, but we avoided such comparisons because such analyses are 

difficult to pre-specify and tend not to have an important impact on statistical power when 

covariates are not prognostic. Our simulations and case studies examined the impact of covariate 

adjustment in superiority trials. For non-inferiority trials covariate adjustment is more technically 

challenging when margins are defined on an absolute scale. The benefit of covariate adjustment on 

statistical power is also unlikely to transfer well to non-inferiority margins if the margin is defined on 

a relative scale, because of the tendency of adjusted estimates to be both further from the null and 

have slightly larger standard errors.  

Conclusions: Covariate adjustment for prognostic covariates is simple to perform and can result in 

meaningful benefits in terms of statistical power. Despite this it is often not used in contemporary 
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cardiovascular RCTs. More widespread use of covariate adjustment could lead to more efficient 

and/or powerful RCTs in the future.  
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Statistical appendix 

Simulations: For each patient, an uncensored event times (measured in years), 𝑡, was randomly 

generated from an Exponential model using the following formula [28]: 

 

𝑡 = − 
log (𝑢)

𝜆
 exp [−(𝛽𝑥 𝑥 + 𝛽𝑧 𝑧 )] 

where: 

• 𝑢 are random numbers generated from a Uniform distribution in the range [0,1] 

• 𝛽𝑥 is the true treatment coefficient (log-hazard ratio) 

• 𝑥 is the treatment indicator, taking values of 0 for the placebo group and 1 for the active 

treatment group, randomly generated with a 50% probability of being in the treatment or 

placebo arm 

• 𝛽𝑧 is the true covariate coefficient (log-hazard ratio) 

• 𝑧 is the covariate value, randomly generated from a standard normal distribution N(0,1) 

• 𝜆 is the rate parameter for the Exponential distribution. The rate parameter 𝜆 was set so 

that, for a patient in the control arm (𝑥 = 0) with covariate value of zero (𝑧 = 0), the 

probability of an event within 1 year was 20% . To do this we set the rate parameter to 

𝜆=0.223, based on the relationship under an exponential survival model: 𝑆0(𝑡) = 𝑒−𝜆𝑡. The 

actual number of simulated events in the control arm will vary depending on the covariate 

effect size, with larger effect sizes leading to a greater number of high risk simulated 

patients, and hence more events.  

 

We considered administrative censoring only, patients with a survival time t, greater than 1 year 

were considered to be censored at 1 year (the maximum follow-up time).  

 

Effective increase in sample size: We define the number of patients required for the unadjusted and 

adjusted analyses as 𝑛𝑢 and 𝑛𝑎, respectively. These sample sizes can be expressed in terms of the 

type I error rate, α, target power, β, baseline event proportion, and estimated treatment hazard 

ratio. From our simulation results, we define 𝑍𝑢 as the mean standardised unadjusted log-treatment 

effect (i.e. 𝑙𝑜𝑔𝐻𝑅/𝑆𝐸 averaged over all simulations) and 𝑍𝑎 as the equivalent mean standardised 

adjusted log-treatment effect. Therefore, rewriting the sample size formulae 𝑛𝑢 and 𝑛𝑎 in terms of 

these standardised treatment effects, for the same target power, we obtain the approximate result: 

𝑛𝑎

𝑛𝑢
≈ (

𝑍𝑢

𝑍𝑎
)

2
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Table 1: Use of covariate adjustment in cardiovascular trials published in three major medical journals in 2019 

  No. trials 

Were primary outcome analyses done with covariate 
adjustment?   

No 31 
Yes 53 

Which analyses received more emphasis?    

Adjusted 38 
Unadjusted 14 
Equal emphasis 1 
Only unadjusted done 31 

Did covariate adjustment alter the trial conclusions 
compared with unadjusted analyses?   

Yes 2 
No 22 
Only adjusted given 29 

Number of covariates included   

1 18 
2 11 
3 9 
4 3 
5 - 7 6 
8 – 10* 3 
11 – 13 2 
Not clear 1 

Reasons for choice of covariates†   

Covariates used in stratified randomisation 24 
Centre or country adjusted for 9 
Covariates were (or expected to be) prognostic 8 
Baseline value of quantitative outcome 8‡ 

Covariates imbalanced between groups 4 
Other treatment factor in a factorial design 2 
No reason given 8 

 

*One trial used 9 covariates where 1 covariate was a propensity score incorporating 50 variables 
†More than one reason in some trials 
‡Out of a total of 14 trials where outcome was continuous/quantitative 
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Table 2: Re-analysis of the CHARM-Overall trial 

Hazard ratios, 95% CIs and p-values for all-cause mortality in the CHARM-Overall trial using (a) models adjusting for a single 
covariate and (b) models adjusting for the stepwise addition of covariates. The table is ordered from the most strongly 
prognostic covariates at the top to the least strongly prognostic at the bottom, as defined by the size of likelihood ratio test 
statistic for inclusion. Stepwise addition of covariates includes all covariates on that row of the table and above (e.g. for 
NYHA, it includes age, LVEF and NYHA). All Cox proportional hazards models are additionally stratified by component trial. 

  (a) Single covariate models (b) Stepwise adding of covariates 

Covariate 

Hazard ratio 
(Candesartan 
vs. placebo) 95% CI p-value 

Hazard ratio 
(Candesartan 
vs. placebo) 95% CI p-value 

None  - - -  0.914 (0.834 , 1.002) 0.055 

Age (years) 0.919 (0.838 , 1.007) 0.070 0.919 (0.838 , 1.007) 0.070 

Left ventricular ejection fraction (%) 0.914 (0.834 , 1.002) 0.054 0.915 (0.835 , 1.003) 0.057 

NYHA class 0.909 (0.829 , 0.996) 0.041 0.916 (0.836 , 1.004) 0.060 

Diastolic blood pressure (mmHg) 0.919 (0.838 , 1.007) 0.070 0.911 (0.831 , 0.999) 0.046 

Body mass index (kg/m^2) 0.910 (0.830 , 0.997) 0.044 0.908 (0.828 , 0.995) 0.039 

Digitalis glycoside 0.911 (0.832 , 0.999) 0.047 0.905 (0.826 , 0.992) 0.033 

B-blocker 0.911 (0.831 , 0.998) 0.046 0.899 (0.82 , 0.985) 0.023 

Diabetes Mellitus 0.907 (0.827 , 0.994) 0.036 0.903 (0.824 , 0.99) 0.030 

Previous hospitalisation for CHF 0.910 (0.831 , 0.998) 0.045 0.902 (0.822 , 0.988) 0.027 

Lipid-lowering drug 0.911 (0.832 , 0.999) 0.048 0.902 (0.823 , 0.988) 0.027 

Spironolactone 0.913 (0.833 , 1.000) 0.050 0.899 (0.82 , 0.986) 0.024 
Percutaneous coronary 
revascularisation 0.914 (0.834 , 1.002) 0.056 0.893 (0.815 , 0.979) 0.016 

Other vasodilators 0.916 (0.836 , 1.004) 0.061 0.899 (0.82 , 0.985) 0.023 

Atrial fibrillation 0.914 (0.834 , 1.002) 0.056 0.899 (0.82 , 0.986) 0.024 

Systolic blood pressure (mmHg) 0.915 (0.835 , 1.003) 0.058 0.898 (0.819 , 0.984) 0.022 

Antiarrhythmic agent 0.913 (0.833 , 1.001) 0.052 0.899 (0.82 , 0.986) 0.023 

Previous myocardial infarction 0.907 (0.827 , 0.994) 0.036 0.900 (0.821 , 0.987) 0.025 

Pacemaker implanted 0.914 (0.834 , 1.002) 0.055 0.900 (0.821 , 0.987) 0.025 

ACE inhibitors 0.915 (0.834 , 1.002) 0.056 0.900 (0.821 , 0.987) 0.025 

Heart rate (beats/min) 0.912 (0.832 , 1.000) 0.050 0.900 (0.821 , 0.987) 0.025 

Ethnicity 0.913 (0.833 , 1.001) 0.053 0.892 (0.813 , 0.978) 0.015 

Oral anticoagulant 0.914 (0.834 , 1.002) 0.054 0.892 (0.814 , 0.978) 0.015 

Stroke 0.914 (0.834 , 1.002) 0.054 0.892 (0.814 , 0.979) 0.015 

Calcium channel blocker 0.911 (0.832 , 0.999) 0.047 0.892 (0.814 , 0.978) 0.015 

Diuretics 0.916 (0.835 , 1.004) 0.059 0.893 (0.814 , 0.979) 0.016 

Sex 0.910 (0.830 , 0.997) 0.044 0.893 (0.815 , 0.98) 0.017 

Cancer 0.911 (0.831 , 0.998) 0.046 0.894 (0.815 , 0.98) 0.017 

Aspirin 0.914 (0.834 , 1.002) 0.054 0.893 (0.815 , 0.98) 0.016 

Other anti-platelet agent 0.923 (0.842 , 1.011) 0.086 0.893 (0.814 , 0.979) 0.016 

Coronary artery bypass grafting 0.912 (0.832 , 1.000) 0.049 0.894 (0.815 , 0.98) 0.017 

Hypertension 0.914 (0.834 , 1.001) 0.054 0.894 (0.815 , 0.981) 0.017 

Current smoker 0.912 (0.832 , 0.999) 0.048 0.892 (0.813 , 0.978) 0.015 

Implanted cardioverter defibrillator 0.914 (0.834 , 1.002) 0.054 0.892 (0.814 , 0.978) 0.015 

Angina Pectoris 0.914 (0.834 , 1.002) 0.054 0.891 (0.813 , 0.977) 0.014 
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Table 3: Results when using unadjusted or unadjusted analyses in 10,000 simulated clinical databases  

A: When simulating trial datasets with 2,000 patients, an event rate of 20%* in the control arm, and a hazard ratio for 
treatment of 0.75 

Hazard ratio per 
1-SD increase in 
prognostic 
covariate 

Adjusted / 
Unadjusted 

Mean estimated 
treatment effect HR 
(95% CI) 

Power 
(%) 

Effective 
increase in 
sample size 

vs. 
unadjusted 

analysis† 

Mean no. 
events 

(treated) 

Mean no. 
events 

(control) 

Mean no. 
events 
(total) 

1.25 
Unadjusted 0.751 (0.609, 0.925) 77.0% - 

157 203 360 
Adjusted 0.749 (0.608, 0.924) 77.5% 1.0% 

1.50 
Unadjusted 0.753 (0.614, 0.924) 77.8% - 

164 211 375 
Adjusted 0.750 (0.611, 0.920) 79.2% 3.6% 

1.75 
Unadjusted 0.757 (0.620, 0.925) 78.1% - 

172 221 393 
Adjusted 0.750 (0.614, 0.915) 81.1% 7.5% 

2.00 
Unadjusted 0.762 (0.627, 0.926) 77.8% - 

182 231 413 
Adjusted 0.749 (0.617, 0.911) 82.7% 12.7% 

2.25 
Unadjusted 0.768 (0.635, 0.929) 77.3% - 

191 241 432 
Adjusted 0.750 (0.620, 0.907) 84.3% 19.1% 

 

B: When simulating trial datasets with 8,000 patients, with an event rate of 20%* in the control arm and a hazard ratio for 
treatment of 0.85 

Hazard ratio 
per 1-SD 
increase in 
prognostic 
covariate 

Adjusted / 
Unadjusted 

Mean estimated 
treatment effect HR 

(95% CI) 
Power 

(%) 

Effective 
increase in 

sample size vs. 
unadjusted 

analysis† 

Mean no. 
events 

(treated) 

Mean no. 
events 

(control) 

Mean no. 
events 
(total) 

1.25 
Unadjusted 0.851 (0.769, 0.941) 88.1% - 

704 814 1517 
Adjusted 0.850 (0.768, 0.940) 88.3% 1.0% 

1.50 
Unadjusted 0.852 (0.772, 0.941) 88.8% - 

733 845 1577 
Adjusted 0.850 (0.770, 0.938) 90.0% 3.7% 

1.75 
Unadjusted 0.855 (0.776, 0.942) 88.8% - 

769 883 1653 
Adjusted 0.850 (0.772, 0.936) 91.1% 7.8% 

2.00 
Unadjusted 0.859 (0.781, 0.944) 88.9% - 

809 924 1733 
Adjusted 0.850 (0.773, 0.934) 92.3% 13.3% 

2.25 
Unadjusted 0.862 (0.786, 0.946) 88.5% - 

848 965 1813 
Adjusted 0.850 (0.775, 0.932) 93.5% 20.0% 

 

*20% event rate by the end of the simulated study. Event rate applies to patients in the control arm in whom the 
prognostic covariate is equal to 0 (the mean value).  Further details in the Statistical Appendix.  
†Effective increase in sample size corresponding to the increase in statistical power. Further details in the Statistical 
Appendix 


