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Abstract

Multivariable model-building is an important aspect of statistical analyses and should

be given careful consideration. A common issue when conducting an analysis is the

presence of partially-observed covariates. Missing data in covariates are known to

result in biased estimates of associations with the outcome and loss of power to detect

associations. The impact of missing data in the prediction context has been less stud-

ied. When using a dataset to train a model for prediction it is essential to evaluate

its performance. Two popular internal validation methods for evaluating a prediction

model are K-fold cross-validation and using the bootstrap algorithm to correct for

optimism. Methods for handling missing data in this process are not well established

and will be the primary focus of this thesis.

Multiple imputation is a method commonly used to handle missing data involving

replacing a missing value with a plausible value across multiple copies of the original

dataset and will be used here to handle the various challenges that missing data pose.

This thesis will assess how to combine multiple imputation with internal validation

techniques in an ‘ideal’ and ‘pragmatic’ setting. The use of two imputation models

is proposed, one to impute the dataset to estimate the coefficients of the prediction

model and the other to evaluate the prediction model. Consideration is given to data

leakage which can occur during the imputation process. The presence of missing data

further presents challenges when selecting covariates and flexibly modelling covariates.

An extension to the internal validation methods will include covariate selection and

assessment of the functional form of continuous covariates using fractional polynomi-

als. Finally, methods will be demonstrated using the Rotterdam breast cancer study

data which is a publicly available dataset.

The final part of the thesis turns to the handling of missing data in studies of associa-

tions. While methods for handling missing data in this context are well established for

simple settings, extensions to deal with considerations such as functional forms, covari-

ate selection and time-varying effects are more challenging, and it is not clear to what

extent they have been used in practice. This thesis presents findings from a systematic

review investigating how researchers commonly handle missing data in observational

time-to-event studies. A particular focus is given to the methods researchers used to

deal with unobserved values, assess the functional forms of continuous covariates and

select covariates for the model of interest. Recommendations for dealing with missing

values in practice while handling these complicated aspects of an analysis are given.
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1 Introduction

1.1 Background

Missing data are a common problem in observational data, occurring due to a failure to

observe a value for a covariate. This may be due to any number of reasons such as failure

to respond to questions in a questionnaire, data entry errors or patient loss to follow-up.

The presence of missing data can cause several issues for researchers when conducting a

statistical analysis. It can lead to a loss of power to detect associations between covariates

and the outcome of interest, as well as introduce bias into the estimates for these associa-

tions [1]. In addition, it can cause difficulties when making decisions on common analysis

issues. Two examples of this are the selection of covariates into a statistical model or allow-

ing for the flexible transformation of continuous covariates in the presence of missing data.

Multivariable model-building is an important aspect of many statistical analysis, being

commonly used in many types of studies. There are typically three classified aims of

quantitative research which are exploratory, causal or predictive in nature. An exploratory

model is used for descriptive purposes, it can suggest that an exposure or treatment is as-

sociated with an outcome but cannot help with drawing firm causal conclusions. A causal

model can be used to try and establish evidence for a causal relationship between a treat-

ment and an outcome. For an exploratory or causal model, the presence of missing data

can be problematic in inference as regression parameters can potentially be biased while

other covariates may incorrectly be noted to not be associated with an outcome. There

are now many recommendations in place concerning the handling of missing data in infer-

ence modelling (I have summarised recommendations in Table 4 of Chapter11). However,

another multivariable model-building setting involves prediction modelling which aims to

determine a patient’s risk of having or developing a health outcome. To date, much of

the published literature has focused on the effects of missing data in an inference setting

while the effects of missing data in a prediction modelling setting have been less formally

investigated. While much of the published literature and recommendations, which focus

on an inference setting, may transcribe to a prediction setting, it is important to note

some key differences.

Missing data in an inference setting is often concerned with bias which may be introduced

to regression parameters. However, bias in a prediction setting is only problematic if

it causes a model to produce worse predicted values. An additional difference, is using

information from the outcome when imputing missing values. In inference, maintaining

associations between imputed values and the outcome is essential. However, in a predic-

tion setting the question arises as to whether the very thing that is about to be predicted

should be used to impute missing values. Another consideration is that with inference

modelling a ‘final’ inference model is desired from which to draw associations between
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exposures and an outcome. Using missing data methods such as multiple imputation (this

will be introduced in Section1.6.2) will involve combining several analysis models together

to get one overall model. This may not be necessary in a prediction setting, which could

avoid difficulties associated with getting an overall model from multiple models which each

include different covariates or transformations of continuous covariates. In this thesis, I

will primarily focus on the handling of missing data in a prediction setting.

Covariate selection and the transformation of continuous covariates are two common deci-

sions made, in addition to missing data, during the development of multivariable prediction

models. Several systematic reviews have assessed the reporting of prediction models for

various health areas. Collins et al. (2011) [2] found that 41% of studies developing predic-

tion models for type II diabetes did not consider missing data. More recently, Navarro et

al. (2021) [3] noted that 41% of studies had handled missing data inappropriately when

developing prediction models using supervised machine-learning approaches, either omit-

ting records with missing data or using a ‘flawed’ imputation approach. Limited detail was

available from the review on why a complete-case analysis was considered flawed (there

are some circumstances for which a complete-case analysis can be acceptable to use [4]).

Similarly, Tsvetanova et al. (2021) [5] found a lack of reported detail on how missing data

are handled during the development, validation and implementation stages of a prediction

model. The handling of missing data is not solely a problem in a traditional regression-

based prediction model but also in machine-learning [6].

The TRIPOD statement [7] is a set of recommendations focusing on the analysis and

reporting of prediction models. These recommendations range from detailing the study

objectives clearly to explaining how the sample size of the study was decided and stat-

ing what type of prediction model was used. Specifically in relation to missing data, the

TRIPOD statement gives three recommendations. These are (i) stating the proportion

of missingness in each covariate, (ii) stating what method was used to handle missing

data and (iii) discussing any limitations that missing data has caused. As stated in a

systematic review on the reporting and handling of missing data in predictive research by

Masconi et al. (2015) [8], there is little consideration given to the effect of missing data in

risk prediction. Masconi concludes that formal guidelines may improve the reporting and

handling of missing data for future studies.

There are several published articles on handling missing data in prediction modelling but

advice can often conflict which can make it difficult to implement guidelines and rec-

ommendations in practice. A specific issue concerns the handling of internal validation

methods when data are partially-observed. A thorough study into combining missing data

methods with internal validation techniques is required and will be investigated in this

thesis.
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In the introduction chapter of this thesis I will detail the motivation for the work conducted

during the PhD. This will include the impact of missing data on observational studies and

how this thesis is a response to the practical question of how to combine internal validation

methods with multiple imputation. I will give an introduction to missing data, prediction

models and internal validation in this chapter.

1.2 Motivation

The tentative aim of my PhD was to develop strategies for handling missing data in

time-to-event analyses. This would have involved incorporating covariate selection, se-

lecting the functional form of continuous covariates (i.e. covariate transformation) and

the handling of time-varying effects when using multiple imputation (a method used to

impute missing values in datasets). In the first year of my PhD I focused on reviewing the

current literature on multiple imputation and conducting a systematic review concerning

how missing data are handled in practice. The systematic review covered different study

types, including studies of associations and prediction studies. This resulted in the work

presented in Chapter11and a corresponding paper was published [9]. I also investigated

fractional polynomials to handle covariate selection, covariate transformation and time-

varying effects with the ultimate aim being to combine an algorithm called ‘multivariable

fractional polynomial time’ with multiple imputation.

In November 2018 in the second year of the PhD I attended an informal missing data

discussion group where the question was raised by Professor Angela Wood regarding the

best way to combine multiple imputation and cross-validation when developing and vali-

dating a prediction model. As Professor Wood had no time to investigate this and it was

a problem which my supervisors and I found to be highly interesting, it was decided that

I would undertake a detailed investigation into the validation of prediction models in the

presence of missing covariate values as a primary aim of my PhD. I have since focused

on the handling of missing data when using cross-validation or the bootstrap optimism-

corrected algorithms.

1.3 Datasets to be used in the thesis

The majority of the data that will be used in this thesis to assess methods for handling

missing data in the development of prediction models will be simulated datasets. This

will allow for the evaluation of the methods under controlled circumstances where the

underlying data-generating processes are known [10].

In addition, the methods that perform well (based on findings from the simulation studies)
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will be applied to a real dataset. The Rotterdam breast cancer dataset is a publicly available

dataset, available fordownloadfrom the Institute of Medical Biometry and Statistics. It

has 2,982 fully-observed records and is used throughout the ‘Multivariable Model-Building’

book by Royston and Sauerbrei [11] for example analyses. In this thesis, I will use the

dataset to illustrate the final methods selected from the simulation studies.

1.4 The aim of this chapter

There are two key areas of statistical research which must be introduced in this chapter.

The first is missing data. I will briefly describe the underlying missing data mechanisms

which can cause missing values to arise, followed by discussing two common methods

(complete-case analysis and multiple imputation) which are used to handle missing data

in practice.

The second area is that of prediction modelling. I will briefly describe the uses of predic-

tion models before providing an overview of methods used for the evaluation of prediction

models, focusing on internal validation. This will detail two common internal validation

approaches (cross-validation and the optimism-corrected bootstrap) and explain several

performance measures that are used when evaluating model performance. Finally I will

introduce the concept of data leakage which will play an important role in the methods I

will propose in later chapters.

I will finish by outlining the remainder of the thesis at the end of this Chapter, giving a

brief summary of each subsequent chapter.
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1.5 An introduction to missing data

In this section I will give a brief overview of the area of missing data. As missing data

is a very common problem which arises in healthcare analyses, there are various texts

available giving a detailed overview of the area [12,13,14]. Here, I shall give a brief

introduction to the missing data concepts which are relevant to the thesis. This will

include a description of the underlying missing data mechanisms and a description of two

methods, complete-case analysis and multiple imputation, which are most commonly used

in practice to handle partially-observed data. In this section and throughout the thesis, I

will be focusing on the handling of missing data in covariates rather than outcomes.

1.5.1 Missing data mechanisms

Three ‘missing data mechanisms’ were defined by Rubin and Little (2002) [13, p. 12] to

explain the potential relationship between missing values and the rest of a dataset. Let Ri

be an indicator variable specifying whether a value is missing (1) or not (0). Let a dataset

D contain an outcome Y and a matrix of covariates X. The subset of observed and miss-

ing covariates for patient i inD are denotedDi,Obs andDi,Miss i.e. Di = {Di,Obs,Di,Miss}.

Missing completely at random (MCAR) implies that the probability of missingness is not

conditional on whether data are observed or missing.

Pr(Ri = 1 | Di,Obs,Di,Miss) = Pr(Ri = 1)

Missing at random (MAR) implies that the probability of data being missing is condition-

ally independent of the missing data given the observed data.

Pr(Ri = 1 | Di,Obs,Di,Miss) = Pr(Ri = 1 | Di,Obs)

Missing Not at random (MNAR) implies that the probability of data being missing de-

pends on both the observed and unobserved data.

Pr(Ri = 1 | Di,Obs,Di,Miss) 6= Pr(Ri = 1 | Di,Obs)

It is not possible to determine whether data are actually MAR or MNAR, though it is

possible to test MCAR against MAR (if we are willing to rule out MNAR). Instead, it is

determined by the plausibility of the missing mechanism within the context of the data.

In this thesis, I shall mainly discuss the performance of methods when data are MCAR or

MAR.
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1.6 Methods to handle missing data

A number of statistical methods have been developed for how to deal with missing data,

including weighting approaches like inverse probability weighting, looking only at the ob-

served values or imputing missing values with the mean or mode value for the covariate

being assessed. Here, I shall detail two methods: complete-case analysis and multiple

imputation. I previously stated in Section1.1that much of the published literature re-

garding missing data focused on the inference setting. Altering the missing data methods

discussed here to handle a prognostic setting, instead of the inference unbiased parameter

estimation setting, will be discussed in Chapter2.

1.6.1 Complete-case (CC) analysis

This is a common method used by researchers to deal with missing observations and is

often the default method for dealing with missing data in statistical software such as R

or Stata. It involves restricting the analysis of interest to the dataset of those who have

fully-observed data as seen in Figure1.1.

Original dataset

Y X1 X2

..
.

..
.

..
.

1
2
3
4
5
6
7
8

..
.

n0

NA

NA

NA

CC dataset

Y X1 X2

..
.

..
.

..
.

2
3
5
7
8
9

..
.

n1

NA Missing

Figure 1.1: An example of complete-case analysis. The total sample size for the data before and

after CC analysis is n0 and n1, respectively, where n1 < n0. The CC dataset is then used for the

analysis.

If data are MCAR then the results from complete-case analysis will lead to unbiased

estimates, as the records are still simply a random sample of the population. However,

this method is inefficient due to the discarding of information i.e. a smaller sample size is

used, as seen in Figure1.1. The complete-case analysis could also provide valid inference

in certain MAR scenarios such as regression analysis when the missing mechanism does not

depend on the outcome. For example, if there are missing values in either the outcome, the

covariates or both, then as long as the probability of being fully-observed is independent of

the outcome when conditioned on the covariates, a complete-case analysis will be unbiased

[12, p.24-25, 34-35].
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1.6.2 Multiple Imputation (MI)

Originally proposed by Rubin [15], the idea behind MI is to create M copies of the orig-

inal dataset and replace the missing data in each imputed dataset with plausible values

using a model. Using several imputed datasets helps to account for the uncertainty in the

estimates of interest due to the imputation process. By accounting for this uncertainty

in imputed values, multiple imputation is efficient and can produce unbiased estimates of

regression parameters and standard errors under the MAR assumption. It is also flexible

and can handle various covariate types (continuous, binary etc.) or different datasets such

as longitudinal or multi-level data. A final result is obtained by summarising across these

imputed datasets, each of which has different imputed values.

The steps in the MI process are visualised in Figure1.2and described below:

1.Create M copies of the original dataset, D.

2.Replace missing data in each copy with plausible values drawn from the posterior

predictive distribution of the missing data conditional on the observed.

� This involves first forming an imputation model with parameters ψ, f(DMiss |
DObs;ψ), under an assumption about the missingness mechanism.

� Initial values for ψ are estimated on the complete-cases. Given the initial values,

a draw of ψ can be taken from its posterior distribution. This can then be used

to impute the missing values.

� Taking draws from the model and the posterior distribution of ψ is repeated

M times.

3.Apply the analysis procedure (e.g. fit the analysis model of interest) to each imputed

dataset and get estimates of the parameters of interest, β̂m for m = 1, . . . ,M .

4.Combine or ‘pool’ these estimates using Rubin’s rules. An overall point estimate is

obtained using Rubin’s first rule ˆ̄β =
∑M

m=1 β̂m. Rubin’s second rule estimates the

total variance of ˆ̄β [16]:

Var( ˆ̄β) =
1

M

M∑
m=1

Wm +

(
1 +

1

M

)
∗ 1

M − 1

M∑
m=1

(β̂m − ˆ̄β)2

where Wm is the estimated variance of β̂m.

MI is typically conducted using the MCAR or MAR assumption, which I will focus on

within the PhD, although it can be extended to be implemented with MNAR [17].
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Figure 1.2: Diagram explaining the multiple imputation procedure. NA denotes missing values

and I represents the imputed values which replace NA.

A popular MI method is joint modelling which involves drawing values for missing data

simultaneously from a multivariate distribution, typically multivariate normal. Another

MI method is full conditional specification (FCS), which is also known as multivariate

imputation by chained equations (MICE). MICE imputes missing data by cycling through

a series of univariate conditional models for each covariate with missing values conditional

on other covariates and the outcome. When cycling through these conditional models, the

most up-to-date values for the missing covariates not currently being imputed are used

(this algorithm is clearly detailed in [18, Section 4.1]). While joint modelling assumes a

multivariate distribution for all covariates, MICE allows each covariate to have its own

individual distribution for imputing which is beneficial when dealing with missing values

in continuous, binary and categorical covariates.

1.6.3 Congeniality in MI

Xie and Meng (2017) [19] discusses congeniality which is an important concept for the

validity of MI. When applying MI, there are two models which need to be specified:

1.The analysis model:

This is the model of interest (also known as the substantive model). An example

would be a generalized linear model regressing an outcome on several covariates,

with parameters β: g(Y | X1, X2, X3, . . . ;β)

35



2.The imputation model:

This is the model used to impute the missing values in a covariate. If one covariate X1

is partially-observed, this regresses the covariate with the missing values, X1, against

all other relevant covariates in the dataset. For example: f(X1 | Y,X2, X3, . . . ;ψ)

For Rubin’s rules to hold these models must be congenial which implies there must exist

a joint model which has conditional models which corresponds to the analysis and impu-

tation models. If this is not the case the analysis model may lead to biased parameter

estimates. Auxiliary variables not included in the analysis model could be included in the

imputation model to improve efficiency of MI but would cause an uncongenial “richer”

model [12, p.64] and lead to bias in the Rubin’s rules variance estimator. Alternatively,

removing variables from the imputation model which are in the analysis model leads to a

“poorer” model which invalidates both Rubin’s rules parameter and variance estimates.

I will now give a brief example of uncongeniality. As discussed by Bartlett et al. (2015) [18],

uncongeniality can be seen in incorrect modelling of the functional form of a continuous

covariate. A covariate containing missing values, X1, has a quadratic association with the

outcome, Y , such that Y | X1, X
2
1 is normal with mean a function of X1 and X2

1 . An

imputation model could introduce bias if it assumes that X1 is conditionally normal given

Y with mean a linear function of Y . This is because the two models cannot simultaneously

hold, i.e. they are uncongenial. The imputed data will only reflect a linear relationship

with the outcome whereas the observed are associated quadratically.

1.6.4 Imputation of covariates in Cox regression

In the description of MI above, I have focused on a generic outcome Y which could be

continuous or binary. There are some special considerations needed for a time-to-event

outcome. As the Rotterdam breast cancer dataset will be used to illustrate any future

methods, the imputation of covariates in Cox regression will be briefly discussed.

Bartlett et al. [18] and White and Royston (2009) [20] have proposed methods for han-

dling missing covariate values in the case of the analysis model being a Cox model. White

and Royston suggested an approximately valid imputation model which should contain

the event indicator, other covariates X and the Nelson-Aalen estimate of the cumulative

hazard, Ĥ0(t), at the person’s observed event or censoring time. This is an uncongenial

approach unless parameters β from the analysis model and the imputation parameters are

equal to zero.

In comparison, Bartlett et al. use a modified MICE approach which accounts for the

analysis model in the imputation process in order to make the analysis and imputation

model congenial. This approach can be used in Cox, linear and logistic regression and can
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accommodate transformations of continuous covariates in the analysis model.

While the approach from Bartlett et al. is considered to be the gold standard MI approach

(because full Bayes or likelihood are superior but harder to actually do) [9], it is not, as

yet, able to handle the selection of fractional polynomials (described in Section1.7), which

are relevant to later sections of the thesis. The ‘simpler’ approaches involving multiple

imputation and MICE are able to handle fractional polynomials [21]. As such, when

imputing the Rotterdam data in Chapter10, the method from White and Royston will be

used.

1.7 Flexible transformation of continuous covariates

There are many ways to handle continuous covariates in an analysis, some of which are

not recommended. One example is to categorise a continuous covariate using ‘cutpoints’,

for example those with a covariate value between 0 and 10 are group 1, those with values

between 10 and 20 are group 2 etc. However, categorising covariates is generally not rec-

ommended due to a loss of information, the analysis results can change depending on the

cutpoints used [22] and can cause ‘jumps’ in predicted values which are ‘unnatural’ [23,

p.178-180].

A covariate is commonly included into a model as a linear term [24]. However, transforming

covariates using non-linear functions can improve the fit of a prediction model [23, p.180-

184]. Splines can be used to flexibly model covariates by increasing the degree of the

piecewise polynomials, the level of flexibility can be controlled by either the number of

knots (used to section off the data) or by changing the allocated number of degrees of

freedom. An alternative to splines for flexible covariate transformations are fractional

polynomials (FPs) developed by Royston and Sauerbrei [11] which I will focus on in this

thesis.

1.7.1 Fractional Polynomials

FPs are a method for flexibly modelling nonlinear effects of a continuous variable X1 where

X1 > 0 for all observations. FPs of degree 1 (FP1) are of the form XE
1 for E ∈ S. S is a set

of powers such that S =
(
−2,−1,−1

2 , 0,
1
2 , 1, 2, 3

)
where 0 represents a log transformation.

While this is the common set of fractional polynomials in the literature, other values can

also be considered. Due to set S including a logarithmic transformation and negative

exponents, there is a requirement that the values of a covariate X1 should be greater than

zero (X1 ∈ R+
>0). A FP of degree 2 (FP2) applied to a covariate, X1, is of the form

XE
1 = X

(E1,E2)
1 =

(XE1
1 , XE2

1 ), E1 6= E2

(XE1
1 , XE1

1 log(X1)), E1 = E2

(1.1)
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A FP of degree D in linear regression for patient i is of the form:

E[Yi | Xi] = β0 +
P∑

p=1

βpX
E
i,p (1.2)

Logistic regression uses a logit function to link the linear predictor of covariates to the

probability of having an outcome. The logit link function of a value a is log
(

a
1−a

)
. A FP

of degree D in logistic regression for patient i is of the form:

logit(P (Yi = 1 | Xi)) = β0 +
P∑

p=1

βpX
E
i,p (1.3)

A FP of degree D in a Cox model for patient i is of the form

h(ti | Xi) = h0(t) exp

 P∑
p=1

βpX
E
i,p

 (1.4)

where exponent E has dimension D and P is the number of covariates included in the

model.

One way to select among FP models (e.g. FP1 versus FP2) is by comparing the difference

in deviances to a chi-squared distribution. The appropriate degrees of freedom (DF) for

comparing models can be found in Table1.1.

Table 1.1: The degrees of freedom (DF) for comparing the difference in deviances in fractional

polynomial (FP) models. The parameters highlighted in blue indicate those related to the degrees

of freedom.

Model A Model B DF DF explanation

FP2 Null 4 Null: α0

FP2: β0 + β1X
E1
1 + β2X

E2
1

FP2 Linear 3 Lin: α0 + α1X1

FP2: β0 + β1X
E1
1 + β2X

E2
1

FP2 FP1 2 FP1: α0 + α1X
Q1
1

FP2: β0 + β1X
E1
1 + β2X

E2
1

FP1 Null 2 Null: α0

FP1: β0 + β1X
E1
1
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FP algorithm: Selecting a FP for one covariate

The FP selection (FPS) algorithm below states the selection procedure for choosing an

appropriate FP for one covariate. The default function is linear.

1.Assume a linear function for covariate X1 in the regression model for Y .

2.Choose appropriate level of Type I error ( αE) and appropriate maximum degree D,

typically D = 2.

3.Test the best FP2 model for X1 at the αE level against the null model. If the test

yields a non-significant p-value (at the chosen αE level), stop, otherwise continue.

This is equivalent to testing for an association with X1.

4.Test the best FP2 model against a linear model. If the test yields a non-significant

p-value, stop, otherwise continue. This is equivalent to testing for non-linearity.

5.Test the best FP2 for X1 against the best FP1. If the test yields a non-significant

p-value, the final model is FP1, otherwise FP2.

This algorithm can be extended to handle multiple covariates in the multivariable FP

(MFP) algorithm [11, p.117-118]. This iteratively cycles through all covariates to be con-

sidered for selection into the model and also determines whether any continuous covariates

should be transformed. The algorithm is available in AppendixA.

Combining FPs and MI

Typically MI assumes that the analysis model is fixed and already known but use of FPs

involves model selection via the MFP algorithm. Moreover, FPs require that any imputed

values be positive. Morris et al. (2015) [21] propose imputation methods for use when

covariates are transformed using FPs and the MFP model selection procedure is to be

applied. This involves either approximate Bayesian bootstrap or a rejection sampling

approach. Note that Morris et al. focused on combining MI with fractional polynomials

of degree 1, there is no satisfactory method for a degree greater than 1. Combining

FPs with MI will be covered in more detail in Chapter7where I shall use the work

conducted by Morris et al. to extend my proposed methods (which combine MI and

internal validation) to handle covariate selection and assessment of the functional form of

continuous covariates.
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1.8 Prediction Models

A prediction model aims to use various characteristics about a patient in order to predict

whether they have (or will have) an outcome of interest. A model can be written as some

function of covariates for patient i as previously seen in equations1.2-1.4.

In addition to missing data, there are various issues to consider when developing a predic-

tion model [7]. These include, but are not limited to, ensuring the sample size is sufficient

[25,26,27,28], selecting covariates into the final model and deciding on the functional

form of continuous covariates [24,29].

There are various ways to include covariates into a model. Covariate selection could be

conducted a priori by adding a pre-identified set of covariates into a prediction model.

There are other more traditional methods such as stepwise regression which iteratively

evaluates the contribution of a covariate to the model of interest. Forward selection starts

with an empty model and then includes the covariate which is most significant (based on

a predefined significance level). It proceeds to add in the most significant covariates until

either all covariates are included or the inclusion of any of the remaining non-selected

covariates to the model does not improve the ‘model fit’. Backwards selection is similar

but reversed. The model starts with all potential covariates included and then evaluates

whether the removal of the least significant covariate badly impacts the model. Stepwise

methods can be straightforward to use but the selection process can have several disad-

vantages [23, p.213] such as covariate selection instability and it can also lead to worse

internally and externally validated performance than if a full model including all covariates

had been used.

Consideration of these various issues can help to prevent the overfitting of a prediction

model to the data it has been trained in. A model which suffers from overfitting lacks

generalisability and will not perform well when predicting outcomes for previously unseen

data. Shrinkage methods such as Lasso regression are intended to help to address overfit-

ting [30] and can be used when developing a prediction model.

The development of a final prediction model is not the focus of this thesis. However, the

procedure used to develop a prediction model must also be accounted for in the validation

process. Therefore, some of the issues that surround model-building, such as covariate

selection and the transformation of continuous covariates, will feature in Chapters7-10.
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1.9 Introduction to internal validation of prediction models

When developing a prediction model it is essential to know how well the model will per-

form when used to predict the outcome for a new individual. This could be an assessment

of how well the model performs in the data it was fitted to (internal validation). Alter-

natively, validation could include assessing how well the model performs in a population

which is slightly different from that used to fit the prediction model or from a different

time period (external validation).

Internal validation involves evaluating a prediction model using the same data used to fit

it. Internal validation is typically conducted at the initial development stage to assess

the validity of the model in the setting it was trained in. External validation is usually

conducted afterwards to assess how generalisable a prediction model is. There are several

ways to internally validate a model. In this thesis, I shall briefly overview apparent

performance and splitting the data into a training and test set. I shall then detail the cross-

validation and optimism-corrected bootstrap algorithms which will be used frequently

throughout Chapters2-10. These methods are available in more detail in [23, Chapter

17]. All methods detailed in this section will be for the scenario where data are fully-

observed.

1.9.1 Apparent performance

A simple approach to model validation is one in which the prediction model is evaluated

using the same data which was used for model development. This is the simplest form of

model validation but will lead to a model performance estimate which is over-optimistic,

particularly in small samples. This is due to all of the data having been used when fitting

the model, it is therefore trained to give good predictions specifically for the dataset. The

performance estimated when evaluating a prediction model using all of the data which

trained it is known as the apparent performance. This will be relevant in Section1.9.4

when discussing the optimism-corrected bootstrap algorithms.

1.9.2 Split the dataset into a training and test set

The split sample approach involves randomly splitting a dataset into two sub-datasets. An

example is demonstrated in Figure1.3where a two third training set versus one third test

set split has been used. The observations in the training set are used to fit a prediction

model. The observations in the test set are used to evaluate how well the prediction model

(fitted to the training set) will perform on ‘unseen’ data.

The advantage of splitting the data into a training and test set is that it is very easy to

do. However, there are several disadvantages. By splitting the data into two, the overall

amount of data available to train a prediction model or to evaluate it is reduced. The
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trained prediction model is losing out on valuable information and may be at increased

risk of overfitting to the data due to a smaller sample size i.e. the model will be less

generalisable or robust to new data. In addition, the trained prediction model is entirely

dependent on the way the data has been split into the training and test sets. A different

choice of split could produce a different and either better or worse performing prediction

model i.e. the results could be unstable and highly variable.

Observations

Y
X1
X2

Figure 1.3: An example of splitting data into a training set (white) and a test set (purple).

As the training and test split is easy to visualise and understand, it will be used in

Chapter2for illustrative purposes when discussing the imputation of data for the training

and evaluation of prediction models. It also serves as a good introduction step to cross-

validation which repeatedly splits the data into training and test sets.

1.9.3 Cross-validation (CV) methods

Cross-validation can be used to internally validate the predictive performance of a clinical

prediction model. It can be thought of as repetitive splits of the data into training and

test sets. The dataset is split into K folds. Figure1.4demonstrates cross-validation in

the case where three folds are used (K = 3).

Observations

Y
X1
X2

Y
X1
X2

Y
X1
X2

Y
X1
X2

Model

1

2

3

Final

Performance

Perf1

Perf2

Perf3

PerfOverall

Figure 1.4: An example of cross-validation for K = 3. Each fold is iteratively used as a test

set (purple) to evaluate each model formed in the training set (white). The three estimates of

performance Perfk will be averaged to get an overall estimate of performance for the final prediction

model trained using all the data.

A training model is fit to the data which excludes the kth fold and the model’s perfor-

mance will be tested in the excluded fold. This process is repeated while iterating through
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the k folds for k = 1, . . . ,K. In this way, there will be K estimates of the predictive

performance (Perfk) of the K fitted models. An example of a performance measure is

the mean-squared error which will be introduced in Section1.10. These K estimates of

performance are combined by taking the mean to get an overall estimate of performance

PerfOverall =
∑K

k=1
Perfk
K .

10-fold cross-validation (K = 10) is an improvement on validation using one training and

test split as all the data are used to develop a final prediction model and it has lower

Monte Carlo error. Then, when applying cross-validation the process used to develop the

prediction model is repeated iteratively in 90% of the data (ensuring a more stable pre-

diction model for evaluation) and tested on the remaining 10%. This produces less biased

results while ensuring their variability is both reduced and less dependent on the choice of

split. The method is more computationally intensive than a simple training and test split

as K prediction models must be fitted for validation, in addition to the development of a

final prediction model for use. However, repeating the cross-validation process (repeated

cross-validation) may be necessary to obtain ‘stable’ estimates of performance [23, p. 333].

1.9.4 Bootstrap (BS) methods

The bootstrap is another method that is commonly used to internally validate the pre-

dictive performance of a clinical prediction model. A bootstrap sample involves randomly

sampling observations (with replacement) from a dataset. The number of observations

in each bootstrap sample b = 1, . . . , B is the same as in the dataset, but the bootstrap

sample may have repeated observations. The basic idea is to sample with replacement

from the dataset to train and evaluate a model. In doing so, it is expected that 63.2% of

observations are represented at least once in a bootstrap sample [31, p.253]. Here, we will

describe several versions of using the bootstrap for internal validation when there are no

missing data.

The out-of-bag (OOB) bootstrap

A simple method of using the bootstrap to validate a prediction model is to use the OOB

method. This involves taking a bootstrap sample and fitting a prediction model to it.

This ‘bootstrap prediction model’ is then evaluated in the observations which were not

sampled in the bootstrap sample. The procedure is as follows:

1.Take a bootstrap sample, b, with replacement from the original data

2.Train a prediction model in bootstrap sample b using the same analysis procedure

as intended on the original data

3.Evaluate the prediction model in those individuals who were not sampled for the

bootstrap sample (out-of-bag)
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4.Repeat steps 1-3 B times and average the estimates of predictive performance to get

an overall performance measure.

This is also known as bootstrap cross-validation and provides a lower bound for the true

predictive performance [32]. Less information is available in the bootstrap sample due

to, on average, 63.2% of observations being sampled in a bootstrap sample. This means

that the method underestimates performance compared to all observations being used in

apparent performance [32].

The standard and 0.632 optimism-corrected bootstrap algorithms

There are several variations of using the bootstrap for correcting the optimism in the ap-

parent performance estimate [33]. Here I detail two: the default method, which will be

known as the standard method; and the 0.632 variation.

Evaluating a prediction model P in a dataset D for a particular performance measure

is noted as perf(P,D). For example, perf(P,D) could be the estimated MSE value from

evaluating prediction model P in datasetD. In the following algorithm a dataset is denoted

as Dd where d represents either the full dataset (o) or the bootstrap sample (b) and a

prediction model developed in either the full dataset or bootstrap sample will be labelled

Pd for d = o, b. The standard bootstrap method uses the following steps:

1.Train a prediction model Po on the full dataset. Evaluate the performance of Po in

the original data to estimate the apparent performance, perf(Po,Do).

2.Take a bootstrap sample b from the original data. Train a prediction model Pb in

the bootstrap sample b.

3.Evaluate the performance of Pb in bootstrap sample b to estimate the bootstrap

performance (perf(Pb,Db)).

4.Evaluate the performance of Pb in the original data to estimate the test performance

(perf(Pb,Do)).

5.The bootstrap performance (of the prediction model fitted to bootstrap sample b) is

then compared to the test performance. This produces an estimate of optimism for

the bootstrap performance. This is estimated as:

Optimismb = bootstrap performanceb − test performanceb

6.Steps (2)-(5) are repeated for b = 1, . . . , B.

7.The optimism-corrected performance (OCP) is then calculated as

OCP = Apparent performance− 1

B

B∑
b=1

Optimismb
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Step 1 results in an over-optimistic performance estimate as a prediction model is trained

and evaluated in the same dataset. To adjust for this, the standard bootstrap algorithm

is utilised to estimate how optimistic the apparent performance is.

The bootstrap performance can be thought of as the apparent performance in the boot-

strap sample as it too is trained and evaluated in the same data (in this step, the data

is the bootstrap sample). To gauge how optimistic the bootstrap apparent performance

is, the model is then evaluated in the original dataset, which contains observations not

sampled in the bootstrap sample. The performance of the bootstrap model in this larger

dataset with new observations can be compared to the bootstrap performance to estimate

optimism. This attempts to replicate the scenario of evaluating Po in unobserved data, if

that option was available.

A variation of this validation method is the ‘0.632’ algorithm which is similar to the

OOB bootstrap. Figure1.5displays the key differences between the standard and 0.632

algorithms. The 0.632 algorithm differs from the standard bootstrap by evaluating the

bootstrap prediction model Pb only in those observations which were not selected in the

bootstrap sample in order to estimate the test performance. This means that Step3is ig-

nored and Step4is modified to only evaluate Pb in those not bootstrap sampled. The OCP

of the 0.632 method is (0.368×Apparent performance)+(0.632×mean(Test performance))

[31, p.253].

Original

Bootstrap b

(a) Standard algorithm

Original

Bootstrap b

Not sampled

(b) 0.632 algorithm

Figure 1.5: The difference between the standard and 0.632 algorithms for one bootstrap sample

b. The solid lined arrow starts where the prediction model was developed and points to the data

where it is evaluated. Datasets coloured in purple are used for the evaluation of a prediction model.

The 0.632 method is similar to the OOB bootstrap as both methods involve evaluating

the ‘bootstrap prediction model’ in those observations which were not selected into the

bootstrap sample. However, the 0.632 avoids the drawbacks of the OOB (underestimating

the true performance) as it uses a weighted average of the apparent performance (which

uses all observations) and the test performance.
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1.10 Performance measures

When evaluating how well a model performs using validation methods, we require some

measure by which to evaluate the model’s performance. We can typically segregate perfor-

mance measures into three categories: ‘overall measures’ (such as the mean-squared error

or Brier score [23]), discriminative ability and calibration.

An overall measure of performance uses the distance between two points to determine how

well a model performs, for example how close the predicted outcome is to the observed

outcome. It is a measure of performance regardless of whether the outcome is continu-

ous or binary. Examples of overall performance measures include the mean-squared error

when the outcome is continuous and the Brier score when the outcome is binary. These

are discussed in more detail below.

The discriminatory ability of a model measures whether a prediction model can differ-

entiate between the different levels of an outcome, for example can the prediction model

differentiate between high and low risk patients for a disease. An example of a discrimi-

natory performance measure is the area under the receiver operating characteristic curve,

which is equivalent to the c-statistic when the outcome is binary.

Finally, calibration assesses the agreement between predicted values and the outcomes

which were observed. There are several levels of calibration but in this thesis, I will focus

solely on weak calibration. The reasoning for this will be explained in Section1.10.4.

In this section, I will give a brief summary of the four performance measures which will

be used in the thesis to assess model performance. These measures are well documented

and commonly used in practice, a more detailed description can be found in [23, Chapter

15].

1.10.1 Continuous outcome: Mean-squared error (MSE)

The MSE or Mean-squared prediction error (MSPE) can be used to summarise the pre-

dictive ability of a model when the outcome is continuous. It is an overall measure of

model performance. The MSE measures how closely a model’s predicted values are to the

observed outcome, as seen in equation (1.5), and its values are non-negative (MSE ∈ R+).

A lower value of the MSE indicates that the predicted values (ŷi) are close to the values

that were observed (yi) i.e. the model has good predictive ability. The MSE is therefore

defined as:

MSE =
1

Nobs

Nobs∑
i=1

(ŷi − yi)2 (1.5)
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Nobs is the number of records used to evaluate the prediction model. In the case of

estimating apparent performance, Nobs would be the total number of records in the dataset

on whom ŷi can be produced. If using a training and test split, Nobs would be the number

of records in the test set used to evaluate the prediction model.

1.10.2 Binary outcome: Brier Score

The Brier score is parallel to the MSE when the outcome is binary. It compares the

predicted probability of the outcome happening, p̂i, to what was observed, yi using a

quadratic loss function:

Brier =
1

Nobs

Nobs∑
i=1

(p̂i − yi)2 (1.6)

The value of the Brier score estimate can range between 0 and 1. For example, if an

outcome occurs for a single observation (yi = 1) and the model is poor giving a predicted

probability of 0.2, the Brier score estimate would be (0.2 − 1)2 = 0.64, whereas a better

model may have a predicted probability of 0.8 which gives a Brier score estimate of (0.8−
1)2 = 0.04. A lower Brier score value indicates a better performing model.

1.10.3 Binary outcome: Area under the curve (AUC)

The AUC estimate assesses a model’s discriminative ability i.e. how well it can differentiate

between those who have or do not have the outcome. The AUC refers to the area under

a receiver operating characteristic (ROC) curve. An ROC curve plots the probability of

being predicted to have the outcome given you have the outcome (sensitivity/true postive

rate) against the probability of being predicted to have the outcome given you do not have

the outcome (1-specificity or the false positive rate), an example can be seen in Figure1.6.
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Figure 1.6: An example of a ROC curve (black line).
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A well-performing model will have a curve tending to the top left corner of the ROC curve

i.e. it has high sensitivity and high specificity. This equates to a higher value of the area

under the curve which can range between 0 and 1. A value of 0.5 typically indicates a

model which does not perform any better than chance, while a higher value indicates the

model is doing better than a random guess. When the outcome is binary, the AUC is

equivalent to the concordance statistic.

1.10.4 Binary outcome: Calibration

A well calibrated model should provide reliable predicted risks which correspond to the

observed proportions of the event [34] i.e. if the predicted risk of an outcome is r%, then

we expect r% of observations to have the outcome at a group-level. There are several

levels of calibration: mean, weak, moderate and strong. The moderate and strong levels

assess calibration using plots. This would make assessment in multiply imputed datasets,

within cross-validation folds or bootstrap samples within multiple repetitions of simulated

data difficult. Here, I focus on weak calibration as it evaluates deviations in the slope and

intercept i.e. quantifiable estimates.

Weak calibration requires that there is no systematic under- or overfitting or under- or

overestimation of the risks [23]. This is evaluated by assessing deviation of the slope ζ away

from 1. The logistic regression prediction model is applied to the observations which will

be used to evaluate the prediction model (such as those in a test set). Each observation i

will have a predicted probability p̂i of having the outcome. A logistic regression model is

then used to compare the predicted probabilities with the outcome which was observed:

logit(y=1) = γ + ζ ∗ p̂ (1.7)

A value of ζ < 1 indicates overfitting, which means that the linear predictor has a tendency

to give extreme values i.e. high risks are overestimated while low risks are underestimated

[34].

Deviations in the intercept α are compared to zero by constraining ζ = 1 i.e. the intercept

is estimated using an offset [23, p.300]:

logit(y=1) = α+ offset(p̂) (1.8)

A value of α < 0 implies that the predicted risks from a model are on average overestimated

and a value of α greater than zero implies that the predicted risks are underestimated.

While calibration could also be assessed when the outcome is continuous, it is not a very

popular measure for linear regression and was therefore not considered for a continuous

outcome in this thesis.
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1.11 Data leakage in prediction models

There are many considerations which must be taken into account when developing a pre-

diction model. As outlined in Section1.8some of these include considerations such as

sample size, covariate selection or how to handle missing data.

Another key consideration for the development of prediction models is that of data leak-

age. This concerns any prediction model which has an unfair advantage due to having

access to the unseen data it will be evaluated in. To explain this concept further, I con-

sider when it could arise in the situation of developing and evaluating a prediction model

using the split sample method (Section1.9.2). If the researcher trains any parameters or

hyperparameters using just the training set, then no leakage has occurred. However, if

the researcher had used all of the data to tune a hyperparameter, and then used this pre-

estimated hyperparamter value when fitting a prediction model in the training set, this

would cause data leakage. In terms of performance, data leakage can result in optimistic

estimates of performance. Even optimism correction algorithms, such as the standard or

0.632 bootstrap (Section1.9.4), are at risk of having optimistic estimates of optimism.

A very simple example of data leakage with a training and test split can be described

using the k-means clustering algorithm applied to a simple simulated dataset. The k-

means clustering method classifies a new observation to a cluster based on its proximity

to the centre of a cluster and the number of clusters k must be estimated. Looking at

all available data in Figure1.7one might state that k = 3. However, if the number of

clusters was estimated based on the training data k = 2 seems plausible. By using all of

the data to estimate the number of clusters k, information about the observations which

were not sampled for the training data has been leaked. Therefore a k-means model with

three clusters will do far better than the model with 2 clusters as would have been selected

if only the training data had been looked at.
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Figure 1.7: Simple example of data leakage: k-means

Another example could be using all available data to estimate the penalisation parameter,

λ, in lasso regression [35] and using this estimate for the lasso regression model whose

covariate coefficients were estimated using the training data only.

Data leakage will be further discussed in Section2.8by introducing the concept of data

leakage through the imputation of missing data.

1.12 Outline of thesis

An outline of the remainder of the thesis is as follows:

� Chapter2reviews the current literature on combining MI with cross-validation and

introduces key concepts that will be used throughout the thesis. I will propose

methods for combining MI with cross-validation or with the bootstrap algorithms

and discuss the concept of data leakage through the imputation process.

� Chapter3details the set-up of an extensive simulation study for data with a con-

tinuous or binary outcome. The aim of the simulation study will be to assess the

proposed methods from Chapter2which combine MI with either cross-validation

or the bootstrap optimism-corrected algorithm. The simulated data will explore

multiple factors such as different missing data mechanisms, the influence of sample

size and the effects of increasing the proportion of missingness. As the results are

extensive, they are presented in the three following chapters.

� Chapters4and5present results from the simulation study described in Chapter3.

The results in these chapters focus on the proposed methods which combine MI with

cross-validation.
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� Chapter6present results from the simulation study described in Chapter3. The

results in these chapters focus on the proposed methods which combine MI with the

bootstrap optimism-corrected algorithms.

� Chapter7introduces the use of fractional polynomials for covariate selection and

the choice of functional form when combining MI and internal validation algorithms.

� Chapter8details the set-up of a simulation study for data with a continuous out-

come. The aim of the study is to evaluate the methods proposed in Chapter7. These

methods combine MI and internal validation, while allowing for covariate selection

and the flexible transformation of continuous covariates using fractional polynomials.

� Chapter9presents the simulated data results for combining internal validation,

fractional polynomials and MI.

� Chapter10demonstrates the methods for combining MI and internal validation

which are considered to have the best properties (based on the simulation investiga-

tions) in the Rotterdam breast cancer dataset.

� Chapter11details a systematic review which investigates the handling of missing

data in observational time-to-event analyses. This review was published in the BMC

Medical Research Methodology journal.

� Chapter12contains a discussion of the methods and results presented in the thesis

and proposes potential extensions to the work that has been conducted to-date.

Appendices and a supplementary file containing plots are available at the end of the thesis.
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2 Internal validation when missing data are present in co-

variates

In this chapter I will discuss the problem that missing data present when developing

and evaluating prediction models. Current literature in the area will be discussed, as

will the intricacies of combining MI with validation techniques. Finally, I will propose

several methods for combining MI with either cross-validation or the bootstrap optimism-

corrected algorithms.

2.1 Introduction

Missing data complicate the development of clinical prediction models, determining their

performance, and their use to obtain predictions for new patients. There are three stages

to consider:

Stage 1:Handling missing data when training a clinical prediction model

Stage 2:Handling missing data while validating the prediction model

Stage 3:Handling missing data in new patients when applying the prediction model

MI is a common method used to handle missing data and may be a viable approach to

handling missing data in the prediction setting. Stage 1 has been well-researched, includ-

ing how to incorporate variable selection, functional forms of continuous covariates and

other considerations of model development when multivariable model-building. A more

exhaustive list of recommendations can be found in Table 4 of Chapter11but some ex-

amples include: Wood et al. (2008) [36] who investigated combining MI with variable

selection, Morris et al. (2015) [21] who incorporated MI with fractional polynomials to

handle variable selection and choice of functional forms of continuous covariates or Seaman

et al. (2012) [37] who investigated covariate transformations when using MI.

The bootstrap and cross-validation algorithms are commonly used to internally validate

the predictive performance of a clinical prediction model. When data are fully-observed

the algorithms are implemented, as outlined in section1.9. In this chapter, I will focus on

the second stage and start by introducing two estimand-like measures which are important

and used regularly throughout this thesis.

2.2 Pragmatic and Ideal performance

Wood, Royston and White (2015) [38] investigated the use of MI when using a prediction

model to estimate predicted values and evaluate the model’s performance. Two estimand-

like measures were detailed in this paper. These measures are defined in terms of the

practical context in which the predictions would be used for future individuals:
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� Ideal model performance focuses on an ideal clinical setting where all individuals

have fully-observed predictors

� Pragmatic model performance is based in a real-world clinical setting where

some individuals have missing predictor values

Essentially, missing data for ideal model performance can be thought of as a feature that

happens to occur in the data the prediction model will be developed in, but would not

occur in future use i.e. in the data on which new predictions are to be made. When data

is observed for a new patient it will be fully-observed and the outcome can be predicted

with no need for MI.

Pragmatic performance is relevant when missing data are present in both the development

data and the data to which the model is to be applied (i.e. it is expected that any future

patient data will also have unobserved values in predictors). The handling of missing

data in new individuals for whom predictions are to be obtained must be considered in

addition to missing data in the dataset used for model development and evaluation. An

example could involve using a complete-case analysis as the method to handle missing

data. A prediction model is coded into a software programe and will throw up an error if

an ‘input’ value for a patient is missing. In this case, predictions could only be made for

those who are fully-observed (complete-case).

The phrasing of ideal and pragmatic is arguably not helpful and gives a negative conno-

tation towards the scenario where future patients are not fully-observed. One scenario is

not ‘lesser’ simply because it is more inconvenient. However, this is the terminology that

has been chosen by Wood et al. and I will use it throughout this thesis.

2.2.1 Imputation models to assess ideal or pragmatic performance

Wood et al. focused on estimating the apparent performance of a prediction model. When

assessing ideal performance, Wood et al. [38] recommended imputing the entire dataset M

times using an imputation model which includes the outcome. This maintains the associa-

tion between the imputed values and the outcome of interest. These M imputed datasets

can each be used to train a prediction model and obtain predicted values which can be

used to estimate apparent performance (Stage 1 and Stage 2). Apparent performance was

previously introduced in Section1.9.

For assessing pragmatic performance, Wood et al. state that basing predictions on imputed

data derived using the observed outcome may bias the predictions for a new individual,

because in practice the outcome would not be available for the MI process (as it would

not yet be observed for new patients i.e. Stage 3). As such, they recommend imputing the
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entire dataset of interest using two imputation models. The first model will include the

outcome Y and will allow for the association between the outcome and missing covariate

to be maintained for model development (Stage 1). The second imputation model will

exclude the outcome and the imputed datasets using this model will be used to evaluate

the trained prediction model to estimate the apparent performance (Stage 2).

2.3 A summary of the current published literature

A description of two potential ways to combine imputation methods with val-

idation algorithms

Before commencing a summary of the published literature, I will first define two ways which

can be considered to combine imputation methods such as MI with validation methods.

The first is MI-then-Validate. This involves multiply imputing the entire dataset first and

then applying the validation method to each imputed dataset. The second is Validate-

then-MI, which involves multiply imputing within the validation algorithm. For example,

CV-then-MI would involve first splitting the entire dataset, which is partially-observed,

into K folds. Within one iteration using fold k as the test fold and the other k − 1 folds

as the training set, multiple imputation would be applied within the training and test

folds. That is, within the test fold (k), an imputation model would be fitted and used

to obtain M imputed versions of the test fold. This is repeated within the training set.

For a bootstrap method (BS-then-MI ), it would involve taking a bootstrap sample of the

partially-observed data and then applying MI to the bootstrap sample.

Literature outlining ideal and pragmatic performance

Wood et al. (2015) [38] was discussed in Section2.2. They investigated using MI for

estimating predictions and model evaluation. They defined ideal and pragmatic model

performance and focused on how best to evaluate a prediction model when using apparent

performance (Section1.9) as a validation method. For ideal performance, they recom-

mended multiply imputing the dataset (including an outcome in the imputation model)

using one set of M imputed datasets to train and evaluate a prediction model. For prag-

matic performance, they recommended using two sets of imputed datasets. The first set

would be imputed including the outcome in the imputation model. These M imputed

datasets would be used to fit M prediction models. The entire dataset would be multiply

imputed a second time, this time with the outcome excluded from the imputation model,

to produce M imputed datasets in which to evaluate the prediction models.

Literature recommending pooling performance measures instead of predicted

values

Wood et al. primarily focused on when to apply Rubin’s rules when evaluating a prediction

model using multiple imputed datasets. Option 1 involved using the M prediction models

to get M estimates of predicted values for each individual in the dataset. These M
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predicted values could then be pooled using Rubin’s first rule to get a single predicted

value for each individual. These predicted values could then be used to estimate a measure

of performance. Option 2 involved using the prediction model fitted in the mth imputed

data set to get predicted values for the individuals in the entire dataset (as they were

using apparent performance). These predicted values could then be used to estimate the

performance measure of interest. This was then repeated across the M imputed datasets,

for m = 1, . . . ,M , resulting in a total of M estimates of performance which could then

be pooled using Rubin’s first rule to get an overall estimate of performance. Wood et al.

showed that option 2 was preferred as option 1 tended to over-estimate the performance

of the MSE.

Literature recommending using one pooled prediction model for future use

In addition to options 1 and 2, Wood et al. made a comparison between using Rubin’s

rules to collapse the M prediction models into one overall prediction model versus keeping

the M prediction models separate. However, they do not state how the predicted values

should be used if the prediction models are kept separate i.e. do they recommend pool-

ing the predicted values from the M prediction models for a future individual or keeping

the M predictions separate. Differences between predicted values were observed based

on whether an overall model or the M models were used and Wood et al. stated that

an overall model could give imprecise estimates of model performance. They state that

pooling the prediction model can be used in practice as it is unlikely that researchers will

keep prediction models unpooled. Similar work conducted by Miles (2015) [39] compared

whether to use one overall model to produce predicted values or to keep the M prediction

models separate and apply Rubin’s rules to the predicted values instead. Miles concluded

that both methods perform similarly but that using one final overall model is faster and

easier to implement.

Vergouwe et al. (2010) [40] illustrated how to develop and evaluate a prediction model

using a temporal external validation dataset when missing data are present in both the

development data and the external validation data. An overall prediction model was

estimated by applying Rubin’s first rule to the M prediction models fitted to the M

imputed datasets of the ‘training’ data. This overall model was then applied to the M

imputed datasets of the external dataset. The performance of the overall model was

estimated in each imputed external dataset and Rubin’s rules were then applied to get an

averaged estimate of performance, as recommended by Wood et al. Vergouwe et al. gave

no justification for (i) estimating an overall prediction model instead of keeping the M

prediction models separate or (ii) pooling the performance measure estimates estimated

in the external dataset instead of pooling the predicted values.
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Literature recommending MI-then-Validate

While Wood et al. (2015) did not describe it as such, their main focus was on the apparent

performance setting. They discussed several potential methods for handling training and

test sets which I have summarised in Table2.1. They stated that their method 1 (which

I term the MI-then-Validate approach) may be the most appropriate when using internal

validation algorithms, such as cross-validation, but also mentioned that their method 2 (a

Validate-then-MI approach) could be used.

Table 2.1: Proposed methods by Wood, Royston and White for handling missing data in training

and test sets. For methods 1 and 2, the outcome will be included in the imputation model if ideal

performance is of interest.

Proposed Method Estimand

1 Impute the dataset and then split into a training and

test set.

Ideal or Pragmatic

2 Take the imputation model used to impute the train-

ing set and apply it to the test set

Ideal or Pragmatic

3 Impute the training and test sets separately including

outcome

Ideal

4 Impute the training and test sets separately - training

set can include outcome, test set will exclude

Pragmatic

Steyerberg and Vergouwe (2014) [41] outline steps for the development and validation of

prediction models. Their first step for developing a prediction model involves inspecting

the available data. If missing data are present they recommend imputing missing values in

this step 1 and validating the developed prediction model, using cross-validation or boot-

strap resampling, in a later step. No justification for this approach is given in the paper.

Their approach corresponds to MI-then-Validate. Similar recommendations are given by

Steyerberg (2019) [23, p.335-336]. There, Steyerberg also considered the use of bootstrap

in combination with MI. His focus is on the ideal performance setting and, citing Wood

et al., his recommendation is to first apply MI to the complete cohort and then obtain

bootstrap samples from these imputed datasets (i.e. MI-then-Validate).

Jaeger et al. (2020) [42] focused on the use of cross-validation in unsupervised learning.

Their recommendations are to impute first before applying cross-validation as they state

that this reduces variance in model error estimates. This method is discussed and critiqued

in section2.8. While they remark on data leakage (this concept was introduced in Section

1.11) being a concern while modelling they do not appear to have connected this with

the use of imputation methods. As such, their recommended method used all available

data to impute missing values. They used an unsupervised imputation approach called

k-nearest-neighbour imputation (details of this method are available in the Jaeger et al.
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paper). They compared imputing first, followed by cross-validation, with implementing

cross-validation first, followed by imputing. Their version of CV-then-impute involved

imputing the k − 1 training folds together. The same model used to impute the k − 1

folds is then used to impute the kth test fold. This is then repeated K times, with

each fold iteratively being used as the test fold. Jaeger et al. evaluated their methods

using simulated data. Their outcome was continuous, the performance measure of interest

was the root-MSE (MSE0.5 i.e. this is a study-level performance estimate rather than a

simulation performance measure) and they generated datasets of sample size 100, 500,

1,000 and 5,000.

Literature recommending Validate-then-MI

Musoro et al. (2014) [43] focused specifically on combining MI with, what I will term, the

standard optimism-corrected bootstrap algorithm (Section1.9.4). They stated that all

available data, including the outcome, were used when multiply imputing (i.e. fitting the

imputation model and drawing imputed values). I therefore suggest that they were im-

plicitly estimating ideal model performance. Both Validate-then-MI and MI-then-Validate

were considered and the apparent performance was estimated in the same manner for each

combination, as follows. The entire dataset was imputed M times and a prediction model

fitted to each imputed dataset. One overall prediction model was then estimated using

Rubin’s rules. This overall prediction model was then evaluated in the same M imputed

datasets. The M estimates of performance were then averaged to estimate the apparent

performance. Three versions of MI-then-Validate were considered, each version involved

applying the bootstrap algorithm to M imputed datasets. Version (i) involved applying

the bootstrap sampling procedure each time to the M imputed datasets i.e. obtaining

bootstrap samples separately in each of the M imputed datasets, so that the samples in

each imputed dataset are different. Version (ii) involved using the same set of B bootstrap

samples in each imputed dataset i.e. the bootstrap samples are fixed. Version (iii) applied

the bootstrap sampling procedure to one imputed dataset (i.e. M = 1). In order to

multiply impute within the bootstrap procedure (Validate-then-MI ), a bootstrap sample

is multiply imputed M times and a prediction model is fitted to each imputed bootstrap

sample. These M prediction models are pooled to get one overall prediction model for the

bootstrap sample (i.e. one overall prediction model per bootstrap sample). This overall

model is then used to estimate the bootstrap performance in the M imputed datasets of

the bootstrap sample. Rubin’s rules are applied to get an average estimate, and this is

referred to as the bootstrap performance. The overall model is next applied to each of the

M imputed datasets (containing all observations) to get M estimates of the test perfor-

mance, and these are then averaged using Rubin’s rules.

Musoro et al. evaluated their proposed methods using a simulation study with a contin-

uous outcome. One thousand simulated datasets were generated for a number of data-
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generating scenarios. Methods were assessed when the sample size was 500 or 1000 and

the MSE (Section1.10) was used as the performance measure of interest. Performance

estimates from the Validate-then-MI and MI-then-Validate methods were then compared

to estimates from a simulated ‘external validation set’ with no missing data. Version (i)

of MI-then-Validate (allowing the bootstrap samples to vary across the imputed datasets)

was found to underestimate the estimate of optimism i.e. bootstrap performance-test per-

formance was smaller than expected. Musoro et al. conclude that multiply imputing

within the standard algorithm is recommended (Validate-then-MI ).

Wahl et al. (2016) [44] investigated Validate-then-MI and MI-then-Validate methods to

combine multiple imputation with several internal validation algorithms. These internal

validation methods were bootstrapping (standard, 0.632, 0.632+), K-fold cross-validation

and subsampling. For MI-then-Validate they imputed the entire dataset, using one set of

M imputed datasets, and then applied the validation algorithm. MI-then-Validate was

considered for both ideal and pragmatic performance due to the inclusion and exclusion

of the outcome in the imputation model. For Validate-then-MI, the outcome was included

in the imputation models fitted to the ‘training’ and ‘test’ sets (i.e. this is an assessment

of ideal performance). Specific details on how each internal validation was combined with

MI for the MI-then-Validate methods were difficult to ascertain as the methods were pre-

sented in a diagram. I will summarise my interpretation of their Validate-then-MI method

using the 0.632 bootstrap algorithm as an example. A bootstrap sample is taken from

the entire partially-observed dataset. This bootstrap sample is then multiply imputed M

times (including the outcome in the imputation model fitted to the bootstrap sample).

The observations which were not selected into the bootstrap sample are also imputed M

times using a separately fitted imputation model (the outcome is included in the impu-

tation model fitted to the not-selected observations). A prediction model is fitted to the

mth imputed dataset within a bootstrap sample. This prediction model is then evaluated

in the mth not-selected imputed dataset. This is repeated M times to get M estimates

of performance for the bootstrap sample. These M estimates are then averaged using

Rubin’s first rule to get an overall estimate of performance. This is then repeated for the

B bootstrap samples.

Wahl et al. used simulation studies to evaluate the various methods. These focused on

datasets with a binary outcome and multiple factors were varied, such as sample size (100,

200, 500 and 1000) and the number of covariates included in the prediction model (1, 5,

10, 20). Two hundred and fifty simulated datasets were generated to assess performance in

each data-generating scenario. The AUC, Brier score and calibration intercept and slope

were used as performance measures. Wahl et al. concluded that the Validate-then-MI

methods are preferred as they typically provide ‘unbiased estimates’. In addition, Wahl

et al. found that increasing the number of imputed datasets beyond 5 had little effect on
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the performance estimates but increasing the number of bootstrap samples from 10 to 50

improved accuracy of the estimates.

Mertens, Banzato and de Wreede (2020) [45] focused on combining cross-validation with

MI using a Validate-then-MI method. Three variations of Validate-then-MI were con-

sidered. For version (i), they propose first assigning observations randomly to K folds.

Within one iteration of cross-validation, fold k is used as a test fold and the remaining

k−1 folds are used as a training set. The observed outcomes in the test fold are temporar-

ily set as missing. All K folds are then imputed together using multiple imputation (the

imputation model includes the outcome) with M = 1 (i.e. one imputed dataset is used). I

therefore suggest that they were implicitly estimating pragmatic model performance. The

prediction model fitted to the k − 1 imputed training folds is then used to get predicted

values for the imputed kth fold. This is repeated for k = 1, . . . ,K until every observation

has a predicted value. This entire process is then repeated, with the observations assigned

to K different folds and imputed in a similar manner. Overall, each observation will have

K predicted values and these are then averaged. These averaged values for each observa-

tion in the dataset can then be used to estimate performance.

Version (ii) is similar to version (i) except M > 1 and each observation is only assigned

to a fold once (i.e. there is no repeating of the entire process as there is in version (i)).

Observations are randomly assigned to K folds. For one iteration of cross-validation where

the kth fold is used as the test set, again the outcomes in the test fold are temporarily

set as missing and the entire dataset is imputed together (with the outcome included in

the imputation model). The M imputed datasets are then split into M imputed k − 1

training folds and M imputed test folds. Prediction models are fitted in the M training

folds and Rubin’s rules are used to estimate one overall prediction model. This overall

prediction model is used to get predicted values in the M imputed test folds. This is then

repeated for k = 1, . . . ,K so that each observation will have M predicted values which

are then averaged. The averaged predicted values for each observation in the dataset can

then be used to get a performance measure of interest. Version (iii) is similar to version

(ii) as the M imputed test folds are collapsed into one imputed test fold by averaging the

M imputed values for each observation which had missing values.

Mertens et al. evaluated their three methods on two ‘real’ data sets of sample size 524

(153 deaths and 38 censored records) and 694 (184 deaths and 46 censored records). They

focused on a time-to-event outcome and the Brier score was used as a measure of accuracy.

An additional simulation study was used to simulate a binary outcome. The simulation

study used a sample size of 1,000 and considered an increasing number of imputed datasets

M = 1, 10, 100. Overall, Mertens et al. found version (i) to be the preferred approach,

recommending that averaging the M predicted values is preferred instead of using an
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overall prediction model (as used in versions (ii) and (iii)).

Literature concerning stage 3: handling a new/out-of-sample individual

Both Fletcher and Blume (2018) [46] and Hoogland et al. (2020) [47] focus on the third

stage of applying the prediction model in a missing data context i.e. how to obtain a

predicted value for a new patient with missing observations. This stage is not the main

focus of this thesis. Fletcher and Blume use a specific submodel for each missing data

pattern. They note that their pattern submodel approach performed well and is easy to

use in practice. When data are MCAR or MAR, they state that submodels and MI will

have similar predictive accuracy. Hoogland et al. compares submodels based on observed

data, marginalization over the missing variables and MI (using MICE). They found that

using submodels or MI by fixed chained equations performed well, based on the C-statistic

performance measure, when obtaining predictions for individual new patients.

Summary of this literature review

There is a wide array of literature in this field which often provides conflicting advice. It is

possible to find literature stating that either MI-then-Validate or Validate-then-MI is the

preferred way to combine MI and internal validation algorithms. In addition, much of the

published literature has focused on the ideal performance estimand. Recommendations

for the pragmatic performance of Validate-then-MI involve the removal of the outcome

from the list of variables which should be included in the imputation model.

In addition, there are many ways to combine cross-validation with MI or the bootstrap

methods with MI. One can average M prediction models (fitted within imputed training

datasets) to get one overall prediction model, which can estimate predicted values in M

test sets. Alternatively one can evaluate a prediction model fitted in the mth imputed

training set and evaluate it in the mth imputed test set, repeating this for imputed train-

ing and test datasets m = 1, ...,M . Recommendations from Wood et al. (2015) state that

it is preferable to pool the performance estimates, rather than predictions. Whereas, when

combining MI and cross-validation Mertens et al. (2020) recommend pooling predicted

values and then using those to estimate a performance measure estimate.

Miles (2015) recommended pooling M prediction models to get one overall prediction

model which can be used to estimate predicted values. Wood et al. (2015) note that using

a pooled prediction model may give imprecise estimates of model performance, especially

if the regression parameters are very different across the M imputed datasets but argue

that, it is unlikely unpooled prediction models would be used in practice.

The aim of this chapter is not only to explore pragmatic performance methods, but also to

explore combining cross-validation or the bootstrap with MI in more detail than has been
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considered in the current literature, while taking into account the recommendation from

Wood et al. to pool performance estimates rather than predicted values. In addition, I

provide principled justification to determine the best way to incorporate these methods

when the ideal or pragmatic setting is of interest.

2.4 A short note on pooling prediction models versus keeping prediction

models unpooled when internally validating

Within this chapter I will propose methods for combining internal validation methods

(cross-validation and the optimism-corrected bootstrap algorithms) with MI. Due to the

nature of MI, there will be M prediction models used to estimate predicted values when

applying internal validation. There are three potential ways to use these M prediction

models. Option (i) involves pooling the M prediction models to get one ‘overall’ predic-

tion model. This prediction model can then be used to get one predicted value for each

new individual. Options (ii) and (iii) involves keeping the M prediction models unpooled

and estimating M predicted values for each individual used to evaluate the prediction

models. Option (ii) will pool these predicted values to get one overall predicted value

for each patient. Option (iii) involves keeping these predicted values unpooled, estimat-

ing the performance for each prediction model and then pooling the performance measure.

For all of the methods proposed in this section I will proceed with option (iii). This

involves keeping the prediction models unpooled for one bootstrap sample or within one

iteration of cross-validation (for example, M predicted values per individual per fold).

As stated by Wood et al. [38], pooling predicted values (option (ii)) can over-estimate

performance. Wood et al. also state that a pooled prediction model (option (i)) can give

imprecise estimates of model performance if the regression parameters are very different

across imputed datasets. In addition, all methods proposed in this chapter will be ex-

tended to handle covariate selection and transformations of continuous covariates when

fitting a prediction model in Chapter7. Not only could regression parameters potentially

be very different across imputed datasets, there is also the possibility that included covari-

ates or the functional form of continuous covariates could vary across imputed datasets.

Pooling prediction models that have selected different covariates for inclusion or which

have different transformations for continuous covariates is possible [21,36] but an unnec-

essary layer of added difficulty for a researcher in practice when prediction models can

just as easily be kept unpooled.

2.5 Using separate imputation models to impute the training and test

sets

In this section, I will propose the use of two imputation models regardless of whether ideal

or pragmatic performance is of interest. For explanatory purposes, I will focus on a simple
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setting where a dataset will be split into a training set (to fit a prediction model) and a

test set (to evaluate the prediction model). The dataset will contain an outcome, Y , a

partially-observed covariate X1 and a fully-observed covariate X2.

A lot of the literature to date has focused on using one set of imputed datasets to train and

evaluate prediction models. For example, Wahl et al. and many others who assessed the

MI-then-validate approach ([44,43,23]) produced one set of imputed datasets for which

to train and evaluate a prediction model.

I argue that two separate imputation models should be fitted, which would in turn produce

two sets of imputed datasets, regardless of whether your target is the ideal or pragmatic es-

timand. One of these imputation models (the training imputation model) and the imputed

datasets it produces should be used for training a prediction model. The other imputation

model (the test imputation model) and the imputed datasets it produces can be used to

evaluate the prediction models. Two imputation models and two sets of imputed datasets

should be used even if both imputation models contains the same covariates. If using

one set of imputed datasets which are then split into a training and test set, the imputed

training and test sets are correlated due to the same imputation model parameters hav-

ing been used for the MI process, leading to optimism that would not be detected. More

specifically when using one set of imputed datasets for ideal performance, the imputed test

sets are correlated with the observed training set records due to the inclusion of the train-

ing set’s outcome in the MI process. Similarly, the imputed training sets are correlated

with the observed test set records. This correlation will be further discussed in section2.8.

Whether focusing on ideal or pragmatic performance I suggest the use of two separate sets

of imputed datasets, one set specifically for estimating the coefficients of the prediction

model and the other set used for evaluating models.

2.5.1 A simple scenario with a single training and test split

To set up ideas, I will work through a very simple hypothetical description in the following

sections. In the simplest validation procedure the original data {Y,X1, X2} can be split

randomly into a training and test set as seen in Figure2.1. Y and X2 are both fully-

observed while X1 contains missing values. The training and test set will be imputed

separately using a training and test imputation model. There will be Mtrain imputed

datasets of the training set and in each one, a prediction model will be fitted. The test set

will be imputed Mtest times and used to evaluate each of the Mtrain prediction models.
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Y
X1
X2

Original dataset

Training set

Training imputation model

Training imputed
dataset 1

..
.

Training imputed
dataset Mtrain

Test set

Test imp. model

Test imp.
dataset 1

..
.

Test imp.
Mtest

Figure 2.1: An example of splitting data into a training set (white) and a test set (purple). The

training set is multiply imputedMtrain times, fitting the imputation model only to the observations

in the training set. This is repeated for the test set.

2.5.2 Relating the training and test imputation models to ideal and pragmatic

performance

In Figure2.1, a training and test imputation model was used to impute the training

and test sets. In practice, when implementing either the ideal or pragmatic setting, the

training imputation model should include the outcome and any relevant covariates which

will improve the quality of the imputed values. Inclusion of the outcome will maintain

the association between it and the values of the variable being imputed in the training

set. However, multiple imputation of the test set will vary depending on whether ideal or

pragmatic performance is of interest. For ideal and pragmatic performance, the training

imputation model will both include the same relevant covariates (X2) and the outcome

(Y ). It is the test imputation model which is different depending on the estimand. Table

2.2describes test imputation models for ideal or pragmatic performance in a training and

test split scenario (Figure2.1), where X1 is a covariate with missing values, X2 is a fully-

observed covariate and Y is the outcome.

To estimate ideal performance, the outcome Y can be included in the test imputation

model for imputing the test set in order to maintain the association between the imputed

values and the outcome. This replicates the scenario of a new patient being fully-observed

i.e. there will be no missing values in X1 and therefore the underlying true data-generating

process relating X1 to Y will be maintained, under the assumption of missing-at-random.
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Table 2.2: Imputing a covariate with missing data, X1, in the test set under an ideal or prag-

matic performance estimand. X2 and Y are a fully-observed additional covariate and outcome,

respectively.

Estimand Method Test imputation model Comments

Ideal X1 = f(Y +X2;ψ) Using observed values of Y when fitting

imputation model.

Pragmatic A Y = f(X1 +X2;ψY ) Values of Y in test set are set as

missing. Both Y and X1 are imputed.

Discard the imputed values of Y .

X1 = f(Y +X2;ψ)

B X1 = f(X2;ψ) Y removed completely from test impu-

tation model.

f(A;ψ) denotes the imputation model; A represents the covariates to be included

in the imputation model and model parameters ψ

When estimating pragmatic performance, future patients are expected to have missing

values in X1 under the same mechanism as in the current data used to train the model.

While it is possible to include the outcome Y in the test imputation model when estimat-

ing pragmatic performance (Pragmatic A) the actual observed values of Y in the test set

should not be included, since these would not be available to impute X1 in a practical

context. In these ‘mock future patients’, the outcome Y will not be known in practice

and therefore cannot be included to impute the missing values of X1. Instead, Y can be

treated as if it were missing and imputed in the MI process. These imputed Y values

can then be used to impute X1. The imputed values of Y will then be discarded. The

imputed values of X1, alongside the fully-observed X2, can then be used to predict the

outcome Y . The intuitive justification for Pragmatic A is that the association between

the imputed values of X1 and Y is maintained while also ensuring that X1 is not using the

observed values of Y as these would not be available for future patients. However, this ap-

proach may be difficult to implement in some situations. For example, in Figure2.1if we

wished to multiply impute the test set independently of the training set using Pragmatic

A, all observed values for Y would be temporarily ‘set’ to be missing and would have to

be imputed. However, now that the entire outcome is ‘missing’ in the test set the ques-

tion then arises on how Y can be imputed when there are no observed Y for the MI process.

One possible solution would be to take all of the original data, set the Y values for the

patients selected to be in the test set as missing and then impute Y and X1 as outlined in

Table2.2method Pragmatic A. After imputing, the imputed dataset is restricted to those

patients which are in the test set. However, in implementing this solution it is ensured

that the test imputed datasets are correlated with the training set as the available outcome

values from the training set are used.
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Alternatively, Pragmatic B ensures complete independence of the training and test datasets.

The outcome Y can be removed completely from the test imputation model and the other

relevant covariates can be used to impute the missing values to estimate pragmatic perfor-

mance (Pragmatic B). In the example in Figure2.1, X2 can be used to impute X1. While

this model does not maintain the association between the missing values in the covariate

and the outcome in the test set, it may be the only feasible model available for certain

validation procedures. However, the training imputation model when estimating prag-

matic performance should include the outcome, even if the outcome will be excluded in

the test imputation model, in order to avoid bias to the parameters of the prediction model.

While one could argue that in a prediction setting we are less interested in the bias of

model parameters, these parameters are used to estimate predicted values for new ob-

servations. Therefore, bias in the parameters will influence the predicted values. An

alternative approximately unbiased single imputation method for the pragmatic setting

could be to impute a missing value using the mean of X1 conditioned on other covariates

(i.e. a complete-case analysis estimate of E[X1 | X2;ψ]) [48]. However, this would only

produce unbiased estimates of β under MCAR.

In this section I have detailed the use of imputation models in relation to ideal or prag-

matic performance. For the description, I have used a simpler validation technique which

involves splitting a dataset into a training and test set (Figure2.1). This serves as a good

introduction to the application of imputation models to cross-validation which allocates

data to K folds and then splits the observations into a training set (folds 1 to k − 1) and

a test set (fold k), iteratively using each fold as a test set.

In the following sections I will detail methods which will either:

� multiply impute the data first, followed by applying the validation algorithm to each

of the multiply imputed datasets. This will be known as MI-then-Validate where

validate could be cross-validation or bootstrapping

� apply the validation algorithm first, followed by MI. For example, split the data

into K folds and then split the data into a k − 1 training set and kth fold test set,

or take a bootstrap sample of the dataset. Then the k − 1 training set, the k fold

test set or the bootstrap sample can be multiply imputed. This will be known as

Validate-then-MI
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2.6 Proposed methods for Cross-validation

When combining cross-validation with MI the order in which each algorithm should be

implemented must be considered. This accounts for whether to multiply impute first and

apply cross-validation to each imputed dataset or whether to cross-validate first (apply

the K-fold splitting first) and then multiply impute the folds. Table2.3details several

possible methods for combining the two when cross-validating first followed by MI in a

pragmatic setting. While I use the MSE as the performance measure of interest to describe

the methods, the methods are the same for other performance measures, for example: the

AUC or Brier score.

The methods in Table2.3can be classified according to how to impute the training folds

within one iteration of cross-validation. Impute training folds separately (Method A),

impute the k − 1 training folds together (Methods B, C, F, G, I) or impute all folds

together and then exclude fold k (Methods D, E, H).
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Table 2.3: Methods for combining cross-validation and MI for a pragmatic scenario when a

covariate is partially-observed. Cross-validation will be applied first (i.e. observations will be

randomly assigned to K folds), followed by MI.

Pragmatic performance

Training Test Method

1.Separately in each fold k = 1, . . . ,K, fit

a training imputation model which in-

cludes Y and produces Mtrain imputed

datasets for each fold i.e. impute each

fold separately.

2.For the folds to be used for train-

ing (folds−k) combine together their

imputed datasets to make a training

set of K − 1 folds for each mtrain =

1, . . . ,Mtrain - this will produce Mtrain

training imputed datasets.

3.Fit a prediction model to each of the

Mtrain training imputed datasets, to

get models Pmtrain . Keep the models

unpooled i.e. do not use Rubin’s rules

to get a final model averaged over the

imputed datasets.

1.In the kth fold fit a test impu-

tation model excluding Y but

still including other covari-

ates. This will produce Mtest

imputed datasets for the kth

fold.

2.For mtest = 1, . . . ,Mtest,

evaluate prediction model

Pmtrain in the Mtest test im-

puted datasets of fold k to get

Mtest estimates of the MSE.

Use Rubin’s first rule to av-

erage the Mtest estimates of

the MSE. This will produce

an overall estimate of MSE

for Pmtrain .

3.Repeat Step2for each

Pmtrain for mtrain =

1, . . . ,Mtrain.

4.Take the Mtrain overall MSE

estimates from each predic-

tion model from Step3and

use Rubin’s first rule to get a

final estimate of MSE across

theMtrain prediction models.

A

folds−k denotes the k − 1 training folds which exclude the kth test fold
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Table 2.3: Methods for combining cross-validation and MI for a pragmatic scenario when cross-

validating first (continued)

Pragmatic performance

Training Test Method

1.Combine the folds to be used for

training (folds−k). Fit the training

imputation model including Y and

relevant covariates to folds−k and

produce Mtrain imputed training

datasets

Then apply Training step 3 from method

A to produce Mtrain prediction models:

Pmtrain for mtrain = 1, . . . ,Mtrain

Refer to Test steps for Method

A

B

1.In kth fold fit a test im-

putation model excluding Y

and using the other covari-

ates from all K folds. This

will produce Mtest imputed

datasets which should be re-

stricted to the observations

included in the kth fold.

Then apply Test steps 2-4 from

method A

C

1.Fit the imputation model including Y

to all folds and produce Mtrain

training imputed datasets. Restrict

the imputed datasets to the

observations included in folds−k

Then apply Training step 3 from method

A to produce Mtrain prediction models

Refer to Test steps for Method

A

D

Refer to Test steps for Method

C

E

Refer to Training steps for method B 1.In each training imputed

dataset, mtrain, impute the

kth fold using relevant covari-

ates from all folds (the im-

puted values in folds−k taken

as ‘true’ values) and exclud-

ing Y . Restrict test imputed

datasets to observations in

the kth fold.

Then apply Test Steps 2-4 from

method A

F

folds−k denotes the k − 1 training folds which exclude the kth test fold
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Table 2.3: Methods for combining cross-validation and MI for a pragmatic scenario when cross-

validating first (continued)

Pragmatic performance

Training Test Method

Refer to Training steps for

method B

1.In the kth fold, set Y as missing.

2.Using all folds fit a test imputation model

including the outcome and relevant co-

variates to impute the incomplete co-

variate and outcome Y . This will out-

put Mtest test imputed datasets - restrict

these to the observations that should be

in the kth fold and discard the imputed

Y values.

Then implement Test steps 2-4 from Method

A to get an overall summary performance

measure

G

Refer to Training steps for

method D

Refer to Test steps for Method G H

Refer to Training steps for

method B

1.In the kth fold, set Y as missing.

2.To impute the kth fold, use the same im-

putation model as in Training steps to im-

pute Y and X - discard imputed values

of Y .

Then implement Test steps 2-4 from Method

A to get an overall summary performance

measure

I

While the above methods were described for a pragmatic performance scenario they can

be used to estimate ideal performance by including the outcome Y in the test imputation

model. All methods can be adapted for ideal performance by including the outcome in

the test imputation model, except for Methods G-I (due to the observed outcome for fold

k being set to missing). To adapt method C and F for ideal performance, it is important

to set Y to missing in the k − 1 training folds when fitting the test imputation model to

the test fold and producing the test imputed datasets.

All methods in Table2.3will be evaluated in the pragmatic and, where relevant, ideal
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scenario. Method I would be difficult to implement in practice as it involves using the

training imputation model to impute the test set. Currently, it is not a feature of the

mice package in R [49] to conduct out-of-sample imputation i.e. new data/the test set

are unable to be imputed based on the imputation model from the training data. The

MI imputation model parameters can be extracted in Stata for the multivariate normal

command (command: mi impute mvn) but not for chained equations (command: mi im-

pute chained). As noted by [47], the only package in R which outputs imputation model

parameters is the Amelia package ([50]) which, similar to Stata (command: mi impute

mvn), assumes multivariate normality. This may dissuade analysts from using Method I

in practice and it was therefore not examined. To implement Method I when software

does allow for the extraction of the imputation model in R it is important to include fully

missing records to the k − 1 training folds so that the imputation model will be able to

impute the outcome, as well as the missing covariate, in the test set.

Table2.4details two methods (J and K) when imputing first, followed by applying cross-

validation to the imputed datasets (MI-then-CV ). Method J involves imputing the dataset

once overall, either with or without the outcome depending on whether the ideal or prag-

matic setting is of interest as used in [43,44]. Method K involves fitting two imputation

models to the dataset. The first model (a training imputation model) will include the

outcome Y in order to fit training models in the k − 1 training folds. The second impu-

tation model (a test imputation model) can either include or exclude the outcome for the

imputed test datasets to evaluate each of the training models.

2.6.1 An additional consideration for MI

The amount of overall missingness in the dataset and reflecting this within fold assign-

ment should be considered. For the methods described above, I chose to randomly sample

individuals in a stratified manner to ensure that each fold had the same proportion of ob-

served and missing values as in the original dataset. This maintains the same distribution

of missingness in each fold and also has the added benefit of preventing a test fold from

having a large proportion of (or entirely consisting of) missing data. This is particularly

relevant when fitting an imputation model to a test fold which has a small number of

observations. For example, the test fold contains 20 observations, of which 17 randomly

contain missing values in one or several covariates.
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Table 2.4: Methods for combining cross-validation and pragmatic imputation for an incomplete

covariate when imputing first

MI procedure Method

1.Impute the original dataset, including relevant covariates in the impu-

tation model for the pragmatic scenario or relevant covariates and the

outcome for the ideal scenario. This will produce M imputed datasets.

2.In each imputed dataset, apply the cross-validation procedure to get an

overall estimate of performance

3.Apply Rubin’s rules to the M estimates from Step2to get an overall

estimate of performance across the M imputed datasets

J

1.Impute the original dataset, including relevant covariates and the out-

come in the imputation model. This will produce Mtrain training imputed

datasets.

2.Impute the original dataset, including relevant covariates (and the out-

come if focusing on an ideal setting) in the imputation model. This will

produce Mtest test imputed datasets.

3.For training imputed dataset mtrain train a model Pmtrain on the k − 1

folds (with fold k to be used as the test set). This training model is then

evaluated using the kth fold in each of the Mtest test imputed datasets.

Rubin’s rules are applied to get an overall estimate of performance for

model Pmtrain when fold k is used as the test set.

4.Repeat Step3for k = 1, . . . ,K. Use cross-validation averaging rules to get

an overall estimate of performance for training imputed dataset mtrain.

5.Repeat steps3and4for imputed dataset mtrain = 1, . . . ,Mtrain and apply

Rubin’s rules to get an overall estimate of performance.

K

2.7 Proposed methods for the bootstrap algorithms

The Ideal and Pragmatic B methods from Table2.2will be examined for the bootstrap

algorithm. Recall that Pragmatic A allowed for the inclusion of Y in the test imputation

model while Pragmatic B excluded the outcome from the test imputation model. It would

be possible to use method Pragmatic A for the standard algorithm to estimate the test

performance as it is evaluated in both those who were or were not sampled for the boot-

strap. Those who were not sampled could have their outcome set as missing. However,
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it would not be possible to use Pragmatic A in the 0.632 alternative as the prediction

model fitted to the bootstrap sample is evaluated in those observations not included in

the bootstrap sample. Therefore, when setting Y to missing in this ‘test set’ Y would be

fully unobserved and it would not be possible to impute it. Therefore, inclusion of Y in

the test imputation model for pragmatic performance is not examined here.

In the following sections, I will detail how to combine MI and the bootstrap algorithms.

The performance measure estimate used to evaluate a prediction model P in a dataset D

is denoted perf(p,D).

2.7.1 BS-then-MI

The standard algorithm

For the standard bootstrap algorithm there are three measures of interest: Apparent,

Bootstrap (Apparent performance in the Bootstrap sample) and Test. Recall, a training

imputation model will include any relevant covariates and the outcome to impute missing

values in a covariate. The test imputation model can include or exclude the outcome,

depending on whether ideal or pragmatic performance is of interest. The algorithm is as

follows:

1.The original sample ( o) contains missing data. Impute it using both training and

test imputation models to get the Apparent performance:

(a)Use the training imputation model to get Mtrain imputed datasets

(b)In each of these imputed datasets mtrain, train the prediction model Pmtrain .

(c)Impute the original sample again but this time using the test imputation model

to get Mtest imputed datasets (t = 1, . . . ,Mtest).

(d)For each mtrain = 1, . . . ,Mtrain calculate the prediction model’s performance

across the test imputed datasets, t, and use Rubin’s first rule to get an overall

estimate of performance for each model:

perf(Pmtrain , o) =

Mtest∑
t=1

perf(Pmtrain , t)

Mtest

(e)Use Rubin’s first rule to get an overall estimate of apparent performance

Apparent =

Mtrain∑
m=1

perf(Pmtrain , o)

Mtrain

2.Sample from the original data with replacement to get a bootstrap sample b. Impute

it using both training and test imputation models to get the Bootstrap performance:
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(a)Use the training imputation model to get Mtrain imputed datasets of bootstrap

sample b.

(b)For each imputed dataset, m∗
train = 1, . . . ,Mtrain of bootstrap sample b, train

the prediction model Pm∗
train

(c)Impute bootstrap sample b using the test imputation model to get Mtest im-

puted datasets

(d)For each m∗
train = 1, . . . ,Mtrain calculate the prediction model’s performance

across the bootstrap test imputed datasets, t∗, and use Rubin’s first rule to get

an overall estimate of the bootstrap performance for each model:

perf(Pm∗
train

, b) =

Mtest∑
t∗=1

perf(Pm∗
train

, t∗)

Mtest

(e)Use Rubin’s first rule to get an overall estimate of the bootstrap performance

for bootstrap sample b

Bootstrapb =

Mtrain∑
m∗

train=1

perf(Pm∗
train

, b)

Mtrain

3.Finally, to get the Test performance:

(a)Impute the original sample using the test imputation model to get a different

set of Mtest imputed datasets (t′ = 1, . . . ,Mtest) to those in step (1c)

(b)For each bootstrap prediction model from step (2b) Pm∗
train

form∗
train = 1, . . . ,Mtrain,

calculate the performance across the test imputed datasets t′ = 1, . . . ,Mtest

from step (3a) and use Rubin’s first rule to get an overall estimate of the test

performance for each bootstrap model:

perf(Pm∗
train

, o) =

Mtest∑
t′=1

perf(Pm∗
train

, t′)

Mtest

(c)Use Rubin’s first rule to get an overall estimate of the test performance across

the Mtrain prediction models

Testb =

Mtrain∑
m∗

train=1

perf(Pm∗
train

, o)

Mtrain

4.The optimism is then estimated as the difference between the bootstrap and test

performance:

Optimismb = Bootstrapb − Testb

5.Repeat steps (2) - (4) B times

6.To estimate the optimism-corrected performance,

OCP = Apparent− 1

B

B∑
b=1

Optimismb
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The 0.632 algorithm

In this variation of the bootstrap algorithm only the apparent and test performance are

of interest.

The 0.632 algorithm when bootstrapping first, followed by MI, has similar steps to the

standard algorithm above but with some minor changes as noted below:

� The bootstrap performance is not calculated (because the 0.632 version is using a

more classic sample splitting approach) so steps (2c) - (2e) are not necessary

� For step (3a) take those observations not sampled in the bootstrap sample from the

original sample. Impute this subsample of not selected observations using the test

imputation model to get t′ = 1, . . . ,Mtest imputed datasets.

� For step (6) the optimism-corrected performance becomes a weighted average (recall

that on average, approximately 63.2% of observations in a bootstrap sample are

unique) of the apparent performance and B test performances

OCP = (0.368×Apparent) +

(
0.632× 1

B

B∑
b=1

Testb

)

2.7.2 MI-then-BS

The standard algorithm

1.Step 1 to get the Apparent performance is the same as for BS-then-MI in section

2.7.1. The original sample (o) contains missing data. Impute it using both training

and test imputation models to get the Apparent performance:

(a)Use the training imputation model to get Mtrain imputed datasets

(b)In each of these imputed datasets mtrain, train the prediction model Pmtrain .

(c)Impute the original sample again but this time using the test imputation model

to get Mtest imputed datasets (t = 1, . . . ,Mtest).

(d)For each mtrain = 1, . . . ,Mtrain calculate the prediction model’s performance

across the test imputed datasets, t, and use Rubin’s first rule to get an overall

estimate of performance for each model:

perf(Pmtrain , o) =

Mtest∑
t=1

perf(Pmtrain , t)

Mtest

(e)Use Rubin’s first rule to get an overall estimate of apparent performance

Apparent =

Mtrain∑
m=1

perf(Pmtrain , o)

Mtrain
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2.Sample with replacement from training imputed dataset mtrain with replacement

to get a bootstrap sample b. In order to estimate the bootstrap performance for

bootstrap sample b:

(a)Train a prediction model P ∗
train,b in bootstrap sample b

(b)Set the imputed missing values in bootstrap sample b back to missing. Im-

pute these missing values using the test imputation mode to get Mtest imputed

datasets

(c)Calculate the performance across the test imputed datasets t∗ = 1, . . . ,Mtest

Bootstrapm,b =

Mtest∑
t∗=1

perf(P ∗
train,b, t

∗)

Mtest

3.In order to get the test performance from the prediction model trained on bootstrap

sample b:

(a)Impute the original sample using the test imputation model to get a different

set of Mtest imputed datasets (t′ = 1, . . . ,Mtest) as in step (3a) of BS-then-MI

(b)For prediction model P ∗
train,b calculate the performance across the test imputed

datasets t′ = 1, . . . ,Mtest from step (3a) and use Rubin’s first rule to get an

overall estimate of the test performance for each bootstrap model:

Testm,b =

Mtest∑
t′=1

perf(P ∗
train,b, t

′)

Mtest

4.Calculate the optimism for bootstrap b of imputed dataset m:

Optimismm,b = Bootstrapm,b − Testm,b

5.Repeat steps (2)-(4) B times to get B estimates of optimism. To get the optimism-

corrected performance for imputed dataset m:

OCPm = Apparent− 1

B

B∑
b=1

Optimismm,b

6.Repeat steps (2) - (5) for mtrain = 1, . . . ,Mtrain to get Mtrain estimates of the OCP.

7.Using Rubin’s first rule, take the mean of the Mtrain estimates of the OCP to get

an overall estimate.
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The 0.632 algorithm

When there are no missing data present two measures of performance are calculated: Ap-

parent and Test.

The 0.632 algorithm when imputing first, followed by bootstrapping follows a similar

algorithm as the standard algorithm above but with some minor changes as noted below:

� The bootstrap performance is not calculated so steps (2b) - (2c) are not necessary

� For step (3a) take those observations not sampled in the bootstrap sample from the

original sample. Impute this subsample of not selected observations using the test

imputation model to get t′ = 1, . . . ,Mtest imputed datasets.

� Step (4) is no longer performed

� For step (5) the optimism-corrected performance becomes a weighted average of the

apparent performance and B test performances

OCP = (0.368×Apparent) +

(
0.632× 1

B

B∑
b=1

Testb

)

2.7.3 Other considerations

For both MI-then-BS and BS-then-MI, an additional consideration will be whether the

training and test imputed datasets used to calculated the apparent performance can be

reused to calculate the bootstrap or test performance. As combining bootstrapping with

MI can be a computationally intensive procedure, especially for BS-then-MI, which mul-

tiply imputes B ×M times, reusing imputed datasets will reduce the number of times it

is necessary to impute and help with computational efficiency.

When conducting the bootstrap, to date, none of the current literature has made clear

how they bootstrapped with respect to the missing data. I will use the stratified bootstrap

method to ensure the same proportion of observed and missing is present in each bootstrap

sample. The stratified bootstrap was implemented in order to avoid the possibility of

sampling observations which all contained missing values in the covariates.
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2.8 Data Leakage

Data leakage is a prediction concept that needs to be carefully considered when estimating

parameters of the prediction model. It can be a cause for a prediction model appearing

to predict well during internal validation but when deployed for use in reality the model

instead performs poorly. Thinking again in terms of a simple training and test split sce-

nario, data leakage could occur due to information from the test set being ‘leaked’ to the

prediction model being fitted in the training set. Therefore, the prediction model will

perform well on the test set (of which it had prior knowledge of the observations) but

when it encounters completely new observations (of which it has no prior knowledge on)

it may perform badly. Data leakage has previously been detailed in Section1.11which

also gives an intuitive example for how leakage can affect an analysis, demonstrated by

the k-means classification method.

Without careful consideration, data leakage may also arise when imputing missing data as

seen in Figure2.2. When imputing first, all of the dataset is used to impute the missing

values and as such these imputed values now contain information that came from fitting

a model to the entire dataset. This association between training and test sets was previ-

ously discussed in section2.5. When splitting the imputed dataset into a training and test

set, observations in the test set are no longer completely independent of the data used to

estimate the prediction model coefficients in the training set, and data leakage occurs.

This leakage does not occur in Figure2.2(b) as the MI procedure takes place after splitting

the data into a training and test set. The training imputed datasets only have access to

the data in the training set during the MI process. Similarly, the test set does not gain

any leakage from the training set as it is also independently imputed without including

any observations from the training set.
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imputation model

knowledge of all data through imputa-

tion process

prediction model (application)

leakage between training and test sets

Original dataset

Original imputed dataset m

Training Test

(a) Imputing missing data followed by splitting the dataset

into training and test sets

Original dataset

Training

Training imputed
dataset mtrain

Test

Test imp.
mtest

(b) Splitting data into a training and test set and then

imputing each separately

Figure 2.2: An example of splitting data into a training set (grey) and a test set (purple) before

or after imputing the original data.
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2.8.1 Data Leakage in cross-validation

For cross-validation, data leakage can be considered in the same way as in the simple

training and test split example. In one iteration of K-fold cross-validation, the dataset is

split into k−1 folds which make up the ‘training set’. The observations in the kth fold are

used to evaluate the prediction model fitted in the training set i.e. the kth fold is a ‘test set’.

Similarly to the training and test split example in Figure2.2(a), data leakage occurs when

multiply imputing first and then applying cross-validation to each imputed dataset (Meth-

ods J and K). However, for CV-then-MI methods it is necessary to pay close attention

as to which parts of the dataset are included when multiply imputing the training and

test folds. When cross-validating first the data are split into the k − 1 training folds and

the kth test fold, followed by imputing the training and test folds separately which avoids

data leakage. CV-then-MI methods with no data leakage are methods A and B. While

Method C imputes the k − 1 training folds independently of the holdout fold k, fold k is

imputed using the relevant covariates from the k − 1 training folds. However, as Y from

the training folds is excluded from the MI process, method C should not be correlated

with the training set. Methods D, E, F and H all include the holdout fold, including the

outcome, when imputing the training set imputed datasets. Methods G and H include the

outcome of the training folds when imputing the test fold.

It will be possible to examine the impact of data leakage in the MI step by comparing

certain methods together.

Methods Comparing

B vs. D, or

C vs. E

the impact of including the test fold observations when drawing

imputed values for the training set

B vs. C, or

D vs. E

the inclusion of the training folds observations when drawing im-

puted values for the test set

2.8.2 Data Leakage in the bootstrap algorithms

Figure2.3depicts data leakage which is present for both BS-then-MI and MI-then-BS in

the standard algorithm. Due to imputing the entire original dataset first in MI-then-BS,

the subsequent prediction models fitted to the bootstrap samples now have an association

with all observations in the original dataset and not just those observations selected for the

bootstrap sample. Therefore, when evaluating a prediction model (fitted to the bootstrap

sample) in those who are not sampled, the model now has an unfair advantage through the

MI process. It is also of note, that the standard algorithm calculates both the apparent and

bootstrap performance where a model is trained and tested in the same sample (original

and bootstrap, respectively). While this is data leakage, it is an inherent
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MI-then-BS

Original

imputation m for
training

Bootstrap b of
training

imputation m for
testing

Test performance

For testing, observa-
tions in b

imputation of those in
b

Bootstrap performance

*

*here the leakage is
an inherent part of the
algorithm i.e. appar-
ent performance of BS
sample

BS-then-MI

Original

imputation of Original
for testing

Bootstrap b for
training

imputation of b for
training

imputation of b for
testing

*

Bootstrap performance

Test performance

Has missing values No missing values

imputation model

knowledge of all data
through imputing

prediction model

leakage between train
and test sets

Figure 2.3: Data leakage flow in the standard algorithm for combining multiple imputation (MI) and the bootstrap (BS). This demonstrates leakage for one

bootstrap sample b and one imputed dataset m.
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part of the standard algorithm.

For BS-then-MI when using the standard algorithm the leakage for the apparent and boot-

strap performance is present. However, when using MI-then-BS the bootstrap prediction

models have an association with all observations in the original dataset. This is not an

issue for BS-then-MI as MI occurs after the bootstrap sample.

Similarly for the 0.632 algorithm in Figure2.4when imputing the entire original dataset

first in MI-then-BS, the subsequent bootstrap samples now have an association with all

observations. When testing a bootstrap model in those who weren’t sampled the model

now has an unfair advantage through the MI process. This leakage is not present in BS-

then-MI.

Similarly to using all folds to impute the training set or test set in cross-validation, reuse

of the imputed datasets used to calculate apparent performance is expected to have the

same type of leakage. The apparent performance imputed datasets use data from the

entire dataset, and thus reusing these imputed datasets to sample observations for the

bootstrap sample is also expected to cause data leakage.

Whether data leakage is an issue in the MI process is currently unknown and will be

investigated in subsequent chapters using simulation studies.
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MI-then-BS

Original

imp m for training

Bootstrap b of
training
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not selected in b

imputation of
those not selected

Test performance

BS-then-MI

Original

Bootstrap b for
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imputation of b

For testing, those
not selected in b

imputation of those
not selected

Test performance

Has missing values No missing values

imputation model

knowledge of all data
through imputing

prediction model

leakage between train
and test sets

Figure 2.4: Data leakage in the 0.632 algorithm for combining multiple imputation (MI) and the bootstrap (BS). This demonstrates leakage for one bootstrap

sample b and one imputed dataset m.
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2.9 Conclusion

In this chapter I have summarised relevant current literature for combining internal vali-

dation with MI. Methods have been proposed to combine MI and two internal validation

strategies. Despite the many methods under consideration here, the list of potential ways

to combine is by no means exhaustive.

Much of the current literature has used the results of simulation studies to classify whether

MI or validation should take place first. Wood [38] proposed several ways to combine, sug-

gesting that imputing first may be most appropriate. Jaegar et al. [42] and Steyerberg

[23] have suggested imputing first as a viable method. Alternatively, Musoro[43], Wahl

[44] and Mertens [45] recommended or used a validation first approach. In this chapter, I

have discussed the potential impact of data leakage through the MI process and this may

be a potential justification for determining the best way to incorporate internal validation

and MI. I have also explored and explicitly explained how to combine the two and which

methods are prone to data leakage. This is in addition to evaluating the proposed methods

via a simulation study presented in later chapters.

For ideal and pragmatic performance, I have proposed using two imputation models. The

training imputation model will maintain the association between missing covariates and

the outcome. For pragmatic performance, the test imputation model will exclude the

observed outcome as in reality, this would not yet be known. For ideal performance, the

test imputation model will include the observed outcome, as in practice we expect future

values to be fully-observed.

In the next chapter, I will outline a simulation study which will be used to evaluated the

methods I have proposed in this chapter. The simulation study will evaluate the methods

for both a continuous and binary outcome.
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3 Designing a simulation study to evaluate methods for

combining MI and internal validation techniques

This chapter describes the design of simulation studies that aim to evaluate methods for

combining internal validation techniques with MI. The simulation design is more complex

than most simulation studies and therefore, I spend this chapter on the set-up and results

which will be described in subsequent chapters. The outline of this chapter follows the

ADEMP structure recommended by Morris et al. [10] for clear reporting of simulation

studies. I will assess the proposed methods for both continuous and binary outcomes.

3.1 Aim

Chapter2outlined proposed methods for combining MI with cross-validation (Section2.6)

and the bootstrap algorithms (Section2.7). The aim of the following simulation studies is

to identify which of the proposed methods performs well across a range of different settings,

including different amounts of missing data and multiple missing data mechanisms. The

simulation studies will be used to assess the proposed methods for both cross-validation

and the bootstrap optimism-corrected algorithms.

3.2 Data-generating mechanisms (DGM)

For the continuous outcome a linear model will be used as the prediction model, and

logistic regression will be used for the binary outcome. For both scenarios, the linear

predictor will have two correlated Normally distributed covariates, X1 and X2. They will

be generated with correlation ρ = 0.5.

[
X1

X2

]
∼ N

([
25

2

]
,

[
25 ρ ∗ 5 ∗ 10

ρ ∗ 5 ∗ 10 100

])

3.2.1 Continuous outcome

The continuous outcome, Y , was generated using Y ∼ N (µ, σ2), where

� µ = β0 + β1X1 + β2X2

� σ2 =
(
β21Var(X1) + β22Var(X2) + 2β1β2Cov(X1, X2)

)
× 1−R2

R2

The model is written like this in order to allow the variance of the outcome (σ2) to be

adjusted for varying levels of R-squared (R2) while keeping the values of β constant. Three

values were considered for R2: 0.01. 0.1 and 0.3. The derivation for the adjustment of σ2

to allow for different values of R2 is available in AppendixB. In all simulation scenarios the

values of the β1 and β2 parameters were one with the slope through the origin (β0 = 0),

allowing for assessment of the proposed methods in the simple scenario of a prediction

model with no complexity.
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3.2.2 Binary outcome

The binary outcome, Y , was generated using a Bernoulli distribution with the probability

of the outcome for patient j (j = 1, . . . , nobs):

pj =
exp(β0 + β1Xj,1 + β2Xj,2)

1 + exp(β0 + β1Xj,1 + β2Xj,2)

In all scenarios the values chosen for the log odds ratio parameters were β1 = log(1.1)

and β2 = log(1.1) corresponding to odd ratios of 1.1. β0 = −3.676 was selected so that

approximately 30% of individuals have Y = 1. This value of β0 was found by iterating

through a range of values from -25 to 0 with 10,000 simulated datasets, each with a sample

size of 1,000.

3.2.3 Introducing missingness

Missingness was induced in one covariate, X1, for the continuous and binary outcome

DGMs. Scenarios in which the missingness in X1 does and does not depend on X2 or on

the outcome Y are considered. For patient j the probability of X1 being missing is:

πX1,j =
exp(ψ0 + ψ2X2,j + ψ3Yj)

1 + exp(ψ0 + ψ2X2,j + ψ3Yj)
(3.1)

Using equation (3.1), three missing data scenarios were considered:

1.MCAR ( ψ2 = 0, ψ3 = 0)

2.Covariate-dependent MAR ( ψ2 6= 0, ψ3 = 0)

3.Covariate- and outcome-dependent MAR ( ψ2 6= 0, ψ3 6= 0)

For the two MAR mechanisms non-zero values of ψ2 and ψ3 were selected to produce

weak and strong MAR. This strength was calibrated based on the area under a ROC

curve (AUC) from regressing the missing indicator on the covariates related to missing-

ness. Values for ψ0 were then selected such that approximately 25% or 40% of observations

in X1 were set as missing.

Table3.1shows the finalised ψ parameter values and the AUC of missingness when the

outcome is continuous. When missingness is MCAR or covariate-dependent MAR, miss-

ingness does not depend on the outcome and therefore the values of ψ are unaffected by

the R2 values. For covariate- and outcome-dependent MAR, the values of ψ are selected

to maintain a similar missingness AUC for the three R2 values.
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Table 3.1: Specification of parameter values ψ0, ψ2, ψ3 to ensure MCAR, weak MAR and strong

MAR with approximately 25% (ψ0,25) or 40% (ψ0,40) of observations induced to be missing.

Mechanism R2 ψ3 ψ2 ψ0,25 ψ0,40 AUC

MCAR All R2 0 0 -1.1 -0.41 0.500

weak covariate-dependent MAR All R2 0 0.05 -1.25 -0.53 0.634

strong covariate-dependent MAR All R2 0 0.1 -1.52 -0.69 0.743

weak outcome-dependent MAR 0.01 0.003 0 -1.22 -0.5 0.609

0.1 0.009 0 -1.375 -0.665 0.604

0.3 0.016 0 -1.56 -0.85 0.607

weak outcome- and

covariate-dependent MAR

0.01 0.003 0.05 -1.38 -0.63 0.675

0.1 0.009 0.05 -1.76 -0.79 0.685

0.3 0.016 0.05 -1.76 -0.99 0.699

weak outcome- and strong

covariate-dependent MAR

0.01 0.003 0.1 -1.63 -0.78 0.762

0.1 0.009 0.1 -2.05 -0.95 0.772

0.3 0.016 0.1 -2.05 -1.16 0.783

Table3.2displays the finalised parameter values for inducing missingness in X1 when the

outcome is binary.

Table 3.2: Specification of parameter values ψ0, ψ2, ψ3 to ensure MCAR, weak and strong MAR

for missingness dependent and not dependent on the outcome.

Mechanism ψ2 ψ3 ψ0,25 ψ0,40 AUC

MCAR 0 0 -1.1 -0.4 0.501

weak covariate-dependent MAR 0.05 0 -1.25 -0.54 0.635

strong covariate-dependent MAR 0.1 0 -1.52 -0.67 0.743

weak outcome-dependent MAR 0 0.9 -1.4 -0.7 0.600

weak outcome- and covariate-dependent MAR 0.05 0.9 -1.6 -0.83 0.707

weak outcome- and strong covariate-dependent MAR 0.1 0.9 -1.88 -0.97 0.791

3.2.4 Factors to vary in the simulation

Above I specified that different simulation scenarios will be considered for three values of

R2 for the continuous outcome, three missing data mechanisms, and two levels of missing-

ness. Other factors that were varied included the sample size, and the number of imputa-

tions (M) used when performing MI - though this is a feature of the analysis rather than

the DGM. The proposed methods will be assessed across 108 different simulated scenarios

for the continuous outcome and 36 for the binary outcome. Each scenario was initially

assessed with 1000 repetitions, however this was increased to 2000 in order to minimise

Monte Carlo error. The factors varied (factorially) across scenarios and their values are
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found in Table3.3.

Some values in Table3.3such as a sample size of 100 patients or R-squared value of

0.01 were used to assess how the methods may perform in extreme scenarios. Increasing

dependence of missingness on another covariate and also on the outcome is examined.

Table 3.3: Factors which will be varied for the continuous outcome simulations

Factors Notation Values

All scenarios

Number of individuals nobs {100, 300, 1000}
Number of repetitions used nsim {2000}
Proportion of missingness pmiss {25%, 40%}
Dependence of missingness on X2 ψ2 {0, 0.05, 0.1}
Continuous outcome only

Level of R-squared R2 {0.01, 0.1, 0.3}
Dependence of missingness on Y ψ3 {0, 0.003, 0.009, 0.016}
Binary outcome only

Dependence of missingness on Y ψ3 {0, 0.9}

3.3 Estimands

In each simulation scenario and using each analysis method (see below) I assess the ideal

and pragmatic estimates of performance measures. However, we lack a clear ’benchmark’

for the performance of a method. The ideal and pragmatic performance measure estimates

for each repetition will be compared to the performance measure estimated from the same

repetition but with fully observed X1. We expect pragmatic estimates to underestimate

those of ideal performance [38]. Similarly to the comparison with the fully-observed data,

both ideal and pragmatic performance will be compared to a target ideal and pragmatic

estimate using a larger simulated dataset generated using the same DGMs. This is dis-

cussed in more detail in section3.6.

For all methods in the ideal and pragmatic setting an overall performance measure (P̂erfimp)

will be estimated. This will be compared to both:

� the performance measure calculated in the fully-observed case (Perfobs)

P̂erfimp − Perfobs

� a larger validation set to estimate the target performance (Perftarget)

P̂erfimp − Perftarget
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3.4 Methods

The proposed methods for combining MI with cross-validation and bootstrapping de-

scribed in Sections2.6and2.7, respectively, will be assessed. They will be compared with

methods already proposed in the literature such as using one set of imputations to train

and evaluate prediction models. Particularly for the bootstrap, methods will also look at

the reuse of imputed datasets for calculating the bootstrap or test performance to improve

computational efficiency. MICE will be used [49], Bayesian linear regression [14, p.67-74]

will be used when the outcome is continuous and predictive mean matching [14, p.77-84]

when the outcome is binary.

3.5 Performance Measures

The choice of performance measures for the continuous and binary outcome will now be

outlined.

3.5.1 Continuous outcome

The performance measure for the prediction models when the outcome is continuous is

the MSE. For method imp and simulated repetition, r = 1, . . . , nsim, the overall MSE for

each DGM is:

M̂SEimp =
1

nsim

nsim∑
r=1

M̂SEr,imp

The fully-observed MSE and the target MSE from a larger validation set will also be

estimated:

MSEobs =
1

nsim

nsim∑
r=1

M̂SEr,obs

MSEtarget =
1

nsim

nsim∑
r=1

M̂SEr,target

As outlined in Section3.3, M̂SEimp will be compared with the averaged MSE when data are

fully-observed (M̂SEimp−MSEobs) and with the target performance (M̂SEimp−MSEtarget).

These are equivalent to the Perfobs, Perftarget and Perfimp notation outlined in Section3.3.

3.5.2 Binary outcome

Initially, the Brier score was considered as this is the binary outcome equivalent of the

MSE. The AUC is another popular metric used and reported with logistic regression and

was also considered.

In addition, the calibration intercept and slopes will be calculated. While calibration could

also be assessed within the continuous outcome scenario, it is not a very popular measure
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for linear regression and was not considered here.

Each of these performance measures will be averaged across the 2000 simulated repetitions

and compared to their fully-observed and target performance, as detailed in the continuous

outcome case above.

3.6 Finding the ‘Target’ performance measure

Comparing the averaged estimate of performance to a target value of the performance

measure estimated using a larger validation set was discussed in section3.3. In this

section, I will detail the different steps that were taken to estimate Perftarget and explain

why these methods were discarded. Finally, I will present the method used to generate

Perftarget.

3.6.1 Generating very large datasets to estimate the target MSE

The first simulation study undertaken was when the outcome was continuous and it was

of interest to compare M̂SEimp to a target MSE. Initially, 100 large external datasets of

size 100,000 were simulated using the same DGMs (Section3.2).

To estimate the target ideal performance, the prediction model (with the true value of

parameters for X1 and X2) was applied to each large simulated dataset, with X1 fully-

observed, and the MSE was obtained. The resulting MSEs were then averaged over the

100 datasets to get an overall performance estimate for the ideal target MSE.

For the pragmatic setting, each large simulated dataset, with X1 partially-observed, was

imputed (M = 25) using a test imputation model i.e. the imputation model only included

the other covariate X2. The prediction model (using the true parameter values for X1 and

X2) was applied to each imputed dataset and Rubin’s first rule was used to get an overall

MSE estimate. This was repeated across the 100 large datasets and the resulting MSEs

were then averaged to get an overall performance estimate for the pragmatic target MSE.

When compared with the output from the proposed methods there was a tendency with

both increasing sample size and increasing R-squared for the difference between the im-

putation methods and the target MSE (MSEimp - MSEtarget) to be overoptimistic. This

implied that performance from the imputation methods were performing better than the

target MSE. This trend was also present when using validation methods on the fully ob-

served replications (MSEobs - MSEtarget).

This method was evaluating the performance of the true prediction model rather than the

model of interest which is the one that is fit to the data. Therefore, this method to find
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the target MSE of the performance measure was discarded and was not attempted for the

binary outcome case.

3.6.2 Using the fully-observed data

To get around the fact that there was no target value for comparing methods, the fully-

observed data was used. Comparing ideal performance to the performance in fully-

observed data (MSEimp,ideal - MSEobs)) was considered to be the gold standard approach

for comparing methods by Wood et al. [38]. They also expect that pragmatic per-

formance should underestimate the ideal performance i.e. |MSEimp,prag − MSEobs| ≥
|MSEimp,ideal −MSEobs|.

Based on Wood et al. [38], ideal performance of methods could be compared to the fully-

observed data. Pragmatic performance of methods would be compared using the fully-

observed data and also by looking at how the methods performed in the ideal scenario.

In this way, I could determine whether the pragmatic performance of a method was per-

forming well ( MSEimp,prag−MSEobs −→ 0) or whether it actually had a tendency to under

or overestimate the difference (underestimate: MSEimp,prag −MSEobs < 0; overestimate:

MSEimp,prag −MSEobs > 0 ).

3.6.3 Simulating AUC target performance for the binary outcome

Another attempt to find a target value of performance included attempting to simulate

data with a pre-specified value of the AUC. This can be simulated easily for one covariate,

X1, by converting the AUC into a Cohen’s d value [51] and sampling two vectors which

are d standard normal distributions apart, these are then combined to create covariate

X1. Therefore, a dataset can be simulated with outcome Y and covariate X1 with the

underlying true value set as the AUC of interest. This was considered alongside the method

described below in section3.6.4, which is easier to implement and therefore this was not

considered any further.

3.6.4 Generating a test set for each repetition

The final way considered to generate a true value for the performance measures of the

simulation study was to generate a sufficiently large dataset to test models in, using the

same DGM detailed in section3.2for both the continuous and binary outcomes. The test

dataset generated for each DGM contained 100,000 observations, missingness was induced

under the same mechanisms as before.

Ideal performance estimates are compared with an estimate from the fully-observed gen-

erated test dataset. For pragmatic performance estimates the test dataset is imputed
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(M = 5) by fitting a test imputation model to the data (excluding the outcome). Prag-

matic performance estimates are compared to the Rubin’s rule averaged performance es-

timate from the M pragmatically imputed test datasets.

There are two methods to estimate target performance from the large generated dataset.

Both theoretically will produce true values of a performance measure and are described

below.

Method 1: Test each internal validation prediction model

Sections2.6and2.7outlined the proposed methods for combining multiple imputation

with cross-validation and bootstrapping, respectively.

For all proposed cross-validation methods, a prediction model is fitted to k−1 folds. This

model could then be applied to the larger test dataset to get an estimate of performance

for this prediction model. This would be repeated for k = 1, . . . ,K and the resulting

estimates would be averaged to get a target estimate. Similarly, when using the 0.632

bootstrap optimism-correction method, each bootstrap-trained prediction model can be

evaluated in the large test set to get a test performance estimate.

However, this means that we would be finding a target value which is specific to cross-

validation. This would be different to the target value for the bootstrapping algorithms.

Method 2: Use as an external validation style dataset

In general practice when using internal validation, a model is trained using the entire

dataset available. It is then validated using the same dataset to get a performance esti-

mate of the modelling procedure. Internal validation is an option when there is a lack of

availability of a similar external dataset to evaluate the model.

Instead of using the large test dataset to evaluate each prediction model from the valida-

tion process (as described in Method 1 above), it could instead be used to evaluate the

final model trained from the dataset. For example, in simulated repetition r the dataset

is imputed using the training imputation model and an overall model is determined using

Rubin’s rules. This model can be evaluated in the large test dataset (either the fully-

observed version for ideal performance or its imputed version for pragmatic performance).

The internal validation methods are then applied to repetition r and the estimated per-

formance can be compared to the large test dataset performance.

Comparing the performance of this model evaluated in a larger similar dataset with the

internal validation estimate has an advantage compared to testing each internal validation

prediction model. Method 2 estimates one overall target value for each repetition which
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allows cross-validation and the bootstrap optimism-corrected methods to be compared.

This method was used to approximate the target value of each performance measure.

3.7 Conclusion

In this chapter I have discussed the set-up of the simulation study to be used for both

cross-validation and the bootstrap internal validation algorithms. I have outlined two

ways to compare the performance estimates from the proposed methods in the simulation

study - the first comparing with the estimate from the fully-observed data and the second

using a large test set to evaluate the final developed model fitted to imputed datasets.
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4 Simulation study results for cross-validation: continuous

outcome

In Chapter3I described the design for a simulation study to investigate the performance

of methods when combining MI with internal validation.

4.1 Introduction

In this chapter I present the results from combining MI with cross-validation. The impact

of data leakage, which was introduced in Chapter2, on the methods to impute the missing

data will also be assessed. The output from the simulation study for the continuous out-

come will be presented here, the results for the binary outcome are available in Chapter

5. A small selection of graphs have been made available in this chapter, selected for ei-

ther having important results or being representative of results across various DGMs. All

graphical output from the simulation study is available in the supplementary plot chapter

(SectionS1).

Several factors were varied for the continuous setting as detailed in Table3.3. Results

will be detailed below for these factors which included sample size, value of R-squared

and dependence of missingness on other covariates. In section3.5notation was presented

for the averaged estimate of MSE in the fully-observed data (MSEobs) and the larger

validation set (MSEtarget). In addition, MSEprag will represent the pragmatic performance

of an imputation method and MSEideal will represent the ideal performance.

4.2 Summary of the fully-observed data

I begin by summarising the fully-observed data, which is the simulated data before miss-

ingness is introduced in the covariate X1. With increasing R2 and sample size the variation

of the outcome Y decreases (Table4.1). Similarly, the MSE decreases slightly with in-

creased sample size (Table4.2). Increasing R2 causes the MSE to decrease from 17,388

for N = 1000 when R2 = 0.01 to 410 when R2 = 0.3.

Table 4.1: The mean and variance of the outcome Y across the 2000 simulated datasets. The

min and max values of Y are the minimum and maximum across all repetitions.

Nobs Summary statistics R2 = 0.01 R2 = 0.1 R2 = 0.3

100 Mean (var) 26.91 (17502) 26.97 (1748) 26.98 (582)

Min, Max -611.05, 690.76 -177.57, 228.47 -85.72, 140.80

300 Mean (var) 27.10 (17555) 27.02 (1757) 27.00 (586)

Min, Max -583.63, 642.53 -167.02, 224.88 -83.72, 141.48

1000 Mean (var) 27.02 (17473) 27.01 (1746) 27.01 (582)

Min, Max -671.94, 680.66 -190.08, 227.56 -101.81, 140.20
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Table 4.2: Summary of the MSE estimates when data are fully-observed. This is summarised

from the 2000 simulated repetitions.

N=100 N=300 N=1000

R2 Mean Variance Mean Variance Mean Variance

0.01 17,831 13,431,859 17,546 4,087,025 17,388 1,238,694

0.10 1,633 114,500 1,598 33,237 1,578 10,028

0.30 422 7,457 413 2,183 410 675

4.3 A brief summary of the cross-validation methods

The methods presented in this chapter are summarised in full in Table2.3but are briefly

resummarised below in Table4.3.

Table 4.3: Brief summary of methods A-K for combining multiple imputation and cross-validation

Method Training set Test set

CV-then-MI

A Each fold imputed separately includ-

ing Y andX2 in the imputation model

kth fold imputed by itself using X2

and possibly Y

B Y , X2 used to impute k − 1 training

folds by themselves

Same as A

C Same as B kth fold imputed using all K folds and

including X2 and possibly Y

D Y , X2 used to impute k − 1 training

folds using all K folds and restricting

to k−1 folds after imputation process

Same as A

E Same as D Same as C

F Same as B Take the imputed and observed values

from the k−1 training folds and use to

impute the unobserved values in the

kth fold.

G Same as B Set Y missing in kth fold and impute

X1 and Y using data from all K folds

before restricting back to the kth fold

H Same as D Same as G

MI-then-CV

J Impute the dataset first using one set of imputed datasets

K Impute the dataset first using two sets of imputed datasets - one for training

the model on k − 1 folds and the other for evaluating the model in the kth

fold
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4.4 A brief overview of results for cross-validation

Due to the large number of results from the simulation studies presented in this chapter

which assess the various methods under multiple DGMs, I will first present results for two

methods when R2 = 0.1. The aim is to introduce the reader to how the results are being

displayed and interpreted as well as introducing the impact that data leakage can have on

the results.

I will briefly compare method B, which applies cross-validation first and then imputes, to

method J which imputes the data first before applying cross-validation. Method B has no

data leakage issues while method J is considered to be the method with the highest risk

of leakage. The MSE results from each method are compared to the estimates of the MSE

from applying cross-validation to the fully-observed data (MSEobs) i.e. MSEimp - MSEobs.

For all sample sizes and missing data scenarios, the estimated pragmatic performance

of both method B and method J overestimates MSEobs i.e. MSEprag,imp - MSEobs > 0.

Method B tends to overestimate MSEobs to a greater degree (|MSEprag,B −MSEobs|) than
method J for all sample sizes. However, with increasing sample size the magnitude of the

difference (|MSEprag,imp−MSEobs|) for both methods decreases and the difference becomes

more similar between the two methods. This can be seen across all missing data scenarios

for R2 = 0.1.

The estimated ideal performance of method B tends to overestimate MSEobs for all sample

sizes. However, method J underestimates MSEobs for all sample sizes. This means that

the results from method J are over-optimistic for ideal performance i.e. the method gives

better performance post-imputation than what would have been observed if missing data

were not present. The magnitudes of under- or overestimation of the two methods are

similar across all missing data scenarios and for sample sizes greater than 100.

In the following section, I will present a summary of results for all methods in a similar

manner as above. Recall that a ‘good’ prediction model would have a lower MSE score.

Therefore, over-estimation of MSEobs implies worse performance after handling missing

data than if the data had all been observed to begin with. Under-estimation of MSEobs

suggests that the method is over-optimistic; that is, it is performing better than if we had

observed the data. In the following results, it will be shown that many of the methods

which are subject to data leakage tend to have over-optimistic ideal performance.
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Figure 4.1: The difference MSEimp - MSEobs when R2 = 0.1 for M = 5 when 25% of values are

missing in X1. Each sub-graph displays results for a sample size of 100, 300 and 1000. Row 1

presents results when data are MCAR or covariate-dependent MAR. Row 2 presents results when

data are outcome-dependent MAR or outcome- and covariate-dependent MAR. Ideal performance

is in red and pragmatic performance is in blue. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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4.5 Detailed results for cross-validation

In this section I will summarise the results from the simulation study when the outcome

is continuous. The results for 25% missingness and M = 5 will initially be presented

before discussing increasing the number of imputed datasets, increasing the percentage of

missingness or comparing the results to a target MSE estimate.

4.5.1 Comparing results to the MSE estimate when data are fully-observed

MCAR and covariate-dependent MAR

Figure4.2displays the estimates of various methods when compared to the MSE estimates

when data are fully-observed. The plot shows results when data are weak covariate-

dependent MAR but is representative of the MCAR or strong covariate-dependent MAR

scenarios (additional figures in supplementary plotsS1.1.1).

When data are MCAR or covariate-dependent MAR and for small values of R-squared

the complete-case analysis tends to overestimate MSEobs (MSECC −MSEobs > 0) and is

more variable than the MI methods. With increasing sample size, Monte Carlo standard

error is reduced for the complete-case analysis and with increased R2 the complete-case

outperforms the other methods.

For a sample size of 100 and R2 = 0.01, the pragmatic performance of method A (impute

each fold separately) outperforms all other methods which exclude the holdout fold k from

imputing the training k − 1 folds (B, C, F, G). When R2 = 0.1 it performs similarly to

methods C, F and G but is out-performed by methods C, F and G for R2 = 0.3. Over-

all, method J has the best performance with the lowest difference (MSEJ,prag −MSEobs)

overall for increasing R2 and sample size. With increasing sample size to 300 and 1000

the pragmatic performance of all methods is similar.

For low R-squared and small sample size, the ideal performance of method F has the

smallest difference (MSEF,ideal −MSEobs) for all methods which exclude the holdout fold

k from imputing the training k − 1 folds. With higher R2 and increased sample size, the

methods tend to have similar performance for the ideal setting. Method A outperforms

method B for small and moderate sample size while they perform similarly for a sample

size of 1000. Method K has the smallest difference overall across all methods but tends

to be over-optimistic (MSEK,ideal −MSEobs < 0), as is method J. The ideal performance

for methods C and E largely overestimate MSEobs and tends to be more variable than the

other methods.
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Figure 4.2: The difference MSEimp - MSEobs when data are weakly covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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Outcome-dependent MAR

Figure4.3displays the estimates of various methods when compared to MSE obs when

data are weak outcome- and covariate-dependent MAR. This graph is representative of all

outcome-dependent MAR scenarios (additional graphs available in supplementary plots).

When data are outcome-dependent MAR and for all sample sizes and levels of R-squared

complete-case analysis underestimates MSEobs (MSECC −MSEobs) and is more variable

than the imputation methods.

For all sample sizes and levels of R-squared, the ideal performance of MI-then-CV meth-

ods J and K tend to underestimate the MSEobs (MSEimp,ideal −MSEobs < 0, imp = J ,

K). With increasing sample size, the difference between the estimated and fully-observed

MSE for all methods tends to zero and ideal performance tends to outperform pragmatic

performance. Two exceptions are methods C and E whose ideal performance greatly over-

estimates MSEobs. These methods have an average difference greater than 300 for R2 of

0.1 and 0.3, and therefore are not visible in the figure for these values of R2 due to the

scale of the vertical axis. Across all scenarios the ideal performance for methods C and E

is poor and overestimates MSEobs. As can be seen in the first row of Figure4.3, the ideal

performance estimates for C and E are highly variable compared to the ideal performance

of other methods. Across all scenarios, ideal performance of MI-then-CV methods J and

K tends to underestimate the MSE whereas CV-then-MI methods A-H tend to overesti-

mate the MSE.

For a sample size of 100, ideal performance for methods A, B and D tends to overestimate

MSEobs more so than pragmatic performance. With increasing R-squared ideal perfor-

mance is better than pragmatic performance for method A but not for methods B or D.

However, increasing the sample size to 300 results in ideal performance being better than

pragmatic performance.

For pragmatic performance and sample sizes of 100 or 300, method A has a smaller differ-

ence than method B (MSEA,prag −MSEobs < MSEB,prag −MSEobs ). When excluding the

kth fold from imputing the k − 1 training folds for small sample sizes, method F tends to

have the smallest difference between its MSE estimate and MSEobs. MI-then-CV method

J tends to have the smallest difference (MSEJ,prag−MSEobs overall for all scenarios. With

increasing sample size, the pragmatic performance of the imputation methods tends to

perform similarly.

Overall (excluding ideal performance for methods C and D), methods A-K perform simi-

larly with increasing levels of R-squared and increasing sample size for ideal performance

when compared with MSEobs. Similarly the pragmatic performance of the methods
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Figure 4.3: The difference MSEimp - MSEobs when data are weakly outcome- and covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of MSEimp - MSEobs. CC (complete-case); methods A-K are described in Table2.3and summarised

in Table4.4.
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performs similarly with increasing sample size. The ideal performance of methods J and

K tends to underestimate MSEobs while the ideal or pragmatic performance of all other

methods overestimate MSEobs.

4.5.2 Increasing the number of imputed datasets from 5 to 25

Figure4.4shows results for comparing 5 versus 25 imputed datasets when estimating prag-

matic performance and comparing it to MSEobs (MSEimp −MSEobs). The results in the

graph are for the scenario when data are weak outcome-dependent MAR and R2 = 0.01

but are reflective of all scenarios for both pragmatic and ideal performance (additional

plots in Supplementary plotsS1.1.4).

Increasing the number of imputed datasets has little effect on the various methods’ MSE

estimates when comparing them to MSEobs. For all imputation methods, using 25 imputed

datasets results in similar estimates to using 5 imputed datasets, with similar Monte Carlo

variability across the 2000 repetitions.
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Figure 4.4: The difference MSEimp - MSEobs when data are weakly outcome-dependent MAR

for M = 25 versus M = 5 when 25% of values are missing in X1. The error bars summarise results

from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of

MSEimp - MSEobs. CC (complete-case); methods A-K are described in Table2.3and summarised

in Table4.4.
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4.5.3 Increasing the percentage of missingness to 40%

Figure4.5displays the results for comparing missing data methods to the fully-observed

MSE when 25% versus 40% of values in X1 are missing. The graph presents results when

data are weak outcome- and covariate-dependent MAR for R2 = 0.1, results are similar for

ideal and pragmatic performance in all other scenarios (additional plots in Supplementary

plotsS1.1.3).

When data are MCAR or covariate-dependent MAR, the complete-case analysis when

40% of X1 values are missing performs similarly to when 25% of data are missing but has

increased variability. When missingness is dependent on the outcome and potentially on

covariate X2, as seen in Figure4.5, complete-case analysis has an increased magnitude

|MSECC −MSEobs| and variability when 40% of the values for X1 are missing, compared

to 25%.

For pragmatic performance, the MSE estimates when 40% of X1 values are missing tend to

overestimate MSEobs compared to when 25% of values are missing (MSEimp,40−MSEobs >

MSEimp,25 −MSEobs). In some instances, the magnitude of the difference when 40% of

the data are missing may be slightly smaller than when data are 25% missing, such as

method J for a sample size of 300 in Figure4.5, but this changes back to being bigger with

increased sample size. The variability of the MSE estimates across repetitions is greatly

increased when compared to 25% of values being missing.

For ideal performance, the difference between the imputation methods’ MSE estimates and

MSEobs when 40% of X1 values are missing tends to be similar or greater than when 25%

of values are missing. Similarly to complete-case analysis and pragmatic performance, the

variability of the ideal performance estimates of MSE (MSEimp,40 −MSEobs) have greatly

increased for 40% of values missing compared to 25%.
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Figure 4.5: Comparing the impact of increasing the percentage of missingness on the difference

MSEimp - MSEobs when M = 5, R2 = 0.1 and data are weakly outcome- and covariate-dependent

MAR. The error bars summarise results from the 2000 repetitions and the limits represent the

Monte Carlo 95% confidence interval of MSEimp - MSEobs. Red denotes MSEimp - MSEobs when

25% of X1 values are missing and blue denotes MSEimp - MSEobs when 40% of X1 values are

missing. The top row presents the results for pragmatic performance and the bottom row presents

results for ideal performance. CC (complete-case); methods A-K are described in Table2.3and

summarised in Table4.4.
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4.5.4 Comparing to the target performance

Briefly as a reminder for the target MSE, the ideal performance of the proposed methods

and MSEobs were compared to the ideal target MSE estimate. This is estimated by apply-

ing a prediction model, developed using all data, to the fully-observed data in the larger

test set to get an MSE estimate, MSEtarget,obs (Section3.6). The pragmatic performance

of the proposed methods is compared to applying a prediction model, developed using all

data, to the imputed datasets of the larger test set (MSEtarget,imputed). The complete-case

estimate of the MSE is obtained from applying a prediction model to the observed cases of

the larger test set (MSEtarget,CC). Figure6.13displays results for comparing the various

methods MSE estimate with their respective ideal, pragmatic or CC target MSE. Graphs

from all scenarios are available in the supplementary plot sectionS1.1.5.

MCAR and covariate-dependent MAR

Figure4.6presents results for comparing MSE estimates to the target MSE (MSE imp −
MSEtarget) when data are weakly covariate-dependent MAR. The results are similar for

MCAR and strong covariate-dependent MAR.

For all scenarios when R2 = 0.01 or for R2 = 0.3 when the sample size is 100 or 300, MSEobs

tends to approximate the MSE performance in the fully-observed larger test set. In all

other scenarios, MSEobs tends to under- or overestimate MSEtarget,obs. For low or high

values of R-squared (R2 = 0.01, 0.3) and for a sample size of 100 (or 300 when R2 = 0.3),

the complete-case analysis estimate tends to approximate the complete-case target esti-

mate (MSECC −MSEtarget,CC). For all other scenarios, the complete-case method tends

to either over- or underestimate MSEtarget,CC .

For R2 = 0.01 and sample size of 100, the ideal performance MSE estimate of meth-

ods A, B, D and F tends to overestimate MSEtarget,obs (MSEimp,ideal −MSEtarget,obs for

imp = A,B,D, F ). All other imputation methods tend to overestimate the target MSE

but their 95% confidence intervals overlap with zero. With increasing sample size, all of

the proposed methods have similar ideal performance when compared to MSEtarget,obs,

except methods C and D which continue to overestimate. For low R-squared and small

sample size, the pragmatic performance MSE estimate of method B tends to overestimate

MSEtarget,imputed. With increasing sample size, all methods have similar pragmatic per-

formance when compared to MSEtarget,imputed (MSEimp,prag −MSEtarget,imputed).

For R2 = 0.1 and sample size is 300 or 1000, all ideal performance estimates underestimate

MSEtarget,obs and the pragmatic performance of the proposed methods underestimates

MSEtarget,imputed. For a sample size of 100, the ideal performance estimate of methods A

and F closely approximates MSEtarget,obs. The ideal performance of method B, C, D and
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Figure 4.6: The difference MSEimp - MSEtarget when data are weakly covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the

2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp -

MSEtarget. CC (complete-case); methods A-K are described in Table2.3and summarised in Table

4.4.
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E tend to overestimate MSEtarget,obs while all other methods tend to underestimate their

respective target MSE. For a sample size of 100, the pragmatic performance of methods A,

B, C, D, F and G approximates MSEtarget,imputed. The pragmatic performance of method

E, H, J and K tend to underestimate the target MSE in the fully-observed large test set

while all other methods tend to underestimate MSEtarget,imputed. With increasing sample

size, all methods tend to perform similarly when compared to the various target estimates.

For R2 = 0.3 and sample size of 100, the ideal performance for methods A-F tend to

overestimate MSEtarget,obs. The ideal performance of methods J and K tends to underes-

timate MSEtarget,obs but the 95% confidence intervals overlap with zero. The pragmatic

performance of method B and D tend to overestimate MSEtarget,imputed. All other meth-

ods confidence intervals overlap with zero with the mean point estimate of the pragmatic

performance of methods A,C,F and G overestimating MSEtarget,imputed and the point es-

timate of E,H,J and K underestimating. With increasing sample size the performance of

all methods tends to perform similarly when compared to the various target estimates.

Outcome-dependent MAR

Figure4.7presents results for comparing MSE estimates to the target MSE (MSE imp −
MSEtarget) when data are weakly outcome- and covariate-dependent MAR. When data are

outcome-dependent MAR and R2 = 0.1 all methods tend to overestimate their respective

target MSE. The MSE estimate when data are fully-observed or for the various proposed

methods tends to overestimate MSEtarget,obs for the various scenarios.

When sample size is 300 or 1000, all methods tend to perform similarly when compared

to the various target MSE estimates across the various scenarios, excluding the ideal

performance of methods C and E which overestimates MSEtarget,obs. When sample size

is 100, the pragmatic performance of methods A, C, F and G are similar when compared

to MSEtarget,imputed, while methods B and D tend to have a larger magnitude of the

difference. The ideal performance of methods A and F tend to be similar when compared

to MSEtarget,obs, while methods B and D have a larger magnitude of the difference. The

ideal and pragmatic performance of methods J and K tend to approximate MSEtarget,obs

or MSEtarget,imputed well.
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Figure 4.7: The difference MSEimp - MSEtarget when data are weakly outcome- and covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of

MSEimp - MSEtarget. CC (complete-case); methods A-K are described in Table2.3and summarised

in Table4.4.
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4.6 Is data leakage an issue within the imputation process?

In section2.8I discussed the issue of data leakage in the imputation process and how

we could investigate the impact of this leakage by comparing several methods, which are

briefly re-summarised in Table4.4. The methods to compare data leakage range from

having no leakage (method B) to those with the highest amount of leakage (method J).

Methods A (which has no leakage) and F-H have no similar methods from which to compare

the inclusion and exclusion of folds to assess the impact of data leakage and, therefore,

will not be discussed here.

Table 4.4: Brief summary of methods B-E and J-K for combining multiple imputation and cross-

validation

Method Train imputations Test imputations

B Y , X2 used to impute k − 1 training

folds by themselves

kth fold imputed by itself using X2

and possibly Y

C Same as B kth fold imputed using all K folds and

including X2 and possibly Y

D Y , X2 used to impute k − 1 training

folds using all K folds and restricting

to k−1 folds after imputation process

Same as B

E Same as D Same as C

J Impute the dataset first using one set of imputations before applying cross-

validation to each imputation set

K Impute the dataset first using two set of imputations - one for training the

model on k− 1 folds and the other for evaluating the model in the kth fold

Figure4.8compares the methods summarised above when data are weakly outcome- and

covariate dependent MAR with high R2. Similar methods, with one method having a

higher amount of data leakage, are compared side-by-side.

For sample size of 100 and R2 = 0.01, the difference between the ideal and pragmatic

performance of method B and MSEobs is large and does not fit onto the scale of Figure

4.8(refer to Figures4.2and4.3). When sample size is 100 and for various R2 values,

the pragmatic performance of method B (MSEB,prag −MSEobs) is twice the difference of

method C (MSEC,prag −MSEobs). This is similarly seen when comparing method D with

E suggesting that using all the covariate data from all folds to impute the missing data in

the holdout kth fold has a strong impact on evaluating model performance. This difference

can be seen for a moderate sample size of 300 but for a sample size of 1000 methods B and

C perform similarly, as do D and E. For a sample size of 1000 each holdout fold contains

100 observations, of which approximately 75% are fully-observed. Any influence from
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Figure 4.8: Assessing data leakage within the imputation process for cross-validation. The

difference MSEimp - MSEobs is compared when data are weak outcome- and strong covariate-

dependent MAR. For R2 = 0.01, 0.1 and 0.3, the average MSE when data are fully-observed is

approximately 17,800, 1600 and 400, respectively. CC (complete-case); methods A-K are described

in Table2.3and summarised in Table4.4.
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the leakage of the additional 90% of the data appears to be minimal.

By comparing B with D it is possible to assess the leakage relevant to including observa-

tions from the test fold when drawing imputed values for the k − 1 training folds. For

all sample sizes, we can see that D has a smaller difference (MSED,prag −MSEobs) than

method B (MSEB,prag − MSEobs). Although, the magnitude of this is not as large as

when comparing B with C when nobs = 100, with increasing sample size C and D perform

similarly.

This leakage can also be seen for ideal performance when comparing methods B and D.

However, this is not the case when comparing B with C for ideal performance. The

difference between C’s MSE estimate for ideal performance and the fully-observed MSE

(MSEC,ideal −MSEobs) was approximately 350 across the three sample sizes. Recall that

for imputing the holdout fold for method C the outcome was set to missing in the other

k − 1 folds and was therefore imputed alongside X1 in order to avoid any leakage by as-

sociating the outcome in the training folds with the test fold. By doing this, only Y in

the holdout fold is available and the outcome Y in the k − 1 folds needs to be imputed,

meaning that Y is missing for 90% of observations when performing imputation. This

was found to introduce a large amount of bias and uncertainty into the ideal performance

MSE estimates compared to their pragmatic version and is therefore not a recommended

way to approach ideal performance in cross-validation.

Method E imputes the training folds using data from all K folds before restricting to the

k−1 folds to fit the prediction model. Similarly, all K folds are used to impute the dataset

before restricting to the observations in the kth test fold so, in total, two imputation sets

are used. However, if ideal performance is of interest, the outcome in the k− 1 folds is ex-

cluded from the imputation of the kth test fold. This process is repeated for k = 1, . . . ,K.

Method K is essentially the same as method E but all Y observations are used for imput-

ing the test set. Method E and K perform similarly for pragmatic performance. However,

removing values of Y in the training folds for ideal performance has caused method E to

perform poorly by overestimating the MSE, similarly to method C. By using all available

covariate and outcome data the ideal performance for method K has performed similarly

to MSEobs.

For the ideal scenario, methods J and K have a tendency to underestimate the MSE for

all sample sizes across all values of R-squared. Method J has a tendency to have more op-

timistic performance than method K but with increasing sample size and R-squared they

tend to perform comparably. This is also seen within the pragmatic version of the methods.

While both methods J and K are impacted by data leakage due to the imputation step

being performed first in these methods, method J is more prone to it than method K. For
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ideal performance, the imputation model for both method J and K involves covariate X2

and the outcome. However, method K involves using both a training imputation model to

fit models and a test imputation model to evaluate the fitted prediction model. Whereas

method J uses one set of imputations to both train and evaluate prediction models. We

can see that by using two imputation models, method K tends to be less optimistic than

method J.

Figure4.9compares methods in terms of whether they are subject to data leakage when

data are outcome- and covariate- dependent MAR when compared with a larger test

set (MSEimp − MSEtarget). With increasing sample size, all methods tend to perform

similar when compared to the target MSE estimate. When sample size is 100 or 300, the

methods with the most amount of data leakage tend to have a difference closer to zero

(MSEimp−MSEtarget −→ 0). In other missing data and R2 scenarios, the methods with the

most amount of data leakage tend to have the highest magnitude of the difference with

MSEtarget.
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Figure 4.9: Assessing data leakage within the imputation process for cross-validation. The

difference MSEimp - MSEtarget is compared when when R2 = 0.1, 0.3 and data are weak outcome-

and strong covariate-dependent MAR. Method results are compared to estimates from a larger test

set. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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4.7 Discussion of results for continuous outcome

The aim of this simulation study was to identify the most appropriate way to combine MI

and cross-validation by using a simulation study covering a range of scenarios. In general,

as the amount of data leakage increased across the methods the smaller the difference

between imputed and fully-observed MSE tended to become. In certain scenarios there

was a tendency for the methods with the most data leakage (MI-then-CV methods J and

K) to underestimate the MSE.

Methods A and B are methods with no data leakage present and, with increasing sample

size, performed similarly to those which had the advantage of data leakage. Method A

imputes each fold separately using a train and test imputation model which can lead to

a total of 2K2M imputed datasets. Method B imputes the k − 1 training folds and kth

test fold separately which produces 2KM imputation datasets. While method A is more

computationally intensive than B, this only added on an extra one to two hours of com-

putational time in general across all scenarios on a high performance cluster. Imputing

each fold separately appears to produce better results than imputing k − 1 folds together

for small sample sizes of 100. Each fold to be imputed contains 10 observations, of which

two or three are missing values. It is possible that the imputed values based on seven or

eight fully-observed rows will be more variable than method B which has, on average, 68

fully-observed rows out of 90 observations. The variability in imputations for method A

may lead to a more robust training model which is better at predicting observations in

the test set than method B. The test set has also been imputed based on approximately 7

fully-observed rows out of 10 and therefore the imputed values will be more variable than

the imputed values in the training set of method B.

I found that methods that are subject to more data leakage (methods C-E, J-K) tended

to result in a smaller difference between the estimated MSE and MSEobs, compared with

methods that are not subject to leakage (methods A and B). An exception to this was

the ideal performance of methods C and E. With both increasing sample size and R2, the

difference in MSEimp and MSEobs decreased for their pragmatic versions but remained

high for ideal performance. For both methods, in an effort to avoid data leakage through

including the outcome from the training folds, Y in the k − 1 folds was set as missing.

Therefore, for ideal performance both X1 in all K folds and Y in the k−1 folds needed to

be imputed. However, imputing Y when only 10% of the values of Y have been observed

is typically not advisable as seen by the large amount of over-estimation of the MSE com-

pared to other methods.

As all methods will be further explored for a binary outcome scenario in the next chapter,

I will not yet make any recommendations as more exploration is needed. Chapter5will
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assess the simulation study results for the various cross-validation methods combined with

MI when the outcome is binary.
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5 Simulation study results for cross-validation: binary out-

come

5.1 Introduction

Several performance measures were evaluated in the binary outcome setting: AUC, Brier

score and ‘weak calibration’ which were originally described in Section1.10. Similarly

to the continuous outcome scenario, various sample sizes and levels of missingness were

examined for the binary outcome case. For a quick reminder on how results will be com-

pared, a brief overview of the analysis comparing methods B and J is available in Section

4.3when the performance measure of interest is the MSE. All methods were previously

described in Section2.6and summarised in Table4.3.

For each performance measure, results for the complete-case analysis when sample size

is 100 are available for at least 1920 repetitions. Thirty percent of the observations have

the outcome and approximately 25% of the data have a missing value. A complete-case

analysis resulted in records with the outcome present being removed from a fold which

lead to difficulties in obtaining results.

5.2 Summary of the simulated fully-observed data

Table5.1presents a summary of the AUC, Brier score and calibration in the fully-observed

data, before missingness is introduced. For the AUC, a value approaching 1 indicates good

performance whereas for Brier score, a smaller value is preferred. For all sample sizes the

mean AUC is approximately 0.78 and the mean Brier score is 0.17. Calibration is assessed

using the calibration intercept and slope (Section1.10). Large deviations from zero or one

for the intercept and slope, respectively, can indicate poor calibration. For N = 100 the

intercept and slope vary massively, with the slope still having some variation for N = 300.

These unstable results will be discussed in Section5.8. When sample size equals 1000, the

calibration intercept and slope tend towards zero and one.

Table 5.1: Summarising performance when data are fully-observed for the 2000 simulated datasets

AUC Brier Intercept Slope

N = 100

Mean (var) 0.79 (0.003) 0.17 (< 0.001) -1.35e+11 (3.65e+25) 80.94 (8.93e+05)

(Min, Max) 0.63, 0.95 0.10, 0.25 -2.70e+14, 0.13 -556.91, 39710.70

N = 300

Mean (var) 0.78 (< 0.001) 0.17 (< 0.001) -0.03 (< 0.001) 1.80 (60.31)

(Min, Max) 0.66, 0.88 0.12, 0.20 -0.17, 0.02 0.91, 196.09

N = 1000

Mean (var) 0.78 (< 0.001) 0.16 (< 0.001) -0.01 (< 0.001) 1.04 (0.00)

(Min, Max) 0.73, 0.84 0.14, 0.18 -0.03, 0.01 0.99, 1.15
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5.3 Detailed results: Area under the ROC curve

A higher AUC estimate generally suggests the model is performing well. Therefore, if

a method overestimates the AUC estimated when data are fully-observed, AUCobs, the

method is considered to over-optimistic i.e. the model performs better when data have

been imputed than if the data had not been missing to begin with.

5.3.1 Comparing the methods’ AUC to the estimate of the AUC when data

are fully-observed

MCAR and covariate-dependent MAR

Figure5.1displays results for the various cross-validation methods’ ( imp) estimates of

the AUC which are compared to AUCobs (AUCimp − AUCobs) when data are MCAR or

covariate-dependent MAR.

When sample size is 100 and data are MCAR or covariate-dependent MAR, the complete-

case analysis tends to overestimate the AUCobs (AUCCC − AUCobs > 0.01). For the

MCAR scenario, with increasing sample size the difference decreases to zero (AUCCC −
AUCobs −−−−−−→

nobs−→∞
0). For the covariate-dependent MAR scenarios when the sample size

is 300 or 1000, the complete-case analysis estimate of the AUC tends to underestimate

AUCobs (AUCCC −AUCobs < 0).

The pragmatic performance of all methods underestimates AUCobs (AUCimp,prag−AUCobs <

0). Similarly to the continuous outcome case, method A (impute each fold separately) has

a smaller difference than method B (impute the kth test fold separately to the k − 1

training folds) i.e. |AUCA,prag −AUCobs| < |AUCB,prag −AUCobs|. This can be observed

for all sample sizes when data are MCAR or covariate-dependent MAR. This was also

noted for the MSE when the outcome is continuous. Method B has the largest magnitude

|AUCB,prag −AUCobs| across all imputation methods while method J (impute all K folds

together using one set of imputed datasets) tends to have the smallest magnitude of the

difference. The pragmatic performance of methods C, F and G, is similar in relation to

AUCobs. Their magnitude (|AUCimp,prag − AUCobs|, imp = C, F, G) is smaller than the

magnitude of method B but larger than the magnitude of method A when the sample size

is 100 or 300. All methods tend to perform similarly when the sample size is 1000.

The ideal performance of CV-then-MI methods A-H underestimates AUCobs for all sample

sizes when data are MCAR or covariate-dependent MAR (AUCimp,ideal − AUCobs < 0,

imp = A-H). Whereas the ideal performance of methods J and K (MI-then-CV ) tends to

overestimate AUCobs (AUCimp,ideal −AUCobs > 0, imp = J, K).
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Figure 5.1: The difference AUCimp - AUCobs when data are MCAR or covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of AUCimp - AUCobs.

The average AUC when data are fully-observed is 0.78. CC (complete-case); methods A-K are

described in Table2.3and summarised in Table4.4.
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Across all sample sizes, the magnitude of the difference (|AUCimp,ideal − AUCobs|) for

methods J and K tends to be the smallest while method B tends to have the largest.

For a sample size of 100, the ideal performance of methods A, F and E perform similarly

and have the smallest magnitude of difference for all CV-then-MI methods. With an

increase in sample size to 300 methods E and F have the smallest magnitude of difference

(|AUCimp,ideal−AUCobs|, imp =E, F) while method A performs similarly to methods C and

E. With an increase in sample size to 1000 all CV-then-MI methods (methods A-H) tend

to perform similarly with a magnitude less than 0.0025 (|AUCimp,ideal−AUCobs| < 0.0025).

Outcome-dependent MAR

Figure5.2displays results for the various cross-validation methods’ ( imp) estimates of

the AUC which are compared to AUCobs (AUCimp − AUCobs) when data are outcome-

dependent or outcome- and covariate-dependent MAR.

Similarly to the MCAR and covariate-dependent MAR scenarios, the complete-case anal-

ysis tends to overestimate AUCobs for a sample size of 100 (AUCCC − AUCobs > 0).

When data are outcome-dependent MAR and sample size is 300 or 1000 the complete-

case analysis estimates AUCobs well. When data are outcome- and covariate-dependent

MAR and sample size is 300 or 1000, the complete-case analysis underestimates the AUC

value (AUCCC −AUCobs < −0.01).

The pragmatic performance of all methods underestimates AUCobs (AUCimp,prag−AUCobs <

0, imp = A-H, J, K). For all sample sizes and missing data scenarios, the pragmatic per-

formance of method B has the largest magnitude of the difference (|AUCB,prag−AUCobs|),
with method D having the second largest magnitude. Method B (impute the training folds

using the k−1 folds only) has a larger magnitude than method D (impute the training folds

using all K folds before restricting to the k− 1 folds to fit the prediction model). Method

B imputes the test fold using only data available in the kth fold and is outperformed by

method D which uses all K folds to impute the test fold before restricting to the data in

the kth fold to evaluate the prediction model. Method A performs similarly to methods

C, F and G while method J tends to have the smallest magnitude of all the methods

(|AUCJ,prag − AUCobs|) for all sample sizes. With increasing sample size the magnitude

of the difference decreases for all sample sizes and the methods tend to perform similarly

in relation to AUCobs when the sample size is 1000.

The ideal performance of methods A-H underestimate AUCobs (|AUCimp,ideal−AUCobs| <
0, imp = A, . . ., H) while methods J and K tend to overestimate AUCobs when sample

size is 100 or 300 (|AUCimp,ideal − AUCobs| > 0, imp = J, K) and underestimate AUCobs

for a sample size of 1000. Again, method B has the largest magnitude of difference for all

sample sizes when data are outcome-dependent or outcome- and covariate-dependent
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Figure 5.2: The difference AUCimp - AUCobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of AUCimp - AUCobs. The average AUC when data are fully-observed is 0.78.

CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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MAR. For all sample sizes and missing data scenarios, methods J and K have the small-

est magnitudes of difference which are less than 0.005 (|AUCimp,ideal − AUCobs| < 0.005,

imp = J, K).

The ideal performance of method D (observations from all folds are used to impute the

k − 1 training folds) has a slightly smaller magnitude of the difference than method B

(only observations from the k − 1 folds are used when imputing the training folds) for

sample sizes of 100 and 300. The difference in magnitude between method D and B is

due to the use of all folds in the training folds imputation process. This comparison can

also be made for method E which has a smaller magnitude of the difference than method C.

Method C (observations from all folds used to impute the kth test fold) has a much smaller

magnitude than method B (only observations from the kth test fold used to impute the

test fold) for small and moderate sample sizes. This difference in magnitude due to the use

of all folds in the test fold imputation process can also be seen when comparing method

E (which uses all folds) to method D (which uses only the test fold).

For large sample sizes methods A-H (CV-then-MI ) tend to perform similarly when com-

pared to AUCobs while methods J and K (MI-then-CV ) have the smallest magnitude.

When the sample size is 1000, the magnitude of the difference is less than 0.005 for all

methods (|AUCimp,ideal −AUCobs| < 0.005).

5.3.2 Increasing the number of imputed datasets from 5 to 25

Figure5.3displays results comparing the use of 5 versus 25 imputed datasets ( M) when

data are outcome-dependent or outcome- and covariate-dependent MAR (AUCimp,M −
AUCobs). The results are for the pragmatic performance but are generalisable also to the

ideal performance in all missing data scenarios. All graphs comparing 5 versus 25 imputed

datasets for the ideal and pragmatic performance are available in the Supplementary plots

sectionS2.1.3.

Increasing the number of imputed datasets from 5 to 25 has had little impact on the meth-

ods’ AUC estimates when compared to AUCobs (AUCimp,M=5−AUCobs u AUCimp,M=25−
AUCobs). This can be seen for the various cross-validation methods for all missing data

and sample size scenarios.
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Figure 5.3: The difference AUCimp - AUCobs when data are outcome-dependent or outcome- and

covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions for pragmatic performance and the limits

represent the Monte Carlo 95% confidence interval of AUCimp - AUCobs. The average AUC when

data are fully-observed is 0.78. CC (complete-case); methods A-K are described in Table2.3and

summarised in Table4.4.
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5.3.3 Increasing the percentage of missingness to 40%

Figure5.4displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various cross-validation methods when data are weakly outcome-

and covariate-dependent MAR. The figure presents the AUC estimates when 25% or 40%

of X1 values are missing compared to AUCobs (AUCimp,% − AUCobs). The results are

generally representative of the comparison between 25% and 40% missingness for ideal

and pragmatic performance for all missing data scenarios and sample sizes. All plots are

available in SectionS2.1.2of the Supplementary Plots.

The complete-case analysis tends to perform similarly or have overlapping confidence in-

tervals when 25% or 40% of the X1 values are missing when data are MCAR or covariate-

dependent MAR. When data are outcome-dependent MAR and sample size is 300 the

larger percentage of missingness results in a larger magnitude than when 25% of val-

ues are missing (|AUCCC,25% − AUCobs| < |AUCCC,40% − AUCobs|). When the sample

size is 1000 they both perform similarly when compared toAUCobs. For weak outcome-

dependent and weak or strong covariate-dependent MAR, the magnitude of the differ-

ence tends to be smaller for the higher percentage of missingness when sample size is

300 (|AUCCC,40% − AUCobs| < |AUCCC,25% − AUCobs|) but with increased sample size

to 1000 this reverts to the higher percentage of missingness having a larger magnitude

(|AUCCC,25% −AUCobs| < |AUCCC,40% −AUCobs|).

The pragmatic performance of methods A-F and H tend to have a larger magnitude of

the difference between the methods’ AUC estimates and AUCobs for a sample size of

300 or 1000 for all missing data scenarios. Method G, J and K tend to have similar

(|AUCimp,25% −AUCobs| u |AUCimp,40% −AUCobs| where imp = G, J or K).

The ideal performance of methods A-F (methods G and H do not have an ideal performance

estimate) tend to have a larger magnitude when the percentage of missingness is 40%

compared to a percentage of 25% (|AUCimp,25% − AUCobs| < |AUCimp,40% − AUCobs|
where imp = A, . . ., F) for all sample sizes and missing data scenarios. Similarly to the

pragmatic performance, the ideal performance estimate of the AUC for methods J and K

performs similarly regardless of the percentage of missing data present in variable X1.
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Figure 5.4: Comparing the impact of increasing the percentage of missingness on the difference

AUCimp - AUCobs when data are outcome- and covariate-dependent MAR when M = 5. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of AUCimp - AUCobs. Red denotes AUCimp - AUCobs when 25% of X1

values are missing and blue denotes AUCimp - AUCobs when 40% of X1 values are missing. The

top row presents the results for pragmatic performance and the bottom row presents results for

ideal performance. The average AUC when data are fully-observed is 0.78. CC (complete-case);

methods A-K are described in Table2.3. 123



5.3.4 Comparing each method’s AUC to the target estimate of the AUC from

a larger validation set

Similarly to the continuous outcome scenario in Section4.5, the ideal performance of

the proposed methods and AUCobs were compared to the ideal target AUC estimate,

AUCtarget,obs. This is estimated by applying a prediction model, based on all data in a

repetition, to the fully-observed data in the larger test set. The pragmatic performance

of the methods is compared to applying a repetition’s prediction model to the imputed

datasets of the larger test set (AUCtarget,imputed). The complete-case estimate of the AUC

is compared to applying a repetition’s prediction model to the observed cases of the larger

test set (AUCtarget,CC).

MCAR and covariate-dependent MAR

Figure5.5presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target AUC estimate, when data are MCAR or

covariate-dependent MAR.

For a sample size of 100, the complete-case estimate tends to overestimate the complete-

case target estimate of the AUC (AUCCC − AUCtarget,CC > 0) and does not fit onto

the scale of Figure5.5. With increasing sample size the magnitude of the difference be-

tween the complete-case analysis and AUCtarget,CC tends to be less than 0.005 (AUCCC−
AUCtarget,CC < 0.005) and either under- or overestimates the target estimate.

When sample size is 100, the pragmatic performance of all methods tends to overestimate

AUCtarget,imputed by approximately 0.02 (AUCimp,prag −AUCtarget,imputed ≈ 0.02). When

sample size is 100, method B, which tended to have the largest magnitude when compared

to AUCobs, now tends to have the smallest magnitude (|AUCB,prag − AUCtarget,imputed|).
Methods J and K tend to have the largest magnitude when sample size is small, closely

followed by methods A, E and H. With increasing sample size, the pragmatic performance

of the methods tends to perform similarly with the magnitude of the pragmatic perfor-

mance estimates tending to be less than 0.005 (|AUCimp,prag−AUCtarget,imputed| < 0.005)

when sample size is 300 and less than 0.0025 when sample size is 1000. When data are

MCAR or strong covariate-dependent MAR, the pragmatic performance of the methods

tends to underestimate the pragmatic target AUC estimate, while the methods tend to

overestimate the AUC target estimate when data are weak covariate-dependent MAR.

The ideal performance of all methods when sample size is 100 overestimates AUCtarget,obs

(AUCimp,ideal − AUCtarget,obs > 0). When sample size is 100, method B tends to have

the smallest magnitude of the difference while methods J and K have the largest. For a

sample size of 300 there is a downwards pull for all methods, the CV-then-MI methods
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Figure 5.5: The difference AUCimp - AUCtarget when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of AUCimp -

AUCtarget. The average AUC when data are fully-observed is 0.78. CC (complete-case); methods

A-K are described in Table2.3.
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A-F now tend to underestimate the target estimate while the MI-then-CV methods tend

to overestimate or approximate the target estimate well. With increasing sample size to

1000 all methods tend to perform similarly and the magnitude of the difference tends to

be less than 0.005 for all methods (|AUCimp,ideal −AUCtarget,obs| < 0.005).

Outcome-dependent MAR

Figure5.6presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target AUC estimate, when data are outcome-

dependent or outcome- and covariate-dependent MAR.

The complete-case analysis estimate of the AUC tends to overestimate AUCtarget,CC for

all sample sizes and missing data scenarios, at times not fitting onto the scale of the graph

in Figure5.6when sample size is 100. With increasing sample size, the magnitude of

the difference between the complete-case analysis estimate and the complete-case target

estimate tends to decrease.

Similarly to the MCAR and covariate-dependent MAR scenario, the pragmatic perfor-

mance of all methods tends to overestimate AUCtarget,imputed when sample size is 100

(0.015 < AUCimp,prag − AUCtarget,imputed < 0.03). Method B tends to have the smallest

magnitude (|AUCB,prag − AUCtarget,imputed|) while methods J and K tend to have the

largest. Increasing the sample size of the methods to 300, the magnitude of the difference

for all methods tends to be less than 0.005 (|AUCimp,prag − AUCtarget,imputed| < 0.005).

Methods A, C, E-H tend to perform well when sample size is 300, while methods B and

D tend to have a slightly larger magnitude. For a sample size of 1000 all methods tend to

perform similarly.

When sample size is 100, the ideal performance of all methods tends to overestimate

AUCtarget,obs. Method B tends to have the smallest magnitude (|AUCB,ideal−AUCtarget,obs|)
while the ideal performance of the CV-then-MI methods A-F tend to have a smaller mag-

nitude than the MI-then-CV methods, which tend to have a magnitude around 0.02.

For a sample size of 300 the CV-then-MI methods’ ideal performance underestimates

AUCtarget,obs while the MI-then-CV methods overestimate AUCtarget,obs (i.e. they’re over-

optimistic). Methods B and D tend to have the largest magnitude while the other methods

have a magnitude less than 0.0075. With increased sample size to 1000, all methods tend

to perform similarly with a magnitude less than 0.005.
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Figure 5.6: The difference AUCimp - AUCtarget when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of AUCimp - AUCtarget. The average AUC when data are fully-observed is

0.78. CC (complete-case); methods A-K are described in Table2.3.
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5.4 Detailed results: Brier score

A lower Brier score estimate generally suggests the model is performing well. Therefore,

if a method underestimates the Brier score estimated when data are fully-observed the

method is considered to be over-optimistic i.e. the model performs better when data have

been imputed than if the data had not been missing to begin with.

5.4.1 Comparing each method’s Brier score to the estimate of the Brier score

when data are fully-observed

MCAR and covariate-dependent MAR

Figure5.7displays results for the various cross-validation methods’ ( imp) estimates of the

Brier score which are compared to the Brier score estimate when data are fully-observed

(Brierimp − Brierobs) when data are MCAR or covariate-dependent MAR.

When data are MCAR, the complete-case analysis estimate tends to overestimate Brierobs.

Increasing the sample size from 100 to 1000 causes the magnitude of this difference to de-

crease from 0.00122 to 0.00029. When data are covariate-dependent MAR, the complete-

case analysis estimate underestimates Brierobs with a magnitude of at least 0.005.

For all sample sizes when data are MCAR or covariate-dependent MAR, the pragmatic

performance of all methods overestimates Brierobs. For a sample size of 100 and 300 across

all missing data scenarios, methods J and K have the smallest magnitude (|BrierJ,prag −
Brierobs| ≈ 0.0025), followed by methods A and E. Method B has the largest magnitude

(greater than 0.005 when sample size is 100 and approximately 0.003 for a sample size of

300). With increased sample size to 1000 all methods perform similarly when data are

MCAR or covariate-dependent MAR.

For all sample sizes when data are MCAR or covariate-dependent MAR, the ideal perfor-

mance of all CV-then-MI methods (methods A-F only as methods G and H do not have

an ideal performance estimate) overestimates Brierobs. Methods J and K (MI-then-CV )

underestimate Brierobs when sample size is 100 or 300 (over-optimistic) but tends to per-

form similarly to Brierobs when sample size is 1000 across all missing data scenarios. When

the sample size is 100, method A tends to have the smallest magnitude of the difference

across all CV-then-MI methods. Method B tends to have the largest magnitude of dif-

ference (|BrierB,ideal − Brierobs|) while the methods similar to B but which either include

the test fold when imputing the training fold (method D) or include the training folds

when imputing the test fold (method C) tend to have a smaller magnitude than B. With

increasing sample size, the methods tend to perform similarly when compared to Brierobs.
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Figure 5.7: The difference Brierimp - Brierobs when data are MCAR or covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of Brierimp - Brierobs.

The average Brier score when data are fully-observed is 0.17. CC (complete-case); methods A-K

are described in Table2.3and summarised in Table4.4.
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Outcome-dependent MAR

Figure5.8displays results for the various cross-validation methods’ ( imp) estimates of the

Brier score which are compared to Brierobs (Brierimp − Brierobs) when data are outcome-

dependent or outcome- and covariate-dependent MAR.

For all sample sizes and missing data scenarios, the complete-case analysis underestimates

Brierobs with a magnitude greater than 0.01 (|BrierCC−Brierobs| > 0.01). For the stronger

MAR scenarios (rows two and three of Figure5.8) the complete-case analysis estimate does

not fit onto the scale of the graph.

For all sample sizes and missing data scenarios, the pragmatic performance of all methods

overestimates Brierobs. For a sample size of 100, method B tends to have the largest mag-

nitude of the difference which is greater than 0.008 (|BrierB,prag−Brierobs| > 0.008) while

method J tends to have the smallest magnitude of approximately 0.003. For CV-then-MI,

methods A, E and H tend to have the smallest magnitudes which are approximately 0.004.

With increasing sample size the methods tend to perform similarly, with method J having

the smallest magnitude of the difference while method B has the largest.

For all sample sizes and missing data scenarios, the ideal performance of all CV-then-

MI methods A-F overestimates Brierobs. Methods J and K (MI-then-CV ) underestimate

Brierobs when sample size is 100 or 300 (i.e. over-optimistic) but tends to perform similarly

to Brierobs when sample size is 1000 for all missing data scenarios. For a sample size of

100, methods A, E and F tend to have the smallest magnitudes of difference with Brierobs

across the CV-then-MI methods while methods J and K have the smallest magnitude

overall. With increased sample size to 300, the magnitude of all methods is less than

0.005 (|Brierimp,ideal − Brierobs| < 0.005). For a sample size of 1000, methods J and K

approximate Brierobs well, while methods E and F have the smallest magnitude across the

CV-then-MI methods while method B still has the largest magnitude.

130



CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

−0.02

−0.01

0.00

0.01

 

 

Nobs=100
CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

−0.02

−0.01

0.00

0.01

 
 

Nobs=300
CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

−0.02

−0.01

0.00

0.01

 

 

Nobs=1000

2=0

CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

0.000

0.004

0.008

 

 

CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

0.000

0.004

0.008

 

 

CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

0.000

0.004

0.008

 

 2=
1
20

CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

0.000

0.004

0.008

 

 

CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

0.000

0.004

0.008

 

 

CC Exclude fold k Include k MI−CV

CC A B C F G D E H J K

0.000

0.004

0.008

 

 

CC
Ideal
Pragmatic

2=
1
10

Outcome−dependent MAR

Cross−validation methods

D
iff

er
en

ce
 b

et
w

ee
n 

es
tim

at
ed

 a
nd

 fu
lly

−o
bs

er
ve

d 
B

rie
r S

co
re

Figure 5.8: The difference Brierimp - Brierobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brierimp - Brierobs. The average Brier score when data are fully-observed is

0.17. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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5.4.2 Increasing the number of imputed datasets from 5 to 25

Figure5.9displays results comparing the use of 5 versus 25 imputed datasets when data

are outcome-dependent or outcome- and covariate-dependent MAR (Brierimp,M−Brierobs).
The results are for the pragmatic performance but are generalisable also to the ideal per-

formance in all missing data scenarios. All graphs for the ideal and pragmatic performance

are available in the Supplementary plots sectionS2.2.3.

As seen in Figure5.9, the performance of all methods is unaffected by an increased number

of imputed datasets when estimating the Brier score performance. This holds for all sample

sizes and missing data scenarios for pragmatic and ideal performance.
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Figure 5.9: The difference Brierimp - Brierobs when data are outcome-dependent or outcome- and

covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions for pragmatic performance and the limits

represent the Monte Carlo 95% confidence interval of Brierimp - Brierobs. The average Brier score

when data are fully-observed is 0.17. CC (complete-case); methods A-K are described in Table2.3

and summarised in Table4.4.
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5.4.3 Increasing the percentage of missingness to 40%

Figure5.10displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various cross-validation methods when data are weakly outcome-

and covariate-dependent MAR. The figure presents the Brier score estimates when 25%

or 40% of X1 values are missing compared to Brierobs (Brierimp,% −Brierobs). The results

are generally representative of the comparison between 25% and 40% missingness for ideal

and pragmatic performance for all missing data scenarios and sample sizes. All plots are

available in SectionS2.2.2of the Supplementary Plots.

When data are MCAR, the complete-case analysis performs similarly regardless of whether

25% of 40% of X1 values are missing. For all MAR scenarios, an increased percentage

of missingness results in a larger magnitude of the complete-case analysis estimate when

compared to Brierobs (|BrierCC,25% − Brierobs| < |BrierCC,40% − Brierobs|).

For all sample sizes and missing data scenarios the pragmatic performance of methods G,

J and K perform similarly regardless of the percentage of missing data in X1. For all other

methods, an increased percentage of missingness causes an increase in the magnitude of

the difference between their estimate of the Brier score and Brierobs.

For all sample sizes and missing data scenarios the ideal performance of the MI-then-

CV methods J and K perform similarly regardless of the percentage of missing data

in X1. For all other methods (methods A-F), an increased percentage of missingness

causes an increase in the magnitude (|Brierimp,25% − Brierobs| < |Brierimp,40% − Brierobs|
for imp = A, . . . ,F).
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Figure 5.10: Comparing the impact of increasing the percentage of missingness on the difference

Brierimp - Brierobs when data are outcome- and covariate-dependent MAR when M = 5. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of BrierCimp - Brierobs. Red denotes Brierimp - Brierobs when 25% of X1 values

are missing and blue denotes Brierimp - Brierobs when 40% of X1 values are missing. The top

row presents the results for pragmatic performance and the bottom row presents results for ideal

performance. The average Brier score when data are fully-observed is 0.17. CC (complete-case);

methods A-K are described in Table2.3. 135



5.4.4 Comparing each method’s Brier score to the target estimate of the

Brier score from a larger validation set

As previously discussed for the AUC results, the ideal performance of the proposed meth-

ods and Brierobs were compared to the ideal target Brier score estimate (Briertarget,obs).

This is estimated by applying a prediction model, based on all data in a repetition, to the

fully-observed data in the larger test set. The pragmatic performance of the imputation

methods is compared to applying a repetition’s prediction model to the imputed datasets

of the larger test set (Briertarget,imputed). The complete-case estimate of the Brier score is

compared to applying a repetition’s prediction model to the observed cases of the larger

test set (Briertarget,CC).

MCAR and covariate-dependent MAR

Figure5.11presents the ideal and pragmatic performance estimates of the various methods

when compared to their respective target Brier score estimate, when data are MCAR or

covariate-dependent MAR. The magnitude of the difference between the methods’ Brier

score estimate and the target estimate is less than 0.0075 when sample size is 100, less

than 0.005 for a sample size of 300 and less than 0.0025 for a sample size of 1000.

When data are MCAR or strong covariate-dependent MAR, the complete-case analysis

estimate overestimates Briertarget,CC (BrierCC −Briertarget,CC > 0). When data are weak

covariate-dependent MAR and sample size is 100, the complete-case analysis estimate

approximates the target estimate well but with increasing sample size the complete-case

analysis tends to underestimate Briertarget,CC .

When data are MCAR or strong covariate-dependent MAR and sample size is 100, the

pragmatic performance of methods A, E, H, J and K tend to approximate Briertarget,imputed

well (Brierimp,prag − Briertarget,imputed ≈ 0 for imp = A,E,H, J,K). The other methods

tend to overestimate Briertarget,imputed with method B having the largest magnitude of the

difference (|BrierB,prag−Briertarget,imputed|). With increasing sample size all methods tend

to perform similarly and overestimate Briertarget,imputed. When data are weak covariate-

dependent MAR and sample size is 100, all methods tend to approximate Briertarget,imputed

well (i.e. their confidence intervals overlap with zero) except for methods B and J who

tend to over- and underestimate Briertarget,imputed, respectively. For a sample size of 300

or 1000, all methods tend to underestimate Briertarget,imputed. Method B has the smallest

magnitude while method J has the largest. For a sample size of 1000 all methods perform

similarly.

When data are MCAR or strong covariate-dependent MAR and sample size is 100, the
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Figure 5.11: The difference Brierimp - Briertarget when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Brierimp -

Briertarget. The average Brier when data are fully-observed is 0.17. CC (complete-case); methods

A-K are described in Table2.3.
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ideal performance of all methods overestimates Briertarget,obs. For CV-then-MI, methods

A and E have the lowest magnitude (|Brierimp,ideal −Briertarget,obs|) while methods J and

K tend to have the lowest magnitude overall. With increasing sample size to 300 the

magnitude of the difference for all methods is less than 0.0025 when data are MCAR or

weak covariate-dependent MAR and less than 0.005 for strong covariate-dependent MAR.

When data are MCAR or strong covariate-dependent MAR, all methods tend to slightly

overestimate Briertarget,obs. When data are weak covariate-dependent MAR, methods A-F

overestimate Briertarget,obs and methods J and K underestimate Briertarget,obs (i.e. over-

optimistic). With increased sample size to 1000, all methods underestimate Briertarget,obs

and perform similarly.

Outcome-dependent MAR

Figure5.12presents the ideal and pragmatic performance estimates of the various methods

when compared to their respective target Brier score estimate, when data are outcome-

dependent or outcome- and covariate-dependent MAR. The magnitude of the difference

between the methods’ Brier score estimate and the target estimate is less than 0.01 when

sample size is 100, less than 0.005 for a sample size of 300 and less than 0.0025 for a

sample size of 1000. The complete-case analysis estimate underestimates Briertarget,CC for

all sample sizes and missing data scenarios (BrierCC − Briertarget,CC < 0). With increas-

ing strength of missingness, the magnitude of the difference (|BrierCC − Briertarget,CC |)
increases.

When the sample size is 100 or 300, the pragmatic performance of methods A, C, E-H,

J and K tend to perform well, either approximating Briertarget,imputed well or having very

small magnitudes (|Brierimp,prag − Briertarget,imputed|). Methods B and D tend to overes-

timate Briertarget,imputed for all sample sizes and missing data scenarios. With increasing

sample size to 1000 all methods perform similarly.

The ideal performance of the CV-then-MI methods A-F overestimates Briertarget,obs for

sample sizes of 100 or 300 for all missing data scenarios. The performance of methods J and

K (MI-then-CV ) tends to underestimate Briertarget,obs when data are weak outcome- and

covariate-dependent MAR and overestimates Briertarget,obs for the other missing scenarios.

For a sample size of 100 or 300, methods B and D tend to have the largest magnitude

(|Brierimp,ideal − Briertarget,obs|, imp =B, D) while methods J and K tends to have the

smallest magnitude. With increasing sample size to 1000, the performance of all methods

is similar except for the weak outcome- and strong covariate-dependent MAR scenario

where methods J and K have the smallest magnitudes.
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Figure 5.12: The difference Brierimp - Briertarget when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brierimp - Briertarget. The average Brier when data are fully-observed is

0.17. CC (complete-case); methods A-K are described in Table2.3.
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5.5 Detailed results: Calibration intercept

For a sample size of 100 when data are MAR, the various performance estimates of the

calibration intercept estimate are very unstable when compared to the intercept estimated

when data are fully-observed. This can also be seen for the bootstrap calibration results

in AppendixC. The estimates of the calibration intercept for a sample size of 100 when

data are fully-observed were previously noted to vary widely in Section5.2(Table5.1).

Here, we will focus on results for a sample size of 300 and 1000.

5.5.1 Comparing each method’s Calibration intercept to the estimate of the

Calibration intercept when data are fully-observed

MCAR and covariate-dependent MAR

Figure5.13displays results for the proposed methods’ ( imp) estimates of the calibration

intercept which are compared to Interceptobs (Interceptimp − Interceptobs) when data are

MCAR or covariate-dependent MAR.

The complete-case analysis estimate underestimates Interceptobs (InterceptCC−Interceptobs <
0). For covariate-dependent MAR when sample size is 300, the magnitude of the underes-

timation is greater than 0.015 and it does not fit onto the scale of Figure5.13. However,

with increasing sample size the magnitude of the difference (|InterceptCC − Interceptobs|)
decreases when data are MCAR or covariate-dependent MAR.

For all sample sizes when data are MCAR or covariate-dependent MAR, the pragmatic per-

formance of methods B and D overestimate Interceptobs (Interceptimp,prag− Interceptobs >

0 for imp = B, D). For a sample size of 300 when data are covariate-dependent MAR,

they do not fit onto the scale of the graph. With increasing sample size, the magnitude

of the difference decreases (|Interceptimp,prag − Interceptobs| −→ 0, imp = B, D). The prag-

matic performance of the other methods tends to underestimate Interceptobs when data

are MCAR. When data are weak or strong covariate-dependent MAR, methods E and

K tend to overestimate Interceptobs while the remaining methods either underestimate or

approximate Interceptobs well.

Similarly for the ideal performance, methods B and D overestimate Interceptobs (Interceptimp,ideal−
Interceptobs > 0 for imp = B, D) with a magnitude greater than 0.1. The ideal perfor-

mance of the remaining methods either over- or underestimate Interceptobs but with similar

magnitudes.
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Figure 5.13: The difference Interceptimp - Interceptobs when data are MCAR or covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of Interceptimp - Interceptobs. The average Calibration intercept when data are fully-observed is

0.02 for larger sample sizes. CC (complete-case); methods A-K are described in Table2.3and

summarised in Table4.4.
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Outcome-dependent MAR

Figure5.14displays results when data are outcome-dependent or outcome- and covariate-

dependent MAR. The graph presents the comparison of the various methods’ (imp) esti-

mates of the calibration intercept to the intercept estimate when data are fully-observed

(Interceptimp − Interceptobs).

The complete-case analysis estimate of the calibration intercept underestimates Interceptobs

for a sample size of 300 and 1000, at times not fitting onto the scale of the graph when

sample size is 300. Increasing the sample size to 1000 decreases the magnitude of the

underestimation (|Interceptimp − Interceptobs| −→ 0).

The pragmatic performance of all methods overestimates Interceptobs for a sample size of

300 or 1000 across all missing data scenarios. When sample size is 300, methods A and

J have the smallest magnitudes (|Interceptimp,prag − Interceptobs| < 0.0025 for imp = A,

J) while methods B and D have the largest. When sample size is 1000, method J has the

smallest magnitude of the difference across all methods while methods A and F-H tend to

perform similarly with the lowest magnitude for CV-then-MI methods.

The ideal performance of all methods also overestimates Interceptobs for all sample sizes

and missing data scenarios. For the MI-then-CV methods when sample size is 300 or

1000, method J (impute once) has a smaller magnitude that method K (impute using a

training and test imputation model). For the CV-then-MI methods, methods A and F

tend to have the smallest magnitude (|Interceptimp,ideal− Interceptobs| < 0.0025 for imp =

A, F) while methods B and D have the largest (|Interceptimp,ideal − Interceptobs| ≥ 0.015

for imp = B, D).
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Figure 5.14: The difference Interceptimp - Interceptobs when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Interceptobs. The average Calibration intercept when data

are fully-observed is 0.02 for larger sample sizes. CC (complete-case); methods A-K are described

in Table2.3and summarised in Table4.4.
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5.5.2 Increasing the number of imputed datasets from 5 to 25

Figure5.15displays results comparing the use of 5 versus 25 imputed datasets when

data are outcome-dependent or outcome- and covariate-dependent MAR (Interceptimp,M−
Interceptobs). The results are for the pragmatic performance but are generalisable also to

the ideal performance in all missing data scenarios. All graphs comparing 5 versus 25

imputed datasets for the ideal and pragmatic performance are available in the Supple-

mentary plots sectionS2.3.3.

The use of 25 imputed datasets to estimate the calibration intercept has little effect when

compared to 5 imputed datasets (Interceptimp,M=5 − Interceptobs u Interceptimp,M=25 −
Interceptobs). This can be seen for all methods across all data-generating scenarios for

sample sizes of 300 or 1000.
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Figure 5.15: The difference Interceptimp - Interceptobs when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 25 versusM = 5 when 25% of values are missing

in X1. The error bars summarise results from the 2000 repetitions for pragmatic performance and

the limits represent the Monte Carlo 95% confidence interval of Interceptimp - Interceptobs. The

average Calibration intercept when data are fully-observed is 0.02 for larger sample sizes. CC

(complete-case); methods A-K are described in Table2.3and summarised in Table4.4.

145



5.5.3 Increasing the percentage of missingness to 40%

Figure5.16displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various methods when data are weakly outcome- and covariate-

dependent MAR. The figure presents the calibration intercept estimates when 25% or 40%

of X1 values are missing compared to Interceptobs (Interceptimp,%− Interceptobs). The re-

sults are generally representative of the comparison between 25% and 40% missingness for

ideal and pragmatic performance for all missing data scenarios and sample sizes. All plots

are available in SectionS2.3.2of the Supplementary Plots.

The complete-analysis estimate when 25% of X1 values are missing tends to have a

smaller magnitude than when 40% of values are missing (|InterceptCC,25%−Interceptobs| <
|InterceptCC,40% − Interceptobs|) for all sample sizes and missing data scenarios. The

complete-case analysis estimates do not fit onto the scale of Figure5.16.

The pragmatic performance of methods A, B and D has a larger magnitude when the per-

centage of missingness is increased when data are MCAR or covariate-dependent MAR.

The other methods either perform similarly or have overlapping confidence intervals when

comparing the percentage of missingness. When data are outcome-dependent or outcome-

and covariate-dependent, methods G, J and K tend to perform similarly regardless of the

percentage of missing values. The magnitude for all other methods increases with an in-

creased percentage (|Interceptimp,25%− Interceptobs| < |Interceptimp,40%− Interceptobs| for
imp =A-F,H,K).

When data are MCAR or covariate-dependent MAR, the ideal performance of methods

B and D has a larger magnitude when the percentage of missing values increases to 40%

compared to when 25% of X1 values are missing. For all other methods, the confidence

intervals for the intercept estimate when 40% of values are missing either overlap or encom-

pass the point estimate and confidence intervals with a smaller percentage of missingness.

When data are outcome-dependent or outcome- and covariate-dependent, methods A, J

and K perform similarly or have overlapping confidence intervals regardless of the per-

centage of missing values while for all other methods |Interceptimp,25% − Interceptobs| <
|Interceptimp,40% − Interceptobs| for imp =B-F,G and H.
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Figure 5.16: Comparing the impact of increasing the percentage of missingness on the difference

Interceptimp - Interceptobs when data are outcome- and covariate-dependent MAR when M = 5.

The error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Interceptobs. Red denotes Interceptimp - Interceptobs when

25% of X1 values are missing and blue denotes Interceptimp - Interceptobs when 40% of X1 values

are missing. The top row presents the results for pragmatic performance and the bottom row

presents results for ideal performance. The average Calibration intercept when data are fully-

observed is 0.02 for larger sample sizes. CC (complete-case); methods A-K are described in Table

2.3.
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5.5.4 Comparing each method’s calibration intercept to the target estimate

of the calibration intercept from a larger validation set

As previously discussed for the continuous outcome scenario for the AUC and Brier

score results, the ideal performance of the methods and Interceptobs are compared to

the ideal target intercept estimate (Intercepttarget,obs). This is estimated by applying a

prediction model, based on all data in a repetition, to the fully-observed data in the

larger test set. The pragmatic performance of the imputation methods is compared

to applying a repetition’s prediction model to the imputed datasets of the larger test

set (Intercepttarget,imputed). The complete-case estimate of the intercept is compared

to applying a repetition’s prediction model to the observed cases of the larger test set

(Intercepttarget,CC).

MCAR and covariate-dependent MAR

Figure5.17presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target calibration intercept estimate, when data

are MCAR or covariate-dependent MAR. For all sample sizes, the complete-case analysis

underestimates Intercepttarget,CC with a magnitude of approximately 0.5 (|Interceptobs −
Intercepttarget,CC | ≈ 0.5). As a result, the complete-case estimate can not be seen in

Figure5.17due to the scale of the graph.

For a sample size of 300 or 1000, the pragmatic performance of all methods overestimates

Intercepttarget,imputed (Interceptimp,prag − Intercepttarget,imputed > 0). Methods B and D

tend to have a slightly larger magnitude than the other methods which all perform simi-

larly with a magnitude less than 0.05.

When data are MCAR or weak covariate-dependent MAR and sample size is 300, the

ideal performance of all methods tends to underestimate Interceptobs (Interceptobs,ideal −
Intercepttarget,obs < 0). Methods B and D tend to have a slightly smaller magnitude than

the other methods which perform similarly to each other. When sample size is 300 and data

are strong covariate-dependent MAR, methods B and D overestimate Interceptobs while

the other methods still underestimate Interceptobs. When the sample size is increased

to 1000, all methods overestimate Interceptobs and methods B and D have the largest

magnitude of the difference.
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Figure 5.17: The difference Interceptimp - Intercepttarget when data are MCAR or covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of Interceptimp - Intercepttarget. The average Calibration intercept when data are fully-observed

is 0.02 for larger sample sizes. CC (complete-case); methods A-K are described in Table2.3.
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Outcome-dependent MAR

Figure5.18presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target calibration intercept estimate, when data

are outcome-dependent or outcome- and covariate-dependent MAR.

For sample sizes of 300 or 1000, the complete-case analysis estimate of the calibration

intercept underestimates Intercepttarget,CC with a magnitude of approximately 0.5 for all

missing data scenarios. As such, the complete-case estimate does not fit onto the scale of

Figure5.18.

For sample sizes of 300 or 1000 and all missing data scenarios, the pragmatic performance

of all methods overestimates Intercepttarget,imputed (Interceptimp,prag−Intercepttarget,imputed >

0). When the sample size is 300, methods A and J tend to have the smallest magnitude

(|Interceptimp,prag−Intercepttarget,imputed|, imp =A, J), methods B and D have the largest

magnitude, and the remaining methods (methods C, E-H and K) perform similarly to each

other. When sample size is 1000, method J has the smallest magnitude and methods B

and D have the largest magnitude. The remaining methods perform similarly when com-

pared to the target pragmatic estimate.

For sample sizes of 300 or 1000 and all missing data scenarios, the ideal performance

of methods B and D tend to approximate Interceptobs well or slightly overestimate it

(Interceptimp,ideal − Intercepttarget,imputed ≥ 0, imp =B, D). All other methods (methods

A, C, E, F, J and K) underestimate Interceptobs for all sample sizes and missing data

scenarios and perform similarly to each other.
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Figure 5.18: The difference Interceptimp - Intercepttarget when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Intercepttarget. The average Calibration intercept when

data are fully-observed is 0.02 for larger sample sizes. CC (complete-case); methods A-K are

described in Table2.3.
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5.6 Detailed results: Calibration slope

Similarly to the calibration intercept, for a sample size of 100 the various performance

estimates of the calibration slope estimate are very unstable when compared to the slope

estimated when data are fully-observed. For a sample size of 300, the results are slightly

improved but still have large variation. Results will be discussed for a sample size of 1000.

5.6.1 Comparing each method’s Calibration slope to the estimate of the Cal-

ibration slope when data are fully-observed

MCAR and covariate-dependent MAR

Figure5.19displays results for the various methods’ ( imp) estimates of the calibration

slope which are compared to the slope estimate when data are fully-observed (Slopeimp −
Slopeobs) when data are MCAR or covariate-dependent MAR.

The complete-case analysis overestimates Slopeobs for a sample size of 1000 when data are

MCAR or covariate-dependent MAR. The magnitude (|SlopeCC − Slopeobs|) is approxi-

mately 0.02.

The pragmatic performance of all methods underestimates Slopeobs with a magnitude be-

tween 0.03 and 0.06, except for method J which has the smallest magnitude across all

methods ¡0.001. Methods A, B and D perform similarly with the smallest magnitudes

across the CV-then-MI methods while methods C,E-H perform similarly with larger mag-

nitudes. Method K performs similarly to methods C, E-H.

The ideal performance of methods A, B and D overestimate Slopeobs (Slopeimp,ideal −
Slopeobs, imp =A, B, D) while the other methods underestimate Slopeobs. Method A

tends to have the smallest magnitude of the difference amongst the CV-then-MI methods

while method D tends to have the largest. Overall, methods J and K have a smaller

magnitude than the CV-then-MI methods while all methods have a magnitude less than

0.01.
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Figure 5.19: The difference Slopeimp - Slopeobs when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Slopeimp

- Slopeobs. The average Calibration slope when data are fully-observed is 1.04 for larger sample

sizes. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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Outcome-dependent MAR

Figure5.20displays results for the various cross-validation methods’ ( imp) estimates of the

calibration slope which are compared to the slope estimate when data are fully-observed

(Slopeimp−Slopeobs) when data are outcome-dependent or outcome- and covariate-dependent

MAR.

The complete-case analysis overestimates Slopeobs when sample size is 1000 for all missing

data scenarios. The magnitude is approximately 0.02.

The pragmatic performance of all methods underestimates Slopeobs for a sample size of

1000 when data are outcome-dependent or outcome- and covariate-dependent MAR. Meth-

ods A tends to have the smallest magnitude (|Slopeimp,prag − Slopeobs|), closely followed

by methods B and D across the CV-then-MI methods while method J has the smallest

magnitude overall. Methods C, E-H and K tend to perform similarly and have the largest

magnitude across all methods.

The ideal performance of methods A, B and D overestimates Slopeobs with a smaller

magnitude than methods C, E and F which underestimate Slopeobs. Across all CV-then-

MI methods, method A tends to have the smallest magnitude while the ideal performance

of methods J and K has the smallest magnitude of the difference overall.
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Figure 5.20: The difference Slopeimp - Slopeobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopeimp - Slopeobs. The average Calibration slope when data are fully-

observed is 1.04 for larger sample sizes. CC (complete-case); methods A-K are described in Table

2.3and summarised in Table4.4.
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5.6.2 Increasing the number of imputed datasets from 5 to 25

Figure5.21displays results comparing the use of 5 versus 25 imputed datasets when

data are outcome-dependent or outcome- and covariate-dependent MAR (Slopeimp,M −
Slopeobs). The results are for the pragmatic performance but are generalisable also to the

ideal performance in all missing data scenarios. All graphs comparing 5 versus 25 imputed

datasets for the ideal and pragmatic performance are available in the Supplementary plots

sectionS2.4.3.

The use of 25 imputed datasets to estimate the calibration intercept has little effect when

compared to 5 imputed datasets (Slopeimp,M=5 − Slopeobs u Slopeimp,M=25 − Slopeobs).

This can be seen for all methods across all data-generating scenarios for a sample size of

1000.
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Figure 5.21: The difference Slopeimp - Slopeobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing in

X1. The error bars summarise results from the 2000 repetitions for pragmatic performance and

the limits represent the Monte Carlo 95% confidence interval of Slopeimp - Slopeobs. The average

Calibration slope when data are fully-observed is 1.04 for larger sample sizes. CC (complete-case);

methods A-K are described in Table2.3and summarised in Table4.4.
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5.6.3 Increasing the percentage of missingness to 40%

Figure5.22displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various methods when data are weakly outcome- and covariate-

dependent MAR. The figure presents the calibration slope estimates when 25% or 40%

of X1 values are missing compared to Slopeobs (Slopeimp,% − Slopeobs). The results are

generally representative of the comparison between 25% and 40% missingness for ideal

and pragmatic performance for all missing data scenarios and sample sizes. All plots are

available in SectionS2.4.2of the Supplementary Plots.

For the complete-case analysis and pragmatic performance of all CV-then-MI methods (ex-

cept method G), an increased percentage of missing values results in an increased magni-

tude of the difference between the estimated slope and Slopeobs (|Slopeimp,25%−Slopeobs| <
|Slopeimp,40%−Slopeobs|). This holds across all missing data scenarios. Methods G, J and

K tend to have similar performance in relation to Slopeobs, regardless of the percentage of

missing values.

An increased percentage of missingness tends to result in an increased magnitude of the

ideal performance for the majority of the CV-then-MI methods when data are MCAR or

MAR. Methods A, B and D tend to have similar or small increases in magnitude with

increased missingness (|Slopeimp,40% − Slopeobs|) while methods C, E and F tend to have

larger differences in magnitude. The MI-then-CV methods J and K perform similarly

regardless of the percentage of missingness across all missing data scenarios.
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Figure 5.22: Comparing the impact of increasing the percentage of missingness on the difference

Slopeimp - Slopeobs when data are outcome- and covariate-dependent MAR when M = 5. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Slopeimp - Slopeobs. Red denotes Slopeimp - Slopeobs when 25% of X1

values are missing and blue denotes Slopeimp - Slopeobs when 40% of X1 values are missing. The

top row presents the results for pragmatic performance and the bottom row presents results for

ideal performance. The average Calibration slope when data are fully-observed is 1.04 for larger

sample sizes. CC (complete-case); methods A-K are described in Table2.3.159



5.6.4 Comparing each method’s calibration slope to the target estimate of

the calibration slope from a larger validation set

As previously discussed for the AUC, Brier score and calibration intercept results, the ideal

performance of the cross-validation imputation methods and Slopeobs were compared to

the ideal target slope estimate (Slopetarget,obs). This is estimated by applying a prediction

model, based on all data in a repetition to the fully-observed data in the larger test set.

The pragmatic performance of the imputation methods is compared to applying a repeti-

tion’s prediction model to the imputed datasets of the larger test set (Slopetarget,imputed).

The complete-case estimate of the slope is compared to applying a repetition’s prediction

model to the observed cases of the larger test set (Slopetarget,CC).

Similarly to the comparison of the methods with the Slopeobs, the slope estimates are

unstable for small and moderate sample sizes. As such, the results will be discussed for

sample size of 1000.

MCAR and covariate-dependent MAR

Figure5.23presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target calibration slope estimate, when data are

MCAR or covariate-dependent MAR.

The complete-case analysis overestimates Slopetarget,CC (SlopeCC − Slopetarget,CC > 0)

with a magnitude of approximately 0.9. The complete-case analysis estimate does not fit

onto the scale of Figure5.23for the covariate-dependent MAR scenarios.

The pragmatic performance of all methods tends to overestimate Slopetarget,imputed for all

methods. Method J tends to have the largest magnitude of overestimation (|SlopeJ,prag −
Slopetarget,imputed|) of approximately 0.1 while the other methods tend to perform simi-

larly with an overestimation of approximately 0.05.

The ideal performance of all methods also overestimates the target ideal estimate for all

methods (Slopeimp,ideal − Slopetarget,obs > 0). Again, the methods all tend to perform

similarly in relation to Slopetarget,obs, with magnitudes of approximately 0.05.
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Figure 5.23: The difference Slopeimp - Slopetarget when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Slopeimp

- Slopetarget. The average Calibration slope when data are fully-observed is 1.8 for a sample size

of 300 and 1.04 for a sample size 1000. CC (complete-case); methods A-K are described in Table

2.3.
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Outcome-dependent MAR

Figure5.24presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target calibration slope estimate, when data are

outcome-dependent or outcome- and covariate-dependent MAR.

Similarly to the MCAR and covariate-dependent MAR scenarios, the complete-case anal-

ysis overestimates Slopetarget,CC (SlopeCC − Slopetarget,CC > 0) and does not fit onto the

scale of Figure5.24for the outcome- and weak/strong covariate-dependent MAR scenarios.

The pragmatic performance of all methods overestimates Slopetarget,imputed for all methods

(Slopeimp,prag − Slopetarget,imputed > 0). Method J has the largest magnitude of this

difference. The other methods tend to perform similarly with methods A, B and D having

a slightly larger magnitude than methods C, E, F-H and K but all approximately have a

magnitude of 0.05. The ideal performance also overestimates Slopetarget,obs for all methods.

The methods all perform similarly to each other when compared to Slopetarget,obs.
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Figure 5.24: The difference Slopeimp - Slopetarget when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopeimp - Slopetarget. The average Calibration slope when data are fully-

observed is 1.8 for a sample size of 300 and 1.04 for a sample size 1000. CC (complete-case);

methods A-K are described in Table2.3.
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5.7 Is data leakage an issue within the imputation process?

In section2.8I discussed the issue of data leakage in the imputation process and how we

could investigate the impact of this leakage by comparing several methods, which were

previously re-summarised in Table4.4. The impact of data leakage was previously dis-

cussed for a continuous outcome scenario in Section4.6.

The methods to compare data leakage range from having no leakage (method B) to those

with the highest amount of leakage (method J). Methods A (which has no leakage) and

F-H have no similar methods from which to compare the inclusion or exclusion of folds

to assess the impact of data leakage when training or evaluating a prediction model and,

therefore, will not be discussed here.

In the following analysis, method B will be compared with method C, and method D with

method E. This comparison allows us to assess the impact of using only the observations

available in the kth test fold to impute the test fold (method B or D) versus using observa-

tions from all K folds to impute the kth test fold (method C or E). Comparing method B

with method D (or method C with E) will assess using the observations in the k−1 train-

ing folds to impute the training set (method B or C) versus using all K folds to impute

the k − 1 training folds before restricting to the k − 1 training folds to fit the prediction

model. In other words, method B versus method C compares the use of all data on the

imputation of the test fold while comparing method B versus D compares the inclusion of

the test fold when imputing the training folds. Method E can be compared with method

K to understand the impact of using two sets of imputed datasets for training and testing

models but excluding values of the outcome (from the k − 1 training folds) to impute the

test set to prevent data leakage. Method K can be compared with method J to assess the

influence of using two sets of imputed datasets (one for training and the other for testing,

method K) compared to using one set of imputed datasets (for both training and testing

the prediction models, method J).

The comparisons of all methods (for example, method B versus method C) can be seen

across all data-generating scenarios in Figures5.1and5.2for the AUC, in Figures5.7and

5.8for the Brier score, in Figures5.13and5.14for the calibration intercept and finally, in

Figures5.19and5.20for the calibration slope when comparing the performance measure of

interest to the estimate when data are fully-observed. For the comparison of the methods’

estimates with a target estimate in a larger validation set, please see Figures5.5and5.6for

the AUC, Figures5.11and5.12for the Brier score, Figures5.17and5.18for the calibration

intercept and Figures5.23and5.24for the calibration slope. For comparison purposes,

I will focus on the weak outcome- and covariate-dependent scenario to investigate data

leakage but the trends discussed will be generalisable across the majority of the missing
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scenarios. All data leakage comparison graphs for the AUC, Brier score and calibration

intercept and slope are available in SectionS2.5of the Supplementary Plots.

AUC

Figure5.25presents results assessing the impact of data leakage on the AUC by com-

paring methods and their inclusion or exclusion of training or test folds when data are

weak outcome- and covariate-dependent MAR. The top row of the Figure compares the

AUC with the AUC estimated when data are fully-observed (AUCimp−AUCobs) while the

bottom row compares the AUC with the target ideal or pragmatic estimate of the AUC

(AUCimp −AUCtarget).

Comparing AUCimp − AUCobs, the magnitude of this difference is two times larger for

method B than method C for both ideal and pragmatic performance when sample size is

100 or 300. However, the absolute differences are small (approximately 0.0075 and 0.005

for sample sizes of 100 and 300, respectively). This can similarly be seen when comparing

method D with E suggesting that using all the covariate data from all folds to impute the

missing data in the kth test fold has a strong impact on model performance. Increasing the

sample size to 1000, this difference in magnitudes between methods B and C (or methods

D versus E) is not as severe.

Methods B versus D and C versus E are compared to understand the impact of including

the test fold when imputing the training folds. For all scenarios, method D has a smaller

magnitude (|AUCD−AUCobs|) than B, similarly method E has a smaller magnitude than

C. However, the differences between their magnitudes are all approximately 0.0025 when

sample size is 100 or 300 and less than 0.001 for a sample size of 1000.

Method E versus K can be used to understand the impact of using two sets of imputed

datasets for training and testing models but excluding values of the outcome (from the

k − 1 training folds) to impute the test set to prevent data leakage. Methods E and K

both have similar pragmatic performance across all sample sizes. However for the ideal

performance, by removing values of Y from the training folds so that they are not used in

the imputation of the test fold, method E performs poorly compared to method K which

uses all of the outcome (from all K folds) to impute.

Comparing method K with J to assess the influence of using two sets of imputed datasets

(one for training and the other for testing) compared to using one set of imputed datasets

(for both training and testing the prediction models). Both methods perform similarly

for ideal imputation, with method J having a smaller magnitude than K (|AUCJ,ideal −
AUCobs| < |AUCK,ideal −AUCobs|). For pragmatic performance, method J has a smaller
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Figure 5.25: Assessing data leakage within the imputation process for cross-validation. The

differences AUCimp - AUCobs and AUCimp - AUCtarget are compared when data are weak outcome-

and strong covariate-dependent MAR. Methods are compared to both the AUC estimate when data

are fully-observed (Full-obs, row 1) and the target estimate (Target, row 2) from a larger validation

set. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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magnitude method K for the majority of scenarios. This is perhaps due to the increased

correlation among imputed values used for training and testing in method J from using

one set of imputed datasets. By contrast, method K uses two different imputation models

and two sets of imputed datasets which are less correlated to each other.

When comparing the methods for handling missing data in a larger validation set and

for a small sample size of 100, method B (no leakage) has a smaller magnitude |AUCB −
AUCtarget| than C (leakage when imputing the test set) and D (leakage when imputing

the training folds) for both ideal and pragmatic imputation. Method K tends to have a

smaller magnitude than method J for both ideal and pragmatic performance. Increasing

the sample size to 300, the magnitude of the pragmatic performance has decreased to less

than 0.005 for all methods. The ideal performance of method B is larger than method C

and method D when sample size is 300. When the sample size is 1000 the various CV-then-

MI methods have similar ideal and pragmatic performance. The pragmatic performance

of methods J and K are larger than all other methods and method J has the largest

magnitude of the difference for ideal performance. All methods for the ideal and pragmatic

performance have a magnitude less than 0.005 when sample size is 1000.

Brier Score

The results for the Brier score are similar to those for the AUC when comparing data

leakage using the various comparative methods. Figure5.26displays results comparing

the Brier score to the Brier score when data are fully-observed and the target estimate

from a validation set when data are weak outcome- and covariate-dependent MAR. The

comparisons made are generally the same across DGMs.

For both ideal and pragmatic performance, methods C and D both have a smaller magni-

tude of the difference than method B when compared to Brierobs. The ideal and pragmatic

performance of method E has a smaller magnitude of the difference than method B. For

pragmatic performance, both methods J and K overestimate Brierobs. Method J (uses

one set of imputed datasets to train and evaluate models) has a smaller magnitude of

the difference than method K (uses two imputed datasets) for all sample sizes. However,

the ideal performance of methods J and K underestimates Brierobs (i.e. they are over-

optimistic) but method K has a smaller magnitude of the difference than method J.

For both ideal and pragmatic performance, methods C and D both have a smaller magni-

tude of the difference than method B when compared to Briertarget. The ideal performance

of methods B, C and D either overestimate or approximate Briertarget,obs while the ideal

performance of method E tends to underestimate the target Brier score estimate (i.e. is

over-optimistic). The ideal and pragmatic performance of methods J and K underesti-

mates Briertarget (i.e. they are over-optimistic). The ideal and pragmatic performance
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Figure 5.26: Assessing data leakage within the imputation process for cross-validation. The

differences Brierimp - Brierobs and Brierimp - Briertarget are compared when data are weak outcome-

and strong covariate-dependent MAR. Methods are compared to both the Brier score estimate when

data are fully-observed (Full-obs, row 1) and the target estimate (Target, row 2) from a larger

validation set. CC (complete-case); methods A-K are described in Table2.3and summarised in

Table4.4.
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of method J tends to be larger than the ideal and pragmatic performance of method K,

respectively, when compared to Briertarget i.e. method J is more optimistic than method K.

For the majority of the scenarios the difference between the estimated Brier score and

either Brierobs or Briertarget is less than 0.01. The magnitude of the differences across meth-

ods between the estimated Brier score and either Brierobs or Briertarget,obs/Briertarget,imputed

become more similar with increasing sample size.

Calibration intercept and slope

Figures5.27and5.28display data leakage comparisons for the calibration intercept and

slope, respectively.

For the calibration intercept, both methods C and D had lower magnitudes of the dif-

ference than method B when comparing the estimated intercepts to Interceptobs. With

increasing sample size the difference between methods (when compared to Interceptobs)

decreases. The ideal and pragmatic performance of the CV-then-MI methods B, C, D,

and E tend to overestimate the calibration intercept when compared to the Interceptobs.

The ideal performance of methods J and K is similar when compared to Interceptobs. How-

ever, the pragmatic performance of method J has a smaller magnitude of the difference

with Interceptobs than method K. The pragmatic performance of all methods are some-

what similar when compared to Intercepttarget,imputed. The ideal performance of methods

B and D tend to overestimateIntercepttarget,obs while the other methods underestimate

Intercepttarget,obs (with methods J and K having the largest magnitudes of the differ-

ence). With increasing sample size, the ideal performance of all methods approximates

Intercepttarget,obs.

The calibration slope had very large differences and variation in their estimates for both

fully-observed and larger validation set comparisons when the sample size was small or

moderate. For a sample size of 1000, method B has a smaller magnitude of the difference

than method C when compared to Slopeobs for both ideal and pragmatic performance.

Similarly, method D has a smaller magnitude of the difference than method E when

compared to Slopeobs. However, when comparing to the larger validation set method C

has a smaller magnitude of the difference than method B when compared with Slopetarget

(Slopetarget,obs or Slopetarget,imputed). Methods J and K have similar ideal performance

when their estimated slopes are compared with Slopeobs or Slopetarget,obs. For pragmatic

performance, the magnitude of the difference between the estimated slope and Slopeobs is

smaller for method J than method K. However, when the estimated slopes are compared to

Slopetarget,imputed, the magnitude of the difference is smaller for method K, while method

J has the largest magnitude of the difference across all methods being compared.
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Figure 5.27: Assessing data leakage within the imputation process for cross-validation. The

differences Interceptimp - Interceptobs and Interceptimp - Intercepttarget are compared when data

are weak outcome- and strong covariate-dependent MAR. Methods are compared to both the

calibration intercept estimate when data are fully-observed (Full-obs, row 1) and the target estimate

(Target, row 2) from a larger validation set. CC (complete-case); methods A-K are described in

Table2.3and summarised in Table4.4.
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Figure 5.28: Assessing data leakage within the imputation process for cross-validation. The dif-

ferences Slopeimp - Slopeobs and Slopeimp - Slopetarget are compared when data are weak outcome-

and strong covariate-dependent MAR. Methods are compared to both the calibration slope esti-

mate when data are fully-observed (Full-obs, row 1) and the target estimate (Target, row 2) from a

larger validation set. CC (complete-case); methods A-K are described in Table2.3and summarised

in Table4.4.
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5.8 Discussion of results for the binary outcome

The aim of this study was to investigate the appropriate ways to combine MI and cross-

validation for a binary outcome when the three performance measures of interest were

the AUC, Brier score and Calibration intercept and slope. In addition, an analysis of the

impact of data leakage on the imputation process by comparing various methods was also

investigated.

Overall, all imputation methods had a tendency to underestimate the AUC estimate when

data are fully-observed. For the AUC, a higher value closer to 1 usually indicates good

model performance. An exception to the underestimation of AUCobs was the MI-then-

CV methods which occasionally over-estimated the performance or were over-optimistic

(i.e. stated that the model performed better after imputation than it did when data were

fully-observed). For the Brier score, a smaller score indicates better model performance.

In general, the various CV-then-MI methods tended to overestimate the Brier score when

data are fully-observed. The MI-then-CV methods tended to underestimate the Brier

score for small sample sizes or were over-optimistic i.e. the imputed model states better

performance than if data had been fully-observed. Methods J and K have the highest

levels of data leakage, the missing values have been imputed using knowledge of the out-

come and covariates in the test folds. This increases any correlation between the imputed

values and the values of the outcome in the test fold. Therefore, any prediction model

trained using these imputed values will have an unfair advantage when it is evaluated in

the test fold - hence the model having a more optimistic performance measure estimate

after imputation, than if the data had never been missing to begin with.

For the calibration intercept and slope, deviations away from 0 and 1, respectively, can

indicate poor performance. For large sample sizes the majority of the imputation meth-

ods overestimated the intercept by less than 0.02 and underestimated the slope by less

than 0.08. For small and moderate sample sizes, calibration performance was poor even

when data were fully-observed, with an average slope value of 80 (Table5.1), however

this decreased to values between 1 and 2 for larger sample sizes. The issue of unstable

calibration results appeared to result from small sample sizes. This is supported by Van

Calster et al. [52] and Riley et al. [30] who both concluded that small sample sizes can

lead to miscalibration of predictions and that shrinkage methods do not help to resolve

this issue.

The ideal performance of methods C and E performed poorly when assessing the MSE for

the continuous outcome. However, their performance measures in the binary scenario did

not react similarly. As C and E had to additionally impute Y , which was set to be 90%

missing, the imputed value for Y of 0 or 1 was far less variable than in the continuous case

172



(see variance of continuous Y in Table4.1) which may have resulted in better imputations.

5.9 Conclusions

This chapter aimed to assess methods for combining MI and cross-validation. It was shown

that for all performance measures, complete-case analysis performs poorly in certain MAR

scenarios. The consequences of using a complete-case analysis could be over-optimistic es-

timates of performance for the AUC or Brier score when data are covariate- dependent

MAR or outcome- and covariate-dependent MAR. It may also result in a larger magnitude

of the calibration intercept or slope than the best performing imputation methods.

The effects of data leakage in the imputation process were assessed for the AUC, Brier

score and calibration intercept and slope. Data leakage was not an issue for method A

or B (CV-then-MI methods) while methods J and K (MI-then-CV ) had the most leakage

out of all the methods. Methods C-H had some form of data leakage through the use of

the training or test folds in the imputation process.

Method A had better performance than method B for small and moderate sample sizes,

while both had comparable methods of performance for larger sample sizes and tended to

perform similarly to the methods that had an “advantage” due to data leakage.

For small sample sizes, the ideal performance of MI-then-CV (methods J and K) tended

to underestimate the MSE suggesting that the prediction model performed better post

imputation than if the data had been fully-observed (i.e. the methods are over-optimistic)

and I have suggested that this is a direct result of data leakage in the imputation process.

This over-optimism was similarly seen for a small sample size when the performance mea-

sure of interest is the AUC or Brier score. All other imputation methods tended to state

that the prediction model did not perform as well post-imputation than if the data had

been fully-observed.

In agreement with the previous literature, I propose that MI-then-CV methods are at the

highest risk of data leakage and should be avoided. Method A is at no risk of data leakage

and is the best method to combine MI and cross-validation for moderate sample sizes.

With larger sample sizes, method B performs similarly to method A and also avoids data

leakage.
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6 Simulation study results for the bootstrap: continuous

outcome

In Chapter3I described the design of a simulation study to investigate the performance

of various methods which combined MI with an internal validation method. Results for

combining MI with cross-validation were then presented and discussed in Chapters4and

5.

6.1 Introduction

This chapter will present the results from combining MI with the optimism-corrected boot-

strap algorithm, including the standard and 0.632 versions. As in the previous chapters,

the impact of data leakage from the imputation process will be assessed. In addition, the

reuse of imputed datasets to estimate performance will be assessed. The findings from the

simulation study for the continuous outcome will be presented and, due to the quantity of

results produced, all graphs are available in the supplementary plot chapter (SectionS3),

in addition to the graphs presented in this chapter. The simulation results for the binary

outcome are presented in AppendixC.

The methods which will be evaluated in this chapter were fully described in Section2.7

but are re-summarised in Table6.1. The methods fall into two broad classes- those in

which the imputation is performed first (MI-then-BS ), and those in which the bootstrap

samples are obtained first (BS-then-MI ). The methods detailed in Table6.1focus on the

estimation of the bootstrap and test performance. To estimate the apparent performance,

for all methods, the original dataset is imputed using a training imputation model. A

prediction model is fitted to each imputed dataset mtrain for mtrain = 1, . . . ,Mtrain. Each

prediction model is then evaluated in Mtest imputed datasets which were imputed using a

test imputation model (which will include the outcome or not depending on whether ideal

or pragmatic performance is of interest). Rubin’s first rule will get an overall performance

estimate for each of the prediction models. Rubin’s first rule is used again to average

across the performance estimate for the Mtrain prediction models to get the apparent per-

formance estimate.

The methods detailed in Table6.1will use training and test imputation models (Section

2.5). The training imputation model will include any relevant covariates and the outcome.

The test imputation model will always include any relevant covariates but may, or may

not, include the outcome depending on whether the ideal or pragmatic performance is of

interest.
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Table 6.1: A brief summary of the various methods under consideration to combine the bootstrap

(BS) algorithms with multiple imputation (MI). The methods below describe how to estimate the

bootstrap and test performance of the internal validation for a single bootstrap sample, they will

be repeated B times.

Methods Description

BS first

BS-then-MI (default) Draw a BS sample. Impute the BS sample using separate

training and test imputation models. Using the training im-

puted BS sample, fit a prediction model. Evaluate the pre-

diction model using the test imputed BS sample to estimate

the BS performance (for the standard method). Evaluate

the prediction model in the test imputed original dataset

(standard) or those who were not selected to be in the BS

sample (0.632) to estimate the test performance.

BS-then-MI reuse imps Same process as BS-then-MI. However, instead of imputing

the BS sample using a training and test imputation model,

reuse the imputed datasets used to estimate the apparent

performance and sample the observations from these im-

puted datasets that were selected to be in the BS sample.

Train a prediction model within the BS sample and evaluate

it in the same way as BS-then-MI.

Impute first

MI-then-BS (default) The original dataset is imputed using a training and test

imputation model (these are used to first estimate the ap-

parent performance). Take a bootstrap sample of one of the

training imputed datasets mtrain and fit a prediction model.

Impute the BS sample using the test imputation model to es-

timate the BS performance of the prediction model. Evalu-

ate the prediction model in the original test imputed dataset

(standard) or those who were not selected to be in the BS

sample (0.632) to estimate the test performance. This will

be repeated for B bootstrap samples of the training imputed

dataset m. This will be iterated for mtrain = 1, . . . ,Mtrain

MI-then-BS fixed BS Same process as MI-then-BS, except that the same B

BS samples are used within each of the training imputed

datasets.
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Table 6.1: A brief summary of the various methods under consideration to combine the bootstrap

(BS) algorithms with multiple imputation (MI). Continued.

Methods Description

Impute first

MI-then-BS reuse test imps Same process as MI-then-BS. However, instead of imputing

the BS sample using the test imputation model to estimate

the BS performance, reuse the test imputed datasets of the

original dataset, select the relevant BS observations and es-

timate the BS performance.

MI-then-BS re-impute Same process as MI-then-BS except instead of reusing the

original training imputed datasets, re-impute the original

dataset using a training imputation model. Apply the MI-

then-BS procedure to the second set of training imputed

datasets.

MI-then-BS impute once Use one set of imputed datasets to estimate the apparent,

bootstrap and test performance. Use an imputation model

which will either include or exclude the outcome, depending

on whether ideal or pragmatic performance is of interest.

Recall from Section1.9.4that the standard bootstrap algorithm has three performance

measures (apparent, bootstrap and test) whereas the 0.632 method has two (apparent and

test). The test performance estimated within the standard algorithm uses all observations

from the original dataset, whereas the 0.632 test performance is calculated in those obser-

vations not selected for the BS sample.

The methods in Table6.1detail how to train a prediction model in a bootstrap sample and,

if using the standard bootstrap algorithm, how to estimate the bootstrap performance.

In addition to the apparent and bootstrap performance estimates, the test performance

must also be estimated. I initially proposed in Section2.7.1to impute the original dataset

a second time using a test imputation model (including or excluding the outcome depen-

dent on whether the ideal or pragmatic performance is of interest) to get a second set of

imputed test datasets i.e. re-imputing test datasets. This second set would be used to

evaluate the prediction model trained in the bootstrap sample. An alternative to using a

second set of imputed test datasets for the methods described in Table6.1is to reuse the

imputed test datasets which were used to estimate the apparent performance.

In the following section, I will show results that compare the reuse of imputed test datasets

versus re-imputing the dataset a second time using a test imputation model. I will then

briefly describe the results for one BS-then-MI method and one MI-then-BS method as
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a gentle introduction for the reader before presenting the results for all methods in the

simulation study. These results will include comparing the MSE obtained using each

method with the MSE estimated when data are fully-observed and also with a ‘target

value’ estimated from a larger validation set. The use of an increased number of imputed

datasets will be assessed, as will the impact of an increased percentage of missing values.

Finally, I will compare data leakage through the imputation process for the BS-then-M I

and MI-then-BS methods before presenting a discussion of the results.

Results from the simulation study

Similarly to the simulation study that combined MI and cross-validation, several factors

were varied for the continuous outcome setting (including sample size, levels of R-squared

and dependence of missingness). The same simulated data used when evaluating cross-

validation techniques were used to evaluate the bootstrap methods. The summary infor-

mation on the outcome and MSE for the 2000 repetitions using the fully-observed data

can be found in Tables4.1and4.2. Recall from section3.5the notation for the averaged

estimate (across the 2000 repetitions) of the MSE in the full data (MSEobs) and the larger

validation set (MSEtarget). In addition, MSEprag,imp denotes the pragmatic performance

of a proposed method imp and MSEideal,imp denotes the ideal performance where imp

denotes various methods such as the complete-case analysis (CC), BS-then-MI (BS-MI)

or MI-then-BS (MI-BS) methods.
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6.2 A brief overview of the BS-then-MI and MI-then-BS methods for

the standard bootstrap algorithm

Due to the large number of results from the simulation studies presented in this chapter

which assess the various methods under multiple data-generating scenarios, I will first

present results for two methods when R2 = 0.1. The aim is to introduce the reader to

how the results are being displayed and interpreted as well as introducing the impact that

data leakage can have on the results. The analysis is similar to that in Section4.4.

I will briefly compare method BS-then-MI (the default version which has no data leakage)

to method MI-then-BS impute once (a method considered to have the most opportunity

for leakage). Figure6.1displays results for these two methods for the various missing data

scenarios when R2=0.1. The MSE results from each method are compared to the esti-

mates of the MSE from applying the standard bootstrap algorithm to the fully-observed

data i.e. MSEimp - MSEobs.

For all sample sizes and missing data scenarios, the estimated pragmatic performance of

both BS-then-MI and MI-then-BS impute once overestimates the MSE value estimated

by the standard bootstrap algorithm when data are fully-observed i.e. MSEprag,imp -

MSEobs > 0. Method BS-then-MI tends to overestimate the MSE to a greater degree

(|MSEprag,BS−MI −MSEobs|) than MI-then-BS impute once for all sample sizes. However,

with increasing sample size the magnitude of the difference (|MSEprag,imp −MSEobs|) for
both methods decreases and the difference becomes more similar between the two meth-

ods. This can be seen across all missing data scenarios for R2 = 0.1.

The estimated ideal performance of method BS-then-MI tends to overestimate the MSE

when data are fully-observed for all sample sizes. However, MI-then-BS impute once un-

derestimates MSEobs for all sample sizes. This means that the results from MI-then-BS

impute once are over-optimistic for ideal performance i.e. the method gives better per-

formance post-imputation than what would have been observed if missing data were not

present. The magnitudes of under- or overestimation of the two methods are similar across

all sample sizes and missing data scenarios.

In the following section, I will present a summary of results for all methods in a similar

manner as above. Recall that a ‘good’ prediction model would have a lower MSE score.

Therefore, over-estimation of MSEobs implies worse performance after handling missing

data than if the data had all been observed to begin with. Under-estimation of MSEobs

suggests that the method is over-optimistic; that is, it is performing better than if we had

observed the data. In the following results, it will be shown that many of the methods

which are subject to data leakage tend to have over-optimistic ideal performance.
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Figure 6.1: The difference MSEimp - MSEobs when R2 = 0.1 for M = 5 when 25% of values are

missing in X1. Each sub-graph displays results for a sample size of 100, 300 and 1000. Row 1

presents results when data are MCAR or covariate-dependent MAR. Row 2 presents results when

data are outcome-dependent MAR or outcome- and covariate-dependent MAR. Ideal performance

is in red and pragmatic performance is in blue. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods are described in Section2.7or Table6.1.
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6.3 A comparison of reusing versus re-imputing test datasets: standard

bootstrap algorithm

The variations of reusing imputed datasets or imputing bootstrap samples in Table6.1

focused on ensuring the bootstrap sample has imputed values with which to train a pre-

diction model in the bootstrap sample and estimate the bootstrap performance. This

section will focus on reusing imputed test datasets versus re-imputation when estimating

the test performance of the bootstrap’s prediction model (this uses all observations from

the original dataset). This comparison is specifically for the standard bootstrap internal

validation algorithm as the test performance of the 0.632 algorithm uses the observations

which were not selected for the bootstrap sample. The default methods of MI-then-BS

and BS-then-MI take the non-sampled observations and impute them independently for

the test performance of the 0.632 algorithm.

When combining the standard bootstrapping algorithm with MI, I initially proposed (Sec-

tion2.7.1) obtaining two imputed versions of the original dataset using the test imputation

model. The first set of imputed datasets would be used to estimate the apparent perfor-

mance while the second set would be used to estimate the test performance. However, the

test imputed datasets used to estimate the apparent performance could also be used for

estimating the test performance, instead of re-imputing the original dataset again. This

is investigated for all standard bootstrap methods and involves using a training and test

imputation model (i.e. all methods except for MI-then-BS impute once which involves one

set of imputed datasets).

Figure6.2shows the simulation results for the ideal performance of the methods for the

simulation scenario in which missingness is outcome-dependent and R2 = 0.1. The figure

shows the performance of the same bootstrap methods which have either reused the test

imputed datasets used to estimate apparent performance or imputed the entire dataset a

second time. The results in the figure are representative of the results for ideal and prag-

matic performance across all scenarios (available in supplementary plots sectionS3.1).

There is no difference between reusing and re-imputing the test imputed datasets for the

standard bootstrap algorithm, and this holds for all scenarios.

The reuse of test imputed datasets for estimating the test performance is more com-

putationally efficient than re-imputing, therefore all subsequent results for the standard

bootstrap algorithm presented below are based on reusing the test imputed datasets.
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Figure 6.2: A comparison of reusing versus re-imputing test datasets on the MSE estimates for the

standard bootstrap algorithm. The boxplots display the estimates of the MSE from 2000 repetitions

for each method which are compared to the MSE estimated when data are fully-observed (MSEimp-

MSEobs). The results are for data which are outcome-dependent MAR (row 1), weak outcome-

and covariate-dependent MAR (row 2) and weak outcome- and strong covariate-dependent MAR.

CC (complete-case); methods are described in Section2.7or Table6.1.
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6.4 Detailed results for the standard bootstrap algorithm

In this section I will summarise the results of the simulation study for the standard boot-

strap algorithm. I will explore how the methods perform using the estimated MSE, which

is compared to both the MSE when data are fully-observed and also a target MSE value

from a larger validation set when 25% of values in X1 are missing and 5 imputed datasets

are used. In addition, I will analyse whether increasing the number of imputed datasets

improves results and also examine how the methods perform with an increased percentage

of missingness. The methods presented were summarised in full in Section2.7and briefly

resummarised above in Table6.1.

6.4.1 Comparing results to the MSE estimate when data are fully-observed

MCAR and covariate-dependent MAR

Figure6.3presents results for the various methods to handle missing data alongside

bootstrap validation when compared to the MSE estimate when data are fully-observed

(MSEimp − MSEobs) when data are weak covariate-dependent MAR. The results in the

graph are representative of those scenarios in which missing data are not outcome-dependent

(MCAR, weak and strong covariate-dependent MAR, Supplementary plot sectionS3.2.1).

When data are MCAR or covariate-dependent MAR and for a sample size of 100, the

complete-case analysis tends to overestimate MSEobs (MSECC −MSEobs > 0). The esti-

mates of performance from the complete-case analysis are more variable than those from

the MI based methods. With increasing sample size, variability is reduced and the differ-

ence, MSECC −MSEobs, tends to zero.

For pragmatic performance of imputation methods, when sample size is small BS-then-

MI tends to have the largest difference between its MSE and MSEobs from the stan-

dard algorithm (MSEprag,BS-MI −MSEobs) for all values of R2. MI-then-BS impute once

tends to have the smallest difference for pragmatic performance while all other imputa-

tion methods tend to have similar performance when compared to MSEobs for all values

of R2. With increasing sample size all imputation methods tend to have similar prag-

matic performance, with method MI-then-BS impute once having the smallest difference

(MSEprag,MI-BS-once −MSEobs) throughout all scenarios.

For ideal performance, when sample size is small all methods which involve reusing the

imputed datasets of the original training and test datasets (used to estimate apparent

performance) to fit a model to the bootstrap sample and evaluate it tended to under-

estimate MSEobs. In other words, MSEideal,imp −MSEobs < 0 when imp = BS-then-MI

reuse imps, MI-then-BS reuse test imps, MI-then-BS reuse test imps with fixed BS sam-

ples and MI-then-BS impute once. Method BS-then-MI tends to overestimate MSEobs
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(MSEideal,BS-MI −MSEobs > 0) while MI-then-BS and its variations, which include using

fixed bootstrap samples and re-imputing the train imputed datasets which are bootstrap

sampled, tend to give MSEs that are close to MSEobs. This is true for all values of R2

that I considered. With increasing sample size, all methods tend to give an MSE that is

similar to MSEobs (MSEideal,imp−MSEobs −−−−−−→
nobs−→∞

0 where imp represents any one of the

methods considered).
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Figure 6.3: The difference MSEimp - MSEobs when data are weakly covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

Figure6.4presents results for the complete-case analysis and various proposed methods

when data are weakly outcome- and covariate-dependent MAR. The results in the graph

are representative of all results when missingness is dependent on the outcome (additional

graphs available in Supplementary Plots SectionS3.2).

For all scenarios, the complete-case analysis tends to underestimate MSEobs (MSECC −
MSEobs < 0), and has increased variability compared to the imputation-based methods.

For R2 values of 0.01 and 0.1, the magnitude of the difference between the complete-case

and MSEobs is larger than that for the imputation methods, and this is true for both ideal

and pragmatic performance (|MSECC−MSEobs| > |MSEimp−MSEobs|). For R2 = 0.3 the

magnitude of the difference for the complete-case analysis is greater than the magnitude of

the difference for all methods between the estimated ideal performance MSE and MSEobs

(|MSECC − MSEobs| > |MSEimp,ideal − MSEobs|). However, the complete-case analysis

magnitude of the difference is less than the magnitude of the difference for pragmatic

performance when R2 = 0.3 (|MSECC −MSEobs| < |MSEimp,prag −MSEobs|).

For pragmatic performance when the sample size is 100, BS-then-MI overestimates MSEobs

(MSEprag,BS−MI −MSEobs > 0); the magnitude of this difference is smaller when reusing

the imputed datasets used to estimate the apparent performance (method BS-then-MI

reuse imps) for all values of R2. With increasing sample size both methods (BS-then-MI

and BS-then-MI reuse imps) perform similarly. For all sample sizes and values of R2 all

variations of MI-then-BS perform similarly when their MSE estimates are compared to

MSEobs. The magnitude of the difference (|MSEprag,imp −MSEobs|) for the MI-then-BS

various methods is similar to method BS-then-MI reuse imps. For all scenarios, MI-then-

BS impute once results in an MSE that is closest to MSEobs.

For ideal performance, BS-then-MI overestimates MSEobs (MSEideal,BS−MI−MSEobs > 0)

for all scenarios. The magnitude of this difference decreases with increasing sample size or

increasing R2. For a sample size of 100, BS-then-MI and MI-then-BS methods which in-

volve reusing imputed datasets, as well as MI-then-BS impute once, underestimate MSEobs

(MSEideal,imp −MSEobs < 0). However, as the sample size increases, this underestima-

tion starts to disappear, with the difference MSEideal,imp −MSEobs tending to zero. For

all scenarios, the ideal performance of methods MI-then-BS, MI-then-BS fixed BS and

MI-then-BS re-impute is such that these methods give MSEs with the smallest difference

MSEideal,imp−MSEobs while the other methods have similar magnitudes for the difference

(|MSEideal,imp −MSEobs|).
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Figure 6.4: The difference MSEimp - MSEobs when data are weakly outcome- and covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of MSEimp - MSEobs. CC (complete-case); methods are described in Section2.7or Table6.1.
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6.4.2 Increasing the number of imputed datasets from 5 to 25

Figure6.5displays the results for comparing the various imputation-based methods when

using 5 or 25 imputed datasets. The MSE estimate for each method using 5 or 25 imputed

datasets is compared to MSEobs. The results in the graph are for the scenario when data

are weak covariate-dependent MAR but are representative of results from all simulation

scenarios (additional graphs available in SectionS3.2.3in the supplementary plots).

Due to the increased computation time when using 25 imputed datasets the comparison

was performed for a reduced number of repetitions (1000 repetitions are used in the Fig-

ure) and for a reduced number of methods (methods MI-then-BS fixed BS and MI-then-BS

re-impute are not available for comparison here).

The increased number of imputed datasets appears to make little to no difference for the

ideal or pragmatic performance. For all sample sizes and levels of R2, the results for

each method when compared to MSEobs are similar regardless of whether 5 or 25 imputed

datasets are used (MSEimp,M=5 −MSEobs u MSEimp,M=25 −MSEobs).
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Figure 6.5: The difference MSEimp - MSEobs when data are weakly outcome- and covariate-

dependent MAR for M = 25 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of MSEimp - MSEobs. CC (complete-case); methods are described in Section2.7or Table6.1.
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6.4.3 Increasing the percentage of missingness to 40%

Figure6.6displays the results for comparing how the various methods handle an increased

percentage of missing values in X1 from 25% to 40%. The MSE estimate from these meth-

ods is compared to MSEobs. The graph presents results for the scenario when data are

weakly outcome- and covariate- dependent MAR and R2 = 0.1 and the results shown

are representative of those for the ideal and pragmatic performance in all other scenarios

(additional graphs available in Supplementary plots sectionS3.2.2).

When data are MCAR or covariate-dependent MAR, the magnitude of the difference for

the complete case analysis when compared to MSEobs increases with an increased percent-

age of missingness (|MSECC,40% −MSEobs| > |MSECC,25% −MSEobs|). With increasing

sample size, the magnitude of the MSE difference when 40% of values are missing tends

to decrease (|MSECC,40% −MSEobs| −→ |MSECC,25% −MSEobs|). When data are outcome-

dependent MAR (with or without dependence of missingness on covariate X2), the mag-

nitude of the MSE difference for the complete-case analysis is increased when 40% of the

values of X1 are missing, compared to when the percentage of missingness is 25%.

For pragmatic performance, the MSE estimate when 40% of the values of X1 are missing

tends to overestimate MSEobs (MSEimp,40% − MSEobs > MSEimp,25% − MSEobs) for all

scenarios. The variability of the MSE estimates across repetitions when 40% of values are

missing is comparable to that when 25% of values are missing.

For ideal performance, the difference between the imputation methods’ MSE estimates

and MSEobs when 40% of values are missing tends to be slightly greater than when 25% of

values are missing (|MSEimp,40% −MSEobs| > |MSEimp,25% −MSEobs|), with BS-then-MI

having the largest difference. With increasing sample size, the MSE estimates from the

imputation-based methods when 25% of the data are missing are comparable to when 40%

of X1 values are missing.
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Figure 6.6: Comparing the impact of increasing the percentage of missingness on the difference

MSEimp - MSEobs when data are weakly outcome- and covariate-dependent MAR and R2 = 0.1 for

the standard bootstrap algorithm when M = 5. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

Red denotes MSEimp - MSEobs when 25% of X1 values are missing and blue denotes MSEimp

- MSEobs when 40% of X1 values are missing. The top row presents the results for pragmatic

performance and the bottom row presents results for ideal performance. CC (complete-case);

methods are described in Section2.7or Table6.1.
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6.4.4 Comparing results to the target performance

As previously detailed in the comparison of the cross-validation results (Section4.5.4),

the ideal performance of the imputation-based methods and MSEobs were compared to

the ideal target MSE estimate (MSEtarget,obs). This is estimated by applying a prediction

model, developed using all data, to the fully-observed data in the larger test set to get

an MSE estimate (Section3.6). The pragmatic performance of the imputation methods

is compared to applying a prediction model, developed using all data, to the imputed

datasets of the larger test set (MSEtarget,imputed). The complete-case estimate of the MSE

is obtained from applying a prediction model to the observed cases of the larger test set

(MSEtarget,CC). Graphs from all scenarios are available in the supplementary plot section

S3.2.4.

MCAR and covariate-dependent MAR

For many of the scenarios assessed when 25% of the values are missing, MSEobs tends to

over- or underestimate the MSE performance in the fully-observed larger test set. The re-

sults from the various methods involving MI (MSEimp) tend to over- or underestimate the

larger test set MSE estimate when MSEobs does. For example, if (MSEobs−MSEtarget,obs <

0 then we typically also see that MSEimp −MSEtarget,obs or MSEimp −MSEtarget,imputed

is less than zero). This can be seen in Figure6.7which presents results for comparing

MSE estimates to the target MSE (MSEimp −MSEtarget) when data are weak covariate-

dependent MAR. For a sample size of 1000 and R2 = 0.1, MSEobs underestimates the

target estimate, as do all other methods.

When sample size is 100 and for all R2 values, both the estimated ideal and pragmatic

performance of the methods tends to either underestimate or perform similarly to the ideal

and pragmatic target MSE of the larger test set. When the methods underestimate the

target MSE, the default BS-then-MI tends to have a smaller difference when compared

to the target MSE estimate than the other methods for both ideal and pragmatic perfor-

mance. When increasing the sample size to 300 or 1000 the estimated ideal and pragmatic

performance of the imputation-based methods all perform similarly when compared to the

ideal or pragmatic target MSE.
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Figure 6.7: The difference MSEimp - MSEtarget when data are weakly covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the

2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp -

MSEtarget. CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

Figure6.7presents results for comparing MSE estimates to the target MSE (MSE imp −
MSEtarget) when data are weakly outcome- and covariate-dependent MAR. For all scenar-

ios, all methods have overlapping confidence intervals. For the majority of scenarios, all

methods tend to approximate the ideal and pragmatic target MSE well. When the ma-

jority of the methods tend to under-estimate the ideal or pragmatic target MSE, method

BS-then-MI tends to either have the smallest magnitude of the difference for underesti-

mation or tends to over-estimate the target MSE estimate. When increasing the sample

size to 300 or 1000 the methods all perform similarly when compared to their respective

target MSE for ideal and pragmatic performance.
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Figure 6.8: The difference MSEimp - MSEtarget when data are weakly outcome- and covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of MSEimp - MSEtarget. CC (complete-case); methods are described in Section2.7or Table6.1.
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6.5 Detailed results for the 0.632 bootstrap algorithm

In this section I will summarise the results from the simulation study when the outcome

is continuous for the 0.632 bootstrap algorithm. I will explore how the methods perform

when their estimated MSEs are compared to MSEobs and also when compared to a target

MSE value from a larger validation set with 25% of values in X1 missing and 5 imputed

datasets. In addition, I will analyse whether increasing the number of imputed datasets

improves results and also examine how the methods perform with an increased percentage

of missingness. The methods presented were summarised in full in Section2.7and were

briefly resummarised at the start of this chapter in Table6.1.

The results presented in this section are nearly identical to the results presented for the

standard bootstrap internal validation algorithm in Section6.4. I have included the 0.632

results here so that the reader may reassure themselves that the results are similar to the

standard algorithm, if so desired. Otherwise, the reader may skip to Section6.6for a

discussion of data leakage in the imputation process.

6.5.1 Comparing results to the MSE estimate when data are fully-observed

MCAR and covariate-dependent MAR

Figure6.9compares the MSE estimates from various missing data methods when data are

weakly covariate-dependent MAR. The methods’ MSE estimates are compared to MSEobs.

The results in Figure6.9are similar for MCAR and strong covariate-dependent MAR sce-

narios. When sample size is 100 or 300 the complete-case analysis tends to overestimate

MSEobs (MSECC−MSEobs > 0) and tends to be more variable than the imputation meth-

ods. With increased sample size to 1000, the variability and magnitude of the difference

decreases.

For the pragmatic performance of the imputation methods when sample size is 100 and

for all R2 values, method BS-then-MI tends to overestimate MSEobs. For all values of R
2,

methods BS-then-MI reuse imps overestimates MSEobs but the magnitude of this difference

is less than BS-then-MI. Pragmatic performance for all MI-then-BS methods overestimates

MSEobs while method MI-then-BS impute once has the smallest difference overall across

all methods. For all values of R2 when the sample size increases to 300, the magnitude

of overestimation for all imputation methods decreases and the methods perform similarly.

For ideal imputation and sample size of 100, all methods which involve reusing the imputed

datasets used to estimate apparent performance, and method MI-then-BS impute once,

tend to underestimate MSEobs. That is for all values of R
2, MSEideal,imp−MSEobs < 0 for

imp = BS-then-MI reuse imps, MI-then-BS reuse test imps, MI-then-BS reuse and fixed

and MI-then-BS impute once. For all values of R2, the other imputation methods tend
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Figure 6.9: The difference MSEimp - MSEobs when data are weakly covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods are described in Section2.7or Table6.1.
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to overestimate MSEobs ( MSEideal,imp − MSEobs > 0 for imp = BS-then-MI, MI-then-

BS, MI-then-BS fixed BS and MI-then-BS re-impute). With increasing sample size all

methods tend to perform similarly and the difference between their MSE estimates and

MSEobs tends to zero. With increasing sample size the Monte Carlo standard error of the

MSE estimates also decreases.

Outcome-dependent MAR

Figure6.10displays summary MSE estimates for the complete-case analysis and imputa-

tion methods which are compared to MSEobs when data are weak outcome- and covariate-

dependent MAR. The graph is representative of all results when missingness is dependent

on the outcome (weak outcome-dependent MAR and weak outcome- and strong covariate-

dependent MAR).

For all scenarios, the complete-case analysis underestimates MSEobs (MSECC −MSEobs <

0). Across all scenarios, the magnitude of this difference is larger than any of the imputation-

based methods ideal performance (|MSECC −MSEobs| > |MSEimp,ideal −MSEobs|). The

magnitude of the difference between the complete-case analysis MSE and MSEobs is larger

than the imputation methods pragmatic performance when R2 = 0.01 or for sample sizes

of 300 or 1000 when R2 = 0.1 (|MSECC −MSEobs| > |MSEimp,prag −MSEobs|). For all

other scenarios, the pragmatic performance of the imputation methods has a larger differ-

ence than the complete-case analysis when compared to MSEobs.

For a small sample size of 100, the pragmatic performance of all imputation methods

overestimates MSEobs. BS-then-MI overestimates MSEobs the most for all values of R2.

Method BS-then-MI reuse imps, which reuses the imputed datasets used to estimate the

apparent performance, has a smaller difference (MSEprag,BS−MI−reuse − MSEobs) than

BS-then-MI and performs similarly to the various MI-then-BS methods. For all values of

R2, method MI-then-BS impute once has the smallest difference overall. With increasing

sample size to 300 and 1000 and for all values of R2, all imputation methods perform

similarly when compared to MSEobs.

For ideal performance, all imputation methods which involve reusing imputations tend

to underestimate MSEobs (methods BS-then-MI reuse imps, MI-then-BS reuse test imps,

MI-then-BS reuse and fixed, MI-then-BS impute once). Methods BS-then-MI, MI-then-

BS, MI-then-BS fixed BS and MI-then-BS re-impute overestimate MSEobs. For sample

size of 100, the magnitude of the difference between imputation methods’ MSE estimate

and MSEobs is largest for BS-then-MI while all other methods have similar magnitudes

for all values of R2. With increasing sample size to 300 and 1000, all methods have similar

performance when compared to MSEobs.
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Figure 6.10: The difference MSEimp - MSEobs when data are weakly outcome- and covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of MSEimp - MSEobs. CC (complete-case); methods are described in Section2.7or Table6.1.
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6.5.2 Increasing the number of imputed datasets from 5 to 25

Figure6.11displays the results for comparing the various imputation-based methods when

using 5 or 25 imputed datasets. The MSE estimate for each method using 5 or 25 imputed

datasets is compared to MSEobs. The results in the graph are for the scenario when data

are weak covariate-dependent MAR but are representative of results from all simulation

scenarios (additional graphs available in SectionS3.3.3in the supplementary plots).

Due to the increased computation time when using 25 imputed datasets the comparison

was performed for a reduced number of repetitions (1000 repetitions are used for the sim-

ulation study presented in the Figure) and for a reduced number of methods (methods

MI-then-BS fixed BS and MI-then-BS re-impute are not available for comparison).

The increased number of imputed datasets appears to make little to no difference for the

ideal or pragmatic performance. For all sample sizes and levels of R2, the results for

each method when compared to MSEobs are similar regardless of whether 5 or 25 imputed

datasets are used (MSEimp,M=5 −MSEobs u MSEimp,M=25 −MSEobs).
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Figure 6.11: The difference MSEimp - MSEobs when data are weakly covariate-dependent MAR

forM = 25 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods are described in Section2.7or Table6.1.
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6.5.3 Increasing the percentage of missingness to 40%

Figure6.12compares the impact of the percentage of missingness on the various missing

data methods and how well they perform when compared to the fully-observed MSE es-

timate (MSEobs). The graph displays results for ideal and pragmatic performance when

data are weakly outcome- and covariate-dependent MAR and R2 = 0.1 but the results

shown are representative of those for the ideal and pragmatic performance for all scenarios

(additional graphs in Supplementary plots sectionS3.3.2).

When data are MCAR or covariate-dependent MAR with 40% of data missing, the

complete-case analysis tends to be similar or have a larger difference compared to when

25% of the data are missing (|MSECC,40% − MSEobs| ≥ |MSECC,25% − MSEobs|). The

magnitude of this difference decreases with increasing sample size tending to zero. When

data are outcome-dependent MAR, as in Figure6.12, with increasing sample size there is

a tendency for the complete-case analysis estimate to have increased under-estimation of

MSEobs with increasing percentage of missing values.

In Figure6.12the estimated pragmatic performance of the MSE estimate when 40% of the

X1 values are missing overestimates MSEobs more than when data are 25% missing for all

imputation methods in all scenarios (|MSEimp,40% −MSEobs| > |MSEimp,25% −MSEobs|).
With increasing sample size the magnitude of the difference for 40% of missing values

decreases but is still greater than the magnitude of the difference when 25% of the values

are missing.

For ideal performance when sample size is 300, the difference between the imputation

methods’ MSE estimates, when 40% of X1 values are missing, compared to MSEobs is sim-

ilar or slightly larger than the imputation methods MSE estimates when 25% of values are

missing. When the sample size is increased to 1000, the MSE estimates of the imputation

methods are similar for both 25% and 40% of X1 values are missing.
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Figure 6.12: Comparing the impact of increasing the percentage of missingness on the difference

MSEimp - MSEobs when data are weakly outcome- and covariate-dependent MAR and R2 = 0.1

for the 0.632 bootstrap algorithm when M = 5. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

Red denotes MSEimp - MSEobs when 25% of X1 values are missing and blue denotes MSEimp

- MSEobs when 40% of X1 values are missing. The top row presents the results for pragmatic

performance and the bottom row presents results for ideal performance. CC (complete-case);

methods are described in Section2.7or Table6.1.
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6.5.4 Comparing results to the target performance

Briefly as a reminder, for the target MSE, the ideal performance of the bootstrap imputa-

tion methods and MSEobs were compared to the ideal target MSE estimate (MSEtarget,obs).

This is estimated by applying a prediction model, developed using all data, to the fully-

observed data in the larger test set to get an MSE estimate (Section3.6). The pragmatic

performance of the imputation methods is compared to applying a prediction model, de-

veloped using all data, to the imputed datasets of the larger test set (MSEtarget,imputed).

The complete-case estimate of the MSE is obtained from applying a prediction model to

the observed cases of the larger test set (MSEtarget,CC). Figure6.13displays results for

comparing the various methods MSE estimate with their respective ideal, pragmatic or

CC target MSE when data are weak covariate-dependent MAR. Graphs from all scenarios

are available in the supplementary plot sectionS3.3.4.

MCAR and covariate-dependent MAR

When R2 = 0.01, the confidence intervals for the difference between the complete-case

analysis MSE estimate and MSEtarget,CC overlaps with zero. For all other R2 and sample

size values, the complete-case analysis tends to under- or overestimate the target MSE

(|MSECC −MSEtarget,CC | > 0).

When data are MCAR, weak or strong covariate-dependence MAR and for sample sizes

of 300 or 1000, all imputation methods tend to perform similarly to each other when their

ideal or pragmatic performance is compared, respectively, to the ideal or pragmatic target

performance. The confidence intervals for the difference between the estimated and target

MSE for all methods tends to overlap.

For a sample size of 100, the majority of imputation methods tends to underestimate the

target MSE for ideal or pragmatic performance. In instances where all imputation methods

underestimate or approximate the target MSE, BS-then-MI tends to underestimate the

performance the least, as seen in Figure6.13for R2 = 0.1 and 0.3 and performs well

across the majority of scenarios when sample size is 100. When all imputation methods

underestimate the target performance, the ideal performance of BS-then-MI reuse imps,

MI-then-BS reuse test imps and MI-then-BS impute once underestimate the ideal target

performance the most.
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Figure 6.13: The difference MSEimp - MSEtarget when data are weakly covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp

- MSEtarget. CC (complete-case); methods are described in Section2.7or Table6.1.

204



Outcome-dependent MAR

When the sample size is 100 and data are either weakly outcome-dependent MAR when

R2 = 0.1 or weakly outcome-dependent and strongly covariate-dependent MAR when

R2 = 0.1, 0.3, BS-then-MI overestimates the target MSE for ideal and pragmatic perfor-

mance with a larger magnitude of the difference than the other methods. For all other

scenarios when the sample size is 100 the BS-then-MI method either approximates the

target performance well for ideal and pragmatic performance or it is approximates the

target MSE best when compared to the other imputation methods (i.e. it has the smallest

magnitude of the difference). Graphs are available in SectionS3.3.4of the Supplementary

plots section. With increasing sample size all BS-then-MI and MI-then-BS methods begin

to perform similarly to each other when compared to their respective ideal or pragmatic

target performance.
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6.6 Is data leakage an issue within the imputation process for the stan-

dard and 0.632 bootstrap algorithms?

The introduction of data leakage by imputing data was discussed in Section2.8and this

was previously assessed for cross-validation when the outcome is continuous in Section4.6.

The bootstrap imputation methods range from method MI-then-BS impute once, which

has the highest amount of leakage, to BS-then-MI, which has no data leakage for the 0.632

bootstrap version. All methods for the standard bootstrap algorithm have some leakage,

however, this leakage is a natural (and intended) part of the algorithm and cannot be

avoided. Data leakage discussed here will be in terms of any leakage introduced through

the imputation process.

The default version of BS-then-MI has no data leakage compared to the other meth-

ods. The bootstrap sample is imputed using a training imputation model (including the

outcome, introduced in Section2.5), and the imputed bootstrap sample is then used to

train M bootstrap prediction models. The same bootstrap sample is then imputed again

using a test imputation model (which may include the outcome depending on whether

the ideal or pragmatic performance is of interest) to estimate the BS performance of the

M bootstrap prediction models (for the standard bootstrap algorithm). A variation of

this method is BS-then-MI reuse imps which is subject to data leakage, unlike the de-

fault method BS-then-MI. Method BS-then-MI reuse imps reuses the imputed datasets

which were originally used to train and evaluate prediction models in order to estimate

the apparent performance i.e. these imputed datasets contain all observations from the

original dataset and all of these observations were used to impute any missing values.

As seen in Figures6.3and6.4(for the standard bootstrap) and Figures6.9and6.10

(for the 0.632 bootstrap), this has caused the magnitude of both the pragmatic and ideal

performances’ MSE estimate for BS-then-MI reuse imps to be smaller than that for BS-

then-MI (|MSEBS−MI reuse −MSEobs| < |MSEBS−MI −MSEobs| for ideal or pragmatic

performance). This difference in magnitude is most prominently seen for a sample size

of 100, where in some scenarios the magnitude of BS-then-MI reuse imps is half that of

BS-then-MI. For ideal performance, this leakage causes BS-then-MI reuse imps to become

over-optimistc. With increasing sample size the two methods begin to perform similarly.

All variations of the MI-then-BS approach inherently suffer from data leakage as the

bootstrap prediction models are trained on a bootstrap sample taken from data imputed

using all available observations in the original dataset. The pragmatic performance of all

MI-then-BS variations is similar to that of the BS-then-MI reuse imps method, which, as

discussed above, is also subject to data leakage. Method MI-then-BS is similar to BS-then-

MI reuse imps in that both methods reuse imputed training datasets to fit the bootstrap

prediction model. However, BS-then-MI reuse imps also reuses imputed test datasets
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to evaluate the bootstrap prediction model, whereas MI-then-BS imputes the bootstrap

sample separately using a test imputation model to evaluate bootstrap performance. For

pragmatic performance, both perform similarly. However, for ideal performance (where

the outcome is included in the imputation model), BS-then-MI reuse imps tends to un-

derestimate the fully-observed estimate of the MSE while MI-then-BS tends to give an

MSE that is similar to MSEobs. This underestimation can also be seen when comparing

MI-then-BS to MI-then-BS reuse test imps (reuses the imputed test datasets to estimate

the bootstrap performance in the same way that BS-then-MI reuse imps does). This

can be seen in Figures6.3,6.4,6.9and6.10and in the additional plots available in the

supplementary plot section (SectionsS3.2.1,S3.3.1) for a sample size of 100. Therefore,

using all available covariates and outcome data to impute missing values in the bootstrap

sample (MI-then-BS reuse imps, BS-then-MI reuse imps) results in a suggestion that the

prediction model is doing better than it would have done if all the data were observed.

These two methods are therefore over-optimistic, and the over-optimism arises due to this

further increased leakage from knowledge of the outcome, when compared to MI-then-BS

(where the bootstrap sample to evaluate the bootstrap prediction model is imputed based

only on the observations which were sampled). Similarly, MI-then-BS impute once uses

one set of imputed datasets to train and evaluate the prediction models and is subject to

data leakage, performing similarly to BS-then-MI reuse imps and MI-then-BS reuse test

imps.

Comparing BS-then-MI versus BS-then-MI reuse imps shows that reusing the imputed

datasets (to train and evaluate bootstrap prediction models) in order to estimate the boot-

strap performance leads to more optimistic performance. This is regardless of whether

pragmatic or ideal performance is of interest. Comparing MI-then-BS with MI-then-BS

reuse test imps shows that reusing imputed test datasets (imputed using all available

observations) versus imputing the bootstrap sample with the test imputation model can

lead to more optimistic results for ideal performance due to data leakage. With increas-

ing sample size, while the direction of either under- or overestimating the fully-observed

MSE remains the same for each method, the magnitude of the difference decreases and

the methods can be seen to perform similarly for a sample size of 1000.

Figures6.7and6.13display results when comparing the ideal and pragmatic performance

of the imputation methods to the ideal or pragmatic target MSE, additional graphs are

available in supplementary plots SectionS3.2.4andS3.3.4. As with the comparison with

the fully-observed MSE estimate, for larger sample sizes the methods tend to perform

similarly and data leakage appears to have little effect. For a sample size of 100, the

methods which tend to underestimate the ideal target performance the most are BS-then-

MI reuse imps, MI-then-BS reuse test imps and MI-then-BS impute once i.e. methods

which are subject to data leakage. Across the majority of scenarios, BS-then-MI (which
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has no data leakage) tends to perform well. The magnitude |MSEBS−MI − MSEtarget|
tends to either be smaller than the other imputation methods or it performs similarly to

the other methods, all of which approximate the target MSE well.

6.7 Comparing internal validation algorithms

Up to this point, the methods involving cross-validation, the standard bootstrap and the

0.632 bootstrap were primarily comparing the methods when data were missing to the

methods when no missing data were present. This in turn makes it difficult to compare

cross-validation performance (MSECV −MSECV,obs) to bootstrap performance (MSEBS −
MSEBS,obs) as the reference values (either MSECV,obs, MSEBS 0.632,obs or MSEBS Std,obs)

are different (Table6.2). For example, when R2 = 0.1 and the sample size is 300, the

average estimated MSE for cross-validation across the 2000 repetitions is 1595.43, while

for the standard bootstrap estimate, the MSE is 1594.28. Recall that the cross-validation

methods are detailed in Table2.3and the bootstrap algorithms are described in Section

2.7.

Table 6.2: Summary of MSEobs for cross-validation (CV) and the standard (Std) and 0.632

bootstrap algorithms. The point estimates are averaged across the 2000 repetitions.

R2 Method N100 N300 N1000

0.01 CV 17931.20 17571.10 17357.90

Std 17829.00 17546.50 17352.50

0.632 17811.20 17534.90 17347.80

0.1 CV 1620.81 1595.43 1577.43

Std 1618.57 1594.28 1576.99

0.632 1630.10 1597.37 1577.99

0.3 CV 422.62 414.13 409.11

Std 420.14 413.63 409.002

0.632 419.92 413.27 408.83

However, the target performance of the methods is method-agnostic as the target perfor-

mance is based on the performance across 2000 repetitions, each of which fits a prediction

model using all data in the repetition and then evaluates the model in a larger internal val-

idation set. Therefore, the target performance could be used to compare cross-validation

(MSECV −MSEtarget) to any of the bootstrap methods (MSEBS −MSEtarget).

Figure6.14presents results for the cross-validation, 0.632 and standard bootstrap when

compared to the ideal or pragmatic target performance. The graph is representative of

the various missing data scenarios (all graphs are available in SectionS3.4of the Supple-

mentary Plots).
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For all sample sizes the various methods combining MI with the bootstrap tend to perform

similarly for the standard and 0.632 variations across all scenarios. The K-fold cross-

validation methods tend to be more variable than the bootstrap methods for smaller

sample sizes with a tendency to overestimate the ideal or pragmatic performance of the

target MSE. However, with increasing sample size, the three internal validation approaches

tend to perform similarly when compared to the target performance of the MSE.
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Figure 6.14: Comparing cross-validation, the 0.632 bootstrap (BS632) and the standard boot-

strap (BS Std) using the target MSE. Error bars of the difference in the imputed MSE and the

MSE estimate from a larger validation set are presented for the weak outcome- and covariate-

dependent MAR scenario. CC (complete-case); CV methods A-K are described in Table2.3;

bootstrap methods are described in Section2.7or Table6.1.

210



6.8 Discussion of the results when the outcome is continuous

The aim of the simulation study discussed in this chapter was to identify the most appro-

priate way to combine the 0.632 or the standard bootstrap optimism-corrected algorithm

with MI.

In general, the impact of data leakage was most noticeable for smaller sample sizes, with

the method with no data leakage (BS-then-MI ) having a larger difference between the

imputed and fully-observed MSE than all other imputation methods, which were sub-

ject to data leakage. The methods with the most data leakage (BS-then-MI reuse imps,

MI-then-BS reuse test imps, MI-then-BS impute once) tended to underestimate the MSE

when data were fully-observed for ideal performance i.e. they were over-optimistic. How-

ever, their pragmatic performance was similar to those methods subject to moderate data

leakage such as method MI-then-BS.

With increased sample size all methods tended to perform similarly when compared to the

fully-observed MSE suggesting that the impact of data leakage through the imputation

process is lessened with increasing sample size. With a larger sample size there are more

observations available when fitting an imputation model and I suggest that the influence

of each observation on the posterior predictive distribution from which the imputed value

will be sampled from is lessened.

For the standard bootstrap algorithm, the reuse of testing imputed datasets (imputed us-

ing all available data in the original dataset and originally used to estimate the apparent

performance) was shown to perform similarly to imputing the original dataset a second

time using a testing imputation model for ideal or pragmatic performance. However,

the MSE estimate from reusing the testing imputed datasets and restricting the imputed

datasets to those that were bootstrap sampled in order to estimate the bootstrap per-

formance was shown to underestimate the MSE when data were fully-observed i.e. they

were over-optimistic. This underestimation/over-optimism could also be seen for the 0.632

algorithm when reusing test imputed datasets, restricting to those observations who were

not bootstrap sampled and evaluating the bootstrap prediction model to estimate the test

performance.

The impact of data leakage was seen for smaller sample sizes in the simulation study which

focused on the simple scenario of two covariates related to an outcome. Real datasets are

typically larger and have more complex relationships relating an outcome to covariates

and also relating covariates to each other. In more complex situations, it is possible that

data leakage could impact studies of much larger sample sizes.
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In addition, the simulation study showed that increasing the number of imputed datasets

from 5 to 25 had little to no impact on the results. It was also seen that an increase in

the percentage of missingness tended to lead to a larger over- or underestimation of the

MSE estimate when data were fully-observed.

Overall, we have learned that when the outcome is continuous the standard and 0.632

bootstrap algorithms have similar ideal and pragmatic performance and that data leakage

is present through the imputation process.

6.9 Summary and discussion of results when the outcome is binary

The aim of the simulation study, when the outcome is binary, is to determine an appro-

priate method to combine MI and the bootstrap optimism-corrected algorithms (standard

and 0.632). The methods were assessed for several performance measures (AUC, Brier

score and calibration intercept and slope) and were compared to both the estimate when

data were fully-observed and also to a ‘target value’ from a larger validation set (Section

3.6). Factors such as increasing the strength of missingness, the percentage of missingnes

and the number of imputed datasets were also assessed. In addition, the impact of data

leakage was investigated. A fully-written report of the results for the standard and 0.632

methods is available in AppendixC. Here, I shall briefly summarise and discuss the results.

Overall, it was found that the number of imputed datasets had minimal effect on the

performance measure estimates of the AUC, Brier score or calibration intercept and slope

which supports the findings found in Sections6.4.2and6.5.2when the outcome is contin-

uous.

For pragmatic performance, increasing the percentage of missingness was shown to in-

crease the magnitude of the under- or overestimation of the various performance measures

when compared to the performance when data are fully-observed (|Perfimp−Perfobs|). For
ideal performance, the majority of the methods performed similarly or had a slightly in-

creased magnitude of the difference suggesting that the percentage of missingness has less

impact on the ideal performance than it does on the pragmatic performance. This is most

likely due to the inclusion of the outcome in the test imputation model used to estimate

the ideal performance (which will help reduce bias in the regression model coefficients

[53] and, therefore, produce ‘better’ predictions). The outcome is not included in the test

imputation model for the pragmatic performance, hence why the pragmatic performance

tends to have a larger magnitude of the difference, when compared to Perfobs, than the

ideal performance.

The performance of the calibration intercept and slope tended to be unstable for small

212



sample sizes. As previously discussed in Section5.8(cross-validation results when the

outcome is binary), the estimation of calibration can be unstable for small sample sizes

which may lead to miscalibration, this holds true even if shrinkage or penalisation methods

are implemented [30,52].

The impact of data leakage on the various performance measures was examined when the

outcome is binary. The impact of data leakage has previously been explored for cross-

validation when the outcome is continuous or binary and for the bootstrap algorithms

when the outcome is continuous. Data leakage through the imputation process was most

noticeable for small sample sizes when the estimates of performance from the methods

were compared to the fully-observed or target estimates of performance. With increasing

sample size, the impact of data leakage through the imputation process appeared to de-

crease. However, given that the simulation study was based on the simple scenario of two

covariates related to an outcome and lacks the complexity seen in real-life observational

data, the impact of data leakage could be more serious in larger sample sizes.

Similarly, to the exploration of data leakage when the outcome is continuous (Section

6.6) it was noted that the ideal performance of the methods subject to data leakage (BS-

then-MI reuse imps, MI-then-BS reuse test imps, MI-then-BS impute once) tended to be

over-optimistic for the MSE, AUC and Brier score when compared to the estimate of per-

formance if data had not been missing. I argue that in practice, when using real data

where the impact of data leakage could be more severe, this over-optimism could lead to

the implementation of prediction models in a clinical setting with an anticipated perfor-

mance which is unrealistic. It may perhaps be better to have a prediction model which

underestimates (but tends towards) the performance if no data had been missing than

a model which is over-optimistic. In this scenario, at least if the model does not have

‘acceptable’ performance the researcher can always retune the model to improve it, which

they may not do if they think the model is already performing well.

Based on this reasoning, in addition to previous literature [40,44,54], I recommend the

method BS-then-MI as it avoids data leakage and performs similarly to the other meth-

ods which have the ‘advantage’ of data leakage for moderate and large sample sizes. In

addition, the reuse of train imputed datasets (BS-then-MI reuse) to increase computa-

tional efficiency when training a bootstrap prediction model (and estimating bootstrap

performance if using the standard bootstrap algorithm) is not recommended.

6.10 Conclusions

Overall, in this chapter we have learned that increasing the number of imputed datasets

has little effect on the performance estimate and that data leakage through the imputa-
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tion process could potentially be an issue in an analysis, if not carefully considered. With

increasing sample size, the various methods tended to perform similarly when compared

to the performance if data had not been missing. As such, I recommend the method

BS-then-MI which also has the advantage of avoiding data leakage.

Internal validation not only assesses the evaluation of a prediction model, but also eval-

uates the entire analysis procedure which is used to arrive at a final model. As such,

it is necessary that internal validation in the presence of missing data should be able to

handle considerations such as transformations of continuous covariates or covariate se-

lection. Chapter7will extend the methods developed for combining cross-validation or

bootstrapping with MI using fractional polynomials to address these issues.
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7 Multiple imputation and internal validation with frac-

tional polynomial terms in the prediction model

7.1 Introduction

Previously, I assessed methods to combine MI with internal validation methods when the

linear predictor of the prediction model was of a fixed, known form. In this chapter, I will

explore how to combine the multivariable fractional polynomial algorithm with internal

validation in the presence of missing data.

I will first summarise previous published literature on combining MI with fractional poly-

nomials, before proposing how it might be combined with the previously proposed cross-

validation or bootstrap algorithms. For cross-validation, I previously recommended meth-

ods A (impute each fold separately) or B (impute k − 1 training folds and kth test fold

separately). For the bootstrap algorithms, the default BS-then-MI was previously rec-

ommended. As it was shown in my investigations in earlier chapters that the 0.632 and

standard bootstrap algorithms have similar performance (Sections6.7andC.9), in this

section I will focus on adaptations for the 0.632 algorithm; the adaptation for the standard

algorithm should follow similarly and would be expected to have similar performance to

the 0.632 bootstrap (as this was seen in earlier chapters).

7.2 Background

Fractional polynomials and the multivariable fractional polynomial (MFP) algorithm were

introduced in Section1.7. Recall the usual set of fractional polynomial exponents is

S =
(
−2,−1,−1

2 , 0,
1
2 , 1, 2, 3

)
where 0 represents a log transformation. The MFP algo-

rithm allows for both the selection of covariates into a model and also for the transforma-

tion of continuous covariates. The MFP procedure has previously been adapted by Morris

et al. to handle missing data using MI [21], in the context of parameter estimation. The

two main parts to the paper focused on (i) the selection of an exponent to impute the

missing data and (ii) estimation of the exponents and selection of covariates in multiply

imputed data.

Part (i) of the paper aims to select the functional form of a continuous partially-observed

covariate. The covariate can then be appropriately transformed before being imputed with

respect to the other covariates and/or outcome in the dataset. Imputing a covariate with

the correct functional form ensures that the association between the covariate and all other

covariates and/or the outcome is maintained [18]. Part (ii) of the paper primarily focused

on which exponent or covariates to include into a final ‘pooled’ model. A single choice of

exponent for covariate transformation is required so that the covariate parameters are on

the same scale to be combined. The focus of Morris et al. was on appropriate estimation
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of parameters (i.e. an inference setting) where one final ‘pooled’ model is of interest to

explore whether covariates are associated with an outcome.

However, as discussed in Wood, Royston and White’s paper [38], pooling the parameters

of prediction models fitted to each imputed dataset (using Rubin’s rules) could lead to

imprecise estimates of performance. In keeping prediction models unpooled, this there-

fore means that each imputed dataset’s prediction model can have different covariates or

exponents selected. Therefore, only part (i) from Morris et al. is relevant when adapting

MI and the MFP algorithm to handle internal validation.

When the transformation of a covariate involves fractional polynomials of degree 1, the im-

putation process recommended by Morris et al. involves using the approximate Bayesian

bootstrap (ABB) method [21]. This samples individuals with fully-observed values in or-

der to get a draw of the exponent which will be used to transform the covariate, in order

to impute the partially-observed covariate.

The ABB method and how to impute using the selected exponent will now be detailed. I

will outline the algorithm using a similar setting as the previous simulation studies, which

I will extend upon: an outcome Y , a partially-observed covariate X1 and a fully-observed

covariate X2. The covariate X1 has a transformation XE
1 , in relation to the outcome Y ,

where E is an exponent selected from the set S of fractional polynomials (Section1.7). In

the case of linear regression, E(Y | X1, X2) = β0 + β1X
E
1 + β2X2.

7.2.1 Approximate Bayesian bootstrapping

If observations from a dataset can be assumed to be independently and identically dis-

tributed then the ABB can be considered as a method for MI [55] (as a way to allow for

uncertainty about exponents at the imputation stage). Therefore, it is possible to use

the ABB to get a ‘complete’ dataset (sampled from those who have observed values of

the partially-observed covariate) which can then be used to select an exponent which fits

the observed data well. This exponent could then be used to transform the covariate for

imputation.

The ABB has a few simple steps. To produce one imputed dataset:

1.Take a dataset D and split it into those who have fully-observed records for the

variable being imputed (if there are multiple incomplete covariates) Dobs and those

who do not Dmiss

2.Take a bootstrap sample with replacement from Dobs to create a donor sample, D∗.
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7.2.2 Selecting an exponent in order to impute missing values

The imputation of missing values using a selected exponent was outlined in [21, Section

5.4] but will be detailed here for convenience. For a dataset D = {Y,X1, X2} which

has fully-observed Y and X2. X1 is partially-observed and may potentially have a FP

transformation. The steps to impute X1 while accounting for the uncertainty in the

selection of an exponent for one imputed dataset are:

1.Apply the ABB algorithm, detailed in Section7.2.1Steps1to2, to D to get a

‘complete’ dataset D∗ as above.

2.Fit a regression imputation model to D∗, regressing XE
1 on the outcome Y and the

other relevant covariate X2 for E ∈ S i.e. the set fractional polynomial transforma-

tions. This may be done incrementally (-2, -1.9, -1.8,...), although I have chosen to

only use the exponents in set S to reduce computation time.

(a)Estimate the log likelihood, log( L) for each of the regression models fitted under

various choices of E

(b)Calculate the value of the Jacobian adjustment, J , of the transformation of X1

to XE
1 . Note: this is the log of the absolute derivative of the transformation

and it is summed over all records used to fit the models. For example, if

E = 0, the transformation of X1 is t(X1) = log(X1). Then |t′| = X−1
1 and

log(|t′|) = − logX1. Therefore, J =
∑ND∗

i=1 − logX1,i

3.Choose the exponent, draw E∗ which has the largest value of log(L) + J

4.For D, multiply impute XE∗
1 using linear regression of XE∗

1 on Y and X2

5.Finally, back-transform to get an imputed value of X1 =
E∗
√
XE∗

1

7.3 Adapting the exponent selection and imputation process to handle

prediction models

Section7.2.2detailed how to draw an exponent to impute a continuous covariate with

missing values. This focused on using all available data in a dataset and using an impu-

tation model (in Step2) which included the outcome.

However, when adapting the algorithm for internal validation a few small alterations are

needed. Above, D represented the entire analysis dataset, but when extending the ap-

proach to a prediction setting consideration is required as to which observations should

be included in the dataset used to fit a prediction model. In the prediction setting, D

could indicate a subset of the complete analysis data set. For example, when imputing

the k − 1 training folds in cross-validation, D could represent the observations from the
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training folds.

For MI-then-Validate methods D would be all records in the dataset. For Validate-then-

MI methods where the ‘training’ and ‘test’ datasets are imputed separately, there will be

two ‘versions’ of D: Dtraining and Dtest. In cross-validation, Dtraining is the k − 1 training

folds and Dtest is the kth test fold. For the 0.632 bootstrap validation method, Dtraining

contains those observations who were selected into the bootstrap to train a bootstrap pre-

diction model. Dtest contains the observations which were not selected in the bootstrap

sample (as I am only focusing on the 0.632 version in this chapter) and which will be used

to evaluate the bootstrap prediction model.

Secondly, step2applies an imputation model to impute the transformed X1 using the

outcome and other relevant covariates. Extending this to the prediction setting requires

considering whether an ideal or pragmatic setting is of interest. The inclusion of the out-

come in a training imputation model to produce training imputed datasets of Dtraining

is fine. However, the inclusion of the outcome in the test imputation model (to impute

Dtest) will depend on whether ideal or pragmatic performance is of interest.

The previously proposed methods to combine MI and cross-validation will be extended

to handle fractional polynomials. It is important to note that there will be two stages of

exponent selection. Exponents will be selected when using ABB, in order to help impute

the partially-observed covariate. Once the data have been multiply imputed, the FPS or

MFP algorithms (first introduced in Section1.7) can be applied to select the appropriate

functional form of continuous covariates when fitting a prediction model.

In Section1.11I presented a data leakage example which highlighted how the choice of

clusters can be affected based on using all the data or just the data that should be used for

training a model. In a similar manner, the choice of exponents using all the data versus

the data to be used for training or evaluating could cause data leakage.

In the following sections, I will incorporate fractional polynomial algorithms with the

previously proposed MI-then-Validate and Validate-then-MI methods. While the MI-

then-Validate methods are prone to data leakage and are not recommended, it is possible

that a user may still wish to use this version of imputing and validating (as it is less

computationally intensive than Validate-then-MI ).

7.4 MI-then-validate methods

In this section I propose how the MI-then-Validate methods can be adapted for use when

the analysis model includes FPs. The steps discussed in this section can be used for both
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MI-then-CV and MI-then-BS methods. The methods detailed in this section are similar

to those detailed in Chapter2. The key difference is the use of the ABB algorithm to

select the fractional polynomial exponent to be used in the imputation process. The MI-

then-CV and MI-then-BS algorithms follow similarly, but allowing for the selection of

fractional polynomials when fitting a prediction model.

1. D is first defined to include all observations of the entire dataset. The ABB algorithm

(Section7.2.1) is applied to D in order to select FP exponents (Steps1-3from Section

7.2.2). This is repeated M times in order to get a vector of exponents E for X1 of

length M , E={E1, . . . , EM}

2.To obtain an imputed dataset m = 1, . . . ,M :

(a)Using all of the available data, D, transform covariate X1 using themth element

of E, Em i.e. XEm
1 .

(b)Use a training and test imputation model to impute the observations with

missing values XEm
1 . This will produce one training imputed dataset and one

test imputed dataset.

(c)Back transform XEm
1 to X1 in both the training and test imputed datasets

Repeat this step until there are M training and test imputed datasets.

3.After obtaining M training and test imputed datasets, apply the internal validation

algorithm of interest. As per the previous MI-then-BS or MI-then-CV methods, any

prediction models should be trained on the training imputed datasets and evaluated

on the test imputed datasets, as this will reduce correlation between the training

and test imputed datasets. Please see Sections7.4.1and7.4.2for specific details.

Step3will be explained in more detail below for both cross-validation (method K: impute

the dataset using a training and test imputation model, Section2.6) and the bootstrap

(default method MI-then-BS, Section2.7).

7.4.1 MI-then-CV

For full details of method K, please refer back to Table2.4. Briefly, this involved imputing

the entire dataset twice, using both a training and test imputation model. Due to the na-

ture of imputing first, followed by applying cross-validation, ABB selection was performed

once to estimate M exponents for imputing X1. All observations in the imputed training

datasets are divided randomly into K folds of equal size. The prediction model is fitted

using the k − 1 folds from the training imputed datasets. The kth holdout fold selected

the observations belonging to fold k from the test imputed datasets in order to evaluate

the prediction model trained on the k − 1 training imputed datasets.
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Steps1and2to MI-then-CV were defined above. For k = 1, . . . ,K, use the kth fold as

the holdout test fold and the remaining k − 1 folds as the training dataset for which to

train a prediction model.

3.Within each training imputed dataset mtrain:

(a)take the k − 1 training folds and apply the fractional polynomial selection

algorithm (or MFP algorithm) to select the functional form of X1 and train a

prediction model Pmtrain,k

(b)Evaluate model Pmtrain,k on the observations belonging to the kth fold in the

Mtest imputed datasets to obtain Mtest estimates of performance. Use Rubin’s

first rule to average across the performance estimates to get one overall estimate

of performance for Pmtrain,k

4.Repeat Step (3) K times, holding out each fold k = 1, . . . ,K as the holdout test

fold. This will produce K estimates of performance which are averaged (using cross-

validation averaging rule, Section1.9.3).

5.Repeat Steps (3)-(4), for each training imputed dataset mtrain = 1, . . . ,Mtrain to get

Mtrain estimates of performance. Use Rubin’s first rule to get an overall estimate

of performance across the Mtrain imputed datasets (i.e. take the average of the

averaged performances obtained in step4).

7.4.2 MI-then-BS

Recall that the 0.632 algorithm involves calculating the apparent and test performance.

When data are fully-observed, a prediction model is trained and evaluated using all avail-

able observations in a dataset. The entire dataset is then bootstrap sampled, with replace-

ment, B times. For a bootstrap sample b, a prediction model is fitted to those observations

who were sampled. This ‘bootstrap sample prediction model’ is then evaluated in those

observations who were not selected into bootstrap sample b, to estimate the test perfor-

mance. Full details of the application of the bootstrap algorithm when using MI were

given in Section2.7.2.

Below I briefly summarise the extension of the algorithm detailed in Section2.7.2to

incorporate fractional polynomials. Steps1and2for MI-then-BS were defined above.

3.First, the apparent performance will be estimated. Using the imputed datasets

from Step2, train Mtrain prediction models (fitted using either the FPS or MFP

algorithm). These prediction models are fitted using all observations from the Mtrain

training imputed datasets. Evaluate each prediction model in the Mtest test imputed

datasets and use Rubin’s first rule to average across the Mtest estimates to get one

overall performance estimate for each model. Then apply Rubin’s first rule again to
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average across the performance for the Mtrain models to produce an overall estimate

of the apparent performance.

4.Take a bootstrap sample b from the training imputed dataset mtrain. Train a pre-

diction model (using either the FPS or MFP algorithm) on the bootstrap sample b,

allowing for the selection of fractional polynomials, and evaluate it in the observa-

tions which were not sampled in the Mtest test imputed datasets from Step2. Use

Rubin’s first rule to average across the Mtest estimates (from each of the Mtest test

imputed dataset) to get an overall estimate for the prediction model.

5.Repeat Step4for mtrain = 1, . . . ,Mtrain and use Rubin’s first rule to average across

the Mtrain prediction models’ estimates of performance. This will give an estimate

of the test performance.

6.The optimism-corrected performance may then be calculated as (0 .368×Apparent)+(
0.632× 1

B

∑B
b=1 Testb

)
7.5 Validate-then-MI methods

In this section I propose how the Validate-then-MI methods can be adapted for use when

the analysis model includes FPs. This shall adapt cross-validation methods A and B

(Table2.4) and the default BS-then-MI method for the 0.632 bootstrap algorithm (Section

2.7.1). In the ‘validate first’ methods involving cross-validation, we split the data into k−1
training and kth test folds first before imputing. In the ‘validate first’ method using the

0.632 bootstrap, after estimating the apparent performance, take a bootstrap sample from

the dataset which is partially-observed, and then impute the bootstrap sample. Recall

that validating first is the recommended approach to combining missing data methods

and internal validation, as this approach avoids data leakage.

7.5.1 CV-then-MI

I shall describe the adaption of method B to accommodate fractional polynomials, and

detail the steps which need to be altered to instead use method A.

All observations in the data are divided randomly into K folds of equal size. Each fold k

is used in turn as a holdout test fold, for k = 1, . . . ,K:

1.To impute the k − 1 training folds:

(a)Apply the ABB algorithm to the the k− 1 training folds (Dtraining) in order to

select Mtrain exponents for X1. This results in a vector of exponents Etrain of

size Mtrain.

(b)To obtain the mth
train imputed dataset of the k − 1 training folds:
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i.Transform covariate X1 using the mth
train element of Etrain, X

Emtrain
1

ii.Use a training imputation model to impute X
Emtrain
1 (the imputation model

will include covariate X2 and outcome Y )

iii.Back transform X
Emtrain
1 to X1. One training imputed dataset has now

been obtained for the k − 1 training folds.

(c)Repeat Step1bfor for mtrain = 1, . . . ,Mtrain to obtainMtrain training imputed

datasets {Y,X1, X2}. These imputed datasets only contain the observations

belonging to the k − 1 training folds.

2.Repeat Step1in order to impute the kth test fold (Dtest). However, for Step1(b)ii,

the test imputation model (either including or excluding the outcome depending

on whether ideal or pragmatic performance is of interest) should be used in place

of the training imputation model. This test imputation model will be fit to the

observations in the kth test fold. This will produce Mtest test imputed datasets.

3.For each training imputed dataset m = 1, . . . ,Mtrain

(a)Fit a prediction model (using either the FPS or MFP algorithm) to the mth
train

training imputed dataset.

(b)This prediction model will then be evaluated in the Mtest test imputed datasets

from Step2and use Rubin’s first rule to average the performance estimates to

get one overall estimate for the prediction model.

(c)These3steps are then repeated and an averaged performance estimate is

obtained for each prediction model fitted to training imputed dataset m =

1, . . . ,Mtrain.

4.Use Rubin’s first rule to average across the Mtrain overall estimates of performance

for each of the M prediction models from Step3c.

Steps1-3are repeated, iteratively holding-out each fold as the test fold to produce K

estimates of performance. These are then averaged using cross-validation averaging rules

to get a performance estimate.

Method A

The Steps for Method A are similar to those detailed for method B. However for Step

1b, each fold is imputed separately using the ABB algorithm, instead of imputing the

k − 1 folds together. The imputed datasets from all K folds are then combined together

to produce Mtrain and Mtest imputed datasetes (i.e. an imputed dataset contains all K

folds).
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7.5.2 BS-then-MI

In this section, I will extend the 0.632 algorithm to handle fractional polynomials in the

imputation process. Recall that the 0.632 algorithm estimates the apparent performance

(where a model is trained and evaluated using all of the data) and the test performance (a

prediction model trained in a bootstrap sample is evaluated in those who were not selected

in the sample).

The steps are as follows:

1.The apparent performance is estimated using the same steps as those in Step3of

Section7.4.2.

2.Sample from the original partially-observed data, D, with replacement to get a

bootstrap sample b, Dtraining.

(a)Use the ABB algorithm on Dtraining to select Mtrain FP exponents. This will

output a vector of exponents E train of size Mtrain.

(b)To obtain the mth
train imputed bootstrap sample b

i.Transform covariate X1 using the mth
train element of E, X

Emtrain
1

ii.Use a training imputation model (including covariate X2 and outcome Y )

to impute X
Emtrain
1

iii.Back transform X
Emtrain
1 to X1

iv.Repeat for for mtrain = 1, . . . ,Mtrain

(c) Mtrain imputed training datasets {Y,X1, X2} of bootstrap sample b have now

been obtained. Train a bootstrap prediction model (using either the FPS or

MFP algorithm) in each bootstrap training imputed dataset, Pb,mtrain
.

(d)For the observations which were not sampled in bootstrap sample b, repeat

Steps2aand2b, using a test imputation model in Step2(b)iito obtain Mtest

test imputed datasets.

(e)Evaluate each prediction model Pb,mtrain
in theMtest test imputed datasets and

use Rubin’s first rule to get an overall estimate of performance for the model.

(f)Repeat Step2efor each prediction model Pb,mtrain
for mtrain = 1, . . . ,Mtrain.

(g)Use Rubin’s first rule again to average the estimates of performance from the

Mtrain prediction models from Step2f, to get an overall estimate of test per-

formance, Testb.

3.Repeat Step2for b = . . . , B to get B estimates of the test performance

4.The optimism-corrected performance is then estimated as:

OCP = (0.368×Apparent) +

(
0.632× 1

B

B∑
b=1

Testb

)
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7.6 Additional considerations when applying the proposed methods

7.6.1 Application of an origin-shift transformation before applying the FPS

or MFP procedure

One final consideration which affects both MI-then-validate and Validate-then-MI in these

extensions to accomodate FPs is the use of preliminary transformations on a covariate.

Extreme covariate values can have an impact on the selection of the FP exponent. Royston

and Sauerbrei (2007) [56] give the example that a FP2 model could be accepted over an

FP1 model in order to improve the fit at a small number of extreme points, which is a type

of overfitting. A linear transformation of the covariate to which the FP transformation is

to be applied can be used to modify low values which are influential [56,57]. This also

controls the range of X1 in a way that improves precision (in the computing sense).

wδ(X1) = δ + (1− δ) X1 −X1,min

X1,max −X1,min
(7.1)

Equation7.1can be used to either transform a covariate which has negative values or one

which has influential low values close to zero which could unduly affect the selection of a

fractional polynomial exponent. A default value of δ = 0.2 is recommended [56], and the

transformed range of the values of the covariate will be [δ, 1]. The use of a transformation

can result in more sensible final models [56] which may overall reduce overfitting and

improve predictions from a model.

7.6.2 Choice of α-levels in the FPS and MFP procedure

In both the FPS and MFP algorithms, a significance level αE (denoted α2 in [11]) control-

ling the significance level for choosing a FP exponent for a covariate must be decided. For

example, the best fitting FP1 model will be compared to a linear model (a model which

does not include a FP transformation) at the αE level. Typically, αE = 0.05 but if αE = 1

then the best fitting FP transformation will be used.

Recall that the details of the MFP algorithm are available in AppendixA. Essentially,

MFP has an additional significance level which must be decided in the algorithm. This

is αβ (denoted α1 in [11]) which controls the significance level for including any covariate

into a model. Typically αβ = 0.05 but it can be set to 1 to force a covariate into a model.

7.7 Conclusion

In this chapter I have summarised relevant current literature for combining MI with frac-

tional polynomials. I have proposed how fractional polynomials can be incorporated into

the previously proposed methods to combine internal validation with MI. Chapter8will

detail a simulation study which will be used to evaluate the methods when using fractional

polynomials.
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8 Designing a simulation study to evaluate methods for

combining MI and internal validation techniques while

incorporating fractional polynomials and covariate selec-

tion

8.1 Introduction

This chapter describes the design of simulation studies that aim to evaluate methods for

combining internal validation techniques with MI while handling the incorporation of the

functional form of a continuous covariate and covariate selection. The simulation design

is similar to the design in Chapter3. I use this chapter to describe the simulation set-

up, and the simulation results will be described in subsequent chapters. The outline of

this chapter follows the ADEMP structure recommended by Morris et al. [10] for clear re-

porting of simulation studies. I will assess the proposed methods for a continuous outcome.

Chapter2outlined proposed methods for combining MI with cross-validation (Section2.6)

and bootstrap algorithms (Section2.7). These methods were then assessed using a simu-

lation study and the recommended methods were BS-then-MI when using the bootstrap

algorithm (Section6.9). For cross-validation, it was recommended to cross-validate first

and then apply MI. For smaller sample sizes, method A which involves imputing each fold

separately was recommended, while for larger sample sizes method B which imputes the

k − 1 training folds together and then imputes the kth test set separately (Section5.9).

8.2 Aim

In Chapters2to6I explored how to combine MI with internal validation techniques for a

fixed prediction model i.e. the covariates included into the prediction model were already

determined. I aim to extend these previous methods to a setting where the prediction

model is not fixed but instead includes decisions based on the dataset available. I have

incorporated fractional polynomials to the previously proposed methods in order to allow

for covariate selection and the flexible transformation of continuous covariates when fitting

a prediction model.

The aim of the simulation study in this chapter is to identify how the proposed methods

combining internal validation with MI can be incorporated with fractional polynomial

selection, for the incorporation of covariate transformation and selection into prediction

models. This will be investigated across a range of different settings, including different

exponents for variable transformation and multiple missing data mechanisms. The simu-

lation studies will be used to assess the proposed methods for both cross-validation and

the bootstrap optimism-corrected algorithms (detailed in Sections7.4and7.5).
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8.3 Data-generating mechanisms (DGM)

Similarly to the simulation study set-up in Section3.2, a linear model will be used as the

data-generating model when the outcome is continuous. The linear predictor will have

two correlated Normally distributed covariates, X1 and X2. They will be generated with

correlation ρ = 0.5.

[
X1

X2

]
∼ N

([
0.5

4

]
,

[
1 0.5

0.5 1

])

A FP transformation will be applied to covariate X1 when generating the outcome. A

requirement of fractional polynomials is that X1 ∈ R+
>0. If the simulated X1 value was less

than 0.1, it was rejected and the sampling was repeated using the bivariate distribution.

The continuous outcome, Y , was generated using Y ∼ N (µ, σ2), where

� µ = β0 + β1X
E
1 + β2X2

� σ2 =
(
β21Var(X

E
1 ) + β22Var(X2) + 2β1β2Cov(X

E
1 , X2)

)
× 1−R2

R2

The outcome will be generated for three exponent choices: 2, 0 (log) and -2. The model

is written like this in order to allow the variance of the outcome (σ2) to be adjusted for

varying levels of R-squared (R2) while keeping the values of β constant. Two values were

considered for R2: 0.1 and 0.3. The derivation of the adjustment to σ2 to allow for different

values of R2 is available in AppendixB. The variance of XE
1 and its covariance with X2

were estimated using simulated data based on one million sampled observations from the

same distributions as described above. This was used to estimate the variance of Y (σ2)

and the values used for different combinations of exponent E and the R2 are presented in

Table8.1.

Table 8.1: Variance of the outcome (σ2) used in the simulation study for each choice of the

exponent and level of R2

Exponent (E) R2 SD(Y )

2 0.1 7.23

0.3 3.68

log 0.1 4.15

0.3 2.11

-2 0.1 37.70

0.3 19.20

In all simulation scenarios the linear line was set to intercept the origin (β0 = 0). The β1

value was set to one and β2 was set to either zero or one. Allowing β2 to vary will allow
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for covariate selection assessment (when covariate X2 should or should not be included in

the prediction model) when using the MFP algorithm with internal validation.

In the simulation study, the dataset shall contain {Y,X1, X2} where X1 will be included

in the analysis model while allowing for a fractional polynomial transformation.

8.3.1 Introducing missingness

As in the previous simulation set-up, missingness was induced in one covariate, X1, for the

continuous outcome. Scenarios in which the missingness in X1 does and does not depend

on X2 and/or on the outcome Y are considered. The probability of X1 being missing for

patient j is the same as in equation3.1:

πX1,j =
exp(ψ0 + ψ2X2,j + ψ3Yj)

1 + exp(ψ0 + ψ2X2,j + ψ3Yj)

Using this equation, three missing data scenarios were considered:

1.MCAR ( ψ2 = 0, ψ3 = 0)

2.Covariate-dependent MAR ( ψ2 6= 0, ψ3 = 0)

3.Covariate- and outcome-dependent MAR ( ψ2 6= 0, ψ3 6= 0)

For the two MAR mechanisms non-zero values of ψ2 and ψ3 were selected to produce

weak and strong MAR. This strength was calibrated based on the area under a ROC

curve (AUC) from regressing the missing indicator on the covariates related to missing-

ness. Values for ψ0 were then selected such that approximately 25% of observations in X1

were set as missing.

Table8.2shows the finalised ψ parameter values and the AUC of missingness when the

outcome is continuous. When missingness is MCAR or covariate-dependent MAR, miss-

ingness does not depend on the outcome and therefore the values of ψ are unaffected by

the R2 values. For covariate- and outcome-dependent MAR, the values of ψ are selected

to maintain a similar missingness AUC for the three R2 values.
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Table 8.2: Specification of parameter values ψ0, ψ2, ψ3 to ensure MCAR, weak MAR and strong

MAR with approximately 25% (ψ0,25) of observations induced to be missing.

Mechanism Exponent E R2 ψ3 ψ2 ψ0,25 AUC

MCAR All E All R2 0 0 -1.1 0.501

weak covariate-dependent MAR All E All R2 0 0.6 -3.75 0.65

strong covariate-dependent

MAR

All E All R2 0 1.1 -6.02 0.744

weak outcome-dependent MAR 2 0.1 0.07 0 -1.58 0.644

0.3 0.12 0 -1.85 0.643

log 0.1 0.13 0 -1.71 0.652

0.3 0.22 0 -2.07 0.649

-2 0.1 0.015 0 -1.32 0.659

0.3 0.025 0 -1.40 0.651

weak outcome- and

covariate-dependent MAR

2 0.1 0.07 0.35 -3.11 0.678

0.3 0.12 0.35 -3.40 0.687

log 0.1 0.13 0.35 -3.25 0.688

0.3 0.15 0.45 -4.74 0.679

-2 0.1 0.015 0.42 -3.15 0.683

0.3 0.02 0.5 -3.25 0.667

weak outcome- and strong

covariate-dependent MAR

2 0.1 0.15 0.35 -3.80 0.785

0.3 0.25 0.35 -4.38 0.787

log 0.1 0.25 0.35 -3.925 0.779

0.3 0.35 0.45 -4.74 0.766

-2 0.1 0.028 0.42 -3.45 0.772

0.3 0.05 0.5 -4.00 0.776

8.3.2 Factors to vary in the simulation

I specified above (Section8.3) that different simulation scenarios will be considered for

two values of R2 for the continuous outcome, six missing data mechanisms, and three

exponent values E. I also considered two sample sizes (nobs =300, 1000). The proposed

methods are therefore assessed across 288 different simulated scenarios. Each scenario was

assessed with 2000 repetitions in order to minimise Monte Carlo error. The factors varied

(factorially) across scenarios and their values are found in Table8.3.
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Table 8.3: Factors which will be varied for the continuous outcome simulations

Factors Notation Values

Number of individuals nobs {300, 1000}
Number of repetitions used nsim {2000}
Proportion of missingness pmiss {25%}
Level of R-squared R2 {0.1, 0.3}
Number of imputed datasets M {5}
Choice of FP exponent E {-2, 0 , 2}
Inclusion of X2 in analysis model β2 {0, 1}
Dependence of missingness on X2 ψ2 Refer to Table8.2

Dependence of missingness on Y ψ3 Refer to Table8.2

8.4 Estimands

In each simulation scenario and using each analysis method (see below) I assess the ideal

and pragmatic estimates of performance measures. The ideal and pragmatic performance

measure estimates for each repetition will be compared to the performance measure es-

timated from the same repetition but with fully-observed X1 (Perfobs), similarly to the

previous simulation study. We expect pragmatic estimates to underestimate those of ideal

performance [38].

For all methods in either the ideal or pragmatic setting, an overall performance measure

(P̂erfimp) will be estimated. This will be compared to the performance measure Perfobs:

P̂erfimp − Perfobs

While the main estimands of interest will be about the performance of predictions, I will

also investigate how often the correct exponent is selected (i.e.the type I error rates) for

both

� the selection of exponents (via ABB) which are used to impute missing values

� the selection of exponents from the MFP process when building the prediction model.

8.5 Methods

The proposed methods for combining MI with cross-validation and bootstrapping were

initially proposed in Sections2.6and2.7. After assessment in Chapters4-6, only a small

number of methods will be considered. The adaption of the cross-validation and boot-

strapping methods to also handle fractional polynomials, in addition to missing data, was

described in Sections7.4and7.5. For cross-validation, CV-then-MI methods A (impute

each fold separately) and B (impute the k − 1 training folds together and impute the
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kth test fold separately) and MI-then-CV method K (impute the entire dataset using a

training and test imputation model) will be assessed. Methods A and B were found to

be the most promising methods for CV-then-MI and method K has slightly reduced data

leakage than if the dataset were imputed using the same imputation model and one set

of M imputed datasets. As it was previously seen that the 0.632 and standard bootstrap

algorithms have similar performance, I shall only assess the 0.632 algorithm here. For the

0.632 bootstrap, the default method for BS-then-MI and MI-then-BS will be assessed.

As I will only be simulating data with a continuous outcome, multivariate imputation by

chained equations will be used. While this presents a possibility of negative imputed val-

ues, which would be problematic when back-transforming XE
1 to X1, this was not found to

be an issue here due to careful selection of the mean and standard deviation of covariate X1.

As detailed in Section7.6, an origin-shift transformation may reduce overfitting of models

to the data. The application of this shift transformation will also be explored within each

of the methods detailed above. Similarly, I will adjust the level of αE to compare which

exponents are selected (for Type I error assessment). I will also compare the impact of

covariate selection for X2 (when β2 is either 0 or 1) by adjusting αβ, this will assess how

often it is correctly added into a model or not.

Table8.4outlines the factors which will be varied in the assessment of the MFP procedure

on imputed data.

Table 8.4: Factors which will be varied in the MFP analysis

Factors Notation Values

Apply an origin-shift transformation (equation7.1) Iδ {No, Yes}
Significance level for exponent selection αE {0.05, 1}
Significance level for covariate selection αβ {0.05, 1}

8.6 Performance Measures

In Section8.4, I detailed the estimands of interest for assessing the various methods in

this simulation study. This includes assessing the estimated MSE from the methods, how

often the correct exponent is selected for imputing missing data, and also in the MFP

procedure when fitting a prediction model. While the exponent selection is interesting to

assess, a procedure which systematically selects the ‘wrong’ exponent (i.e. it is biased),

may still have good performance. In addition, how often a covariate is correctly included

into the prediction model will be assessed. Here, I shall detail how they will be estimated.
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8.6.1 Assessment of the predictions

The performance measure for the prediction models when the outcome is continuous is the

mean-squared error. For simulated replication, r = 1, . . . , nsim, the mean MSE for each

DGM is:

M̂SEimp =
1

nsim

nsim∑
r=1

M̂SEr,imp

The fully-observed MSE will also be estimated:

MSEobs =
1

nsim

nsim∑
r=1

M̂SEr,obs

with M̂SEr,s =
1

nobs,r

∑nobs,r

i=1 (Ŷi,r − Yi,r)2 for s = imp, obs.

As outlined in Section8.4, this averaged estimate will be compared with the averaged MSE

when data are fully-observed (M̂SEimp−MSEobs). These are equivalent to the Perfobs and

Perfimp notation outlined in Section8.4.

8.6.2 Assessment of the exponent selection for imputation or the MFP pro-

cedure

The proportion of exponents selected for imputing data using ABB, or the exponents

selected using the MFP procedure to build a prediction model will be estimated. The

proportions for the various exponents will be compared to see whether certain exponents

are favoured or whether the true underlying exponent, E, is selected.

For cross-validation, each repetition will have selected exponents for the K iterations of

the training or test folds within M imputed datasets (i.e. K ∗M ∗ nsim exponents). For

bootstrapping, this will involve analysing exponents from the 2000 repetitions each of

which will have selected exponents in B bootstrap samples and M imputed datasets ((i.e.

B ∗M ∗ nsim) exponents).

8.6.3 Assessment of covariate selection in the MFP procedure

This will be estimated as the proportion of times that the covariate X2 will be either cor-

rectly (when β2 = 1) or incorrectly (when β2 = 0) included in the trained prediction model.

Again, for cross-validation this will include assessment of K prediction models within

M training imputed datasets for each repetition. For bootstrapping, this will involve

assessing the inclusion of X2 into a prediction model for B bootstrap samples and M

imputed datasets for each repetition.
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8.7 The ‘Target’ performance measure

In the previous simulation studies detailed in Chapter3, I compared the estimated MSEs

with both the MSE value when data were fully-observed. I also made comparisons with a

‘target’ value, which was estimated using a larger validation set (Section3.6). Due to the

number of comparisons to be made in the current simulation study, I will only compare

the estimated MSE to the MSE value when data are fully-observed. As noted by Wood

et al. (2015) [38, Section 4.1], comparing the estimated ideal performance with the fully-

observed performance estimate is the gold standard. However, comparing the estimated

pragmatic performance to the fully-observed performance estimate is not considered to be

the correct comparison. The estimated pragmatic performance is expected to be ‘lower

than ideal model performance’ [38, Section 6.1].

8.8 Conclusion

In this chapter I have discussed the set-up of the simulation study to be used for both

cross-validation and the bootstrap internal validation algorithms when incorporating frac-

tional polynomials. I have outlined the comparison of the performance estimates from the

proposed methods in the simulation study to the estimate from the fully-observed data.

In addition, I have stated how I will compare the selection of the exponents.

232



9 Simulation study results for combining multiple imputa-

tion, internal validation and fractional polynomials

9.1 Introduction

In Chapter1I introduced fractional polynomials and in Chapter7I summarised existing

work on how they can be combined with MI. I proposed how fractional polynomials can be

used for covariate selection and the flexible transformation of continuous covariates when

using internal validation to assess prediction models. In Chapter8I described the design

of a simulation study to investigate the performance of various methods which combined

MI, fractional polynomials and internal validation algorithms. In this chapter I present

the results from the simulation study. The results in this chapter will aim to answer the

following questions:

1.Do the proposed methods for combining MI and fractional polynomials with internal

validation perform well in terms of the MSE?

2.Is the application of an origin-shift transformation, to remove the influence of small

extreme values, useful when multiply imputing?

3.Will the correct functional form be selected for covariate X1 and, if not, how will

this affect performance?

4.Will data leakage (present in the MI-then-Validate methods) lead to over-optimistic

results?

The methods to be assessed were previously described in Chapter7and the estimated

MSE from the methods will be compared to the MSE when data are fully-observed i.e.

MSEimp −MSEobs. This will be assessed for various data-generating mechanisms which

involve several values of R-squared and sample size for three choices (-2, 0, 2) of a ‘true’

underlying exponent relationship between X1 and Y (the various factors varied in the

simulations are found in Table8.3). The model used in the simulation study to predict

values of Y , is a linear regression model of the form E(Y | X1, X2) = β0 + β1X
E
1 + β2X2.

In addition to various data-generating mechanisms, there are several parameters which

will be varied in the analysis procedure which are presented in Table9.1. For β1 = β2 = 1,

the impact of an origin-shift (which removes the influence of low values of X1 on expo-

nent selection) on MSEimp −MSEobs will be assessed (Section7.6). The impact of using

an origin-shift transformation for X1 on the selection of exponents will also be investi-

gated. The origin-shift is a decision made during the analysis procedure i.e. whether to

use an origin-shift before fitting a prediction model which allows for fractional polynomials.

233



The selection of exponents for covariate X1 in the FPS procedure (introduced in Section

1.7) will be assessed for two significance levels (αE). When αE = 1, this will assess which

exponent from set S ((−2,−1,−1
2 , 0,

1
2 , 1, 2, 3)) was selected as the best fitting exponent in

the prediction model. αE = 0.05 will assess whether the best selected exponent improves

the fit of the prediction model to the data, instead of the covariate being included linearly.

The impact of αE will also be assessed when comparing MSEimp − MSEobs. A similar

assessment will be conducted for the MFP algorithm (which assesses both exponent and

covariate selection) when β1 = 1 and β2=1. Covariate selection will also be assessed when

covariate X2 is not related to the outcome (β2=0). Finally, how often the correct exponent

is selected for imputing the missing covariates (via the Approximate Bayesian Bootstrap)

will also be analysed.

Table 9.1: Parameters in the analysis procedure which will be assessed. Fractional polynomial

selection (FPS) focuses on exponent selection while multivariable fractional polynomial (MFP)

selection assesses exponent and covariate selection.

Algorithm β2 Analysis parameters

FPS β2=1 Iδ = No, Yes

αE = 0.05, 1

MFP β2={0,1} Iδ = No, Yes

αE = 0.05, 1

αβ = 0.05, 1

Iδ = origin-shift transformation

αE = exponent selection significance level

αβ = covariate selection significance level

This analysis will be conducted for both cross-validation and the 0.632 bootstrap algo-

rithm. Due to the large number of scenarios, this chapter will focus on overall messages

related to the various data-generating scenarios and analysis parameters. The full set of

results are provided in Supplementary plot sectionsS5-S9.

I shall first assess the proposed methods combining MI, internal validation and fractional

polynomials when using FPS (exponent selection but no covariate selection). This will

assess the performance of the methods when using the MSE as a performance measure. I

will also investigate how often the correct exponent is selected via ABB (to impute X1)

and via FPS (exponent selection in the prediction model). Secondly, I will then assess the

performance of the proposed methods when using MFP (this involves both exponent and

covariate selection). Due to the similarity of of the MFP results to the FPS results, I will

present and discuss figures for the covariate selection element of the MFP algorithm.

The methods which will be assessed for cross-validation are methods A (impute each fold
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separately), method B (impute the k−1 training folds together and impute the kth test fold

separately) and method K (impute the entire dataset using a training and test imputation

model, then apply cross-validation). For the 0.632 bootstrap algorithm, I will assess BS-

then-MI and MI-then-BS. Methods A, B and BS-then-MI belong to the class of methods

titled Validate-then-MI and methods K and MI-then-BS belong to the MI-then-Validate

group of methods.

9.2 Summary of the simulated fully-observed data

I begin by summarising the fully-observed data, which is the simulated data before missing

values are introduced to covariate X1. Table9.2presents a summary of the outcome, Y , for

the simulated data. The distribution of Y changes depending on the exponent generating

it. The outcome tends to have the largest standard deviation, as well as minimum and

maximum values of Y when the true underlying exponent is -2. The mean and standard

deviation approximately match the underlying values which were used to simulate the

data (Table8.1).

Table 9.2: The mean and variance of the outcome Y across the 2000 simulated datasets. The

min and max values of Y are the minimum and maximum across all repetitions.

E R2 Nobs Mean Y SD(Y ) Min(Y ) Max(Y )

-2 0.1 300 9.68 39.71 -165.34 231.35

1000 9.76 39.73 -188.57 242.34

0.3 300 9.69 22.89 -81.31 167.76

1000 9.74 22.92 -92.53 174.44

0 0.1 300 4.10 4.37 -16.66 23.94

1000 4.10 4.38 -17.29 25.88

0.3 300 4.10 2.52 -8.04 15.77

1000 4.10 2.53 -8.46 16.42

2 0.1 300 5.87 7.62 -28.95 48.95

1000 5.87 7.62 -30.54 52.79

0.3 300 5.87 4.40 -13.05 44.69

1000 5.87 4.40 -14.26 41.26

E: the true exponent used to generate Y ; R2: R-squared value;

Nobs: the number of observations in a simulated dataset

Table9.3displays the estimates of the MSE for the various data-generating scenarios and

analysis parameters when the data are fully-observed. When the true underlying exponent

is 0 (log) or 2, the choice of αE or the application of an origin-shift has little impact on

the estimated MSE. However, when E is -2, the MSE is much larger. This is most likely

due to the large variation in the outcome, Y . Increasing the level of R2 results in a lower
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MSE for all choices of exponent.

Table 9.3: The MSE estimates when data are fully-observed (MSEobs) for cross-validation and

the 0.632 bootstrap

E αE origin-shift 0.632 bootstrap Cross-validation

(Iδ) Nobs = 300 Nobs = 1000 Nobs = 300 Nobs = 1000

R2 = 0.1

-2 0.05 No 1439.87 1426.77 1441.48 1427.53

0.05 Yes 1540.30 1522.33 1546.11 1523.22

1 No 1438.08 1426.77 1440.32 1427.53

1 Yes 1532.85 1522.20 1535.02 1521.20

0 0.05 No 17.47 17.33 17.52 17.36

0.05 Yes 17.46 17.38 17.51 17.36

1 No 17.45 17.32 17.50 17.33

1 Yes 17.42 17.32 17.46 17.33

2 0.05 No 53.04 52.62 53.26 52.69

0.05 Yes 53.07 52.61 53.23 52.67

1 No 52.96 52.57 53.11 52.61

1 Yes 52.90 52.55 53.01 52.58

R2 = 0.3

-2 0.05 No 373.02 369.78 373.21 369.98

0.05 Yes 469.34 466.44 470.29 466.76

1 No 373.01 369.78 373.21 369.98

1 Yes 469.07 466.44 470.15 466.76

0 0.05 No 4.54 4.49 4.56 4.49

0.05 Yes 4.55 4.50 4.56 4.50

1 No 4.53 4.49 4.54 4.49

1 Yes 4.53 4.50 4.54 4.50

2 0.05 No 13.81 13.64 13.87 13.64

0.05 Yes 13.80 13.66 13.85 13.66

1 No 13.80 13.66 13.80 13.63

1 Yes 13.75 13.65 13.77 13.66
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9.3 Comparing results from the FPS procedure to the MSE estimate

when data are fully-observed

In this section I will summarise results from the simulation study for both cross-validation

and the 0.632 bootstrap algorithms. I will assess the impact of αE (significance level for ex-

ponent selection) and using an origin-shift transformation (Iδ) on the various methods’ esti-

mated MSE. This estimated MSE is compared to the MSE when data are fully-observed for

ideal or pragmatic performance (Sections8.6and8.7) i.e. MSE imp,perf,αE ,Iδ−MSEobs,αE ,Iδ

[38].

Due to the large number of results from the simulation study, a small selection of graphs

will be presented in this chapter. All graphs for the MSE comparison assessment are

available in Supplementary SectionS5.

9.3.1 The impact of αE when an origin-shift transformation is not used

Recall that when αE is 1, the best exponent for X1 is selected. When αE equals 0.05 a

decision is made between including the covariate in the model with the best exponent and

including it linearly, based on a hypothesis test with αE set to 0.05. I will first assess the

impact of αE when no origin-shift transformation has been applied (Iδ =No), followed by

assessing its impact when an origin-shift has been implemented.

Results for the various methods are compared to the fully-observed data’s MSE esti-

mate when an origin-shift transformation has not been applied (MSEimp,perf,αE ,Iδ=No −
MSEobs,αE ,Iδ=No). The results are available in Supplementary plot sectionsS5.1.1(for

cross-validation) andS5.2.1(for the 0.632 bootstrap). A plot is not presented here as it

is not very informative.

For both Validate-then-MI (cross-validation methods A and B; BS-then-MI ) and MI-then-

Validate (cross-validation method K; MI-then-BS ), the magnitude of the MSE difference

and the Monte Carlo confidence intervals are very large. For example, when E = −2,
αE = 0.05 and sample size is 1000, the estimated MSE difference for method A is 81.60

for ideal performance and 109.23 for pragmatic performance. These estimates are similar

for αE = 1 (with differences in the third decimal place). Methods B and K give much

larger differences for both the ideal and pragmatic performance when sample size is 300

or 1000. The estimated differences between the MSE and fully-observed MSE are at least

1.00e+26. The proposed bootstrap imputation methods have similarly large estimates of

the MSE difference. An explanation for why such large estimates occur is available, with

an example, in Section9.3.2. Of all the proposed imputation methods, method A (impute

each fold separately) tends to have the smallest differences between the estimated and fully-

observed MSE for ideal or pragmatic imputation (|MSEA,perf,αE ,Iδ=No−MSEobs,αE ,Iδ=No|)
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across all scenarios when an origin-shift has not been used.

Using the complete-case analysis with either cross-validation or the 0.632 bootstrap tends

to result in much smaller magnitudes of the MSE difference. The difference between the

estimated MSE and MSEobs,αE ,Iδ=No decreases when αE is increased from 0.05 to 1. For

example, when sample size is 300, E = −2 and when data are weak covariate-dependent

MAR, the magnitude of the mean difference is 9.93 when αE = 0.05 and 7.48 when αE = 1.

When sample size is 1000 both values of αE result in a similar difference of 1.60 between the

estimated and fully-observed MSE. This is similar for all MCAR or covariate-dependent

MAR scenarios when using the complete-case analysis. When data are outcome-dependent

or outcome- and covariate-dependent MAR and for both values of αE , the magnitude of

the difference increased for all exponents. The complete-case analysis tended to have a

small magnitude of the difference (|MSECC,αE ,Iδ=No −MSEobs,αE ,Iδ=No|) for the majority

of data-generating scenarios but tends to underestimate the fully-observed estimate of the

MSE (i.e. it is over-optimistic) when data are outcome-dependent MAR.

Overall in this section, αE = 1 tends to provide similar or slightly worse performance to

αE = 0.05. However, due to the large magnitudes of the difference for the majority of the

methods, a comparison of the MSEs was not very informative. An explanation for why

such large differences are seen for the proposed methods involving imputation is available

in the next section.
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9.3.2 An explanation for the large MSE estimates when an origin-shift trans-

formation is not used

In Section9.3.1it was stated that the difference between the methods’ estimated MSE and

the MSE when data are fully-observed is very large when an origin-shift transformation is

not used. These large mean MSE estimates (the MSE is averaged across the 2000 repeti-

tions) are due to a few repetitions having very large MSE estimates. The question then

arises, what is happening in some of these repetitions that is leading to large estimated

MSE value?

These large MSE estimates are due to missing observations being imputed with incred-

ibly small values. The prediction model is then developed in the imputed dataset and

the FPS procedure is applied. In some instances, the FPS procedure selects a negative

exponent. This can lead to a large predicted value for a data row with missing X1. I

shall demonstrate with an example when E = −2, Nobs = 300, R2 = 0.1, data are weak

covariate-dependent MAR and the pragmatic performance is of interest. Across the 2,000

repetitions generated under this scenario, 139 had an MSE estimate greater than 100

when applying MI-then-CV method K. The mean of the MSE across the 2000 repetitions

is 3.42e+10 while the median is 17.78.

Within each repetition when applying method K, the data were first imputed and then

cross-validation was applied. The folds were iteratively used as a test fold and the predic-

tion model was fitted on the remaining k− 1 folds. For one of the 2,000 repetitions with a

large estimated MSE, the estimated MSE was small when test fold k = 1, . . . , 7 (ranging

from 9.59 to 24.69) .

When fold 8 is used as a test fold, the prediction model is fitted to the k − 1 training

set (folds 1-7, 9 and 10). The FPS procedure has selected exponent -1 for covariate X1

when fitting the prediction model: E[Y | X1, X2] = −0.301 − 0.481X−1
1 + 1.251X2. In

Table9.4, I show the impact of small imputed values when predicting the outcome for two

observations which had missing values for X1 using this prediction model.

Table 9.4: An example of the impact of low imputed values on the performance of a prediction

model

Observation Imputed value for X1 Predicted Y Observed Y

i 1.015 5.05 -0.10

j 0.006255 -73.43 7.81

For observation i, X1 was imputed with a ‘large’ value 1.015 and has a predicted value of

5.051, while the observed value of Y is -0.098. For observation j, X1 was imputed with
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a small value 0.006255 which has led to a large predicted value of -73.434. Overall, when

fold 8 is used as the test set, the estimated MSE is 2.606e+12.

The above example demonstrates how small imputed values in combination with negative

exponents selected via FPS can lead to large predicted values. However, these extreme

estimates can potentially be rectified by using an origin-shift transformation. Table9.5

displays the imputed values of X1 after applying an origin-shift. For both observations i

and j, the difference between the predicted and observed Y has decreased which will lead

to a lower estimate of the MSE. Overall, when fold 8 is used as the test set and an origin-

shift transformation has been used, the estimated MSE has decreased from 2.606e+12 to

25.06.

Table 9.5: Applying an origin-shift transformation to X1 to improve the performance of a pre-

diction model

Observation Imputed value for X1 Predicted Y Observed Y

with an origin-shift

i 0.2773 4.74 -0.10

j 0.2005 0.61 7.81

In the following section, I will assess the impact of αE when an origin-shift transformation

has been used. All subsequent results that are presented in this chapter will be based on

applying an origin-shift transformation.
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9.3.3 The impact of αE when an origin-shift transformation is used

Figure9.1presents results for the various methods to handle missing data alongside cross-

validation with FP selection when compared to the MSE estimate when data are fully-

observed when an origin-shift transformation has been applied (MSEimp,perf,αE ,Iδ=Yes −
MSEobs,αE ,Iδ=Yes). The results in the graph are for the scenario when the underlying true

exponent is -2, R2 = 0.1 and data are MCAR or covariate-dependent MAR. Results from

another data-generating scenario are presented in Table9.6. The table presents point

estimates and the Monte Carlo 95% confidence interval estimates for each of the methods

from Figure9.1for the scenario when data are MCAR and sample size is 300. Figure

9.1is also representative of the scenarios in which missing data are outcome-dependent

(outcome-dependent MAR or outcome- and covariate-dependent MAR) or R2 is 0.3. Ad-

ditional graphs for these scenarios are available in Supplementary plot sectionsS5.1.2(for

cross-validation) andS5.2.2(for the 0.632 bootstrap).

For the complete-case analysis when E = −2 and the sample size is 300, the magnitude of

the difference between the estimated MSE and MSEobs,αE ,Iδ=Yes tends to decrease when

αE is increased from 0.05 to 1, as seen in Table9.6. This is the case for both levels of R2

and all missing data scenarios. When the sample size is increased to 1000, the performance

for both values of αE is similar when compared to the fully-observed estimate. When data

are outcome-dependent MAR, the complete-case analysis estimate tends to underestimate

MSEobs,αE ,Iδ=Yes (i.e. it becomes over-optimistic). These trends are similar when the true

underlying exponent is 0 or 2, with the complete-case estimate having similar performance

for both values of αE when sample size is 300 or 1000. The similar performance for both

values of αE can be seen for both cross-validation and the 0.632 bootstrap (Supplementary

plot sectionsS5.1.2andS5.2.2).

For MI-then-Validate (Method K and MI-then-BS ), the MSE difference MSEobs,αE ,Iδ=Yes

when αE = 0.05 tends to be similar or slightly larger for both ideal and pragmatic per-

formance than when αE = 1 across all exponent values (-2, 0, 2). This is illustrated in

Figure9.1and Table9.6when the exponent is -2. When αE = 1, the magnitude of the

difference for method MI-then-BS (|MSEMI−V al,αE=1,Iδ=Yes −MSEobs,αE=1,Iδ=Yes|) tends
to be slightly larger than when αE = 0.05. In general, the estimated MSE difference tends

to be similar for both values of αE . This holds for all sample sizes, levels of R2 and values

of the exponent.

For Validate-then-MI (Method A, B, BS-then-MI ) when sample size is 300, the magnitude

of the difference when αE = 1, |MSEV al−MI,αE=1,Iδ=Yes−MSEobs,αE=1,Iδ=Yes|, tends to be

larger than the magnitude of difference when αE = 0.05. This can be seen in Table9.6

for methods A, B and BS-then-MI. However, as seen in Figure9.1, with increasing sample
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size when the exponent is -2 (or 0) the estimated performance of the methods (in relation

to MSEobs,αE ,Iδ=Yes) tends to become similar when using either value of αE for the 0.632

bootstrap. When the exponent is 2, the magnitude of the difference tends to be larger for

αE = 1 than for αE = 0.05. When the sample size is 1000 and we use αE = 1, the Monte

Carlo confidence intervals (based on 2000 repetitions) tend to be slightly larger when using

the cross-validation methods compared to using the 0.632 bootstrap i.e. the variance of

the MSE across 2000 repetitions is larger for cross-validation than 0.632, potentially due

to the lower number of folds used compared to the number of bootstrap samples. This

can be seen for all data-generating mechanisms in Supplementary plot sectionsS5.1.2and

S5.2.2for cross-validation and the 0.632 bootstrap.
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Figure 9.1: The difference MSEimp - MSEobs when data are MCAR or covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The true exponent, E, is -2, an origin-shift

transformation has been applied and R2 = 0.1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of MSEimp - MSEobs.

CC (complete-case); methods A-K are described in Table2.3.
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Table 9.6: The estimated MSE and Monte Carlo 95% confidence interval (CI) when the exponent

is -2 and an origin-shift has been applied. The presented results are for the scenario when sample

size is 300, R2 = 0.1 and data are MCAR.

Method Estimand αE MSEimp −MSEobs Monte Carlo 95% CI

Cross-validation

CC 0.05 12.62 9.12 16.12

1.00 8.13 4.75 11.51

A Ideal 0.05 19.20 12.38 26.02

1.00 225.41 49.63 401.19

Pragmatic 0.05 41.75 37.60 45.90

1.00 664.23 162.38 1,166.08

B Ideal 0.05 2.28e+091 -9.47e+08 5.51e+09

1.00 4.93e+242 -4.72e+24 1.46e+25

Pragmatic 0.05 9.17e+113 -8.80e+11 2.71e+12

1.00 1.33e+164 -1.20e+16 3.86e+16

K Ideal 0.05 -1.81 -2.98 -0.65

1.00 -0.09 -1.98 0.14

Pragmatic 0.05 -1.70 -2.85 -0.55

1.00 -0.8 -1.85 0.24

The 0.632 bootstrap

CC 0.05 10.56 7.08 14.04

1.00 7.66 4.23 11.09

BS-then-MI Ideal 0.05 25.60 -4.99 56.185

1.00 210.26 -43.31 463.84

Pragmatic 0.05 36.10 32.33 39.88

1.00 2651.15 -1035.68 6337.98

MI-then-BS Ideal 0.05 -20.24 -21.38 -19.10

1.00 -18.75 -20.04 -17.46

Pragmatic 0.05 8.56 7.31 9.81

1.00 11.07 9.88 12.26

1 median (25th, 75th percentile): 31.35 (7.41, 102.97)

2 median (25th, 75th percentile): 21.21 (2.66, 47.86)

3 median (25th, 75th percentile): 55.26 (23.70, 118.20)

4 median (25th, 75th percentile): 44.34 (24.52, 76.64)
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9.3.4 The impact of the origin-shift transformation on the estimated MSE

when using fractional polynomials

The performance of the various methods has been compared in Section9.3.1when as-

sessing the impact of αE . It was found overall that in small sample sizes, using αE = 1

compared with using αE = 0.05 had little effect when an origin-shift was not applied, but

could result in slightly worse performance for Validate-then-MI methods when a shift had

been used. In this section, I shall briefly summarise the impact of using an origin-shift

transformation on the estimate MSE for the various methods.

Table9.7displays the estimated difference in MSE for the various methods when E = 0

and data are MCAR (although the results are representative of the various data-generating

scenarios) in order to show the impact of using an origin-shift transformation. For the

complete-case analysis the application of an origin-shift transformation has little effect on

the magnitude of the difference between the estimated MSE and MSEobs,αE ,Iδ , regardless

of the value of αE .

For all methods that involve MI (Validate-then-MI and MI-then-Validate) the use of an

origin-shift transformation can help reduce the magnitude of the difference |MSEimp,αE ,Iδ=Yes−
MSEobs,αE ,Iδ=Yes|. In Table9.7when E = 0 and the sample size is 300, for both the boot-

strap and cross-validation, applying an origin-shift transformation has reduced the magni-

tude of the MSE difference. For example, the estimated ideal performance of method K for

the difference MSEK,αE=0.05,Iδ=No−MSEobs,αE=0.05,Iδ=No is 6.65e+11 when an origin-shift

transformation has not been applied. This decreased to -0.03 after applying the transfor-

mation.

As seen in Table9.7when sample size is 300 and an origin-shift transformation was not

used, the magnitude of the MSE difference can be very large for methods B, K, BS-then-MI

and MI-then-BS. This large magnitude increases with increased strength of the underlying

missing mechanism. For the Validate-then-MI cross-validation methods, method A tends

to provide much smaller estimates of the difference than method B i.e. the difference

MSEimp,αE ,Iδ=Yes −MSEobs,αE ,Iδ=Yes is smaller for method A, an explanation for this will

be discussed in Section9.7. All proposed methods for the 0.632 bootstrap provide smaller

estimates of the difference in the estimated and fully-observed MSE for a sample size of

300 when an origin-shift transformation had been used (Table9.7, Supplementary plot

sectionS5.2.2). However, as we saw in Table9.7when E = 0, even the 0.632 bootstrap

methods can have large estimates of the difference (the pragmatic performance of method

BS-then-MI when Iδ =No).
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Table 9.7: Estimated MSE results before and after applying an origin-shift transformation (Iδ)

when E = 0 and αE = 0.05. The presented results are for the scenario when sample size is 300,

R2 = 0.1 and data are MCAR. The averaged difference and Monte Carlo confidence interval (CI)

are based on 2000 repetitions.

Method Estimand Iδ MSEimp −MSEobs Monte Carlo 95% CI

Cross-validation

CC No 0.10 0.06 0.14

Yes 0.09 0.06 0.13

A Ideal No 2.39 0.60 4.17

Yes 0.39 0.29 0.50

Pragmatic No 3.61 -1.77 8.98

Yes 0.85 0.09 1.61

B Ideal No 5.62e+16 -5.39e+16 1.66e+17

Yes 1.62e+08 -9.06e+07 4.14e+08

Pragmatic No 1.06e+15 -1.01e+15 3.13e+15

Yes 7.12e+06 -6.63e+06 2.09e+07

K Ideal No 6.65e+11 -6.06e+11 1.94e+12

Yes -0.03 -0.04 -0.025

Pragmatic No 8.17e+13 -7.85e+13 2.42e+14

Yes -0.04 -0.05 -0.03

The 0.632 bootstrap

CC No 0.09 0.05 0.13

Yes 0.09 0.05 0.13

BS-then-MI Ideal No 3.87e+27 -3.69e+27 1.14e+28

Yes 3.12 -2.30 8.54

Pragmatic No 2.88e+27 -2.76e+27 8.53e+27

Yes 2.21e+08 -2.12e+08 6.55e+08

MI-then-BS Ideal No 4.49e+27 -4.31e+27 1.33e+28

Yes -0.23 -0.24 -0.22

Pragmatic No 7.38e+27 -7.07e+27 2.18e+28

Yes 0.03 0.03 0.05

246



9.3.5 An explanation for the large MSE estimates when an origin-shift trans-

formation is used

In Section9.3.2I explained how the influence of small imputed values, paired with negative

exponent selection could lead to large performance estimates. An origin-shift transforma-

tion was used post-imputation which removed the influence of the smaller extreme values.

This was noted in Section9.3.4to have improved performance methods for the majority

of methods across most data-generating scenarios. However, large performance estimates

are still present for some methods across various data-generating scenarios.

Opposite to the explanation discussed in Section9.3.2, the large performance estimates

are due to large imputed values combined with a positive exponent selected via FPS when

fitting a prediction model. I shall provide an example for the ideal performance of cross-

validation method B when E = −2, R2 = 0.1, sample size is 300 and data are MCAR

(i.e. the scenario presented in Table9.6). From the 2000 repetitions generated under this

scenario and when αE = 0.05, the mean of the MSE across the 2000 repetitions when

an origin-shift transformation is used is 2.28e+09 and the median estimate of the MSE is

1605. Out of 2000 repetitions, 255 observations have an MSE estimate greater than 2000.

Within each repetition when applying method B, the k − 1 training folds were imputed

together and the kth test fold is imputed separately. The folds are iteratively used as a test

fold and the prediction model is fitted on the remaining k − 1 training folds. For one of

the repetitions with a large estimated MSE, the MSE was small (MSE=1602) when fold 1

is used as the test fold but this increases to 464,589,635 when fold 2 is used as the test fold.

When fold 2 is used as the test fold, the prediction model is fitted to the k − 1 training

set (folds 1, 3-10). When αE = 0.05, the fitted prediction model when using FPS is

E[Y | X1, X2;αE = 0.05] = −9.29 + 51.49X1 + 1.78X2 and when αE = 1 the prediction

model is E[Y | X1, X2;αE = 1] = 1.50 + 267.81X3
1 + 1.08X2. Table9.8demonstrates how

large imputed values are poorly handled when using fractional polynomials, outputting

large predicted values.

Table 9.8: An example demonstrating how large imputed values of X1 can lead to poor predictions

Observation Imputed value for X1 Observed Y αE Predicted Y

with an origin-shift

i 5127 -5.905 0.05 263,979

1.00 3.61e+13

j 0.22 25.69 0.05 7.85

1.00 7.84
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9.3.6 Overall summary of the estimated MSE results

I have assessed the impact of αE (α-level for FP exponent selection) and Iδ (origin-shift

transformation) on the estimated MSE compared to the MSE when data are fully-observed

for ideal and pragmatic performance. In general, αE = 1 tends to result in similar

or slightly worse performance (i.e. a larger difference between the estimated and fully-

observed MSE) for small sample sizes. In larger sample sizes, the value of αE had little

impact on the performance of the methods.

When the FPS algorithm was used and an origin-shift transformation was not imple-

mented, for all sample sizes and when the exponent is -2 or 0, method A tended to have

the lowest magnitude of the difference compared to methods B and K. When the exponent

is 2 and sample size is 300, method A has a smaller magnitude than methods B and K.

However, when sample size is increased to 1000, the ideal and pragmatic performance of

method K tends to be closer to the MSE estimate when data are fully-observed. When

sample size is 300, method BS-then-MI tended to have a larger magnitude of the difference

than MI-then-BS. With increasing sample size, the ideal performance of method BS-then-

MI tends to be smaller than MI-then-BS across the majority of simulation scenarios.

When an origin-shift transformation was used, method A generally performed well. The

ideal and pragmatic performance of method K tended to have the smallest difference be-

tween its estimated MSE and the MSE when data are fully-observed. However, for some

scenarios (for example: nobs = 1000, R2 = 0.1 and the true exponent E is 0 or -2), method

K tended to underestimate the MSE estimate when data are fully-observed (i.e. it became

over-optimistic) for both ideal and pragmatic performance. For these same scenarios, the

ideal performance of both CV-then-MI methods (A and B) under-estimated the fully-

observed MSE estimate when the exponent was -2. However, the pragmatic performance

of methods A and B over-estimated the fully-observed MSE estimate (compared to the

pragmatic performance of method K which was over-optimistic). When the exponent was

0, neither method A nor B was over-optimistic.

When an origin-shift transformation was used, the proposed 0.632 bootstrap methods

tended to perform well with small magnitudes of the difference with the fully-observed

estimate of the MSE. For ideal or pragmatic performance, method MI-then-BS tended to

have a slightly smaller magnitude of the difference than BS-then-MI when both methods

tended to over-estimate the fully-observed estimate of the MSE. However, the ideal per-

formance of method MI-then-BS was over-optimistic in several data-generating scenarios

for the three choices of the true underlying exponent (-2, 0, 2).

Overall, while the MI-then-Validate methods (cross-validation method K and MI-then-BS )
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tended to have a smaller MSE difference in some scenarios, compared to Validate-then-

MI, they also were more likely to have over-optimistic ideal or pragmatic performance.

Preferred methods for use in practice will be discussed in Section9.7.
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9.4 Selection of exponents for imputation

In this section, I will present results for the selection of exponents (via the approximate

Bayesian bootstrap method) which will be used to transform covariate X1 before using

MI (this was introduced in Section7.2.2).

Figure9.2presents results for the exponents which are selected to transform X1 to XE
1 in

order to multiply impute the partially-observed covariate when using cross-validation to

internally validate the prediction model. The results presented are for the scenario when

the true exponent E is 0, R2 = 0.1 and when data are MCAR or covariate-dependent

MAR. However, the results in the figure are representative of all data-generating scenar-

ios (Supplementary plot sectionS6.1). The selection of exponents occurs before MI is

applied, therefore the selected exponents are similar regardless of whether ideal or prag-

matic performance is of interest. The results presented in the graphs in this section and

in Supplementary plot sectionS6.1are based on the averaged results (across the 2000

repetitions) of the selected exponents for imputing.

In Figure9.2methods B (the k− 1 training folds) and K (which use 90% and 100% of the

data, respectively), an exponent of 0.5 was selected in the majority of the repetitions, the

reasoning for this will be discussed in Section9.7. Across all data-generating scenarios,

0.5 was selected at least 92% of the time when the true exponent was 2, 84% when the

true exponent was zero and at least 55% when E is -2. For method B (for the training

folds) and method K, if 0.5 was not selected then the alternate exponent which was chosen

tended to be zero. This was similarly seen for exponent selection of the 0.632 bootstrap.

The exponent 0.5 was selected in over 80% of the 2000*B*M datasets when imputing

either all of the data, a bootstrap sample or those who were not sampled (Supplementary

plot sectionS6.1).

When choosing the exponents using a smaller number of observations, either in method A

(where each fold is imputed separately) or method B (when imputing the kth test fold),

more variability was introduced in the exponent which was selected. While 0.5 is still the

most commonly selected exponent (see Figure9.2), when the sample size is 300 exponents

0 and 1 are also selected. However, when the sample size is increased to 1000 and the

number of observations in one fold increases from 30 to 100, 0.5 tends to dominate as the

selected exponent.
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Figure 9.2: The proportion of times an exponent was selected to impute missing values (M = 5)

using the ABB exponent selection when 25% of values are missing in X1. The results are for

the scenario where data are MCAR or covariate-dependent MAR, the true exponent E is 0, and

R2 = 0.1. The pale blue bar highlights the underlying ‘true’ exponent, while the black bars

represent the proportion of times across the 2000 repetitions, K folds and M imputed datasets,

that each exponent was selected in order to impute XE
1 . CC (complete-case); methods A-K are

described in Table2.3.
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9.5 Selection of exponents from the fractional polynomial selection al-

gorithm

In this section I will assess the selection of exponents from the fractional polynomial se-

lection procedure in the prediction model. For cross-validation, this involves assessing the

selection of an exponent for X1 when training a prediction model on the k − 1 training

folds. For the 0.632 bootstrap, this involves assessing exponent selection when using all

of the data to train a prediction model (in order to estimate apparent performance), and

also when using the bootstrap sample observations to train a model (in order to estimate

test performance). The frequency with which the true underlying exponent (either 2, 0 or

-2) is selected will be assessed across the various data-generating scenarios. This section

will present a few selected figures which are generally representative of the majority of the

scenarios. All plots are available in Supplementary Plots SectionS6.2for cross-validation

and the 0.632 bootstrap algorithms.

The exponent selection will be assessed in two ways. Firstly, how often the correct expo-

nent is selected when the ‘best-fitting’ fractional polynomial is included in the prediction

model (i.e. αE = 1). Secondly, how often will the correct exponent be selected when the

‘best-fitting’ fractional polynomial will be compared against the inclusion of the covariate

as a linear term in the prediction model (i.e. αE = 0.05). For both values of αE , the

exponent selection will be assessed after the application of an origin-shift transformation

as this was shown to improve the estimated MSE for ideal and pragmatic performance.

9.5.1 Selection of exponents when the best-fitting fractional polynomial is

selected (αE = 1)

Figure9.3presents the proportion of times exponents were selected across the 2000 rep-

etitions, K iterations of cross-validation and M imputed datasets. The results presented

are for the scenario where the true exponent is 0, an origin-shift transformation has been

applied, R2 = 0.1 and data are MCAR or covariate-dependent MAR.

From Figure9.3it can be seen that applying an origin-shift transformation has resulted

in the correct exponent, 0, to be correctly selected less than 10% of the time regardless of

whether the data were fully-observed, imputed or a complete-case analysis was applied.

Exponent -2 is incorrectly selected over 50% of the time when sample size is 300, this

increases to over 75% when the sample size is 1000. When the true exponent is -2, it is

correctly selected over 90% of the time when data are fully-observed and for all methods

used to handle missing data (complete-case analysis and methods A, B and K). When the

true exponent is 2, the exponent 3 is selected the majority of the time for methods B or K,

when the data are fully-observed and when complete-case analysis is used. When sample

size is 300, method A tends to select -2 approximately 25% of the time. When sample size
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is 1000, method A tends to select -0.5 or 0 across the majority of the 2000*K*M datasets

(both are selected less than 25% of the time).

These results are similar for the 0.632 bootstrap methods (plots available in Supplementary

Plot SectionS6.2). When the true exponent is 0, exponent -2 is most likely to be selected

across the 2000*B*M datasets. Similarly, when the true exponent is 2, exponent 3 has

the highest selection rate. When the true exponent is -2, it has the highest percentage for

being correctly selected across all of the potential exponents.
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Figure 9.3: The proportion of times an exponent was selected via FPS post-imputing when

αE = 1 and an origin-shift transformation was used. The results are for the scenario where data

are MCAR or covariate-dependent MAR, the true exponent E is 0 and R2 = 0.1. The pale blue bar

highlights the underlying ‘true’ exponent, while the black bars represent the proportion of times

across the 2000 repetitions, K folds and M imputed datasets, that each exponent was selected via

the FPS algorithm. CC (complete-case); methods A-K are described in Table2.3.
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9.5.2 Selection of exponents when the best-fitting fractional polynomial is

compared against the default inclusion as a linear covariate (αE = 0.05)

Figure9.4presents results for the scenario where the true exponent is 0, αE = 0.05, an

origin-shift transformation has been applied, R2 = 0.1 and data are MCAR or covariate-

dependent MAR. Selection of exponent 1 still dominates for all methods, except method

A. When sample size is 300, exponent 1 is selected across 90% of the datasets for fully-

observed data, the complete-case analysis and methods B or K. If exponent 1 is not

selected, the next common exponent is -2. All other exponents are rarely selected. With

increasing sample size, the percentage of occasions on which the selected exponent value

is 1 decreases to over 50% and the proportion of times exponent -2 is selected increases.

For method A when sample size is 300, exponent 1 is selected approximately 70% of the

time and exponent -2 is selected approximately 25% of the time. With increasing sample

size, exponent -2 tends to be selected more frequently than exponent 1.

When the true exponent is -2 and sample size is 300, -2 has the highest proportion when

data are fully-observed, when the complete-case analysis is applied or for method A, with

exponent 1 having the next highest proportion. For methods B and K exponent 1 has

a higher proportion than -2. However, with increasing sample size -2 dominates, being

selected over 90% of the time for all methods (Supplementary Plots SectionS6.2). When

the true exponent is 2 and sample size is 300, the proportion of times exponent 1 is selected

to at least 75%. However, with increasing sample size the proportion of times exponent

1 is selected tends to decrease and the proportion tends to increase for exponent 3. The

true exponent 2 is not selected by any method, even when data are fully-observed.

Similarly, for the 0.632 bootstrap (plots available in Supplementary Plot SectionS6.2)

when the true exponent is 0 and the sample size is 300, an exponent of 1 is primarily

selected in at least 90% of the 2000B*M datasets for both BS-then-MI and MI-then-BS

across the various missing data scenarios. With increasing sample size, the percentage of

times 1 is selected decreases to 46% when data are fully-observed and approximately 55%

for the missing data method, in favour of selecting exponent -2. When the true exponent

is 2 and sample size is 300, exponent 1 is most likely to be selected across all missing data

methods. However, for sample size 1000 exponent 3 is most likely to be selected when data

are fully-observed or a complete-case analysis is used (74% and 55%, respectively). For

BS-then-MI orMI-then-BS, exponent 3 is selected in approximately 27% of the 2000*B*M

datasets while exponent 1 is selected in approximately 72% of the datasets. When the

true exponent is -2 and sample size is 300, it is correctly selected in 64% of the datasets

when data are fully-observed and 48% when a complete-case analysis is used. For the MI

methods, -2 and 1 are selected across approximately 50% of the datasets. When sample

size is increased to 1000, exponent -2 is correctly selected in 99% of the datasets.
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Figure 9.4: The proportion of times an exponent was selected via FPS post-imputing when

αE = 0.05 and an origin-shift transformation was used. The results are for the scenario where

data are MCAR or covariate-dependent MAR, the true exponent E is 0 and R2 = 0.1. The grey bar

highlights the underlying ‘true’ exponent, while the black bars represent the proportion of times

across the 2000 repetitions, K folds and M imputed datasets, that each exponent was selected via

the FPS algorithm. CC (complete-case); methods A-K are described in Table2.3.
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9.6 Results for the Multivariable fractional polynomial (MFP) algo-

rithm

In sections9.3to9.5, I assessed how well the proposed methods (for handling internal val-

idation with fractional polynomial selection in the presence of missing data) performed.

This involved assessment of the estimated MSE when compared to the MSE obtained

when data are fully-observed, as well as examining the exponents selected via ABB when

imputing missing values and the exponents selected by the FPS algorithm.

The FPS algorithm focuses solely on exponent selection while the MFP allows for both

exponent and covariate selection. For the MFP algorithm, the selection of exponents via

ABB or FPS and the performance of the methods are comparable to the results from

FPS (sections9.3to9.5). MFP results are presented using graphs which are available in

Supplementary plots sectionS8for ABB and FP exponent selection. Graphs are available

for the comparison of the estimated MSE with the MSE when data are fully-observed for

the MFP procedure in Supplementary plots sectionS7.

In this section, I will therefore evaluate the covariate selection process of the MFP algo-

rithm. Recall from Chapter8that two values are used for the coefficient for covariate X2

(β2 = 0 or 1) in the prediction model. When β2 = 0, covariate X2 should not be selected

into the prediction model and when β2 = 1, it should be included in the prediction model.

Recall from Table9.1that two values were selected for αβ (significance level for exponent

selection). When αβ = 1 all covariates are forced into the model, this is equivalent to the

previous results for FPS (which focused solely on exponent selection). When αβ = 0.05

each covariate is considered for inclusion into the model based on a hypothesis test with

significance level 0.05 for βp = 0.

9.6.1 Covariate selection of X1 when using the MFP algorithm

In this section, I will assess the covariate selection process of the MFP algorithm for co-

variate X1. Figure9.5presents the cross-validation results for covariate selection of X1

when using the MFP algorithm. The figure displays results for the scenario when the

true exponent of X1 is 0, an origin-shift transformation has been used, R2 = 0.1, data

are MCAR or covariate-dependent MAR and αE (significance level for exponent selection

of X1) is 0.05. These results are, generally, representative of the varying data-generating

scenarios. All covariate selection graphs are available in Supplementary plot sectionS9.

When the sample size is 300 and the true exponent is 0, covariate X1 is selected into the

prediction model across approximately 75% of the 2000 repetition’s K fold iterations of

cross-validation when data are fully-observed. When a complete-case analysis was used,

this decreased to approximately 61%. For the methods which involved MI (methods A, B
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and K), covariate X1 was selected in at least 70% of the 2000*K*M datasets.

These results are similar when the true exponent is -2. For all missing data scenarios when

the true exponent is 2 and sample size is 300, X1 has a higher selection percentage of at

least 75% for the complete-case analysis, method A, method B and method K. The selec-

tion of X1 into the prediction model is similar for the 0.632 algorithm (graphs available in

Supplementary plot sectionS9). Changing the value of αE from 0.05 to 1 had little effect

on the results.

For both the 0.632 algorithm and cross-validation when sample size is increased to 1000,

selection of X1 increases to at least 99%.
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Figure 9.5: The proportion of times covariate X1 is selected for inclusion to the prediction model

using the MFP algorithm. The results presented are for the scenario where αE = 0.05 and an

origin-shift transformation was used. The results are for the scenario where data are MCAR or

covariate-dependent MAR, the true exponent E is 0 and R2 = 0.1. The black bars represent

the proportion of times across the 2000 repetitions, K folds and M imputed datasets, that XE
1

was selected into a prediction model when the parameter for covariate X2, β2 is 0 or 1. CC

(complete-case); methods A-K are described in Table2.3.
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9.6.2 Covariate selection of X2 when using the MFP algorithm

Figure9.6presents the cross-validation results for covariate selection of X2 when using

the MFP algorithm. The figure displays results for the scenario when the true exponent

of X2 is 0, an origin-shift transformation has been used, R2 = 0.1, data are MCAR or

covariate-dependent MAR and αE (significance level for exponent selection of X1) is 0.05.

These results are, generally, representative of the varying scenarios when the exponent is

0. I will also discuss results for when the true exponent is -2 and 2, although the relevant

graphs will not be presented here. All covariate selection graphs are available in Supple-

mentary plot sectionS9.

For the various missing data mechanisms when the true exponent is 0, sample size is 300

and β2 = 0, covariate X2 tends to be selected for inclusion in the prediction model in,

at most, 10% of the datasets for the various cross-validation methods. With increasing

sample size, the inclusion of X2 into the prediction model decreases to at most 6% across

the 2000*K*M datasets. For the same scenarios when β2 = 1 and sample size is 300, X2

is selected across at least 86% of the 2000*K datasets when a complete-case analysis is

applied and in at least 92% of the 2000*K*M datasets for methods A, B and K. These

percentages increase to at least 99% when sample size is 1000. These results are similar for

the 0.632 algorithm (when data are fully-observed or a complete-case analysis, BS-then-MI

or MI-then-BS are applied).

For the various missing data mechanisms when the true exponent is 2, sample size is 300

and β2 = 0, covariate X2 tends to be selected for inclusion in the prediction model in,

at most, 11% of the datasets for the various cross-validation methods. With increasing

sample size, the inclusion of X2 into the prediction model decreases to at most 9% across

the 2000*K*M datasets. For the same scenarios when β2 = 1 and sample size is 300, X2

is selected across at least 40% of the 2000*K datasets when a complete-case analysis is

applied and in at least 53% of the 2000*K*M datasets for methods B and K and at least

67% for method A. These percentages increase to at least 86% (for complete-case analysis)

and 94% (for methods A, B, K or when data are fully-observed) when sample size is 1000.

Again, these results are similar for the 0.632 bootstrap algorithm.

For the various missing data mechanisms when the true exponent is -2, sample size is

300 and β2 = 0, covariate X2 tends to be selected for inclusion in the prediction model

in, at most, 9% of the datasets for the various cross-validation methods. With increasing

sample size, the inclusion of X2 into the prediction model decreases to at most 8% across

the 2000*K*M datasets. For the same scenarios when β2 = 1 and sample size is 300, X2

is selected across at most 8% of the 2000*K datasets when a complete-case analysis is

applied and in at least 10% of the 2000*K*M datasets for methods A, B and K. These
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Figure 9.6: The proportion of times covariate X2 is selected for inclusion to the prediction model

using the MFP algorithm. The results presented are for the scenario where αE = 0.05 and an

origin-shift transformation was used. The results are for the scenario where data are MCAR or

covariate-dependent MAR, the true exponent E is 0 and R2 = 0.1. The black bars represent the

proportion of times across the 2000 repetitions, K folds and M imputed datasets, that X2 was

selected into a prediction model when its parameter, β2 is 0 or 1. CC (complete-case); methods

A-K are described in Table2.3.
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percentages increase to at most 15% (for complete-case analysis) and 20% (for methods

A, B, K or when data are fully-observed) when sample size is 1000. The inclusion of X2

into the prediction model is similarly low for the 0.632 bootstrap algorithm when the true

exponent is -2.

Overall, the choice of exponent for covariate X1 impacts covariate selection of X2 into the

prediction model.

9.7 Discussion

The aim of the simulation study discussed in this chapter was to identify how well the var-

ious proposed methods performed when adapted to handle flexible transformation of con-

tinuous covariates and covariate selection using fractional polynomials. The results were

assessed for both cross-validation and the 0.632 bootstrap across varying data-generating

scenarios while also investigating the impact of analysis decisions (the choice of αE or

using an origin-shift transformation).

Overall, it was found that the results could be highly unstable when an origin-shift trans-

formation was not used. This led to large differences between the estimated MSE from

the proposed methods and the MSE when data are fully-observed, with large Monte Carlo

confidence intervals around point estimates. This did not improve with increasing sample

size. However, the majority of the methods became increasingly stable with increasing

sample size and when an origin-shift transformation was used to remove the impact of

low values close to zero on the prediction model. However, while the use of an origin-shift

transformation improved the estimated MSE when low values were present in the data,

the MSE was affected by large imputed values. This could perhaps be improved by either

standardising covariates or applying a transformation which will remove the influence of

large values.

While the use of an origin-shift transformation improved the estimated MSE, it could

result in the incorrect exponent being selected when fitting a prediction model. However,

the focus here is on prediction modelling (as opposed to an exploratory or causal analysis)

and I argue that the correct exponent does not need to be selected. It is the exponent

which produces the ‘best’ prediction model that is of interest. The other investigated

analysis parameter was αE , which controlled the significance level for the inclusion of the

best-fitting fractional polynomial when compared to a default inclusion as a linear covari-

ate. The performance of the estimated MSE, in relation to the fully-observed MSE, was

similar with an increased value of αE . A large value of αE should be avoided when using

fractional polynomials to develop prediction models. This is due to an increased risk of

over-fitting the prediction model to the data when selecting the best exponent where inclu-
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sion as a linear term would have fitted a prediction model which performed equally as well.

Covariate selection was assessed for all methods when using the MFP procedure and the

parameter of covariate X2 changed from 1 to 0 to assess whether X2 was correctly selected

or not when training a prediction model during internal validation. When the exponent

was 0 or 2 and the sample size was sufficient to fit a stable model, covariate X2 was cor-

rectly selected or rejected from the prediction model depending on whether β2 was 0 or

1. However, when the exponent was -2, X2 was rarely included in the prediction model,

even when β2 = 1, while X1 was nearly always included into the prediction model. This

is potentially due to the large variation in the outcome rendering it difficult to select X2

in the model, as when the R2 increased from 0.1 to 0.3, the proportion increased for X2

being correctly selected into the prediction model.

For all values of the true exponent, when selecting an exponent via ABB to impute the

missing values, 0.5 tended to be the dominant exponent selected, followed by 0 which is

potentially due to the way the simulated data were initially generated (X1 was simulated

from a Normal distribution before it was transformed to generate the outcome Y ). Ar-

guably, we are looking for the best predicted value, rather than the best imputed value.

Therefore, the ‘incorrect’ exponent being commonly selected is not disadvantageous, pro-

vided the predicted value, based on the imputed value, is improved.

This chapter concludes the final simulation study investigating how to internally validate

in the presence of missing data. For cross-validation, results were presented for method

A (impute each fold separately), method B (impute the k − 1 folds together, impute the

kth test fold separately) and method K (impute first, then cross-validate). In Chapters

4and5, I concluded that MI-then-CV methods, such as method K, were not advisable

due to data leakage through the imputation process and that methods A and B should be

preferred.

Due to the results from this chapter, I conclude that method A is the preferred CV-then-

MI method. For all sample sizes, method A tended to produce more stable results (i.e.

a smaller magnitude when compared to the MSE when data are fully-observed, with less

Monte Carlo variation across the 2000 repetitions) than method B. In Chapter4, I con-

cluded that imputing each fold individually may result in more variable imputed values

than imputing k − 1 folds together. This in turn could potentially lead to a more robust

prediction model. In this chapter, imputing each fold separately also resulted in a more

diverse selection of exponents via ABB, in order to impute the missing X1 values.

For the 0.632 bootstrap algorithm, results were presented for BS-then-MI and MI-then-

BS. I previously concluded in chapters6andCthat MI-then-BS was not recommended
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due to data leakage. In this chapter, BS-then-MI performed well and tended to have

slightly more stable results than cross-validation, when sample size was small.

In this simulation study, I investigated a FP transformation for one covariate, X1, when in

reality a FP transformation may also have been investigated for another covariate such as

X2. In more complex and realistic data, it is not uncommon for more than one covariate to

be partially-observed. The methods assessed in this chapter can easily be extended to im-

puting multiple partially-observed covariates (using the likes of MICE described in Section

1.6.2) and allowing for more than one continuous covariate to have a fractional polynomial.

Overall, a large sample size is required when using internal validation, and applying co-

variate selection or transforming continuous covariates. Validate-then-MI methods are

preferred for combining MI, internal validation and fractional polynomials.
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10 Rotterdam breast cancer data

10.1 Introduction

In this chapter I will apply the proposed methods from Chapter7to illustrate how they

can be implemented in practice. The Rotterdam dataset is taken from the Rotterdam

tumour bank and concerns 2,982 patients with primary breast cancer. This dataset is

publicly availableand was used in [11] to demonstrate an extension of the MFP algorithm

to handle time-varying effects. The statistical analysis in this chapter would not be con-

ducted in practice, as the Rotterdam data available for download does not contain missing

values. Therefore, missing values will be induced in the dataset.

Using this dataset will demonstrate how the proposed methods can be adapted for a

survival setting and explore how the methods perform when a more complex and real data

structure is used. The increased complexity comes from multiple covariates which should

be considered for inclusion into the prediction model and several continuous covariates

which may need to be transformed. Previously, the methods were assessed in ‘cleaner’

simulated data which included an outcome and two covariates. The simulation studies

had the benefit of knowing which covariates should be included in both the prediction and

imputation models, which is not the case in practice.

10.2 Background to the Rotterdam data

The Rotterdam data, from the Rotterdam tumour bank, contains patients who were re-

ceiving treatment for primary breast cancer between 1978 and 1993. The dataset originally

had 3,001 patients, however 11 patients were excluded due to missing information about

the number of positive nodes. Eight more were excluded due to non-standard treatment of

node negative patients. Therefore, 2,982 patients remained for the analysis [58]. Missing

data were present in tumour size (1.1%), tumour grade (26.6%), number of positive lymph

nodes (2.2%), progesterone receptor (5.4%) and oestrogen receptor (3.6%) ([58, Table 1]).

The missing values were imputed using MICE and it is this imputed dataset which is

available to download. The dataset does not include missing indicators so it is impossible

to know which patients were imputed previously. For the demonstration of the various

methods, I will treat the dataset as fully-observed and introduce missing values under a

MAR mechanism in Section10.5.

The time scale for the analysis is the number of years since surgery for removal of primary

tumours. Follow-up time ranged from 1 to 231 months and 1,518 (50.91%) patients died

due to breast cancer or had a recurrence of the disease by the end of follow-up. Those

who died from other causes were censored, as were those who had not had an event by

the end of follow-up, as in [58]. By 8 years approximately 50% of patients had died due
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to breast cancer or had a recurrence.

The dataset contains information on the time to relapse or death, age at surgery, menopausal

status, size and grade of the tumour, the number of positive nodes, progesterone recep-

tors (PgR), estrogen receptors, hormonal therapy and chemotherapy. While information

is also available on the overall survival and metastasis free survival this will not be con-

sidered in this analysis. Tumour size has previously been split into two binary dummy

covariates [58]. Size 1 for those with a tumour size ≤ 20mm or size 2 for those with a

tumour size ≤ 50mm. Due to a small proportion of patients having a grade 1 tumour

(2%), grade 1 and grade 2 were previously collapsed together. Monotonic transformations

were previously chosen for the number of positive nodes (Enodes=exp(−0.12Nodes)) and
progesterone receptor (Pr 1=log(PgR+1)).

10.3 Developing a prediction model in the Rotterdam dataset

A proportional hazards Cox model [59] will be used as the prediction model of interest

in this chapter. The fitted prediction model will be used to estimate the risk of having a

recurrence or dying from breast cancer by the end of follow-up. The performance measure

that will be used to assess the performance of the prediction model is the C-statistic [33]

available in the R package ‘survcomp’ [60].

The same handling of covariates, including creation of dummy covariates for size (size 1

and size 2) and transformation of continuous covariates, will be used here. This includes

monotonic transformations for the number of positive nodes and progesterone receptors,

and collapsing tumour grade 1 and 2 together.

Following previous analyses [11,58,61], I will focus on age, tumour size 1 and 2, tumour

grade, the number of positive nodes, hormonal therapy, chemotherapy and progesterone

receptors. As progesterone receptor (Pr 1) contains zero values, I will use the same origin-

shift transformation which was used previously in Chapters7to9:

0.2 + 0.8
Pr 1−min(Pr 1)

min(Pr 1)−max(Pr 1)

Previously in Chapters7to9, I assessed the proposed methods while allowing for fractional

polynomial transformations of degree 1 (FP1: XE). A FP1 transformation will be assessed

for continuous covariates in the Rotterdam dataset. The MFP algorithm will be used for

covariate selection and the flexible transformation of the continuous covariates (enodes,

Pr 1 and age). The default significance level of 0.05 will be used for the selection of

exponents and covariates into the prediction model.
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10.4 Splitting data into a training and external validation dataset

As I am using the Rotterdam data to demonstrate how to apply the proposed methods in

practice, I will split the data into two sections, a ‘training and internal validation’ set and

an external validation ‘holdout’ set. I will ensure that the training dataset will contain

the minimum sample size required to develop a prediction model. The minimum sample

size recommended assumes that all observations in the collected data are fully-observed.

10.4.1 Sample size calculation for building a prediction model

Sauerbrei, Royston and Look (2007, [58]) developed a MFP model as part of their MFP

Time algorithm. The covariates included in their MFP model are available in Table 2 of

[58]. This model was replicated using the available data, and an apparent performance

estimate of the C-statistic was estimated as 0.69. The estimated C-statistic which would

be used to estimate the minimum sample size, in practice, would be taken from another

source. This C-statistic value, which was estimated using all available data, is expected

to be optimistic.

Riley et al. (2019) [26] provides formulas to convert the C-statistic to an estimate of the

Cox-Snell R2 (R2
CS adj = 0.1804). This can be used alongside the R package ‘pmsampsize’

[62] to obtain a minimum sample size for the development of a prediction model based on

an anticipated R2 value and taking into consideration the number of parameters which

will be fitted in the prediction model.

With eight covariates potentially being considered for inclusion into the model, a minimum

sample size of approximately 360 patients is required to develop a prediction model. As

three covariates are continuous and will have a fractional polynomial exponent to estimate,

this will account for three additional parameters to be estimated, in addition to the eight

coefficient parameters, β. Increasing the number of parameters to estimate to eleven

increases the required minimum sample size to 492.

10.4.2 Creating a training and holdout set

The dataset will be sorted into ascending order by year. Of those patients included into

the study last, 10% of patients with the outcome and 10% of patients without the outcome

will be selected (without replacement) for inclusion to an external holdout set. Taking

10% of observations from those who did and did not have the event will ensure the holdout

set has the same proportion of patients with and without the outcome. Using the patients

who were last to enter into the study will replicate the scenario of data from a later time

period becoming available which can be used to create a ‘temporal’ external validation set

(although these patients will potentially have lower follow-up times). The holdout set will

include 298 observations, of which 152 will have experienced the outcome. The use of this
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holdout set is similar to the generation of a larger validation set (Section3.6.4) which was

used in the previous simulation studies, in order to obtain a target estimate of performance.

The training and validation data will consist of the 2,684 patients not selected for inclusion

into the holdout set, of which 1,366 (50.9) will have had the outcome.

10.5 Introducing missing data to covariates

Values will be set as ‘missing’ for tumour grade, enodes and progesterone receptor (Pr 1)

under a MAR mechanism. The generated missing data will be non-monotone. Each

covariate will have approximately the same proportion of missingness that was reported

to be in the original Rotterdam data before it was imputed using MICE (Grade 26.6%;

Enodes 2.2%; Pr 1 5.4%, [58, Table 1]). Two missing data scenarios will be considered.

Scenario 1 will focus on covariate-dependent MAR and scenario 2 will assess outcome-

and covariate-dependent MAR. The outcome, in this setting, will be the event indicator.

In both scenarios, the covariates which will be used to induce missingness are age and

chemotherapy (both of which are fully-observed). For patient j the probability of covariate

Xp being missing is:

πXp,j =
exp(ψ0 + ψAAgej + ψCChemoj + ψEEventj)

1 + exp(ψ0 + ψAAgej + ψCChemoj + ψEEventj)

For the two missing data scenarios, non-zero values of ψA and ψC were selected to produce

a moderately strong MAR mechanism. This strength was calibrated based on an AUC

value estimated by regressing the missing indicator of Xp on the covariates used to generate

the missing data in the covariate. Values for ψ0 were then selected to ensure the desired

proportion of observations in Xp were set as missing. Table10.1shows the finalised ψ

parameter values and the AUC of missingness. Values in the external holdout set will be

set to missing using the same parameters in Table10.1.

Table 10.1: Specification of the ψ parameter values to ensure covariate-dependent MAR (scenario

1) and outcome- and covariate-dependent MAR. For each covariate, the strength of the MAR

mechanism (AUC) and percentage of observations induced to be missing (%) are given.

Partially-observed Scenario 1 Scenario 2

covariate (Xp) ψ0 ψA ψC ψE AUC % ψ0 ψA ψC ψE AUC %

Grade -3.92 0.05 0.06 0 0.692 26.64 -4.43 0.05 0.06 1 0.706 26.53

Enodes -6.85 0.05 0.06 0 0.707 2.27 -7.60 0.05 0.06 1 0.751 2.19

Progesterone -5.67 0.05 0.06 0 0.682 5.40 -6.32 0.05 0.06 1 0.74 5.44

10.6 The imputation model used when multiply imputing

Three covariates are now partially-observed (Enodes, progesterone receptors and tumour

grade). To use MI, covariates which should be included in the training and test imputa-
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tion models (Section2.5) must be determined. In addition, the training imputation model

and the test imputation model (when estimating ideal performance) must also include

the ‘outcome’. In a survival setting, this will involve the inclusion of the Nelson-Aalen

estimate of the cumulative hazard and the event/censoring indicator [20].

Table10.2presents the covariates which will be included in the imputation model for each

partially-observed covariate, in addition to potentially including the ‘outcome’ covariates.

Table 10.2: Covariates which will be included in the imputation models used to impute each of

the partially-observed covariates.

Partially-observed Covariates to be included in imputation model

covariate (Xp) Grade Enodes Pr 1 Age Size1 Size2 Chemo HT

Grade X X X X X X

Enodes X X X X X X

Pr 1 X X X X X X

Pr 1: progesterone receptor; HT: hormonal therapy

Covariates were included in the imputation model based on being:

1.associated with the covariate Xp

2.included in the final prediction model when using all available training data (Table

10.4)

3.associated with the missing data indicator for each partially-observed covariate.

The covariates selected in steps1and2will be selected using the fully-observed data to

ensure the ‘best-possible’ imputation model will be selected for demonstrating the meth-

ods. Therefore, the form of the imputation model (i.e. which covariates are included in

the imputation model for each partially-observed covariate) for ideal and pragmatic per-

formance is fixed for all methods using MI in both missing data scenarios.

As several covariates contain missing values, multivariate imputation by chained equations

(MICE) will be used here. Enodes and progesterone receptors are heavily skewed and

tumour grade is a binary covariate. I shall use predictive mean matching MI [14, p.77-84]

to impute each covariate, using ten imputed datasets (M = 10) and a donor pool of size

15.
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10.7 Evaluating performance when data are fully-observed

When data are fully-observed, a ‘final’ prediction model will be fitted to the training

dataset as described in Section10.3. The performance of this model will then be evaluated

using both internal and external validation.

10.7.1 Internal validation

The performance of the prediction model (fitted using all observations in the training

dataset) will be evaluated using the training dataset. This performance will be estimated

using apparent performance, cross-validation and the 0.632 bootstrap algorithm. All of

these algorithms were explicitly detailed for fully-observed data in Section1.9.

The apparent performance (Section1.9) will be estimated by evaluating the prediction

model in the training dataset it was fitted to. Both cross-validation and the 0.632 will

be stratified by the outcome. This ensures that the same proportions of those with or

without the outcome are available in each cross-validation fold or bootstrap sample. For

cross-validation, the data will be split into 10 folds (K = 10) and for the 0.632 bootstrap

algorithm, 200 bootstrap samples will be used (B = 200) as this is often found to produce

stable estimates [23, p.334].

The training dataset will then be bootstrap sampled (with replacement) 200 times in order

to estimate 95% confidence intervals for the performance estimates of the apparent per-

formance, cross-validation and 0.632 algorithms. Within each of these bootstrap samples,

the apparent performance will be estimated and the cross-validation and 0.632 bootstrap

algorithms will be applied. In total, there will be 200 estimates of the C-statistic for the

apparent performance, cross-validation and the 0.632 algorithm. For each internal valida-

tion algorithm, the lower and upper estimates of the confidence interval will be estimated

using the 2.5th and 97.5th percentiles of the 200 bootstrap estimates.

10.7.2 External validation

When data are fully-observed, a prediction model is fitted using all available data in the

training set and evaluated in the fully-observed holdout set to get an estimate of the C-

statistic.

The training dataset will be bootstrap sampled and in each sample a prediction model

will be fitted using the same analysis procedure described in Section10.3. This prediction

model will then be evaluated in the holdout set to get an estimate of the C-statistic. In

total 200 bootstrap samples will be taken, and 95% confidence intervals will be estimated

using the 2.5th and 97.5th percentiles of the 200 C-statistic values estimated in the holdout

set.
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10.8 Evaluating performance when data are partially-observed

When data are partially-observed, a missing data method must be applied before a ‘final’

prediction model can be obtained from the training dataset. This missing data method

could be applying a complete-case analysis and fitting a prediction model to those patients

with fully-observed data. Another approach is to use MI (using the training imputation

models described in Section10.6), to generate M training imputed datasets. A predic-

tion model will be fitted to each of these imputed datasets using the analysis procedure

described in Section10.3. We will have M ‘final’ prediction models.

10.8.1 Internal validation

Both the cross-validation and 0.632 bootstrap algorithms will be demonstrated. Results

for cross-validation CV-then-MI method A (impute each fold separately) and MI-then-

CV method K (impute all data twice using a training and test imputation model) will be

presented. For the 0.632 bootstrap method, both BS-then-MI and MI-then-BS algorithms

will be used. The bootstrap and cross-validation methods will be stratified to ensure that

the same proportions of those who had the outcome or were censored will be in the

bootstrap samples or cross-validation folds. Recall that these algorithms, adapted for

fractional polynomials, are detailed in Sections7.4and7.5. For cross-validation, the data

will be split into 10 folds (K = 10) and for the 0.632 bootstrap algorithm, 200 bootstrap

samples will be used (B = 200) as this is often found to produce stable estimates [23,

p.334].

10.8.2 External validation

The complete-case analysis involves using complete-cases to fit a prediction model in the

training dataset. This is then evaluated in the complete-cases of the holdout dataset.

If missing values are present in the training dataset and ideal performance is of interest,

the missing values in the training dataset are multiply imputed M times and a predic-

tion model is fitted to each of these imputed datasets (as detailed at the start of Section

10.8above). Each of these M ‘final’ prediction models are evaluated in the fully-observed

holdout set. An overall performance measure is estimated by using Rubin’s first rule to

average across the M estimates of performance.

Similarly for pragmatic performance M ‘final’ prediction models are obtained, as detailed

at the start of Section10.8above. However, pragmatic performance anticipates a scenario

where future observations will be partially-observed and how this data will be handled

needs to be considered. The missing values in the holdout set are imputed using a test

imputation model (this includes the covariates from Table10.2for each covariate to be

imputed but excludes the ‘outcome’ covariates: the event indicator and Nelson-Aalen
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estimate). Each of the M ‘final’ prediction models are evaluated in the test imputed

datasets of the holdout set. For each prediction model, Rubin’s first rule is used to get

an overall performance estimate across the M test imputed datasets. Each of the M

prediction models will have an overall performance estimate from the holdout set, these

M estimates are then averaged using Rubin’s first rule to get a final performance estimate.

10.9 Results

In this section, I will briefly present the baseline characteristics of the patients selected

into the training and holdout datasets. I will then present results from the application of

the MFP procedure (for fractional polynomial exponent selection and covariate selection)

when data are fully-observed. Finally, I will present the results from the application of the

proposed methods for cross-validation and the 0.632 bootstrap algorithms in the presence

of missing data.

10.9.1 Baseline characteristics of the training and holdout datasets

Baseline characteristics for the covariates can be found in Table10.3. For the covariates

included in the analysis, age, enodes and progesterone are continuous and will need to be

assessed for an appropriate functional form.

The training dataset contains 2,684 patients who entered the study between 1978 to 1992,

of which 1,366 (50.9%) had the outcome. The ‘temporal’ external validation holdout set

contains 298 patients who entered into the study between 1992 and 1993, of which 152

(51.0%) had the outcome. Those in the holdout set tended to have smaller relapse free

intervals and were more likely to have received hormonal therapy than those in the training

set.
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Table 10.3: Baseline Characteristics stratified by those who had the event or were censored within

231 months of follow-up

Covariate Training data Holdout set

(n = 2, 684) (n = 298)

Entry into study (year)

Min-Max 1978-1992 1992-1993

Relapse Free interval (months)

Mean (SD) 71.0 (46.9) 50.1 (29.7)

Median (quartiles) 65.8 (27.4, 108.3) 46.5 (21.9,80.5)

Age at surgery (years)

Mean (SD) 55.2 (13.0) 59.9 (12.4)

Median (quartiles) 55.0 (45.0, 66.0) 52.0 (44.0, 62.75)

Enodes∗

Mean (SD) 0.8 (0.3) 0.7 (0.3)

Median (quartiles) 0.9 (0.6, 1.0) 0.9 (0.5, 1.0)

Progesterone Receptors (fmol/l)∗

Mean (SD) 3.5 (2.2) 2.9 (2.3)

Median (quartiles) 3.8 (1.8, 5.3) 3.1 (0, 4.9)

Tumour size

≤20mm (%) 1,242 (46.3) 145 (48.7)

>20-50mmm (%) 1,186 (44.2) 105 (35.2)

>50mm (%) 256 (9.5) 48 (16.1)

Hormonal Therapy

No (%) 2,442 (91.0) 201 (67.4)

Yes (%) 242 (9.0) 97 (32.6)

Chemotherapy

No (%) 2,179 (81.2) 223 (74.8)

Yes (%) 505 (18.8) 75 (25.2)

Menopausal Status

Pre (%) 1,170 (43.6) 142 (47.7)

Post (%) 1,514 (56.4) 156 (52.3)

Differentiation grade

1, 2 (%) 524 (26.6) 56 (24.7)

3 (%) 1,445 (73.4) 171 (75.3)

Event: Death or recurrence of breast cancer

No (%) 1,318 (49.1) 146 (49.0)

Yes (%) 1,366 (50.9) 152 (51.0)

∗ Covariates have had their monotonic transformation

applied (Section10.2)

SD: standard deviation; quartiles: 25th and 75th percentiles
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10.9.2 Training a prediction model when the data are fully-observed

In this section, I will present estimates of the C-statistic from fitting a prediction model

to the fully-observed training dataset, found in Table10.4.

The covariates which were selected into the prediction model when data are fully-observed

were Enodes (with a squared transformation), age (included as a linear term), grade,

chemotherapy, hormonal therapy and Size 1.

Table 10.4: Results from the MFP algorithm on the Rotterdam dataset when data are fully-

observed (N = 2, 684)

Covariates Exponent β̂

Enodes 2 -1.71

Age 1 -1.36

Grade - 0.36

Chemotherapy - -0.49

Hormonal therapy - -0.51

Size 1 - -0.29

Size 2 - -

Menopausal Status - -

Progesterone - -

Validation C-statistic (95% CI) 1

Apparent performance 0.6888 (0.6780, 0.7017 )

Cross-validation 0.6792 (0.6664, 0.6931)

0.632 bootstrap 0.6871 (0.6624, 0.6965)

External validation 0.6873 (0.6792, 0.7001)

1 95% confidence interval based on 200 bootstrap

samples

When the data are fully-observed, the apparent performance estimate of the C-statistic is

0.6888. The estimates of performance when using cross-validation and the 0.632 bootstrap

are 0.6792 and 0.6871, respectively. When the prediction model in Table10.4is evaluated

in the fully-observed external holdout dataset (with patients recruited in 1992 and 1993),

the C-statistic is estimated as 0.6873.

10.9.3 Applying the proposed methods to the partially-observed Rotterdam

dataset

The results from applying the various proposed methods to the partially-observed Rotter-

dam data are presented in Table10.5. Recall that in scenario 1 the missing values of the

training dataset are covariate-dependent MAR. For scenario 2, the missing values of the

273



training dataset are outcome- and covariate-dependent MAR. A complete-case analysis of

the training data reduces the sample size from 2,684 to 1,849 (with 810 events).

Table 10.5: The estimated C-statistic performance when using the proposed methods on the

Rotterdam data. Internal validation results are based on a sample size of 2,684 and the external

holdout set contained 298 observations.

Methods Estimand Scenario 1 Scenario 2

Internal validation

Cross-validation

Fully-observed 0.6792 (0.6664, 0.6931)∗

Complete-case 0.6818 0.6922

CV-then-MI Ideal 0.6756 0.6791

Pragmatic 0.6750 0.6759

MI-then-CV Ideal 0.6900 0.6886

Pragmatic 0.6805 0.6853

The 0.632 bootstrap

Fully-observed 0.6871 (0.6624, 0.6965)∗

Complete-case 0.6812 0.6919

BS-then-MI Ideal 0.6861 0.6855

Pragmatic 0.6798 0.6816

MI-then-BS Ideal 0.6875 0.6858

Pragmatic 0.6784 0.6830

External validation

Methods Estimand Scenario 1 Scenario 2

Fully-observed 0.6873 (0.6792, 0.7001)∗

Complete-case 0.7044 0.7109

Multiple imputation Ideal 0.6915 0.6872

Pragmatic 0.6824 0.6814

∗ 200 bootstrap samples used to estimate the 95% confidence intervals.

These are the same estimates provided in Table10.4.

Overall, the estimates of the C-statistic, Ĉ, are all very similar for the various internal

and external validation used. When using a complete-case analysis with cross-validation,

the estimated C-statistics for missing data scenario 1 and 2 (0.6816 and 0.6922) tends to

be slightly larger than the point estimate 0.6792, when data are fully-observed. Similarly,

the ideal and pragmatic performance of MI-then-CV tends to be higher than the fully-

observed estimate of the C-statistic. The ideal and pragmatic performance CV-then-MI

tends to lower than the fully-observed estimate of the C-statistic. However, the point

estimates from applying the various missing data methods are all contained within the
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95% confidence interval for the fully-observed estimate.

When applying the complete-case analysis with the 0.632 bootstrap algorithm, ĈCC is

slightly lower than the fully-observed estimate for scenario 1 (covariate-dependent MAR)

but tends to be larger in scenario 2 (outcome- and covariate-dependent MAR). Simi-

larly, the estimated ideal performance of MI-then-BS is larger than the fully-observed

C-statistic estimate for missing data scenario 1. By comparison for BS-then-MI, the ideal

and pragmatic performance estimate of ĈBS−MI tends to underestimate the fully-observed

estimate in both missing data scenarios. However, the estimated Ĉ from applying the var-

ious missing data methods are all contained within the 95% confidence interval for the

fully-observed estimate.

The fully-observed estimates of the C-statistic for cross-validation (0.6792) and the 0.632

bootstrap (0.6871) underestimate the external validation estimate when data are fully-

observed (in the training and external holdout datasets) with a C-statistic estimate of

0.6873 (95%CI: 0.6792, 0.7109). Applying a complete-case analysis to the missing values

in the holdout set leads to over-optimistic estimates of the C-statistic for both missing

data scenarios; 0.7044 and 0.7109 for scenarios 1 and 2, respectively. The estimated ideal

and pragmatic performance of the holdout set, when using MI to impute the training set,

are similar to the fully-observed estimate of 0.6873.

Overall, the complete-case analysis tends to over-estimate the fully-observed estimates of

the C-statistic for internal and external validation. MI-then-Validate tends to be slightly

over-optimistic but there is no evidence to suggest that there is a difference between the

methods.

10.10 Discussion

In this Chapter I presented the application of the proposed methods from Chapters7to9

in the Rotterdam dataset. This demonstrates that the proposed methods can be applied

in practice to a more complex dataset (compared to the simpler scenarios used in the

simulation studies) and also illustrates their extension to a survival setting.

Confidence intervals were obtained for the internal and external C-statistic estimates by

replicating each procedure in a bootstrap sample. While it is possible to obtain confidence

intervals for the C-statistics for Validate-then-MI or MI-then-Validate, this was too com-

putationally intensive. For example, obtaining confidence intervals for the fully-observed

C-statistic when using the 0.632 algorithm took several hours on my personal laptop.

Bootstrapping to obtain confidence intervals when also using MI within cross-validation

or the 0.632 algorithm may be difficult for researchers in practice, particularly on large
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datasets which are often used in prediction.

Overall, I found that both Validate-then-MI and MI-then-Validate performed well when

compared to the fully-observed estimates from internal and external validation. While

MI-then-Validate tended to be slightly optimistic in comparison to the fully-observed

estimates of the C-statistic, there was no evidence to suggest this optimism was statistically

significant. I am only able to conclude that no optimism is present in this instance due

to the availability of the fully-observed Rotterdam data, in practice we can never know

whether optimism will be an issue with MI-then-Validate methods.
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11 How are missing data in covariates handled in observa-

tional time-to-event studies in oncology? A systematic

review

This chapter details a systematic review [9] which was conducted in the first year of the

PhD and published in BMC Medical Research Methodology .

[22]O. U. Carroll, T. P. Morris, and R. H. Keogh, “How are missing data in covariates

handled in observational time-to-event studies in oncology? A systematic review”,

BMC Medical Research Methodology, vol. 20, pp.1-15, May 2020.

The aim of the systematic review discussed in this chapter is to understand how researchers

approach and handle missing covariate values in time-to-event analyses. For a study to

be included into the review, it had to use a proportional hazards or an extended Cox

model, while also making reference to missing data. Studies which aimed to investigate

risk factors or which aimed to develop a prediction model were included. Particular focus

was given to covariate selection, the functional forms of continuous covariates, assess-

ment of the proportional hazards assumption and the handling of missing data and the

assumptions made as this aligned with the initial aim of the PhD. Also of interest was

whether time-varying effects or time-dependent covariates were included in the analysis

and whether they were affected by missing data. Finally, the systematic review provides

recommendations for using MI in time-to-event analyses. It also provides references to

papers which address common issues that can arise in statistical analyses.

Conducting this systematic review gave me insights into the poor handling and reporting

of missing data in observational time-to-event studies. The review demonstrated poor

adherence to published guidelines, which focus on conducting and reporting an observa-

tional study. The default method to handle missing data is complete-case analysis and

more modern methods are often overlooked.

In addition to the published paper, supplementary results concerning prediction modelling,

which were not included in the final publication are available at the end of the chapter.

After completing this systematic review I decided to focus on the handling of missing data

in prediction studies, focusing specifically on internal validation.
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How are missing data in covariates handled in observational time-to-event

studies in oncology? A systematic review

Authors: Orlagh U Carroll, Tim P Morris, Ruth H Keogh

Abstract

Background : Missing data in covariates can result in biased estimates and loss of

power to detect associations. It can also lead to other challenges in time-to-event

analyses including the handling of time-varying effects of covariates, selection of co-

variates and their flexible modelling. This review aims to describe how researchers

approach time-to-event analyses with missing data.

Methods : Medline and Embase were searched for observational time-to-event studies

in oncology published from January 2012 to January 2018. The review focused on

proportional hazards models or extended Cox models. We investigated the extent

and reporting of missing data and how it was addressed in the analysis. Covariate

modelling and selection, and assessment of the proportional hazards assumption were

also investigated, alongside the treatment of missing data in these procedures.

Results : 148 studies were included. The mean proportion of individuals with miss-

ingness in any covariate was 32%. 53% of studies used complete-case analysis, and

22% used multiple imputation. In total, 14% of studies stated an assumption concern-

ing missing data and only 34% stated missingness as a limitation. The proportional

hazards assumption was checked in 28% of studies, of which, 17% did not state the

assessment method. 58% of 144 multivariable models stated their covariate selection

procedure with use of a pre-selected set of covariates being the most popular followed

by stepwise methods and univariable analyses. Of 69 studies that included continuous

covariates, 81% did not assess the appropriateness of the functional form.

Conclusion: While guidelines for handling missing data in epidemiological studies

are in place, this review indicates that few report implementing recommendations in

practice. Although missing data are present in many studies, we found that few state

clearly how they handled it or the assumptions they have made. Easy-to-implement

but potentially biased approaches such as complete-case analysis are most commonly

used despite these relying on strong assumptions and where often more appropriate

methods should be employed. Authors should be encouraged to follow existing guide-

lines to address missing data, and increased levels of expectation from journals and

editors could be used to improve practice.

Keywords: Missing data, Time-to-event, Observational studies, Survival, Epidemiology,

Oncology, Multiple imputation
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Background

Time-to-event or survival studies focus on the analysis of times to an outcome or event.

Missing data in covariates is a problem in many such investigations. It can render esti-

mators biased if applied to the complete-cases or using an ad hoc approach to handling

missingness, and a loss of power to detect associations between explanatory variables and

times-to-event. The presence of missing data can also lead to further challenges in a sur-

vival setting such as the handling of time-varying effects or dealing with time-dependent

covariates when values are missing in the covariates in question. Additionally, it can lead

to questions about how best to approach the checking of model assumptions, for exam-

ple, the proportional hazards assumption when using a Cox model. Missing data also

brings further challenges not specific to time-to-event scenarios, such as how to address

the selection of covariates into a model or the flexible modelling of covariates. Another

type of missingness concerning time-to-event scenarios is missing observations of the event

time due to patients being censored, for example, due to administrative censoring or loss

to follow-up. This is typically addressed in the analyses for right-censored data, making

the assumption that the censoring is uninformative. Missingness in the outcome is not

assessed in this review which instead focuses on missing data in the explanatory covariates

only.

Complete-case analysis is both a simple and popular method for dealing with missing data,

which involves restricting the analysis to individuals with no missing data. Other simple

approaches involve replacing missing observations in a covariate with the mean, median

or modal value or the use of a missing indicator category for categorical covariates. While

popular, these methods can be biased, inefficient or underestimate the variance of esti-

mates. Multiple imputation is an increasingly popular method for handling missing data

which involves replicating the original dataset multiple times and in each replication re-

placing the missing values with plausible observations drawn from the posterior predictive

distribution [1]. It is typically conducted using the ‘missing at random’ (MAR) assump-

tion [2], which also subsumes ‘missing completely at random’ (MCAR). MCAR means that

missingness does not depend on the observed or missing values while MAR means that

missingness is conditionally independent of the missing values given those which have been

observed. Further methodology has been developed to adapt the use of multiple imputa-

tion in a survival setting. White and Royston in 2009 [3] focused on the Cox model and

recommend including the Nelson-Aalen estimate and event indicator in the imputation

model. Bartlett et al in 2015 [4] described an alternative imputation approach suitable for

several analysis models including the Cox model and Keogh and Morris (2018) [5] adapted

both approaches to handle time-varying covariate effects - that is, non-proportionality of

hazards.
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In addition to developed methodology, there have been several published guidelines fo-

cusing on how to conduct and report an observational study with some recommendations

pertinent to reporting with incomplete covariate data, summarised in Table 1. Some guide-

lines, such as Sterne et al. [6] focus purely on the handling and reporting of missing data

while using multiple imputation, whereas STROBE [7,8] and ROBINS-I [9] focus more

generally on reporting of observational studies. Examples of recommendations range from

providing detail on eligibility criteria of patients to clearly stating the selection process for

the final analysis model to reporting the amount of missingness in each covariate and which

method was chosen to deal with the missing observations. Sensitivity analyses are also

recommended to investigate plausibility of any assumptions assumed and the robustness of

results. These published guidelines aim to introduce transparency as well as replicability

of results if another analyst were to conduct the same investigation.

Table 1: Summary of recommendations or considerations from STROBE, ROBINS-I and Sterne

et al. guidelines

Recommendation Explanation STROBE ROBINS-I Sterne

Patient Selection

State eligibility crite-

ria
� State inclusion and exclusion

criteria of study participants,

including criteria concerning

missing data

X X

Report the number

of individuals at each

stage of the study

� Give reasons for exclusion at

each stage

X

� Indicate the amount of individ-

uals discarded due to missing-

ness at each stage of the study

X X

� Give consideration to selection

bias introduced by exclusion

criteria

X

� May use a flowchart to sum-

marise

X
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Table 1: continued

Recommendation Explanation STROBE ROBINS-I Sterne

Modelling and Covariate Selection

Covariates
� Detail whether included as

continuous or categorical and,

if relevant, detail how the

quantitative covariate was cat-

egorised

X X

� Consider departures from lin-

earity for continuous covariates

and state which transforma-

tion, if any, was used

X X

State analysis model
� make it clear which method

will be used to model the data

X X

Covariate Selection
� describe the procedure used to

reach the final model

X X

� this includes, but is not re-

stricted to, missing data im-

putation, transformation of co-

variates, interactions between

covariates or inclusion of co-

variates for a priori reasons

X X

Results
� Provide unadjusted estimates

and the final adjusted model

X X

� State the number of partici-

pants included in unadjusted

and adjusted analyses

X
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Table 1: continued

Recommendation Explanation STROBE ROBINS-I Sterne

Missing Data

Report the number

of participants with

missing data

� Report this for each covariate

of interest or the number of

complete data for the impor-

tant covariates

X X

� Give reasons for missing values X X X

� Investigate if there are key

differences between those ob-

served and those with miss-

ing data - this may be com-

pared across exposure/inter-

vention groups.

X X

Missing data methods (general)

Which method was

used to handle miss-

ing data?

� State clearly the method used X X X

State any missing

data assumptions

that were made

� Such as whether the data are

MCAR, MAR or MNAR

X X X

Sensitivity analysis
� Should investigate robustness

of findings

X X

� Compare method with a

complete-case analysis

X

� If necessary, assess validity of

methods if there are differences

X X

Sensitivity analysis
� Assess plausibility of missing

data assumptions

X
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Table 1: continued

Recommendation Explanation STROBE ROBINS-I Sterne

Multiple Imputation

Give details of the

imputation model
� State the software used and key

settings for imputation model

X

� State the number of imputa-

tions used

X

� State variables included in im-

putation model

X

� State how non-normal or bi-

nary covariates were handled

X

� Were interactions in analysis

model included in imputation

model?

X

If a large fraction of

data are imputed,

compare observed

and imputed values

X

Missing data as-

sumptions

� Discuss if variables included

in the imputation model make

MAR assumption plausible

X

Sensitivity analyses
� Compare MI results with CC

results

X

� Investigate departures from

MAR assumption

X

� If necessary, suggest explana-

tions for why there are differ-

ences in results across sensitiv-

ity analyses

X
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Time-to-event studies are commonly conducted in oncology with a search for time-to-event

or survival studies on Web of Science indicating oncology to be the most popular cate-

gory at approximately 30% of journal articles. As such, this review focused on studies

conducted in any area of oncology. Common scenarios involve assessing the risk factors of

patients developing a specific cancer or investigating factors associated with survival post-

diagnosis. Proportional hazards models and Cox regression, in particular, continues to be

the dominant analysis technique in time-to-event studies. As such, the review focuses on

proportional hazards models while allowing for the extension of the Cox model to include

time-varying effects.

Given the developed methodology in this field and the detailed recommendations in place,

this review aims to:

� understand which methods researchers are using in time-to-event analyses when

missing data are present

� assess if methods used are being carried out appropriately and the relevant assump-

tions stated

� assess how other challenges such as covariate selection, choice of functional forms

(i.e. whether the covariate should be included as a linear term or be more flexibly

modelled) for continuous covariates and checking of model assumptions are handled,

particularly in the presence of missing data.

Methods

Databases, search strategy and screening

Medline and Embase databases were searched for studies published between January 2012

and January 2018 to allow time for developed methods and guidelines to be used in prac-

tice. The search strategy for observational studies consisted of three main components:

oncology, missing data and time-to-event analyses; additional details can be found in ad-

ditional file 1.

For inclusion, studies had to use a proportional hazards or an extended Cox model (in-

cludes an interaction between a covariate and time) in a cancer setting. The study also had

to have a reference to missing data (either ‘complete’ or ‘missing’) in the abstract or in the

full-text. Studies involving only competing risks, frailty models, accelerated failure time

models or excess hazards in the abstract or full-text were excluded from the review. If the

abstract mentioned a time-to-event outcome but did not specify the analysis models used,

the paper proceeded to a full-text review. Papers not written in English or which focused

on methodology, meta-analyses, validations of previously created models, and primary or
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secondary trial outcomes were excluded. However, retrospective observational analyses of

a trial cohort were included.

Data extraction

The information extracted focused on two key areas: missing data and features of the

time-to-event analysis. The missing data component assessed the sample size used in the

study, how much missing data had been discarded, if assumptions about the treatment

of missing data in the analysis were stated and how any missing data were handled in

the analysis: complete-case analysis, single imputation techniques or multiple imputation.

Where multiple imputation was used, the choice of univariate or multivariate imputation

was recorded, the number of imputations used and which covariates were included in the

imputation model. Online supplementary materials were accessed only when referenced

with regards to the handling of missing data in the text. The features of the time-to-event

analysis assessed were whether the proportional hazards assumption was investigated, how

covariates were selected for model inclusion and the assessment of the functional form (if

continuous covariates were included). We also assessed, where relevant, how missing data

were treated in the context of these features. In addition, the software used for the analysis

was also extracted by searching for ‘Stata’, ‘SAS’, ‘SPSS’, ‘R’ and ‘plus’ (for S-plus and

Mplus). Papers which did not mention one of these six programs were then searched for

the software used. A detailed list of the information extracted can be found in additional

file 1 which was motivated by the guideline recommendations found in Table 1 and are

evaluated in the Results section.

A pilot investigation consisting of 10 randomly selected papers was carried out by OUC,

TPM and RHK to assess the consistency of data extraction, refine the data extraction

checklist and agree on how to extract information when answers were ambiguous. Data

extraction was then carried out by OUC.

Results

The PRISM diagram [10] summarising the review inclusion process is shown in Figure 1.

Four hundred and eighteen papers were identified from Embase and Medline, of which 309

were non-duplicates and proceeded to the screening step. One hundred and thirty-seven

studies did not meet the inclusion criteria during screening and were therefore excluded.

After a full-text assessment, a further 24 studies were excluded with a total of 148 stud-

ies included within the review. The studies included came from 110 journals, of which

the most prominent were BMC Cancer (5), International Journal of Radiation Oncology,

Biology, Physics (4) and Journal of the National Cancer Institute (4).
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From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-
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 Did not mention missing or 
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 Methodology (20) 
 Did not use proportional 

hazards models (30) 
 Competing risks (6) 
 Guidelines (6) 
 Meta-analyses (10) 
 Trials (16) 
 Supervisors were an author 

(2) 
 Not a journal article (2) 
 Could not access article (1) 
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hazard or extended cox 
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 Competing risks (1) 
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 Excess hazards (2) 
 Accelerated failure time (2) 
 Assessing handling of 
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conducted study (4) 

 Not cancer related (1) 
 Did not have missing data 

(3) 
 Validating a previously 

created model (2) 

Studies included in review 
(n = 148) 

Figure 1: Flowchart of the inclusion process for studies into the review [10]
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Missing data

Reporting extent of missing data

In the pilot stage we noticed that many studies excluded individuals due to missing data

on key covariates in an initial phase (in which the study population was determined using

inclusion or exclusion criteria). That is, having certain covariates observed was used

as part of the inclusion criteria. One hundred and six (72%) studies excluded missing

data while determining their study population in this initial phase. Of the 106 studies

which excluded observations, 66 (62%)reported the number of individuals excluded. On

average, 14% of individuals were discarded during this stage. After inclusion criteria had

been applied, 102 (69%) studies contained patients with missing data. Table 2 shows the

breakdown of missing data during the initial phase and analysis stage of the study.

Table 2: Breakdown of the number of individuals with missing data.

Description Number (%)

Excluded missing data in initial phase (N=106)

Excluded individuals with missing data in any covariate1 44 (42)

Excluded individuals with missing data in a subset of co-

variates

62 (58)

Reported the number of individuals excluded 66 (62)

Percentage (%) of individuals excluded (n = 66)

Mean (SD) 14.14 (12.40)

Median (IQR) 10.22 (4.73, 18.34)

Min, Max 0.11, 47.38

Missing data present for the analysis stage (N=102)

Reported missing data in baseline table for incomplete co-

variates

82 (80)

Used a complete-case analysis2 35 (34)

Used other missing data methods 36 (35)

Quantified the complete-case sample size 25 (25)

Percentage (%) of individuals excluded (n = 25)

Mean (SD) 31.65 (21.90)

Median (IQR) 31.34 (13.67, 37.76)

Min, Max 1.77, 94.16

The initial phase is the stage when defining the study population using inclusion

exclusion criteria.

1 1 potentially used a complete-case in initial phase but did not clearly state their

methods

2 A further 31 were not clear on whether they used a complete-case during the analysis
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In the demographics table (often considered to be ‘Table 1’ in publications), 87 (59%)

studies summarised the missing data in covariates, 47 (32%) reported the breakdown

of missingness in incomplete covariates and two (1%) used missing data pattern plots.

Thirty-four (23%) used both the text and a Table to report the extent of missingness. For

the 48 (32%) who did not use a plot, use a table or explicitly break down the missing

values in each covariate a general statement was typically made stating which variables

were incomplete or that variables or patients were excluded due to having incomplete data.

Analyses performed

Table 3 summarises the methods used for the analysis in the presence of missing data.

Complete-case analysis was the most popular and was used in 79 (53%) studies either in

the initial phase or at the analysis stage (either as the primary method used to deal with

missing data or as a sensitivity analysis). This was followed in popularity by removing in-

dividuals with missing values in certain key covariates (62, 42%) and multiple imputation

(33, 22%). Some studies used multiple methods for handling missing data with 18 (12%)

using both complete-case and multiple imputation.

Table 3: Methods used in studies for the handling of missing data.

Missing data Methods Count (%)*

Complete-case 79 (53)

Removed individuals with incomplete data for a subset of covariates 67 (45)

Multiple Imputation 33 (22)

Missing indicator 10 (7)

Worst or best case scenario1 2 (1)

Stochastic imputation 1 (1)

Mean value imputation 1 (1)

Mode value imputation 1 (1)

Growth models 1 (1)

Bayesian model incorporating handling of missing data 1 (1)

Full-information maximum likelihood estimation 2 1 (1)

Selection procedure3 1 (1)

Unclear 33 (22)

* Percentages do not sum to 100 as there is overlap with some studies using more than

one method.

1 [11, 12]

2 [11]

3 A selection model to account for missing data and time-varying covariates [13]
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68 (50%) of all studies used a complete-case analysis as their primary analysis method and

24 (16%) reported multiple imputation as their main analysis. Of those using complete-

case analysis as the main analysis, nine (13%) also used MI or other methods. Of those

using MI as the main analysis, 12 (50%) used complete-case analysis or another method

as a secondary analysis.

Missing data assumptions

Of the 148 studies, 128 (86%) did not state the assumptions that their chosen analysis

made regarding the missing data. Eighteen (12%) stated the MAR assumption, of which 16

(89%) gave a general statement such as ‘MAR was assumed’, with no further explanation.

One (0.7%) study stated MCAR and another stated ‘missing not at random’.

Sensitivity analyses and stating missing data as a limitation

Ninety-eight (66%) studies did not mention the presence of missing data as a limitation

to their analysis. Twenty-six (18%) used sensitivity analyses to check the robustness of

their final results to either different assumptions concerning the missingness or comparing

results with other techniques to handle missing data.

Description of complete-case analysis

Thirty-five (34%) used a complete-case analysis and a further 31 (30%) were suspected to

have used complete-case during the analysis stage based on the information provided but

did not state this clearly in their paper. On average, 32% of individuals were discarded

by applying a complete-case analysis, the maximum being 94% where complete-case was

used as a sensitivity analysis for comparison with the main analysis using multiple impu-

tation. Figure 2 summarises the reporting of missing data in the 79 studies that used a

complete-case analysis (either during the initial phase or analysis stage). Seven (16%) of

the 44 (56%) studies using the initial phase complete-case stated missing data as a limi-

tation. Of the two (5%) studies using a sensitivity analysis, one compared with multiple

imputation and the other compared the initial complete-case results pre and post propen-

sity score matching and therefore with different sample sizes. Thirty-five (44%) studies

used complete-case during the analysis stage, of which 18 (51%) stated missing data as a

limitation. In addition, we presumed based on the information provided that a further 33

studies used a complete-case in the initial phase or analysis stage but did not clearly state

this as their method to handle missing data.

Sensitivity analyses with complete-case: Eighteen (51%) studies used a sensitivity

analysis, of which 14 (78%) involved multiple imputation versus complete-case analysis,

two (11%) used complete-case analysis where individuals with missing data in any covariate

were excluded versus excluded if there were missing data in a specific subset of covariates
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(known as available case analysis), one (6%) tested various missing data assumptions and

one (6%) did not specify.

79 stated using
a CC analysis

Used during
initial phase

Stated missing
data as a limita-
tion

7 (16%)

Used a sensitiv-
ity analysis

2 (5%)

Stated missing
data assumptions

0 (0
%)

44
(56%

)

Used as an
analysis method

Stated missing
data as a limita-
tion

18 (51%)

Used a sensitiv-
ity analysis

18 (51%)

Stated missing
data assumptions

10 (2
9%)

35
(44

%)

Figure 2: Breakdown of complete-case (CC) usage. The initial phase refers to those who used

complete-case analysis when determining inclusion/exclusion of individuals to the study popula-

tion.

Description of multiple imputation

The breakdown of multiple imputation usage can be seen in Figure 3. Thirty-three (22%)

studies used multiple imputation, of which 24 (73%) reported the multiple imputation

estimates as their main study results. Fourteen (42%) stated a missing data assumption

and 25 (76%) described whether a multivariate or univariate approach was taken. For those

using a multivariate imputation approach (22, 88%), multivariate imputation by chained

equations (MICE) was the most popular method (19, 86%). In total, 14 (42%) studies

included a component of the time-to-event outcome in their imputation model. These
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included the baseline hazard (7, 50%), the event indicator (9, 14%) or both (2, 14%).

Twenty-six (79%) studies using multiple imputation stated the number of imputations.

One (3%) used a single imputation, five (15%) used five, six (18%) used 10, seven (21%)

used 20, two (6%) used 25 and five (15%) used 50. Some studies (example: [14]) cited the

White, Royston and Wood paper [15] which suggests that the rule of thumb for choosing

the number of imputations should be at a minimum the percentage of cases that are

incomplete while other studies (example: [16]) stated the number of imputations with no

justification.

Sensitivity analyses with multiple imputation: Of the 21 (64%) studies that con-

ducted a sensitivity analysis, 18 (90%) compared complete-case and multiple imputation

(three of which did not explicitly state complete-case) and 10 (56%) used multiple impu-

tation as the main analysis method and one (6%) was unclear on the main strategy while

reporting both multiple imputation and complete-case results.

Missing data assumptions with methods

Of the 18 studies which stated the MAR assumption, 11 (61%) used multiple imputa-

tion, two (11%) used complete-case and one (16%) was not clear on whether they used

complete-case or multiple imputation, two (11%) were suspected to have used complete-

case but did not clearly state, one (16%) used a stochastic single regression imputation

model and one (16%) used a fully Bayesian model. The one study stating MCAR used

complete-case analysis and the other stating ‘missing not at random’ performed an analy-

sis using a selection model for the joint distribution of the missing covariates, the outcome

and the probability that covariate data are missing [13].

None of the 44 (56%) studies using the initial phase complete-case stated a missing data

assumption and for the 35 using complete-case analysis during the analysis stage 10 (29%)

stated a missing data assumption. This consists of one (10%) study stating MCAR and

nine (90%) MAR, of which seven (78%) used multiple imputation and complete-case anal-

ysis together for sensitivity analyses (six (86%) of these used multiple imputation as the

main method for handling missing data and complete-case analysis used as a comparison).

For the 14 studies using multiple imputation having stated a missing data assumption, 13

(93%) used MAR and one (7%) used MCAR.
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33 used MI

Used a sensi-
tivity analysis2

CC and MI3

18 (90%)

Best/worst case
scenario and MI

1 (5%)

Missing indicator
and MI1 (5%)

21
(64%

)
Survival

characterisitics
included in

imputation model

Included time/
log(time)

5 (36%)

Included baseline
hazard and event
indicator

2 (14%)

Included event
indicator

9 (64%)

Included baseline
hazard

7 (50%)
14 (42%)

Stated MI method

Univariate1

3 (12%)

Multivariate122 (88%)

25 (76%)

Stated as-
sumptions

MAR

13 (93%)

MCAR1 (7%)

14
(4

2%
)

Figure 3: Breakdown of multiple imputation (MI) usage. 1 2 did not specify what type of

multivariate MI model used, similarly 1 for univariate. 2 1 study ensured the sample size stayed

the same for different models. 3 3 studies did not clearly state that they were using complete-case.

Features of the analysis

Selection of covariates into the model

One hundred and forty-four (97%) studies used a multivariable model and therefore used

some selection method or criteria to select which covariates should be included. Of these,

85 (59%) stated a clear selection procedure. The use of a predefined set of covariates

(33, 39%), stepwise methods (31, 37%) and univariable analyses (32, 38%) were most

commonly used, with eight (10%) studies using both a predefined set and univariable

analyses. Of the 31 studies using stepwise methods, backwards elimination was used in

18 (58%), six (19%) used forwards selection and seven (23%) did not state which type of

stepwise method was used.
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Eleven (35%) used complete-case as the main method to handle missing data. Five (45%)

out of the 31 studies using stepwise methods stated excluding individuals with missing data

on key covariates in the initial phase, and were left with no additional missing data at the

analysis phase. Six (55%) studies that used a stepwise procedure did so in a complete-case

analysis. We suspect that an additional six (19%) studies used complete-case analysis but

this was not clearly stated.

For the 31 studies using stepwise methods, 10 (32%) used them in combination with mul-

tiple imputation. Of this, eight (80%) used multiple imputation as the main method to

handle missing data, one (10%) used a missing indicator as the main method with multiple

imputation as a sensitivity analysis and one (10%) used a sensitivity analysis but did not

state whether multiple imputation or complete-case was the main method. For those who

used multiple imputation as the primary method to handle missing data, seven (88%) did

not state how they combined it with the stepwise methods and the other is suspected to

have applied the stepwise procedure in a complete-case analysis to determine the set of

covariates to be included, before using this set in the model fitted in each imputed dataset,

however this was not clearly stated.

For the 32 studies using univariable analyses, four (13%) studies used multiple imputation

as the main analysis method, 14 (44%) stated that they used a complete-case as the main

method for handling missing data, 12 (38%) were presumed to have used a complete-case

analysis based on the information available, one (3%) used stochastic single regression

imputation model and one (3%) did not include incomplete covariates in the analysis

model (available case analysis).

Functional form of continuous covariates

Sixty-nine (47%) studies included continuous covariates in their model, of which 57 (83%)

did not report considering whether any form other than linear was required, i.e. its appro-

priate functional form. For those that did consider it, splines were the most popular way

of transforming covariates in the model (8, 12%), followed by fractional polynomials (2,

3%) and Martingale residuals (2, 3%). Including a quadratic term or a ‘flexible non-linear

model’ were each used once. One study used Martingale residuals, cubic splines and frac-

tional polynomials to investigate evidence of non-linear associations [17]. For a further 11

(7%) studies, it was not clear whether included covariates were continuous or categorical.

For the 12 studies which reported assessing the functional form of covariates, three (25%)

used multiple imputation as the main method for handling missing data, three (25%) used

initial phase complete-case, three (25%) presumably used complete-case analysis but this

was not clearly stated, one (8%) used stochastic single regression imputation, one (8%)
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used a study-specific model to impute missing values and one (8%) used available case

analysis by restricting to individuals with complete data in the covariates to be included

in the analysis model.

Proportional hazards assumption and time-varying effects of covariates

The primary analysis method in 142 (96%) studies was the Cox model and the remaining

six (4%) stated the use of a proportional hazards model. When investigating the pro-

portional hazards assumption, the covariates included within the analysis model should

be assessed. Forty-one (28%) studies stated that the proportional hazards assumption

was assessed either using a general statement (example: [18]) or specifically detailing how

to handle the covariates which violated it (example: [19]). Of those who checked, seven

(17%) did not state the method used to assess the assumption. Schoenfeld residuals were

most frequently used (18, 44%), followed by visual inspection of plots of Kaplan-Meier

estimates of survivor curves, or functions thereof (12, 29%). Of these two methods, seven

(17%) studies used both. Ten (24%) studies tested the assumption by including an inter-

action between covariates and follow-up time in the model.

For the studies that checked the assumption, 13 (32%) used multiple imputation as the

main method to handle missing data, three (7%) used a missing indicator, 11 (27%) used

complete-case analysis, seven (17%) presumably used complete-case analysis but did not

clearly state, two (5%) had no missing data in covariates chosen for inclusion in the anal-

ysis model, one (2%) used both multiple imputation and complete-case but did not state

which was the main method, one (2%) excluded incomplete covariates from the analysis

model and one (2%) removed individuals with missing data in specific covariates. For

the 18 studies using Schoenfeld residuals, six (33%) used multiple imputation as the main

method for handling missing data. For the 12 studies using visual inspection of survivor

curve plots four (33%) used multiple imputation and for the 10 including an interaction

with time, three (30%) used multiple imputation as the main method.

Five studies discovered evidence for time-varying effects, of which three (60%) had incom-

plete covariates associated with time-varying effects. Two (67%) of these used multiple

imputation to impute the missing values in the covariate, of which one took into account

the time-varying effect using methods developed by Keogh and Morris [5] and the other

stated using MICE while the third study was unclear on how they handled the missing

data.

Software

Forty-four (30%) studies used SPSS, 41 (28%) used SAS, 36 (24%) used Stata, 11 (7%)

used R, two (1%) used winbugs, one (1%) used XL-stat life and 17 (11%) did not state. Of
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these, three (2%) used both SAS and SPSS, one (1%) used SAS and Stata together, one

(1%) used SAS and S-plus and one (1%) used SAS and Mplus. Of the 11 studies using R,

four (36%) used multiple imputation with three using the MICE package and one using

Hmisc. Examples of other potential packages that could have been used are Amelia [20],

jomo [21] or smcfcs [22].

Discussion

Missing data is a pervasive problem in observational time-to-event studies. However, this

review has found that few studies appropriately report this issue. Whether this is due to a

lack of appreciation of the potential implications of missing data from the researcher, or to

the handling of missing data not being deemed of high enough importance to be described

in the ‘Methods’ section is unclear. There are general guidelines in place such as STROBE

[7,8] and Sterne’s specific multiple imputation recommendations [6] from 2007 and 2009,

respectively, but it appears that many of their recommendations are still not being imple-

mented. By considering literature from 2012 onwards, all papers we reviewed came after

the publication of these guidelines. Over half of papers considered (53%) were from 2016

onwards. A surprising finding was that in many studies it was not clear how the study

population was selected and what the extent of missing data was. We recommend that

authors provide clear and comprehensive information on these aspects including detailing

the finalisation of the study population, and stating the sample size used in each model

when missing data are present. These recommendations would aid in the transparency of

research findings.

Methods for handling missing data such as the multiple imputation approach of White

and Royston [3] were implemented by two studies in 2014 [23] and 2016 [24], five and

seven years respectively after the method was published. Although valid methods have

been developed to handle missing data, the easier-to-implement approach of complete-case

analysis is still the most popular method used. However, the studies suggest that little or

no consideration is being given to the missing data assumptions needed for this method

and whether they are introducing bias to their results. It is plausible that some authors

had not noticed the missing data, since software by default runs complete-case analysis

without flagging that some individuals were dropped from the analysis. Also of note are

the studies which have a ‘fully’ observed dataset and therefore had no need to consider any

missing data assumptions or methods. However, this ‘fully’ observed dataset originated

from using a complete-case inclusion/exclusion criteria for individuals entering their study.

These studies gave no consideration to missing data assumptions and only seven (16%)

considered the missing data excluded to be a limitation.

Several systematic reviews have been conducted to assess the handling of missing data in
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studies, most of which have focus on randomized trials. Wood et al. [25] reviewed the

handling of missing outcome data in randomized control trials published in 2001. They

found that missing data are typically handled inadequately and that there was almost no

use of modern data methods with complete-case used in 46% of studies. Similar findings

were made in other reviews covering trials published between 2005 and 2014 [26-28]. Kara-

halios et al. [29] focused on missing data in cohort studies published between 2000 and

2009 and found inconsistent reporting of missing data and inappropriate methods used

with 66% of studies using complete-case analysis. With regards to missing data, these

reviews collectively looked at studies published between 2001 and 2014. They, along with

our own review looking at papers from 2012 to 2018, highlight the lack of progress that has

been made in appropriate handling of missing data in both trials and observational studies.

Our review revealed a lack of rigour in other aspects of a study investigation. 42% of stud-

ies did not state how the covariates were selected for their final model. When conducting

a covariate selection procedure, thought should also be given to continuous covariates and

whether categorising is worth a loss of power to detect associations or the occurrence of

residual confounding [30]. Clarity should also be required for how the selection proce-

dure is combined when using multiple imputation. For example, [31] states using multiple

imputation for multivariable analyses and goes on to detail that univariable models and

backward selection were used. However, no discussion is given as to if this process was

repeated across the multiple imputed datasets and, if so, what happened when there were

disagreements across them regarding the selection process? In 2008, Wood et al. [32] dis-

cusses methods to handle covariate selection with multiple imputation. Studies included

in the review tended to be exploratory or predictive in nature and consideration should

be given to the selection procedure for including covariates into these models. Stepwise

methods were used in 37% of studies which stated a covariate selection procedure despite

the disadvantages being well-known [33, p.68]. These include underestimating standard

errors of parameter estimates, narrow confidence intervals, low p-values and parameter

estimates biased away from zero. VanderWeele also discusses the use of stepwise methods

and their drawbacks in a causal setting [34].

For the 41 studies that checked the PH assumption, it was not clear how the 13 studies

using multiple imputation incorporated the use of Schoenfeld residuals or inspection of

survivor curves as these details were not provided. For those using a time-interaction and

multiple imputation, only one did not make it clear how they were incorporating the two

methods. Using again the example of [31] it is possible that they checked the assumption

using scaled Schoenfeld residuals over time in a complete-case scenario or individually in

each imputed dataset but without specification it is difficult to say whether the assumption

diagnostics were carried out appropriately. It is important to note that when considering

compatibility between the analysis and imputation model thought should also be given
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to allowing for time-varying effects in the imputation process, in order to allow for valid

tests of the proportional hazards assumption. Further thought should also be provided on

whether there is sufficient statistical power to detect violations of the proportional hazards

assumption [35].

This review demonstrates poor adherence to guidelines already in place and further drives

the need for clear reporting. Ideally, an external analyst should be able to rerun the study

analysis from the information published which is currently not possible in many studies.

Finally, Table 4 provides some related references for consideration of different aspects of

missing data and time-to-event features in a study.

Table 4: Selected papers describing methods for addressing common issues arising in the analysis

of time-to-event data when there is missing covariate data

Consideration Some recommended references

Missing data (general)

General recommendations [6] Sterne et al.: Recommendations for missing

data and multiple imputation

Simple imputation [36] Zhang : Mean, median, mode, regression impu-

tations

Complete-case bias consid-

erations

[37] Bartlett et al.: When CC is valid

[38] Carpenter & Kenward : When CC is valid

Multiple imputation

Number of imputations to

use

[15] White et al.: at least the percentage of incom-

plete cases

[39] von Hippel : two-stage quadratic rule

Covariate selection proce-

dures

[32] Wood et al.: Repeated use of Rubin’s rules or

stacking approach

[40] Morris et al.: Adapted for MFP including selec-

tion procedure and functional form

Non-linear effects [40] Morris et al.: Adapted for MFP including selec-

tion procedure and functional form

[41] Seaman et al.: recommend just another variable

(JAV) approach

Using a Cox model [3] White & Royston: inclusion of Nelson-Aalen es-

timate and event indicator in imputation model

[4] Bartlett & Seaman: full conditional specifica-

tion adjusting for the analysis model of choice

MFP: Multivariable fractional polynomials
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Table 4: Continued

Consideration Some recommended references

Multiple imputation

Testing the Proportional

hazards assumption and

modelling time-varying ef-

fects of covariates

[5] Keogh & Morris : adapting White & Royston

and Bartlett & Seaman approaches for time-

varying effects

Time-dependent covariates [42] De Silva et al.: Investigating performance of

two-fold fully conditional specification for time-

dependet covariates

[43] Moreno-Betancur et al.: Use of joint modelling

for time-dependent covariates

Time-to-event features not concerning missing data

Functional form [44] Sauerbrei et al.: multivariable fractional polyno-

mial time i.e. MFP in survival setting account-

ing for time-varying effects

[45] Buchholz & Sauerbrei : comparison of proce-

dures for assessing time-varying effects and func-

tional form

[46] Heinzl & Kaider : Using cubic spline functions

to assess functional form

[47] Wynant & Abrahamowicz : Importance of as-

sessing time-varying effects and functional form

[48] Abrahamowicz & MacKenzie : Joint estimation

of time-varying effects and functional form using

splines

Covariate selection proce-

dures

[44] See above

[49] Yan & Huang : Assessing time-varying effects

using an adaptive lasso method

Testing the Proportional

hazards assumption

[35] Austin: Assessing power of tests to assess pro-

portional hazards assumption

[50] Bellera et al.: Recommend assessing propor-

tional hazards assumption and inclusion of time-

varying effects where necessary

[51] Abrahamowicz et al.: use of regression splines to

model time-varying effects

[52] Hess : use of cubic splines to model time-varying

effects

MFP: Multivariable fractional polynomials
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Table 4: Continued

Consideration Some recommended references

Time-to-event features not concerning missing data

Time-varying effects [44] See above

[45] See above

[46] See above

[47] See above

[48] See above

[49] See above

[50] See above

[52] See above

General study considerations

Categorising of covariates [53] MacCallum et al.: Discussion on dichotomising

continuous covariates

Non-linear effects [54] Royston & Sauerbrei : Text book providing

overview of model selection with a focus on MFP

procedures

[33] Harrell : Text book providing overview of strate-

gies for regression modelling

Covariate selection proce-

dures

[54] See above

[55] Heinze et al.: Review of methods for covariate

selection

MFP: Multivariable fractional polynomials

Limitations of review

A large number of search terms were used to extract the relevant studies. However, it is

possible that some time-to-event studies did not mention how they handled missing data

in the title, abstract or keywords and therefore were not included in the review. The

search also focused solely on oncology, it is possible that in other medical setting studies

could be performed differently in terms of reporting or methods used. A further limitation

stems from only one reviewer identifying, screening and extracting information from the

studies which may have introduced bias from the selection and interpretation of papers.

An agreement check was conducted with RHK and TPM and initially found poor agree-

ment in the collection of sample size of studies and the amount of missing data. The data

collection check-list was reviewed and amended to improve discrepancies.

Many journals have a page or word limit which restricts the study analysts from fully
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detailing methods conducted and results. It is possible that studies were unable to de-

tail information such as checking the PH assessment or conducting a sensitivity analysis.

However, most journals also allow for online supplementary materials which could have

been used.

For this review we focused on methods used in the oncology field. It is possible that the

handling of missing data may be better or worse in other medical fields or study designs.

Recommendations for multiple imputation in time-to-event analyses

While it is difficult to recommend a gold standard method as it can depend on the context

of the study, for time-to-event studies involving the Cox model we would recommend using

the substantive model compatible fully conditional specification (SMC-FCS) of Bartlett

et al. [4] as the gold standard method for multiple imputation. It allows for compatibility

between the study analysis model and the imputation model. This method is available in

both Stata and R software. Keogh and Morris [5] have adapted SMC-FCS to allow for the

presence of time-varying effects and proposed an algorithm to allow for model selection

with time-varying effects.

White and Royston [3] recommend the inclusion of the event indicator and the Nelson-

Aalen estimator in the imputation model for an approximately compatible model. While

this is simpler and more straightforward using widely available MI software, the approx-

imation can perform badly in ‘extreme’ scenarios such as strong covariate effects and a

high event rate. The approximation also has weaker statistical properties (estimators will

generally be inconsistent) than SMC-FCS due to semi-compatibility of the imputation

and analysis model. Keogh and Morris have also adapted White and Royston’s method

to handle time-varying effects.

Conclusions

More consideration is required for observational time-to-event analyses with missing data,

including clear reporting of how the missing data were handled and how any selection pro-

cedures or assumption checks were conducted in conjunction with the missing data method

implemented. Wider thought should be given to the limitations the missing data intro-

duces to the observational study, such as bias of parameter estimates, and which methods

can be used to help deal with this. While methods such as complete-case analysis are

well ingrained in the community there are more modern methods which should also be

considered when conducting a study. There appears to be a delay between methodology

publication and uptake into the applied research field [56] or, rather, a delay in depart-

ing from simpler favoured methods of the field. There are many published guidelines

readily available to help researchers conduct and report their study and these should be
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consulted, alongside a statistician. All recommendations that came from conducting the

review were found to have already been emphasised in the published guidance discussed

in the Introduction section of this paper. Finally, we recommend that journal editors

have requirements for appropriate reporting in the presence of missing data to ensure high

quality studies are published and that their results are robust.
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11.1 Relevant material not included in the finalised journal article

While the above publication summarised the majority of the results, additional information

was extracted from the articles included in the review. This included whether the aim of

the study was to develop a prediction model for the outcome or to explore associations

between exposures and outcome. I refer to the second of these study aims as ‘inference

modelling’. While this additional information did not make it into the finalised paper, it

is still relevant to the PhD due to the changed focus of the thesis towards prediction.

11.1.1 Prediction modelling and Inference modelling

Of the 148 studies included in the review, 18 focused on prediction modelling and 130

focused on inference modelling. The aims of the ‘inference modelling’ studies may have

been to estimate causal effects (focusing on one of the exposures with adjustments for

confounders), or may have been more exploratory in nature. Many traditional epidemio-

logical studies are of this second type, and their aim is not always clear.

Of the 18 papers focusing on prediction models, 17 used multivariable modelling and,

therefore, had to decide on a covariate selection method. The one other prediction pa-

per was focused on the assessment of an already developed prediction model. Of the 130

papers focusing on inference, 127 used multivariable modelling and therefore had to de-

termine how to include covariates into their final model.

For the 17 studies building a multivariable prediction model, 59% of studies used stepwise

selection to select covariates to be included in their prediction model compared to 17% of

studies for inference. Three (19%) studies did not state clearly how they determined the

set of covariates to be included in the model compared to 56 (44%) of inference studies.

Table 11.1: Comparing covariate selection for predictive and inference modelling

Selection Inference models Predictive models

(N = 127)1 (N = 17)1,2

Stated selection procedure (%) 71 (56) 14 (82)

Stepwise regression 21 (17) 10 (59)

Univariate analysis 29 (23) 4 (25)

A priori 30 (23) 3 (19)

Log-rank test 5 (4) 0 (0)

1 Due to overlap of methods, percentages do not sum to 100

2 1 study kept significant covariates in multivariable analysis
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11.1.2 Validation methods used in prediction modelling

Of the 18 prediction models included in the study, seven (39%) used apparent validation.

Six (33%) used external validation, of which two also used internal validation methods, one

used the standard bootstrap optimism-corrected method and the other used the 0.632+

algorithm. Five (28%) studies in total used internal validation using a bootstrap algorithm

(four standard and one 0.632+). Two (11%) studies split the data into training and test

sets. One repeatedly split the data randomly 1000 times while the other split the data

into two, one split for training and testing, the other for validation.

Of the 18 prediction models, five also used multiple imputation either as the main missing

data method or a sensitivity analysis. One study pooled each of the imputed datasets’

analysis model to get one overall model. Predictions were then obtained from the pooled

model when using apparent validation. One paper used multiple imputation as a sensitivity

analysis to the model originally developed (presumably using complete-case analysis) using

0.632+ validation and external validation. Two papers developed a prediction model using

multiple imputation and then validated the model on an external cohort. However, details

on whether a final pooled prediction model was used versus pooling the predicted values

of the M prediction models were not available for either study. One study used multiple

imputation (including the event indicator in the imputation model) and used the bootstrap

standard algorithm for validation. They combined multiple imputation and the standard

bootstrap algorithm using MI-then-BS as they stated that they bootstrapped each of the

imputed datasets but gave no reasoning for why they had combined MI and bootstrapping

in this manner.

11.1.3 Discussion of the additional information

The primary aim of this systematic review was not focused solely on prediction modelling,

hence why only a small number of studies included used prediction modelling. Even with

this small number of studies, it is possible to see that a range of approaches were used to

handle missing data.

Of the papers included in the review which focused on prediction, the majority used an

automated way of including covariates into their model such as stepwise regression (either

forward or backward selection). In addition, the majority of papers (61%) used a valida-

tion method to assess their model, either external or internal validation. Clear guidance

on the best way to combine missing data methods with validation, including when there

is a need to account for other aspects of the study such as covariate selection, will help to

improve prediction model development. This will help to avoid any potential data leakage

which could arise from the methods selected to handle the missingness.
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12 Discussion

12.1 Summary of the key results

Missing data is a common issue faced by researchers in many different health research

settings. When developing a prediction model the presence of missing values can lead not

only to challenges in fitting a prediction model, but also in validating it.

12.1.1 Combining internal validation with multiple imputation

The main aim of this thesis was to propose and assess how to combine multiple imputa-

tion, a method used to handle missing data, with internal validation algorithms in order to

assess the performance of prediction models. The two main internal validation algorithms

used here are 10-fold cross-validation and the optimism-corrected bootstrap algorithms.

This project was motivated by a missing data discussion proposed by Professor Angela

Wood regarding the best way to combine multiple imputation with cross-validation. Lim-

ited literature in this field was available (Section2.3) but lacking in detail and breadth.

For example, it was not immediately clear how to impute the data folds used in cross-

validation and questions such as “Should all folds be used when drawing imputed values

for the training folds?”, “Which folds should be used in order to draw values to impute

the test fold?” or “Should the same imputation model be used when drawing plausible

values to impute the training folds and test folds?” were unanswered. Similarly for the

bootstrap algorithms, questions arose regarding the reuse of imputed datasets at different

stages of the bootstrap process, when to apply Rubin’s rules or how the methods would

perform in an ideal or pragmatic scenario.

The work conducted in this thesis aimed to thoroughly investigate how to combine mul-

tiple imputation with cross-validation or the bootstrap algorithms. I proposed the use

of a training and test imputation model. The training imputation model should include

all relevant covariates and the outcome. The test imputation model should include all

relevant covariates and, potentially, the outcome if the ideal performance is of interest. A

primary comparison of interest was whether it is better to validate then impute or impute

then validate. Further, I assessed which observations should be included when drawing

imputations for the training or test datasets, when to apply Rubin’s rules and how the

methods performed in either an ideal or pragmatic setting. Simulation studies with a

continuous and binary outcome were used to assess the proposed methods using various

performance measures such as the MSE (continuous), AUC (binary), Brier score (binary)

and weak calibration (binary).

The proposed methods initially focused on a setting where the covariates included in
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the prediction model were ‘known’ and fixed. They were then extended to handle both

covariate selection and the flexible transformation of continuous covariates using fractional

polynomials. A ‘known’ imputation model is never the case in practice but, here it makes

it possible to compare the proposed methods in a clean way and remove unpromising

methods for later, more realistic simulation studies. Due to software limitations, not all

methods could be examined (Method I in Section2.6). This was mainly due to an inability

to extract the training imputation model to impute missing values in the test set when

using non-multivariate normality MI methods.

MI and cross-validation

For cross-validation, I have proposed that the data should first be split into K folds (Sec-

tion5.8). Each fold should separately be imputed M times using both a training and

test imputation model (Section2.5). The mth training imputed dataset from each fold

1, ..., k − 1 are then combined, and this is repeated across all M imputations, to give

M imputed training data sets (containing observations in folds 1, . . . ,K). A prediction

model can be fitted in each imputed dataset and then evaluated in each of the M imputed

datasets of test fold k. This was known as Method A throughout the thesis (described in

more detail in Table2.3).

This method was shown to perform well across many simulated scenarios when the out-

come was continuous or binary. I suggest this performance is due to the smaller number

of observations available in each fold when imputing which results in the imputed values

having increased variability. The prediction model trained on the k − 1 training folds is

therefore more robust to the increased variability that comes from imputing the kth fold

separately. When the proposed methods were evaluated in the context of fractional poly-

nomial selection, method A was also found to have a more variable selection of exponents

via ABB compared to the other cross-validation proposed methods. These exponents were

then used to impute missing values. This increased variability in either the imputed values

or the selection of exponents used for imputation may lead to a more robust prediction

model which is better at predicting observations in the test set.

MI and the bootstrap for optimism-correction

For the bootstrapping algorithms (both the standard and 0.632 versions), I have proposed

that the ‘default’ BS-then-MI method should be used (Section6.9). This imputes the

full dataset using a training and test imputation model (Section2.5) to get training and

test imputed datasets which are used to estimate the apparent performance. A bootstrap

sample is then taken from the partially-observed dataset and imputed using a training

imputation model. A prediction model is then fitted to the M bootstrap training imputed

datasets. The subsequent steps differ depending on whether the standard or 0.632 varia-

tion is being used. For (i) the standard algorithm the bootstrap sample is imputed again

315



using a test imputation model. Each bootstrap prediction model fitted to the M bootstrap

training imputed datasets is then evaluated in the M bootstrap test imputed datasets in

order to estimate the bootstrap performance. The imputed test datasets, originally used

to estimate apparent performance, can be reused to estimate the test performance. For

(ii) the 0.632 algorithm, the partially-observed observations which were not selected into

the bootstrap sample are then imputed using a test imputation model. Each bootstrap

prediction model fitted to the M bootstrap training imputed datasets is then evaluated

in the M not-selected imputed datasets and used to estimate the test performance. More

thorough details are available in Section2.7.1.

The BS-then-MI method performed well across the majority of the simulation scenarios

considered and had performance comparable to MI-then-BS when the sample size was

large (nobs = 1000). Method MI-then-BS also had the advantage of data leakage. For

BS-then-MI and MI-then-BS methods, re-using the test imputed datasets (used to es-

timate apparent performance) and restricting them to a smaller dataset (either those in

the bootstrap sample to estimate the bootstrap performance for the standard algorithm or

the observations not selected into the bootstrap sample to estimate the test performance

for the 0.632 algorithm) is not recommended. This is perhaps due to reduced variability

of the imputed values (as more observations are used to fit the imputation model) than

if the bootstrap sample, or those who were not selected into the bootstrap sample, had

been imputed. This reduction in variability may be too great and may provide more op-

timistic estimates of the bootstrap performance for the standard bootstrap algorithm or

a more optimistic estimate of the test performance for the 0.632 version. The estimates

of performance post-imputing should not be ‘better’ than the performance estimated if

data were fully-observed. This is similar to the comparison of applying Rubin’s rules to

the predicted values or to performance estimates in Wood et al. (2015) [38]. Wood et al.

found that by applying Rubin’s rules to the predicted values (thus reducing the variance

of the predicted value), the estimates of performance became optimistic.

12.1.2 How are missing data handled in practice?

In addition to proposing methods to combine MI and internal validation, I reviewed how

researchers handle missing data in practice. The systematic review focused on a survival

setting in oncology (survival data was the initial focus of this PhD project) and assessed

how researchers conducted and reported analyses in the presence of missing data. This

covered both prediction and descriptive/exploratory settings. The review assessed the

handling of missing data, covariate selection, the assessment of the functional form and

the assessment of the proportional hazards assumption.

Although valid methods have been developed to handle missing data, simpler methods
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such as complete-case analysis remained popular. It can be very easy to unknowingly

conduct a complete-case analysis as it is the default approach to missing data in many

statistical programmes (such as R, Stata and SAS). In my experience of R and Stata, the

only indication of the application of a complete-case analysis is the reduced sample size

in the model summary. This default can lead to strong assumptions unintentionally being

made. A potential improvement to software could be a default message warning users that

a complete-case analysis has been used and stating how many observations were dropped

from the dataset.

Overall, the reporting and handling of missing data in observational research was found

to be poor. It became clear through the course of conducting the review that, while

guidelines were in place, adherence was poor. It is easy to make statements saying that

researchers should read guideline statements, improve the transparency of their research or

give more consideration to the handling of missing data. However, as shown in many other

systematic reviews [63,64,65,66] which range from observational studies to clinical trials

(involving studies published from 2001-2014) little progress has been made in the handling

of missing data. The complete-case analysis has remained the automatic default method.

This is despite methods such as MI being made more easily available in statistical software.

It is easy to say “do better!” but this has been said for a long time and as indicated from

numerous systematic reviews, nothing is getting better. To quote Altman (1994) [67] “We

need less research, better research, and research done for the right reasons”.

If publishers do not enforce the use of guidelines to improve reporting there is little re-

quirement for change by researchers in practice, not only for the handling of missing

data but also for the improved reporting and transparency of research. Publishers taking

recommended guidelines seriously is the best way to incentivise authors to improve the

transparency and quality of their research.

12.1.3 Training and validating a prediction model in practice

The recommended methods for cross-validation and the bootstrap algorithm (0.632 varia-

tion) were implemented using a real dataset - the Rotterdam breast cancer dataset (Chap-

ter10). This demonstrated that the methods could be not only implemented in practice

but also extended to a survival setting.

The work in this thesis has focused on handling missing data when validating a clinical

prediction model (Stage 2 from Section2.1). More research has been conducted for stage

1, which concerns the development of a model when missing data are present, than stages

2 and 3. Previous literature incorporating missing data with other analysis decisions such
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as covariate selection [36] or using FPs to assess functional forms and covariate selection

[21] are available. These papers have primarily focused on an inference setting where focus

is based on the bias of parameters and having one ‘finalised’ model from which to explore

associations between covariates and an outcome. In an inference setting, the entire dataset

would be imputed and a model developed in each of the M imputed datasets. These mod-

els would then be collapsed to get one overall model [21,36].

However, in a prediction setting there is no need to collapse the models into one overall

prediction model [38]. Instead, the M predictions models can be used to get a predicted

value for new observations, which can then be averaged using Rubin’s first rule. As Rubin’s

second rule is not used for this, multivariate normality is less important. The prognostic

setting can therefore avoid some of the difficulties that arise in the parameter estimation

setting, such as how to get an overall model when models in the M imputed datasets have

different covariates or functional forms selected.

Overall, MI can be used to handle missing values in a dataset which is being used to

develop a prediction model. Predicted values for new observations will come from a ‘final

model’ or algorithm which will consist of M prediction models. The procedure used to de-

velop these M prediction models will then be internally-validated using the recommended

methods for cross-validation or the optimism-corrected bootstrap.

Recommendations are now in place for stage 1 (model development), and now also stage 2

(model assessment). At this point, a researcher may wish to publish their prediction model

for others to use, for example in a journal. As previously seen in the systematic review in

Chapter11, reporting and transparency of studies are not always optimal. Specifically for

prediction models, the TRIPOD statement [7] can be used to guide researchers in clear

reporting. With regards to missing data, the TRIPOD statement recommends stating

how missing data are handled in the study (such as a complete-case analysis or imputa-

tion methods), stating the number of patients with missing data in the baseline table and

noting missing data to be a limitation. However, improvement to the TRIPOD statement

could be made by also requiring that researchers state any missing data assumptions they

have made. In addition, making an explicit statement requiring researchers to explain

how they combined their missing data methods with their internal validation algorithms

would be helpful for not only study reproducibility but also for assessing how optimistic

internal validation results may be.

The remaining difficulty now lies with stage 3 (Section2.1) which focuses on how to han-

dle missing values in new patients. This is not an issue for the ideal setting in which, by

definition, all future patients have fully-observed data, but is a concern for the pragmatic

setting (where we expect future observations to have missing data). As stated above, and
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in Section2.6, it is not currently possible to extract the training imputation model and

conduct an out-of-sample imputation outside of multivariate normal multiple imputation

in R or Stata. This makes it difficult to impute factor or non-normal continuous covariates

(a transformation could be considered for the continuous covariates to make them more

normally distributed but this is not generally advisable [14, p.74]).

Due to software limitations, stage 3 will be difficult to handle in practice. Current options

could involve:

� waiting until sufficient patients have accumulated within the patient population in

which new predictions are to be made. This decision is, however, not optimal in

healthcare situations in which real-time predictions are needed.

� if access is still available to the training data, the new patients could be ‘added’ to

the training dataset. A test imputation model could then be fitted to all of this data

to obtain imputed data for these new patients. These ‘fully-observed’ measurements

can then be fed into the prediction model. This may not always be appropriate,

depending on where the data come from (for example, would one do this if the new

individuals were from a different country than the training data?).

� Fletcher and Blume (2020) [46] and Hoogland et al. (2020) [47], previously discussed

in Section2.3, focused on stage 3 and suggested the use of submodels. Hoogland et

al. (2020) create many submodels of the original prediction model. These submodels

will range from containing only one covariate to containing all but one covariate. In

this way, for any situation involving missing values in covariates, there should be a

developed submodel which will only require the observed covariates of a new patient

to predict an outcome. Fletcher and Blume use pattern mixture modelling which

fits a submodel using data from a specific missing data pattern. Submodels were not

explored in this thesis so their performance when combined with internal validation

algorithms is currently unknown.

� Nijman et al. (2021) [68] have most recently investigated the use of MI for real-time

imputation of missing values in newly observed patients. Appendix A details how

Nijman et al. used MI in R to impute new patients and Appendix D provides sample

code.
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12.1.4 What does this thesis contribute to the field?

This thesis has extended the existing literature in several ways:

� I conducted a systematic review assessing the handling of missing data in a survival

setting. The review demonstrated poor adherence to published guidelines. I also

provided a summary of various issues faced in a statistical analysis and provided

references to relevant published literature to help researchers.

� I investigated how to combine MI with internal validation algorithms. This included

proposing several different methods for both cross-validation and the optimism-

corrected bootstrap algorithm.

� I have recommended that two imputation models should be used (training - includes

the outcome; test - may include the outcome if an ideal setting is of interest). These

two models should be used even if MI-then-Validate is chosen by the researcher

(where traditionally the data are imputed using one imputation model).

� I have provided recommendations on the best way to combine MI with cross-validation

(impute each fold separately) and with the bootstrap (BS-then-MI ). Both recom-

mendations belong to the class Validate-then-MI which is also supported by previous

published literature [40,44]

� I linked the concept of ‘data leakage’, which is commonly used in the prediction

setting, to the concept of missing data and the imputation of missing values.

12.2 Limitations

The majority of this thesis focused on extensive simulation studies to evaluate the various

proposed methods. However, despite the large number of data-generating mechanisms

used, it is not possible to cover all potential settings that could be faced in practice.

Further, because of the large number of methods investigated, the data-generating mecha-

nisms I was able to explore were limited. I was able to identify the methods that are most

promising out of a large range of potential methods. However, simulation studies involv-

ing a range of more complex, realistic scenarios are needed to evaluate how the methods

perform and where they can potentially perform badly.

I coded the simulation studies, including the data-generation and coding of methods, by

myself which could lead to undetected coding errors. However, the code for the com-

bination of MI with the standard bootstrap optimism-correction algorithm were double-

checked by a fellow PhD student, Patrick Rockenschaub, who I collaborated with regarding

internal-validation in the presence of missing data [69]. In addition, there is no one way

to use a simulation study to investigate particular methods. The same investigation by
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another researcher could have had a different data-generating structure than those con-

sidered in this thesis [70] i.e. another researcher may have made different choices than the

ones I made in this thesis.

The missing data scenarios evaluated in this thesis assumed data are either MCAR or

MAR - these are scenarios in which MI can perform well. Robustness of the proposed

methods will depend to some extent on these assumptions (i.e. missing not at random),

but the extent is unknown. In addition, due to the nature of simulated data, I was able to

choose which covariates should be included in the imputation model to give the best im-

puted values. In practice, an imputation model must be specified by the researcher. How

well the method will perform when using a misspecified imputation model has not been

tested. However, this is the nature of the pragmatic setting and cannot be avoided. Note

that the test imputation model excluding the outcome is misspecified and uncongenial to

the analysis procedure, though this concept was developed for the setting of parameter

estimation and it is not clear that this matters in the prediction context. In referencing

misspecification here, I refer to other covariates which should have been included but were

not, or other aspects of model misspecification (for example: transformations, interac-

tions).

In some situations, the complete-case analysis performed well compared to the proposed

imputation models (such as MCAR or covariate-dependent MAR scenarios when selecting

fractional polynomials, Section9.3). The proposed methods are recommended for scenar-

ios in which complete-case analysis is known to perform poorly (or where a prediction

will be made for someone with partially observed data). However, given that in practice

we will never truly know the underlying mechanism behind missing data, the decision of

when to use MI is left to the researcher.

A previously discussed limitation concerns software issues. Throughout the simulation

study analysis and initial write-up stages of my PhD, it was not possible to extract the

parameters of imputation models from the ‘mice’ package in R [49], as discussed in Section

2.6. This meant that not all potential methods could be evaluated in this thesis. This

issue was previously discussed with Patrick Rockenschaub (PhD student/a collaborator)

when discussing how to combine MI and the optimism-corrected bootstrap for his dataset

of interest. Patrick took recommended steps from Stev Van Buuren on extracting impu-

tation parameters and produced a rough draft of code ongithub[71]. As of 2021, Patrick

has amended this code and it is now a feature of the ‘mice’ package to allow out-of-sample

MI.

For cross-validation, I investigated combining MI with K-fold cross-validation. In practice,

it is recommended to use repeatedK-fold cross-validation [23, p.301]. This involves repeat-
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ing the cross-validation procedure multiple times but is more computationally-intensive,

especially when combined with MI. A method which works well for K-fold cross-validation

should translate well, in terms of performance, when repeating cross-validation multiple

times. Additionally, another computationally taxing issue, involving both the bootstrap-

ping and cross-validation algorithms, is estimating confidence intervals for the performance

estimate. In this thesis, I focused on proposing methods to obtain an overall point esti-

mate of performance. To estimate confidence intervals, bootstrapping can be used [72] and

the proposed methods can be repeated within each bootstrap sample. Depending on the

number of bootstrap samples to be used to estimate the confidence interval, in addition

to the number of imputed datasets used when multiply imputing, and either the number

of bootstrap samples for optimism-correction or the number of times cross-validation will

be repeated could all lead to long run-times on computers and difficult to use in practice.

Finally, when developing a prediction model an appropriate sample size is required [25,

26,28]. This in turn is also important for internal validation algorithms, in particular the

recommended cross-validation method A, which involves imputing each fold separately. In

Chapters4and5, method A (impute each fold separately) was “stress” tested when the

sample size was 100. As 10-folds were used, each fold contained 10 observations, which

initially lead to errors when, for example, 9 out of the 10 observations in a fold contained

missing data. A sufficiently large sample size is required to ensure there are sufficient

fully-observed individuals in each fold to use MI.

12.3 Future extensions

The finding presented in this thesis suggest a number of avenues for future research. Dur-

ing my investigation into assessing which methods performed well using simulation studies,

it was not possible to evaluate all methods due to software limitations. The MICE pack-

age in R [49] now allows a previously fitted imputation model to be fitted to new data.

Methods which previously could not be examined (such as Section2.6, Method I) can

now be evaluated and compared to the methods examined in this thesis. Future work can

involve a comparison of the currently recommended methods with methods which involve

using the imputation model fitted to the training data to impute missing data in the test

data. Due to the number of methods considered in this thesis, the simulation studies I

used involved simple analysis scenarios with only two covariates. Future work can involve

evaluating the methods in more realistic and complex situations.

Chapter9showed that the lack of an origin-shift post-imputation could lead to large

estimates of the MSE performance. This was due to small values in covariate X1 post-

imputation. The application of an origin-shift transformation helped to improve the fit of

the prediction models and produced smaller values of the MSE. Currently the application
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of an origin-shift transformation is manual when using fractional polynomials i.e. it must

be considered and applied by the user. Arguably, the application of an origin-shift trans-

formation to imputed data could be considered as a tuning parameter concerning the fit of

a prediction model. Future work could involve investigating the tuning of an origin-shift

parameter post-imputation. This would involve investigating the values of δ (equation

7.1, Section7.6) which are used to shift the origin and whether the minimum and maxi-

mum values of the covariate should be allowed to change or remain fixed across imputed

datasets. In addition, further exploration concerning the influence of large imputed val-

ues in the fitted prediction models is required. This should also involve assessing how to

reduce the influence of these large values, for example, by applying a transformation that

will rescale the covariate.

When the proposed methods were extended using fractional polynomials to handle co-

variate and functional form selection, the methods were restricted to using fractional

polynomials of degree 1 [21]. Additional future work could involve extending the proposed

methods to handle fractional polynomials of degree 2 or to handle time-varying effects

in a survival setting (by adapting the MFP Time (MFPT) algorithm to handle MI and

internal validation).

For the pragmatic setting in this thesis, I investigated how to combine internal validation

with MI. Another potential method which could work well is the use of partial prediction

models (or submodels) [38,47]. This has a resemblance to the missing indicator method in

that each missing data pattern will have a separate model. An interesting future project

could involve comparing the methods provided in this thesis with methods combining in-

ternal validation with partial prediction models.

Another direct extension of the work conducted in this thesis would be to investigate the

best way to impute missing values when using all available observations to develop the

M prediction models for use in future patients (Stage 1, Section2.1). I have previously

suggested that method A has performed well across many of the data-generating scenarios

due to increased variability in either the exponent selection via ABB (for fractional poly-

nomials) or in the imputed values themselves. If this does lead to a more robust prediction

model when internally-validating, it is worth considering whether to impute the dataset

in a similar manner when fitting the final prediction model for future use.

Future sensitivity analyses could also be investigated to assess how well the methods will

perform when the MCAR or MAR assumptions are violated.

In the Rotterdam demonstration chapter (Chapter10), I noted that the sample size calcu-

lations for training a prediction model were based on having fully-observed data (Section
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10.4.1). In clinical trials, sample size calculations can be adjusted for issues such as loss to

follow-up. Assuming MCAR, the estimated sample size is multiplied by 1
1−p where p is the

proportion of patients who will not contribute to the analysis (due to loss to follow-up), if

a complete-case analysis is to be used. Extensions to the work conducted by Riley et al.

[25,26,28] on the minimum sample size for developing a clinical prediction model could in-

clude accounting for missing data. For example, would the loss to follow-up adjustment be

sufficient? An additional extension could also account for the internal validation algorithm

which will be used. An example for why this may be necessary was discussed in the limi-

tations, Section12.2. I noted that a minimum sample size within each fold was required

for CV-then-MI method A (imputing each fold separately) when missing data are present.

As noted in Chapter11(the systematic review chapter) and Section12.1.2above, adher-

ence to guidelines and the handling of missing data were found to be poor in practice.

An interesting project, outside of methodological work, could involve discussions with

journals surrounding recommended minimum requirements for publication of applied re-

search. In addition, specifically with regards to missing data, improvements could be

made in statistical software such as R, Stata and SAS. This could involve outputting a

warning when fitting a model after applying a complete-case analysis. The warning could

involve the sample size before and after using a complete-case analysis and stating the as-

sumptions that are being made from applying this method. For example: “Complete-case

analysis assumes that missingness is independent of <outcome variable> given <list

of covariates>.”

12.4 Conclusions

Overall, in this thesis I have investigated how to best combine MI with internal validation

algorithms. I have concluded that Validate-then-MI is the appropriate way to combine

the handling of missing data with cross-validation or bootstrapping. It avoids data leak-

age and therefore removes any optimism in performance estimates when imputing missing

values.

It is my overall hope that the work in this thesis will provide useful guidance to researchers

who are looking to assess the performance of a prediction model when values are missing.

In addition, I hope that it will act as a guide to any future guidelines put in place for the

handling of missing data in predictive research when validating a prediction model.
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Appendices

A Chapter1: The Introduction

A.1 Multivariable FPs (MFP): Selecting a FP for multiple covariates

For P covariates in a model, the following algorithm states the selection procedure for FPs.

All significance tests are from likelihood ratio tests with degrees of freedom dependent on

the degree of the models being compared.

1.Choose nominal p-values for αβ, αE where αβ controls whether a covariate is in-

cluded in the model and αE selects the FP function to be fitted for a continuous

covariate.

2.Choose maximum degree D for fractional polynomials.

3.The full linear model is fitted with linear predictor: β0+
∑P

p=1 βpXp. The covariates

are considered in order of significance from most significant to least: X(1), . . . , X(P )

4.Set cycle counter c = 0 and variable counter within each cycle j = 0

5.For categorical/binary Xj : The joint significance of its dummy variable(s) is

tested at αβ significance level. If significant retain in the model, otherwise remove

it.

6.For continuous Xj the selection procedure is as follows while all other variables,

X−j , to be included in the model are adjusted for:

(a)Test the best FP2 model against null model for Xj and tested at αβ level. If

significant, keep.

(b)Apply Steps (3) - (5) of the FP algorithm. For FP algorithm step (3) α = αβ

and for step (4) and (5) α = αE . Test the best FP2 model against linear model

and against FP1 model with significance αE .

For subsequent covariates being considered, X>j , the current form of Xj is kept.

7.Including or dropping Xj applies until it is reconsidered in cycle c+ 1.

8.Increment covariate counter, + + j. If j ≤ P return to step 5/6 to process next

variable until iterated through all covariates i.e. j = P , then reset j = 0 and

proceed to step (9).

9.Increment cycle counter + + c. The cth cycle is complete.

(a)If c = 1 return to step (5) - (8).
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(b)If c 6= maximum number of cycles (typically 5) and c > 1, check if included

covariates and chosen FP functions have changed from cycle c − 1 to current

cycle c.

i.If they have changed return to step (5) - (8)

ii.If they have not, stop.

(c)If reached the maximum number of cycles, stop and report that the algorithm

has not converged and report current model.
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B Chapter3: The simulation set-up

Adjusting the variance to allow for varying R-squared

For Y = β0 + β1X1 + β2X2 + ε, the variance of Y is:

Var(Y ) = β21Var(X1) + β22Var(X2) + 2β1β2Cov(X1, X2) + Var(ε)

= β21Var(X1) + β22Var(X2) + 2β1β2Cov(X1, X2) + σ2

= ζ + σ2 (B0)

See (B0). We know that R2 = 1− σ2

Var(Y ) and multiplying through by Var(Y ) we get

R2Var(Y ) = Var(Y )− σ2

R2(ζ + σ2) = ζ

σ2R2 = ζ −R2ζ

σ2 =
ζ −R2ζ

R2

=⇒ σ2 = ζ
1−R2

R2

where ζ = β21Var(X1) + β22Var(X2) + 2β1β2Cov(X1, X2).
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C Chapter6: Write-up of the simulations results when the

outcome is binary

In Chapter3I described the design of a simulation study to investigate the performance

of various methods which combined MI with an internal validation method. Results for

combining MI with cross-validation were then presented and discussed in Chapter4. Re-

sults for combining MI with the bootstrap validation algorithms were then presented and

discussed in Chapter6for a continuous outcome scenario.

C.1 Introduction

This Appendix chapter will present the results from combining MI with the bootstrap

optimism-corrected algorithm for the binary outcome scenario. As investigated in the pre-

vious chapter, the impact of data leakage from the imputation process will be assessed, as

will the reuse of imputed datasets. The output from the simulation study for the binary

outcome will be presented and, due to the quantity of results produced, all graphs will

be available in the supplementary plot chapter (SectionS4), in addition to the graphs

presented in this chapter.

The bootstrap methods which will be evaluated in this chapter were fully described in

Section2.7and were re-summarised in Table6.1. Recall that the methods involved either

imputing first MI-then-BS ) or taking a bootstrap sample first (BS-then-MI ). Variations of

these methods include reusing previously imputed datasets, re-imputing training imputed

datasets or using a fixed bootstrap sample.

In the following section, I will present results for all methods in the simulation study when

the AUC is the performance measure of interest. These results will include comparing

the estimated AUC from each method with the AUC estimated using the 0.632 algorithm

when data are fully-observed. In addition, the methods’ estimated AUCs will also be

compared with a ‘target value’ estimated from a larger validation set (details available in

Section3.6). The use of an increased number of imputed datasets will be investigated, as

will the impact of an increased percentage of missing values. This analysis will then be

repeated for the Brier score and calibration intercept and slope. Finally, I will compare

data leakage through the imputation process for the BS-then-M I andMI-then-BS methods

before presenting a discussion of the results.

Results from the simulation study

Similarly to the simulation study that combined MI and cross-validation, several factors

were varied for the binary outcome setting (including sample size and dependence of miss-

ingness). The same simulated data used when evaluating the cross-validation techniques
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were used here to evaluate the bootstrap methods. The summary information on the out-

come and performance measures for the fully-observed 2000 repetitions can be found in

Table5.1.

Recall from section3.5the notation for the averaged estimate of the performance in the

fully-observed data (Perfobs) and the larger validation set (Perftarget) where Perf denotes

the AUC, Brier score, Calibration intercept and slope (previously detailed in Section1.10).

In addition, Perfprag,imp denotes the pragmatic performance of of a proposed method and

Perfideal,imp denotes the ideal performance where imp denotes various methods such as

the complete-case analysis (CC), BS-then-MI (BS-MI) or MI-then-BS (MI-BS) methods.

The results will be presented for the 0.632 and standard algorithms in a similar manner

as Chapter6. For a quick reminder on how results will be compared, a brief overview of

the analysis comparing methods BS-then-MI and MI-then-BS impute once is available in

Section6.2when the performance measure of interest is the MSE.
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C.2 Detailed results for the AUC performance of the 0.632 algorithm

A higher AUC estimate generally suggests the model is performing well. Therefore, if a

method overestimates AUCobs (the AUC estimate when data are fully-observed) then the

method is considered to be over-optimistic i.e. the model performs better when data have

been imputed than if the data had not been missing to begin with.

C.2.1 Comparing results to the AUC estimate when data are fully-observed

MCAR and covariate-dependent MAR

FigureC1presents results for the various methods to handle missing data alongside boot-

strap validation when compared to the AUC estimated when data are fully-observed

(AUCobs) i.e. AUCimp − AUCobs. The results presented are for the scenario when data

are MCAR (top row, ψ2 = 0) or covariate-dependent MAR (ψ2 > 0).

When data are MCAR or covariate-dependent MAR, the AUC estimate from the complete-

case analysis tends to underestimate AUCobs (AUCCC −AUCobs < 0). The magnitude of

this underestimation decreases with increasing sample size. With increasing strength of

missingness, the magnitude of the underestimation decreases as can be seen in FigureC1.

When data are MCAR and sample size is 100, the magntiude of the difference is approxi-

mately 0.003. When data are weak covariate-dependent MAR this increases to 0.005 and

the magnitude increases further to 0.013 when data are strong covariate-dependent MAR.

The pragmatic performance of all imputation based methods for all sample sizes when

data are MCAR or covariate-dependent MAR underestimates AUCobs with a magnitude

of approximately 0.01 (|AUCprag,imp − AUCobs| ≈ 0.01). When the sample size is 100,

method BS-then-MI has the largest magnitude of underestimation amongst the imputa-

tion methods while method MI-then-BS impute once has the smallest. The other imputa-

tion methods perform similarly when compared to AUCobs. With increasing sample size

all methods tend to perform similarly.

For ideal performance, when data are MCAR or covariate-dependent MAR methods and

the sample size is 100 BS-then-MI, MI-then-BS, MI-then-BS fixed BS and MI-then-BS re-

impute underestimate AUCobs. Method BS-then-MI underestimates AUCobs more than

the other methods. Methods BS-then-MI reuse imps, MI-then-BS reuse (with or without

fixed bootstrap samples) and MI-then-BS impute once overestimate the fully-observed

estimate of the AUC, although they tend to underestimate it when sample size increases

to 1000. With increasing sample size the magnitude of the under- or overestimation for

all methods decreases. For a sample size of 1000 the methods all perform similarly and

approximate AUCobs well.
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Figure C1: The difference AUCimp - AUCobs when data are MCAR or covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of AUCimp - AUCobs.

CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC2presents results for AUC imp−AUCobs for the scenario when data are outcome-

dependent or outcome- and covariate-dependent MAR.

For all sample sizes and MAR scenarios, the complete-case analysis AUC estimate under-

estimates AUCobs. When data are outcome-dependent MAR and sample size is 100, the

magnitude of the underestimation (|AUCCC −AUCobs|) is approximately 0.0025 and this

decreases further with increasing sample size. For weak outcome- and covariate-dependent

MAR the magnitude is approximately 0.02 and this increases to 0.0375 when data are weak

outcome-dependent and strong covariate-dependent MAR.

The pragmatic performance of all methods underestimates the estimate of the AUC when

data are fully-observed. Similarly to the MCAR and covariate-dependent MAR scenarios,

method BS-then-MI tends to underestimate the fully-observed AUC estimate the most

while method MI-then-BS impute once underestimates it the least. With increasing sam-

ple size the methods tend to perform similarly when compared to AUCobs, with method

MI-then-BS impute once still having the smallest magnitude of the difference.

For ideal performance when sample size is 100 and data are outcome-dependent MAR,

methods BS-then-MI, MI-then-BS, MI-then-BS fixed BS and MI-then-BS re-impute un-

derestimate the fully-observed AUC estimate. Similarly to the MCAR and covariate-

dependent MAR scenarios, methods BS-then-MI reuse imps, MI-then-BS reuse test imps

(with or without fixed bootstrap samples) and MI-then-BS impute once overestimate the

fully-observed AUC. However, for the outcome- and covariate-dependent MAR when sam-

ple size is 100, these methods approximate the fully-observed estimate of the AUC well.

With increasing sample size all methods tend to perform similarly and underestimate

AUCobs.
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Figure C2: The difference AUCimp - AUCobs when data are outcome-dependent MAR for M = 5

when 25% of values are missing in X1. The error bars summarise results from the 2000 repetitions

and the limits represent the Monte Carlo 95% confidence interval of AUCimp - AUCobs. CC

(complete-case); methods are described in Section2.7or Table6.1.
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C.2.2 Increasing the number of imputed datasets from 5 to 25

FigureC3displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when

data are outcome-dependent MAR but are representative of the results when data are

MCAR or covariate-dependent MAR (available in Supplementary PlotsS4.4.3). Due to

increased computation time when using 25 imputed datasets the comparison a reduced

set of methods were assessed. Results are available for methods BS-then-MI, MI-then-BS

and MI-then-BS impute once which are based on 1000 repetitions.

The estimates of the AUC for the various methods when using 25 imputed datasets are

similar to the performance when only 5 imputed datasets are used.
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Figure C3: The difference AUCimp - AUCobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of AUCimp - AUCobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.2.3 Increasing the percentage of missingness to 40%

FigureC4displays the results for comparing how the various methods handle an increased

percentage of missing values in X1 from 25% to 40%. The graph presents results for the

scenario when data are weak outcome- and covariate-dependent MAR but is representa-

tive of all missing data scenarios, additional graphs for ideal and pragmatic performance

comparing the percentage of missing values increasing from 25% to 40% can be found in

Supplementary Plots SectionS4.4.2.

When data are MCAR or outcome-dependent MAR, the complete-case analysis estimate

of the AUC when 40% of X1 values are missing performs similarly to the complete-case

analysis when 25% of values are missing. For all other missing scenarios, the complete-case

analysis with 40% missing tends to underestimate AUCobs more than the complete-case

analysis when 25% of values are missing (|AUCCC,25%−AUCobs| < |AUCCC,40%−AUCobs|).
Similarly, the pragmatic performance of all methods when 40% of values are missing tends

to underestimate AUCobs more than the methods do when 25% of values are missing

(|AUCprag,imp,25% − AUCobs| < |AUCprag,imp,40% − AUCobs|) when data are MCAR, or

outcome- or covariate-dependent MAR.

For ideal performance, the increased percentage of missingness has caused a slight in-

crease in the magnitude of over- or underestimation (|AUCideal,imp,25% − AUCobs| <
|AUCideal,imp,40%−AUCobs|), this increase is at most 0.008. Method BS-then-MI tends to

have the largest increase in magnitude with increased percentage of missingness across all

methods. The Monte Carlo 95% confidence intervals are much larger when the percent-

age of missingness is 40% and the intervals tend to overlap or encompass the confidence

intervals when the percentage of missingness is 25%.
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Figure C4: Comparing the impact of increasing the percentage of missingness on the difference

AUCimp - AUCobs when data are outcome- and covariate-dependent MAR when M = 5. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of AUCimp - AUCobs. Red denotes AUCimp - AUCobs when 25% of X1

values are missing and blue denotes AUCimp - AUCobs when 40% of X1 values are missing. The

top row presents the results for pragmatic performance and the bottom row presents results for

ideal performance. CC (complete-case); methods are described in Section2.7or Table6.1.
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C.2.4 Comparing results to the target performance

As similarly detailed in the comparison of the bootstrap results for a continuous outcome

(Section6.4.4), the ideal performance of the bootstrap imputation methods and AUC obs

were compared to the ideal target AUC estimate. This is estimated by applying a pre-

diction model, developed using all data, to the fully-observed data in the larger test set

(AUCtarget,obs). The pragmatic performance of the imputation methods is compared to

applying a prediction model, developed using all data, to the imputed datasets of the

larger test set (AUCtarget,imputed). The complete-case estimate of the AUC is compared to

applying a prediction model to the observed cases of the larger test set (AUCtarget,CC).

MCAR and covariate-dependent MAR

FigureC5presents results for comparing AUC estimates to their respective ideal, prag-

matic or complete-case target AUC estimate when data are MCAR or covariate-dependent

MAR. All methods perform well when compared to their target estimate with a magnitude

less than 0.005 (|AUCimp −AUCtarget| < 0.005 ).

When data are MCAR, the complete-case analysis estimate of the AUC tends to overes-

timate the target complete-case estimate (AUCCC − AUCtarget,CC < 0). When data are

covariate-dependent MAR and the sample size is 100, the complete-case analysis approxi-

mates the target complete-case estimate of the AUC well but with increasing sample size,

it tends to overestimation.

When data are covariate-dependent MAR and sample size is 100, the pragmatic perfor-

mance of the various methods tends to underestimate the target pragmatic estimate of

the AUC (AUCprag,imp−AUCtarget,imputed < 0). Method BS-then-MI underestimates the

target estimate the most and method MI-then-BS impute once overestimates it (i.e. be-

comes over-optimistic). With increasing sample size the methods perform similarly. When

data are weak covariate-dependent MAR and sample size is 300 or 1000, all imputation

methods overestimate the target AUC estimate (i.e. become over-optimistic). Method

BS-then-MI has the smallest magnitude of overestimation when compared to the target

AUC and its comparison for ideal performance overlaps with zero when sample size is 300.

348



CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

Nobs=100
CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 
 

Nobs=300
CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

Nobs=1000

2=0

CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

2=
1
20

CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

CC BS first Impute first

CCFull

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.010

−0.005

0.000

0.005

0.010

 

 

CC
Ideal
Pragmatic

2=
1
10

MCAR and covariate−dependent MAR

0.632 bootstrap algorithm

D
iff

er
en

ce
 b

et
w

ee
n 

im
pu

te
d 

an
d 

la
rg

er
 te

st
 s

et
 A

U
C

Figure C5: The difference AUCimp - AUCtarget when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of AUCimp

- AUCtarget. CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC6presents results for comparing AUC estimates to their respective ideal, prag-

matic or complete-case target AUC estimate when data are outcome-dependent or outcome-

and covariate-dependent MAR. Similarly to the MCAR and covariate-dependent MAR

scenarios, for all sample sizes the methods perform well when compared to their target es-

timate with a magnitude of the difference in AUCs less than 0.01 (|AUCimp−AUCtarget| <
0.01 ).

The complete-case analysis tends to overestimate the target complete-case estimate of the

AUC for the various outcome-dependent MAR scenarios. With increasing sample size the

magnitude of the overestimation tends to decrease and is less than 0.0025 for sample size

of 1000 (|AUCCC −AUCtarget,CC | < 0.0025).

When data are outcome-dependent MAR, the pragmatic performance of method BS-

then-MI tends to underestimate AUCtarget,imputed while the other methods overestimate

AUCtarget,imputed (i.e. they are over-optimistic); all methods have a similar magnitude

when compared to AUCtarget,imputed (|AUCprag,imp − AUCtarget,imputed|). When data are

weak outcome- and covariate-dependent MAR and sample size is 100 method BS-then-MI

underestimates AUCtarget,imputed with a smaller magnitude than the other imputations

which overestimate AUCtarget,imputed. Method MI-then-BS impute once overestimates

AUCtarget,imputed and has the largest magnitude across all methods. With increased sam-

ple size all methods tend to overestimate AUCtarget,imputed except method BS-then-MI

which approximates AUCtarget,imputed well. When data are weak outcome-dependent and

strong covariate-dependent MAR, all methods tend to underestimate AUCtarget,imputed, ex-

cept for method MI-then-BS impute once which overestimates (i.e. it is over-optimistic).

Method BS-then-MI underestimates AUCtarget,imputed more than the other methods. With

increasing sample size all methods tend to perform similarly.

The ideal performance of the methods subject to the most amount of data leakage tend

to overestimate AUCtarget,obs (methods BS-then-MI reuse, MI-then-BS reuse test imps

with or without fixed BS, MI-then-BS impute once). The ideal performance of the other

methods tends to underestimate AUCtarget,obs. With increasing sample size, the magnitude

of the difference decreases (|AUCideal,imp − AUCtarget,obs| −→ 0). With increasing sample

size, all methods tend to perform similarly.
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Figure C6: The difference AUCimp - AUCtarget when data are outcome-dependent MAR forM =

5 when 25% of values are missing in X1. The error bars summarise results from the 2000 repetitions

and the limits represent the Monte Carlo 95% confidence interval of AUCimp - AUCtarget. CC

(complete-case); methods are described in Section2.7or Table6.1.
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C.3 Detailed results for the Brier score performance of the 0.632 algo-

rithm

A lower Brier score estimate generally suggests the model is performing well. Therefore,

if a method underestimates the Brier score estimated when data are fully-observed the

method is considered to be over-optimistic i.e. the model performs better when data have

been imputed than if the data had not been missing to begin with.

C.3.1 Comparing results to the Brier score estimate when data are fully-

observed

MCAR and covariate-dependent MAR

FigureC7presents results for the Brier score when data are MCAR or covariate-dependent

MAR. The Brier score estimates from the various missing data methods are compared to

the Brier score estimated when data are fully-observed (Brierimp − Brierobs).

When data are MCAR and the sample size is 100, the complete-case analysis estimate

of the Brier score tends to overestimate Brierobs with a magnitude less than 0.0025

(|BrierCC − Brierobs| < 0.0025). With increasing sample size the magnitude of the over-

estimation decreases further. For covariate-dependent MAR, the complete-case analysis

tends to underestimate Brierobs with a magnitude of 0.005 for weak covariate-dependent

MAR and a magnitude of approximately 0.01 for strong covariate-dependent MAR i.e.

the Brier score estimate becomes over-optimistic.

For all sample sizes when data are MCAR or covariate-dependent MAR, the pragmatic

performance of all imputation methods overestimates Brierobs (Brierprag,imp−Brierobs > 0)

with a magntiude less than or approximately equal to 0.005. When sample size is 100,

method BS-then-MI has the largest magnitude of overestimating Brierobs. With increas-

ing sample size when data are MCAR or covariate-dependent MAR, the methods have

similar performance to each other when compared with Brierobs. The exception to the

overestimation of Brierobs is the pragmatic performance of method MI-then-BS impute

once. This method underestimates the fully-observed with an estimate of approximately

-0.069 and therefore does not fit the scale of FigureC7.

The ideal performance of methods BS-then-MI, MI-then-BS with or without fixed boot-

strap samples and MI-then-BS re-impute overestimate Brierobs. Methods BS-then-MI

reuse imps, MI-then-BS reuse test imps and MI-then-BS impute once underestimate

Brierobs. For a sample size of 100, method BS-then-MI has the largest magnitude of

overestimation but with increasing sample size it performs similarly to the other methods.

Similarly to the pragmatic performance, the ideal performance of method MI-then-BS

impute once underestimates Brierobs with a magnitude greater than 0.06.

352



CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

Nobs=100
CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 
 

Nobs=300
CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

Nobs=1000

2=0

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

2=
1
20

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

CC
Ideal
Pragmatic

2=
1
10

MCAR and covariate−dependent MAR

0.632 bootstrap algorithm

D
iff

er
en

ce
 b

et
w

ee
n 

im
pu

te
d 

an
d 

fu
lly

−o
bs

er
ve

d 
Br

ie
r S

co
re

Figure C7: The difference Brierimp - Brierobs when data are MCAR or covariate-dependent MAR

for M = 5 when 25% of values are missing in X1. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of Brierimp - Brierobs.

CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC8presents the results Brier imp−Brierobs for the scenario when data are outcome-

dependent MAR or outcome- and covariate-dependent MAR.

The complete-case analysis underestimates Brierobs for all sample sizes when data are

outcome-dependent or outcome- and covariate-dependent MAR. The magnitude of this

underestimation has increased to being greater than 0.01 whereas previously, when data

were MCAR or covariate-dependent MAR, the magnitude of underestimation was less

than 0.01.

The pragmatic performance of all methods (except MI-then-BS impute once) overesti-

mates Brierobs. For a sample size of 100, method BS-then-MI has the largest magnitude

of overestimation (approximately 0.005) and with increasing sample size it performs simi-

larly to the other imputation methods. The exception is method MI-then-BS impute once

which underestimates Brierobs and does not fit onto the scale of the Figure.

Similarly again, for the ideal performance methods BS-then-MI, MI-then-BS (with or

without fixed bootstrap samples) and MI-then-BS re-impute tend to overestimate Brierobs

(Brierideal,imp−Brierobs > 0). The other methods which involve reusing imputed datasets

or MI-then-BS impute once tend to underestimate Brierobs (Brierideal,imp − Brierobs < 0).

Method BS-then-MI tends to have the largest magnitude of the difference (|Brierideal,imp−
Brierobs|) but with increasing sample size all methods perform similarly with a magnitude

less than 0.005 (|Brierimp − Brierobs| < 0.005).
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Figure C8: The difference Brierimp - Brierobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brierimp - Brierobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.3.2 Increasing the number of imputed datasets from 5 to 25

FigureC9displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when

data are outcome-dependent MAR but are representative of the results when data are

MCAR or covariate-dependent MAR (available in Supplementary PlotsS4.5.3). Due to

increased computation time when using 25 imputed datasets the comparison a reduced

set of methods were assessed. Results are available for methods BS-then-MI, MI-then-BS

and MI-then-BS impute once which are based on 1000 repetitions.

The estimates of the Brier score perform similarly in relation to Brierobs, for all methods

regardless of whether 5 or 25 imputed datasets are used.
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Figure C9: The difference Brierimp - Brierobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brierimp - Brierobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.3.3 Increasing the percentage of missingness to 40%

FigureC10displays the results for comparing how the various methods handle an increased

percentage of missing values in X1 from 25% to 40%. The graph presents results for the

scenario when data are weak outcome- and covariate-dependent MAR but are representa-

tive of all missing data scenarios, additional graphs for ideal and pragmatic performance

comparing the percentage of missing values increasing from 25% to 40% can be found in

Supplementary Plots SectionS4.2.3.

For the complete-case analysis when data are MCAR the estimate of the Brier score when

40% of X1 values are missing performs similarly to the estimate of the Brier score when

25% of X1 values are missing. For all other missing data scenarios, the larger percentage

of missingness tends to underestimate Brierobs more than the estimate of the Brier score

when 25% of X1 values are missing (BrierCC,25% − Brierobs < BrierCC,40% − Brierobs).

For pragmatic performance, the estimate of the Brier score when 40% of X1 values tends

to overestimate Brierobs more than the estimate of the Brier score when 25% of X1 values

are missing. There is also an increase in the variability across the 2000 repetitions for the

40% missing case when compared to 25% of values missing in X1.

For ideal performance when data are MCAR or covariate-dependent MAR, the magnitude

of the difference between the Brier score when 40% of X1 and Brierobs tends to be similar

or greater than the magnitude for 25% of X1 values being missing (|Brierideal,imp,25% −
Brierobs| ≤ |Brierideal,imp,40%−Brierobs|). In general, when data are outcome-dependent or

outcome- and covariate-dependent MAR the magnitude of the difference between the Brier

score estimated when 40% of values are missing and Brierobs is similar to or greater than

the Brier estimate comparison when 25% of the values are missing (|Brierideal,imp,25% −
Brierobs| ≤ |Brierideal,imp,40%−Brierobs|). The Monte Carlo 95% confidence intervals when

40% of values are missing are wider and tend to encompass or overlap the confidence

intervals when 25% of values are missing. The exception is method BS-then-MI whose

confidence intervals do not overlap for the majority of scenarios when sample size is 300.

358



CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

Nobs=300
CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.02

−0.01

0.00

0.01

 

 

Nobs=1000

Prag

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.0050

−0.0025

0.0000

0.0025

0.0050

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.0050

−0.0025

0.0000

0.0025

0.0050

 

 

25%
40%

Ideal

Weak Outcome− and covariate−dependent MAR

The 0.632 bootstrap algorithm

D
iff

er
en

ce
 b

et
w

ee
n 

im
pu

te
d 

an
d 

fu
lly

−o
bs

er
ve

d 
Br

ie
r S

co
re

Figure C10: Comparing the impact of increasing the percentage of missingness on the difference

Brierimp - Brierobs when data are outcome- and covariate-dependent MAR when M = 5. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Brierimp - Brierobs. Red denotes Brierimp - Brierobs when 25% of X1

values are missing and blue denotes Brierimp - Brierobs when 40% of X1 values are missing. The

top row presents the results for pragmatic performance and the bottom row presents results for

ideal performance. CC (complete-case); methods are described in Section2.7or Table6.1.
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C.3.4 Comparing results to the target performance

As similarly detailed in the comparison of the bootstrap results for a continuous outcome

(Section6.4.4), the ideal performance of the bootstrap imputation methods and Brier obs

were compared to the ideal target Brier score estimate. This is estimated by applying a

prediction model, developed using all data, to the fully-observed data in the larger test set

(Briertarget,obs). The pragmatic performance of the imputation methods is compared to

applying a prediction model, developed using all data, to the imputed datasets of the larger

test set (Briertarget,imputed). The complete-case estimate of the Brier score is compared to

applying a prediction model to the observed cases of the larger test set (Briertarget,CC).

MCAR and covariate-dependent MAR

FigureC11displays the results for comparing the ideal and pragmatic performance Brier

score estimates to their respective target estimate when data are MCAR or covariate-

dependent MAR.

When sample size is 100, the complete-case analysis underestimates Briertarget,CC (BrierCC−
Briertarget,CC < 0). When sample size is increased to 300 and data are MCAR or

strong covariate-dependent MAR, the difference between the complete-case estimate and

Briertarget,CC is centred around zero. With increasing sample size, the magnitude of the

difference between the complete-case analysis estimate and Briertarget,CC tends to decrease.

For a sample size of 100 and 300, the pragmatic performance of all imputation based

methods tends to underestimate Briertarget,imputed (Brierprag,imp −Briertarget,imputed < 0).

The magnitude of this difference is smallest for method BS-then-MI while the other meth-

ods tend to perform similarly. With increasing sample size, all methods perform similarly

when compared to Briertarget,imputed.

For a sample size of 100 and 300, the ideal performance of all imputation methods tends to

underestimate Brierobs. Method BS-then-MI tends to either have the smallest magnitude

of the difference with Briertarget,obs or approximate it well. With increasing sample size,

the methods all tend to perform similarly.
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Figure C11: The difference Brierimp - Briertarget when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Brierimp

- Briertarget. CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC12presents results for comparing the ideal and pragmatic performance Brier

score estimates to their respective target estimate when data are outcome-dependent or

outcome- and covariate-dependent MAR.

The complete-case analysis tends to underestimate Briertarget,CC for all sample sizes and

missing data mechanisms. When the sample size is 100, the magnitude of this under-

estimation is greater than 0.005 (|BrierCC − Briertarget,CC | > 0.005) but with increasing

sample size to 1000, the magnitude decreases to approximately 0.0025.

For pragmatic performance the results are similar to the MCAR and covariate-dependent

MAR scenarios. The pragmatic performance of all imputation based methods tend to un-

derestimate Briertarget,imputed for sample sizes of 100 and 300. Method BS-then-MI tends

to underestimate Briertarget,imputed the least while all other methods perform similarly.

For ideal performance and all sample sizes, method BS-then-MI either has the lowest

magnitude of underestimation when compared to Briertarget,obs, or estimates it well. When

sample size is 100, methods BS-then-MI reuse imps, MI-then-BS reuse test imps and MI-

then-BS impute once have the largest magnitude of underestimation when compared to

the ideal target estimate. For a sample size of 1000, all methods tend to perform similarly

when compared to the ideal target estimate of the Brier score, except method MI-then-BS

impute once.
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Figure C12: The difference Brierimp - Briertarget when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brierimp - Briertarget. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.4 Detailed results for the calibration intercept performance of the

0.632 algorithm

C.4.1 Comparing results to the calibration intercept estimate when data are

fully-observed

MCAR and covariate-dependent MAR

FigureC13presents results for the various methods to handle missing data alongside

bootstrap validation when compared to the calibration intercept estimated when data are

fully-observed (Interceptobs) i.e. Interceptimp − Interceptobs. The results presented are

for the scenario when data are MCAR (top row, ψ2 = 0) or covariate-dependent MAR

(ψ2 > 0).

For a sample size of 100, the various performance estimates of the calibration intercept

estimate are very unstable with a large magnitude when compared to the intercept es-

timated when data are fully-observed. The estimates of the calibration intercept for a

sample size of 100 when data are fully-observed were noted to vary widely (Chapter4,

Table5.1). Here, we will focus on results for a sample size of 300 and 1000.

For MCAR and weak covariate-dependent MAR when sample size is 300 or 1000, the

complete-case estimate tends to approximate Interceptobs well. When data are strong

covariate-dependent MAR, the complete-case analysis tends to underestimate the fully-

observed estimate (InterceptCC − Interceptobs < 0) and with increasing sample size the

difference approaches zero.

When data are MCAR, the pragmatic performance of all imputation methods performs

well when compared to Interceptobs. When data are weak or covariate-dependent MAR,

all imputation methods tend to overestimate the fully-observed estimate with a magni-

tude less than 0.005 (|Interceptprag,imp − Interceptobs| < 0.005). Methods BS-then-MI,

MI-then-BS (with or without fixed bootstrap samples) and MI-then-BS re-impute tend

to overestimate the fully-observed estimate with a larger magnitude than methods BS-

then-MI reuse, MI-then-BS reuse test imps and MI-then-BS impute once. With increasing

sample size the methods tend to perform similarly when compared to Interceptobs.

The ideal performance of all methods performs well when compared to Interceptobs when

data are MCAR. When data are covariate-dependent MAR, methods BS-then-MI reuse,

MI-then-BS reuse test imps and MI-then-BS impute once estimates Interceptobs well.

Methods BS-then-MI, MI-then-BS (with or without fixed bootstrap samples) and MI-

then-BS re-impute tend to overestimate Interceptobs but still have a magnitude less than

0.005 when sample size is 300. With increasing sample the magnitude of the methods

decreases further.
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Figure C13: The difference Interceptimp - Interceptobs when data are MCAR or covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of Interceptimp - Interceptobs. CC (complete-case); methods are described in Section2.7or Table

6.1.
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Outcome-dependent MAR

FigureC14displays the results for the various missing data methods’ estimate of the cali-

bration intercept when data are outcome-dependent or outcome- and covariate-dependent

MAR. These estimates are compared to the estimate of the calibration intercept when

data are fully-observed (Interceptimp − Interceptobs).

The complete-case estimate tends to underestimate Interceptobs (InterceptCC−Interceptobs <
0). The magnitude of this difference when sample size is 300 is less than 0.005 and de-

creases further with increasing sample size. However, the magnitude of this difference has

increased when compared to the scenario were data are MCAR or covariate-dependent

MAR.

The pragmatic performance of the various methods tends to overestimate Interceptobs for

sample sizes of 300 or 1000 (Interceptprag,imp − Interceptobs > 0). Method MI-then-BS

impute once tends to have the smallest magnitude (|InterceptMI−BS−once− Interceptobs|),
performing similarly to Interceptobs. The pragmatic performance of methods BS-then-MI,

MI-then-BS (with or without fixed bootstrap samples) and MI-then-BS re-impute have the

largest magnitudes of of overestimation (0.01 < |Interceptprag,MI−BS−once−Interceptobs| <
0.02) while the remaining methods perform similarly to each other. The magnitudes of all

methods, except MI-then-BS impute once, become similar with increasing sample size.

The ideal performance of the various methods tends to overestimate Interceptobs for sample

sizes of 300 or 1000 (Interceptideal,imp − Interceptobs > 0). The magnitude of all ideal

performance estimates is less than 0.01. Method BS-then-MI tends to have the largest

magnitude of overestimation when sample size is 300 and methods MI-then-BS (with

or without fixed bootstrap samples) and MI-then-BS re-impute have the next largest

magnitude while the remaining methods all perform similarly in relation to Interceptobs.

For a sample size of 1000 all methods tend to perform similarly.
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Figure C14: The difference Interceptimp - Interceptobs when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Interceptobs. CC (complete-case); methods are described

in Section2.7or Table6.1.
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C.4.2 Increasing the number of imputed datasets from 5 to 25

FigureC15displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when data

are outcome-dependent MAR but are representative of the results when data are MCAR

or covariate-dependent MAR (available in Supplementary PlotsS4.6.3). Due to increased

computation time when using 25 imputed datasets the comparison a reduced set of meth-

ods were assessed. Results are available for methods BS-then-MI, MI-then-BS and MI-

then-BS impute once which are based on 1000 repetitions.

The estimates for the comparison of the calibration intercept for the various methods to

Interceptobs, perform similarly regardless of whether 5 or 25 imputed datasets are used.

368



BS first Impute first

0.00

0.25

0.50

0.75

 

Nobs=100
BS first Impute first

0.00

0.01

0.02

 

Nobs=300
BS first Impute first

0.00

0.01

0.02

 

Nobs=1000

2=0

BS first Impute first

0.00

0.25

0.50

0.75

 

BS first Impute first

0.00

0.01

0.02

 

BS first Impute first

0.00

0.01

0.02

 

2=
1
20

BS first Impute first

0.00

0.25

0.50

0.75

 

BS first Impute first

0.00

0.01

0.02

 

BS first Impute first

0.00

0.01

0.02

 

25
5

2=
1
10

Outcome−dependent MAR

0.632 bootstrap algorithm

D
iff

er
en

ce
 b

et
w

ee
n 

im
pu

te
d 

an
d 

fu
lly

−o
bs

er
ve

d 
C

al
ib

ra
tio

n 
In

te
rc

ep
t

Figure C15: The difference Interceptimp - Interceptobs when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Interceptobs. CC (complete-case); methods are described

in Section2.7or Table6.1.

369



C.4.3 Increasing the percentage of missingness to 40%

FigureC16displays the results for comparing how the various methods handle an increased

percentage of missing values in X1 from 25% to 40%. The graph presents results for the

scenario when data are weak outcome- and covariate-dependent MAR but are representa-

tive of all missing data scenarios, additional graphs for ideal and pragmatic performance

comparing the percentage of missing values increasing from 25% to 40% can be found in

Supplementary Plots SectionS4.6.2.

When data are MAR, the complete-case analysis estimate of the calibration intercept when

40% of X1 values are missing tends to be larger in magnitude in relation to Interceptobs

than the comparison when 25% of values are missing. When data are MCAR, the es-

timate when 40% of values are missing compares similarly to when 25% of values are

missing. When sample size increases from 300 to 1000, the estimate when 40% of values

are missing tends towards the estimate when 25% of values are missing (|InterceptCC,40%−
Interceptobs| −→ |InterceptCC,25% − Interceptobs|).

For pragmatic performance when data are MCAR, the estimate of the calibration intercept

when 40% of X1 values are missing performs similarly to the estimate when the percent-

age of missingness is 25%. When data are MAR, for all methods the estimate of the

calibration intercept when 40% of X1 values are missing tends to be similar to or larger in

magnitude than the comparison when 25% of values are missing (|Interceptprag,imp,40% −
Interceptobs| ≥ |Interceptprag,imp,25% − Interceptobs|). When data are outcome-dependent

or outcome and covariate-dependent MAR, the calibration intercept estimate when 40% of

values are missing tends to have a larger magnitude than when 25% of values are missing

(|Interceptprag,imp,40% − Interceptobs| > |Interceptprag,imp,25% − Interceptobs|). The excep-

tion to this is MI-then-BS impute once whose estimates perform similarly regardless of

25% or 40% of X1 values are missing.

For ideal performance, the calibration intercept estimate when 40% of values are missing

tends to perform similarly to when 25% of values are missing when data are MCAR. For

covariate-dependent, outcome-dependent or outcome- and covariate-dependent MAR the

estimate when 40% of values are missing tends to have a similar or larger magnitude

than the estimate when 25% of values are missing (|Interceptideal,imp,40%− Interceptobs| ≥
|Interceptideal,imp,25% − Interceptobs|). When data are outcome-dependent or outcome-

and covariate-dependent MAR, methods BS-then-MI, MI-then-BS (with or without fixed

BS samples) and MI-then-BS re-impute tend to have non-overlapping confidence intervals

when sample size is 300 or 1000 while the other methods tend to perform similarly or have

overlapping confidence intervals.
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Figure C16: Comparing the impact of increasing the percentage of missingness on the difference

Interceptimp - Interceptobs when data are outcome- and covariate-dependent MAR when M = 5.

The error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Interceptobs. Red denotes Interceptimp - Interceptobs when

25% of X1 values are missing and blue denotes Interceptimp - Interceptobs when 40% of X1 values

are missing. The top row presents the results for pragmatic performance and the bottom row

presents results for ideal performance. CC (complete-case); methods are described in Section2.7

or Table6.1.

371



C.4.4 Comparing results to the target performance

As similarly detailed for the AUC and Brier score, the ideal performance of the bootstrap

imputation methods and Interceptobs were compared to the ideal target calibration inter-

cept estimate. This is estimated by applying a prediction model, developed using all data,

to the fully-observed data in the larger test set (Intercepttarget,obs). The pragmatic perfor-

mance of the imputation methods is compared to applying a prediction model, developed

using all data, to the imputed datasets of the larger test set (Intercepttarget,imputed). The

complete-case estimate of the calibration intercept is compared to applying a prediction

model to the observed cases of the larger test set (Intercepttarget,CC).

As seen when previously comparing the methods’ calibration estimates to the intercept

estimate when data are fully-observed, the results for sample size of 100 are very unsta-

ble for all missing data scenarios and the results will not be further analysed until the

Discussion section.

MCAR and covariate-dependent MAR

FigureC17presents results for Intercept imp − Intercepttarget for the scenario when data

are MCAR or covariate-dependent MAR.

The complete-case analysis tends to underestimate Intercepttarget,CC , with an approxi-

mate value of -0.48, and does not fit onto the scale of the results presented in FigureC17.

The pragmatic performance of the methods involving MI (imp) tends to overestimate the

target pragmatic performance (Interceptprag,imp − Intercepttarget,imputed > 0). The mag-

nitude of this difference is less than 0.05 for MCAR and weak covariate-dependent MAR,

and less than 0.0625 for strong covariate-dependent MAR. All methods have similar prag-

matic performance when compared to Intercepttarget,imputed. With increasing sample size

the magnitude of the difference decreases, as does the Monte Carlo standard error across

the 2000 repetitions.

The ideal performance of the various imputation based methods tends to approximate

Intercepttarget,obs well when data are MCAR. For weak or strong covariate-dependent

MAR, the methods tend to under- or overestimate Intercepttarget,obs with a similar mag-

nitude.
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Figure C17: The difference Interceptimp - Intercepttarget when data are MCAR or covariate-

dependent MAR for M = 5 when 25% of values are missing in X1. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval

of Interceptimp - Intercepttarget. CC (complete-case); methods are described in Section2.7or

Table6.1.
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Outcome-dependent MAR

FigureC18presents the comparison of the calibration intercept estimates to the complete-

case, ideal and pragmatic target estimate for the scenario when data are outcome-dependent

or outcome- and covariate-dependent MAR.

Similarly to the MCAR and covariate-dependent MAR, the complete-case analysis tends

to underestimate Intercepttarget,CC and does not fit on the scale used in FigureC18.

The pragmatic performance of the methods involving MI (imp) tends to overestimate the

target pragmatic performance (Interceptprag,imp − Intercepttarget,imputed > 0). The mag-

nitude of this difference is less than 0.05 for MCAR and weak covariate-dependent MAR,

and less than 0.0625 for strong covariate-dependent MAR. All methods have similar prag-

matic performance when compared to Intercepttarget,imputed, although method MI-then-BS

impute once has the smallest magnitude of the difference overall. With increasing sample

size the magnitude of the difference decreases, as does the Monte Carlo standard error

across the 2000 repetitions.

The ideal performance of the various imputation based methods tends to underestimate

Intercepttarget,obs. The magnitude of the mean difference tends to be less than 0.025

(Interceptideal,imp − Intercepttarget,imputed < 0.025). With increasing sample size the mag-

nitude of the difference decreases. All methods tend to perform similarly when compared

to Intercepttarget,obs.
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Figure C18: The difference Interceptimp - Intercepttarget when data are outcome-dependent

or outcome- and covariate-dependent MAR for M = 5 when 25% of values are missing in X1.

The error bars summarise results from the 2000 repetitions and the limits represent the Monte

Carlo 95% confidence interval of Interceptimp - Intercepttarget. CC (complete-case); methods are

described in Section2.7or Table6.1.
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C.5 Detailed results for the calibration slope performance of the 0.632

algorithm

C.5.1 Comparing results to the calibration slope estimate when data are

fully-observed

MCAR and covariate-dependent MAR

FigureC19presents results for the various missing data methods’ estimate of the calibra-

tion slope. These results are compared to the estimate of the calibration slope when data

are fully-observed i.e. Slopeimp − Slopeobs. The Figure displays results for the scenario

when data are MCAR or covariate-dependent MAR.

When data are MCAR or covariate-dependent MAR, the complete-case analysis tends

to overestimate Slopeobs. When the sample size is 100, the magnitude of the difference

tends to be large (|SlopeCC − Slopeobs| > 0.5). Increasing the sample size to 300 or 1000

decreases the magnitude to less than 0.01.

Similarly to the calibration intercept, the ideal and pragmatic performance of the meth-

ods tends to be slightly unstable when sample size is small. The performance either

under- or overestimates Slopeobs. The majority of estimates tend to have large magni-

tudes (|Slopeimp − Slopeobs|) of underestimation and large 95% confidence intervals. This

improved with increasing sample size.

When the sample size is 300 or 1000, the pragmatic performance of all methods tends to

underestimate Slopeobs. Method BS-then-MI tends to underestimate the calibration slope

the most while method MI-then-BS impute once tends to underestimate it the least. The

other methods perform similarly in relation to Slopeobs with an average difference of -0.05.

With increased sample size method BS-then-MI tends to perform similarly to the other

methods, except for method MI-then-BS impute once which has a magnitude less than

0.01 (|Slopeprag,MI−BS−once − Slopeobs| < 0.01).

The ideal performance of the imputation based methods underestimates Slopeobs (−0.0125 <
|Slopeideal,imp − Slopeobs| < 0). Method BS-then-MI tends to have the largest magnitude

of underestimation when compared to the fully-observed estimate (|Slopeideal,BS−MI −
Slopeobs|). With increased sample size the ideal performance of all the imputation meth-

ods tends to decrease and performs similarly to Slopeobs.
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Figure C19: The difference Slopeimp - Slopeobs when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Slopeimp

- Slopeobs. CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC20displays the results for the various missing data methods’ estimate of the

calibration slope which is compared to the calibration slope estimated when data are

fully-observed (Slopeimp − Slopeobs). The Figure displays the results for the outcome-

dependent and outcome- and covariate-dependent MAR scenarios.

Similarly to the MCAR and covariate-dependent MAR scenario, the estimates of per-

formance when sample size is 100 tend to be unstable with large magnitudes and wide

confidence intervals. This improves with increasing sample size.

The complete-case analysis tends to overestimate Slopeobs. The magnitude of the differ-

ence tends to be less than 0.0125 (|SlopeCC − Slopeobs| < 0.0125) when sample size is 300

or 1000.

The pragmatic performance of all imputation methods tends to underestimate Slopeobs.

The magnitude of this difference (|Slopeprag,imp− Slopeobs|) tends to be between 0.05 and

0.075 for all methods except method MI-then-BS impute once whose magnitude tends to

be less than 0.01. For a sample size of 300 the method BS-then-MI tends to have the

largest magnitude of underestimation while the other methods tend to perform similarly

when data are outcome-dependent or outcome- and covariate-dependent MAR. With in-

creasing sample size all methods perform similarly when compared to Slopeobs, with the

exception of method MI-then-BS impute once.

The ideal performance of all imputation methods underestimates Slopeobs for outcome-

dependent and outcome- and covariate-dependent MAR. For a sample size of 300, method

BS-then-MI has the largest magnitude when compared to Slopeobs (0.0125 ≤ |Slopeideal,BS−MI−
Slopeobs| < 0.025). All other methods tend to perform similarly with a magnitude less

than 0.0125. With increasing sample size the magnitude of all methods decreases to be

less than 0.006.
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Figure C20: The difference Slopeimp - Slopeobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopeimp - Slopeobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.5.2 Increasing the number of imputed datasets from 5 to 25

FigureC21displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when data

are outcome-dependent MAR but are representative of the results when data are MCAR

or covariate-dependent MAR (available in Supplementary PlotsS4.6.3). Due to increased

computation time when using 25 imputed datasets the comparison a reduced set of meth-

ods were assessed. Results are available for methods BS-then-MI, MI-then-BS and MI-

then-BS impute once which are based on 1000 repetitions.

The estimates for the comparison of the calibration slope for the various methods to

Slopeobs, perform similarly regardless of whether 5 or 25 imputed datasets are used.
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Figure C21: The difference Slopeimp - Slopeobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopeimp - Slopeobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.5.3 Increasing the percentage of missingness to 40%

FigureC22displays the results for comparing how the various methods handle an increased

percentage of missing values in X1 from 25% to 40%. The graph presents results for the

scenario when data are weak outcome- and covariate-dependent MAR but are representa-

tive of all missing data scenarios, additional graphs for ideal and pragmatic performance

comparing the percentage of missing values increasing from 25% to 40% can be found in

Supplementary Plots SectionS4.6.2.

For all missing data scenarios, the complete-case analysis when 40% of X1 values are miss-

ing tends to overestimate Slopeobs more than when 25% of X1 values are missing. With

increasing sample size, the magnitude of the complete-case analysis when 40% of values

are missing decreases and tends towards the magnitude when 25% of values are missing

(|SlopeCC,40 − Slopeobs| −→ |SlopeCC,25 − Slopeobs|) for all missing data scenarios.

For pragmatic performance the estimates of the calibration slope when 40% of X1 values

were set as missing underestimates the calibration slope when 25% of X1 values are missing

(|Slopeprag,imp,40 − Slopeobs| > |Slopeprag,imp,25 − Slopeobs|) for all missing data scenarios.

This holds true for all imputation methods except MI-then-BS impute once which tend to

perform similarly in relation to Slopeobs.

Similarly for the ideal performance, the calibration slope estimate when 40% of values

are missing tends to underestimate the slope estimate when 25% of values are missing

(Slopeideal,imp,40 − Slopeobs < Slopeideal,imp,25 − Slopeobs) for methods BS-then-MI and

BS-then-MI reuse imps. The various MI-then-BS methods tend to have similar or larger

magnitudes for a larger percentage of missingness, but the confidence intervals tend to

overlap. With increasing sample size from 300 to 1000, the magnitude of the performance

tends to be similar to the percentage when 25% of values are missing for all methods i.e.

|Slopeideal,imp,40 − Slopeobs| −→ |Slopeideal,imp,25 − Slopeobs|.
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Figure C22: Comparing the impact of increasing the percentage of missingness on the difference

Slopeimp - Slopeobs when data are outcome- and covariate-dependent MAR when M = 5. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Slopeimp - Slopeobs. Red denotes Slopeimp - Slopeobs when 25% of X1

values are missing and blue denotes Slopeimp - Slopeobs when 40% of X1 values are missing. The

top row presents the results for pragmatic performance and the bottom row presents results for

ideal performance. CC (complete-case); methods are described in Section2.7or Table6.1.
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C.5.4 Comparing results to the target performance

As similarly detailed for the AUC and Brier score, the ideal performance of the bootstrap

imputation methods and Slopeobs were compared to the calibration slope estimate from

applying a prediction model, developed using all data, to the fully-observed data in the

larger test set (Slopetarget,obs). The pragmatic performance of the imputation methods

is compared to applying a prediction model, developed using all data, to the imputed

datasets of the larger test set (Slopetarget,imputed). The complete-case estimate of the

calibration slope is compared to applying a prediction model to the observed cases of the

larger test set (Slopetarget,CC).

MCAR and covariate-dependent MAR

FigureC23presents the calibration slope estimates to the complete-case, ideal and prag-

matic target estimate when data are MCAR or covariate-dependent MAR.

The complete-case analysis estimate performs poorly and tends to overestimate Slopetarget,CC

by at least 1.5 when data are MCAR or covariate-dependent MAR (SlopeCC−Slopetarget,CC >

1.5). It does not fit onto the scale of the graph in FigureC23.

The pragmatic performance of all methods tends to overestimate Slopetarget,imputed (Slopeprag,imp−
Slopetarget,imputed > 0). The magnitude of this difference is approximately 0.25 when data

are MCAR or covariate-dependent MAR and sample size is 100. When the sample size

is 300, method MI-then-BS impute once tends to have a magnitude greater than 0.05

(Slopeprag,MI−BS−once − Slopetarget,imputed > 0.05). The other imputation methods have

magnitudes less than 0.05 and method BS-then-MI tends to have the smallest magnitude.

Increasing the sample size to 1000, the magnitude of the difference tends to decrease and

all methods perform similarly, except for method MI-then-BS impute once which still

overestimates Slopetarget,imputed by approximately 0.05.

The ideal performance of all methods overestimates the target ideal estimate of the cali-

bration slope (Slopeideal,imp − Slopetarget,obs > 0). The magnitude of the difference is less

than 0.05 for all methods when sample size is 300 or 1000. Method BS-then-MI results in

a slope estimate that is closest to the ideal target estimate while all other methods per-

form similarly. With increasing sample, all methods tend to perform similarly and either

estimate Slopetarget,obs well or tend to slightly overestimate it.
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Figure C23: The difference Slopeimp - Slopetarget when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X1. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Slopeimp

- Slopetarget. CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC24presents the various missing data methods results for the calibration slope

when compared to the complete-case, ideal and pragmatic target estimate when data are

outcome-dependent or outcome- and covariate-dependent MAR.

Similarly to when data were MCAR or covariate-dependent MAR, for all sample sizes the

complete-case analysis tends to overestimate Slopetarget,CC (SlopeCC − Slopetarget,CC >

1.5) and does not fit onto the scale of FigureC24.

The pragmatic performance of all methods overestimates Slopetarget,imputed for all scenar-

ios. When sample size is 300 or 1000 , MI-then-BS impute once has the largest magnitude

|Slopeprag,MI−BS−once − Slopetarget,imputed| (greater than 0.05) of all the methods’ prag-

matic performance while method BS-then-MI tends to have the smallest magnitude. In-

creasing the sample size to 1000, all methods tend to perform similarly with a magnitude

less than 0.025, except for method MI-then-BS impute once.

Similarly to the pragmatic performance, the ideal performance of all methods tends to

overestimate Slopetarget,obs for all scenarios. Method BS-then-MI tends to either overesti-

mate Slopetarget,obs the least across all methods or approximates Slopetarget,obs well. With

increasing sample size all methods tend to perform similarly.
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Figure C24: The difference Slopeimp - Slopetarget when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopeimp - Slopetarget. CC (complete-case); methods are described in Section

2.7or Table6.1.
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C.6 Comparing reusing and re-imputing test imputed datasets of the

original dataset

Previously, in Section6.3I presented results for the continuous outcome case which com-

pared reusing the test imputed datasets (used to estimate the apparent performance) in

order to estimate the test performance against re-imputing the original dataset a second

time to then use to estimate test performance. It was shown for the MSE that both

methods performed similarly. FigureC25displays the results for the AUC, Brier score

and Calibration intercept and slope for pragmatic performance when the sample size is

1000 and data are weakly outcome- and covariate-dependent MAR. The results in Figure

C25are generally representative for ideal and pragmatic performance for all scenarios, all

graphs are available in the Supplementary plot sectionsS4.1.1,S4.2.1andS4.3.1.

For the AUC and Brier score, both reusing the test imputed datasets or reimputing

datasets perform similarly across all scenarios, as seen in FigureC25. For the calibra-

tion intercept and slope, reimputing versus reusing test datasets tend to have the same

median values but the reusing option tends to be slightly more variable. However, reusing

test imputed datasets is more computationally efficient and therefore, all subsequent re-

sults for the standard bootstrap algorithm presented below are based on reusing the test

imputed datasets.
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Figure C25: Comparing reusing test imputations for test performance in the standard BS algo-

rithm with reimputing the original dataset using the test imputation model for the AUC, Brier

Score and Calibration intercept and slope. The above scenario is for a sample size of 1000 when

data are weakly outcome- and covariate-dependent. CC (complete-case); methods are described

in Section2.7or Table6.1.
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C.7 Overview of results for the standard bootstrap algorithm

C.7.1 Area under the ROC curve

MCAR and covariate-dependent MAR

FigureC26displays the results of the AUC when data are MCAR (top row, ψ2 = 0) or

covariate-dependent MAR (ψ2 > 0). Each of the AUCs from the various missing data

methods (AUCimp) are compared to the AUC estimated when data are fully-observed

(AUCobs) i.e. AUCimp −AUCobs.

When data are MCAR and for a sample size of 100, the AUC estimate from the complete-

case analysis tends to underestimate the AUC estimate when data are fully-observed

(AUCCC − AUCobs < 0). With increasing sample size the AUC estimate tends towards

the estimate when data are fully-observed (AUCCC − AUCobs −−−−−−→
nobs−→∞

0). When miss-

ingness is weakly covariate-dependent MAR, the AUC estimate from the complete-case

analysis underestimates the AUC estimate when data are fully-observed. With increasing

strength of missingness the magnitude of the difference between the complete-case anal-

ysis’ AUC and the fully-observed estimate increases and it is outperformed by the other

missing data methods.

For a sample size of 100, when data are MCAR or weak or strong covariate-dependent

MAR, the pragmatic performance of BS-then-MI underestimates the AUC estimate when

data are fully-observed more than the other imputation based methods do. MI-then-

BS reuse imps performs similarly to the MI-then-BS various methods with method MI-

then-BS impute once having the smallest difference between its AUC estimate and the

fully-observed AUC estimate. With increasing sample size the pragmatic performance of

method BS-then-MI performs similarly to the other imputation based methods in relation

to the fully-observed AUC estimate. For all sample sizes, method MI-then-BS impute once

has the smallest difference in AUC between its estimate and the estimate when data are

fully-observed.

For ideal performance when data are MCAR or covariate-dependent MAR methods BS-

then-MI, MI-then-BS, MI-then-BS with fixed bootstrap samples and MI-then-BS reimpute

training imputed datasets underestimate the fully-observed AUC estimate for a sample size

of 100. Method BS-then-MI underestimates the fully-observed AUC more than the other

methods. Methods BS-then-MI reuse imps, MI-then-BS reuse test imps (with or without

fixed bootstrap samples) and MI-then-BS impute once overestimate the fully-observed

AUC. With increasing sample size the magnitude of the under- or overestimation decreases

and with a sample size of 1000 the methods all perform similarly and approximate the

fully-observed AUC estimate well.
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Figure C26: Error bars of the difference in the AUC from the imputation methods and the AUC

estimate when data are fully-observed, with Monte Carlo 95% confidence intervals, when data are

MCAR or covariate-dependent MAR. CC (complete-case); methods are described in Section2.7

or Table6.1.
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Outcome-dependent MAR

When data are outcome-dependent MAR with no dependence of missingness on covariate

X2, the complete-case analysis tends to underestimate the AUC when data are fully-

observed. With increasing sample size from 100 to 1000, the complete-case analysis ap-

proximates the fully-observed AUC well. When data are weakly outcome- and covariate-

dependent MAR, the magnitude of the difference between the complete-case analysis’

AUC estimate and the AUC when data are fully-observed increases. When the strength of

missingness on the covariate X2 increases, the magnitude of the bias also increases. The

complete-case analysis is outperformed by all other imputation based methods.

For pragmatic performance, all imputation based methods tend to underestimate the

AUC when data are fully-observed (AUCimp − AUCobs < 0 where imp represents the

various methods). For a small sample size of 100, method BS-then-MI underestimates

the fully-observed AUC estimate the most while the method which underestimates the

fully-observed AUC the least is MI-then-BS impute once. All other methods perform sim-

ilarly when compared to the fully-observed AUC. With increasing sample size, method

BS-then-MI performs similarly to the other imputation based methods.

For ideal performance, similarly to the MCAR and covariate-dependent MAR scenario,

methods BS-then-MI,MI-then-BS (with or without fixed bootstrap samples) and MI-then-

BS reimpute training imputed datasets underestimate the fully-observed AUC estimate

when sample size is 100. Method BS-then-MI tends to underestimate the fully-observed

AUC estimate the most. Methods BS-then-MI reuse imps, MI-then-BS reuse test imps

(with or without fixed bootstrap samples) and MI-then-BS impute once overestimate the

fully-observed AUC. With increasing sample size, the magnitude of the difference between

the imputation methods’ AUC estimate and the fully-observed AUC estimate decreases

and by sample size of 1000 all methods perform similarly and approximate the fully-

observed AUC estimate (AUCimp −AUCobs −−−−−−→
nobs−→∞

0).
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Figure C27: Error bars of the difference in the AUC from the imputation methods and the AUC

estimate when data are fully-observed, with Monte Carlo 95% confidence intervals, when data are

outcome-dependent MAR. CC (complete-case); methods are described in Section2.7or Table6.1.
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Increasing the number of imputed datasets from 5 to 25

FigureC28displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when data

are outcome-dependent MAR but are representative of the results when data are MCAR

or covariate-dependent MAR (available in Supplementary PlotsS4.1.4). Due to increased

computation time when using 25 imputed datasets the comparison a reduced set of meth-

ods were assessed. Results are available for methods BS-then-MI, MI-then-BS and MI-

then-BS impute once which are based on 1000 repetitions.

The estimates of the AUC for the various methods when using 25 imputed datasets are

similar to the performance when only 5 imputed datasets are used.
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Figure C28: The difference AUCimp - AUCobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of AUCimp - AUCobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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Increasing the proportion of missingness to 40%

FigureC29compares the pragmatic and ideal performance when 25% of X1 values are

missing to 40% missingness when data are weak outcome- and covariate-dependent MAR.

The results in the figure are representative of all missing data scenarios, additional graphs

for ideal and pragmatic performance comparing the proportion of missing values increas-

ing from 25% to 40% can be found in supplementary plots SectionS4.1.3.

For pragmatic performance, an increase in the proportion of missing values causes in-

creased underestimation of the fully-observed AUC estimate for all missing data methods

(|AUCimp,25% − AUCobs| < |AUCimp,40% − AUCobs|). In addition, the variability across

the 2000 repetitions has increased with increasing proportion of missingness, as can be

seen when comparing the Monte Carlo 95% confidence intervals in Figure FigureC29.

An exception to this is the complete-case analysis method when data are MCAR, the

difference between the complete-case analysis’ AUC estimate is the same for 25% or 40%

missingness, but the variability has increased for 40% missingness.

For ideal performance, in general the increased proportion of missingness has caused an in-

crease in the magnitude of the difference between the various methods’ AUC and the AUC

estimate when data are fully-observed (|AUCimp,25%−AUCobs| < |AUCimp,40%−AUCobs|).
When data are weakly outcome- and covariate-dependent and the sample size is 1000 BS-

then-MI when 25% of X1 values are missing underestimates the fully-observed AUC more

than when 40% of values are missing. Similarly, MI-then-BS with fixed bootstrap sam-

ples when the sample size is 300 underestimates the fully-observed AUC less when 40% of

the values are missing. However, the Monte Carlo 95% confidence intervals when 40% of

the data are wider and either overlap or encompass the confidence intervals when 25% of

values are missing.
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Figure C29: Error bars of the difference in the AUC from the imputation methods and the AUC

estimate when data are fully-observed, with Monte Carlo 95% confidence intervals, when data are

outcome- and covariate-dependent MAR. The graph compares the AUC estimates when 25% of X1

values are missing versus 40% missing for ideal and pragmatic performance. CC (complete-case);

methods are described in Section2.7or Table6.1.
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Comparing to the target performance

For the target AUC, the ideal performance of the bootstrap imputation methods and the

AUC estimate when data are fully-observed were compared to the AUC estimate from ap-

plying a prediction model, based on all data in a repetition, to the fully-observed data in

the larger test set (AUCtarget,obs). The pragmatic performance of the imputation methods

is compared to applying a repetition’s prediction model to the imputed datasets of the

larger test set (AUCtarget,imputed). The complete-case estimate is compared to applying a

repetition’s prediction model to the observed cases of the larger test set (AUCtarget,CC).

MCAR and covariate-dependent MAR: FigureC30displays results for comparing the vari-

ous methods’ AUC estimate with their respective ideal, pragmatic or complete-case target

AUC, estimated from a larger validation set, when the data are MCAR or covariate-

dependent MAR. When data are MCAR, the AUC estimate from the complete-case anal-

ysis tends to underestimate AUCtarget,CC for all sample sizes, although with increasing

sample size the variability decreases. For weak covariate-dependent MAR, when sample

size is 100 the complete-case analysis approximates AUCtarget,CC well but with increasing

sample size, it tends to overestimate AUCtarget,CC (AUCCC − AUCtarget,CC > 0). For

strong covariate-dependent MAR, for sample sizes of 100 and 300 the complete-case anal-

ysis approximates AUCtarget,CC well, but when increasing sample size to 1000 there is a

tendency to overestimate AUCtarget,CC .

When sample size is 100, the ideal performance of methods BS-then-MI reuse imps,

MI-then-BS reuse test imps (with or without fixed bootstrap samples) and MI-then-BS

impute once tend to underestimate AUCtarget,obs (AUCimp − AUCtarget,obs > 0). The

ideal performance of method BS-then-MI tends to underestimate AUCtarget,obs the most

(AUCBS−MI − AUCtarget,obs < 0). The ideal performance of methods MI-then-BS (with

or without fixed bootstrap samples) and MI-then-BS reimpute train imps tend to under-

estimate AUCtarget,obs also. With increasing sample size, the ideal performance of the

various imputation methods tends to perform similarly to each other when compared to

AUCtarget,obs.

For pragmatic performance, when sample size is 100 method BS-then-MI tends to underes-

timate AUCtarget,imputed for MCAR or covariate-dependent MAR, although its confidence

intervals overlap with zero for MCAR and sample size if 100 and all samples sizes when

data are strong covariate-dependent MAR. The other imputation based methods estimate

AUCtarget,imputedwell when data are MCAR or strong covariate-dependent MAR but tend

to overestimate AUCtarget,imputed when data are weak covariate-dependent MAR. With

increasing sample size all the imputation based methods tend to perform similarly when

compared to AUCtarget,imputed.
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Figure C30: The difference between the imputed AUC and the AUC estimate from a larger

test set when data are weakly covariate-dependent MAR. Errorbars represent Monte Carlo 95%

confidence intervals. CC (complete-case); methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR: FigureC31displays results for comparing the various methods’

AUC estimate with their respective ideal, pragmatic or complete-case target AUC, esti-

mated from a larger validation set, when the data are outcome-dependent or outcome- and

covariate-dependent MAR. When data are outcome-dependent MAR, the complete-case

analysis AUC estimate tends to underestimate AUCtarget,CC (AUCCC−AUCtarget,CC > 0).

When data are weakly outcome- and covariate-dependent MAR and sample size is 100 or

data are weakly outcome- and strongly covariate-dependent MAR, the complete-case anal-

ysis approximates AUCtarget,CC well.

For ideal performance, the AUC estimate from method BS-then-MI tends to underestimate

the AUCtarget,obs for the majority of scenarios, even when all other methods overestimate

AUCtarget,obs. When the other methods tend to overestimate the target AUC, methods

BS-then-MI reuse imps, MI-then-BS reuse test imps and MI-then-BS impute once overes-

timate AUCtarget,obs more than the other MI-then-BS methods. For a sample size of 1000,

all methods tend to perform similarly.

For pragmatic performance, method BS-then-MI approximates AUCtarget,imputed well for

outcome-dependent MAR and weak outcome- and covariate-dependent MAR. The prag-

matic performance of all other imputation methods tends to overestimate AUCtarget,imputed,

this is most noticeable for a sample size of 100 but with increasing sample size the prag-

matic performance tends to overestimate AUCtarget,imputed less. For weak outcome- and

strong covariate-dependent MAR the AUC estimate for method BS-then-MI tends to

underestimate AUCtarget,imputed while all other imputation based methods tend to ap-

proximate the target AUC well for a sample size of 100 and 300. With increasing sample

size, the AUC estimate for method BS-then-MI tends to underestimate the target AUC

estimate less and for a sample size of 1000 all methods perform similarly for pragmatic

performance.
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Figure C31: The difference between the imputed AUC and the AUC estimate from a larger

test set when data are outcome-dependent or outcome- and covariate-dependent MAR. Errorbars

represent Monte Carlo 95% confidence intervals. CC (complete-case); methods are described in

Section2.7or Table6.1.
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C.7.2 Brier Score

MCAR and covariate-dependent MAR

FigureC32displays the results of the Brier score when data are MCAR or covariate-

dependent MAR. Each of the Brier scores from the various missing data methods (Brierimp)

are compared to the Brier score estimated when data are fully-observed (Brierobs) i.e.

Brierimp − Brierobs.

When data are MCAR, the complete-case analysis tends to overestimate the Brier score es-

timate when data are fully-observed (BrierCC −Brierobs > 0). However, this overestimate

is less than 0.005, and decreases with increasing sample size. For weak covariate-dependent

MAR, the complete-case analysis estimate of the Brier score tends to underestimate the

Brier score estimated when data are fully-observed (BrierCC − Brierobs < 0) i.e. the

complete-case analysis estimate tends to be over-optimistic compared to the estimate that

would have been observed had there been no missing data. With increasing strength of

missingness, the magnitude of the underestimation of the fully-observed Brier score esti-

mate increases.

The pragmatic performance of all imputation based methods tends to overestimate the

Brier score estimate when data are fully-observed for MCAR and weak or strong covariate-

dependent MAR. For a small sample size of 100 method BS-then-MI tends to have the

largest magnitude of overestimation of the Brier score when data are fully-observed, while

MI-then-BS has the smallest magnitude. With increasing sample size to 300 and 1000 all

methods tend to perform similarly.

For ideal performance, when sample size is 100 methods BS-then-MI, MI-then-BS (with

or without fixed bootstrap samples) and MI-then-BS reimpute train imps tend to overes-

timate the Brier score estimated when data are fully-observed (Brierimp − Brierobs > 0)

while the other methods which involve reusing imputed datasets or MI-then-BS impute

once tend to underestimate the fully-observed Brier score estimate. The magnitude of

the difference between all methods’ Brier score estimates and the estimate when data are

fully-observed is less than 0.005 for all sample sizes (|Brierimp − Brierobs| < 0.005).
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Figure C32: Error bars of the difference in the Brier score from the imputation methods and

the Brier score estimate when data are fully-observed, with Monte Carlo 95% confidence intervals,

when data are MCAR or covariate-dependent MAR. CC (complete-case); methods are described

in Section2.7or Table6.1.
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Outcome-dependent MAR

When data are outcome-dependent MAR or outcome- and covariate-dependent MAR, the

complete-case analysis tends to underestimate the Brier score estimate when data are

fully-observed (BrierCC − Brierobs < −0.01). With increased strength of missingness the

magnitude of the underestimation increases i.e. the complete-case analysis estimate be-

comes more optimistic.

Similarly to the MCAR and covariate-dependent MAR scenarios, the pragmatic perfor-

mance of the imputation based methods tends to overestimate the Brier score estimated

when data are fully-observed. As before, for a sample size of 100 the method BS-then-

MI tends to overestimate the fully-observed Brier score estimate the most, while method

MI-then-BS impute once tends to overestimate it the least. With increasing sample size

all methods tend to perform similarly in relation to the fully-observed estimate with a

magnitude less than 0.0075 (|Brierimp − Brierobs| < 0.0075).

Similarly again, for the ideal performance methods BS-then-MI,MI-then-BS (with or with-

out fixed bootstrap samples) and MI-then-BS reimpute train imps tend to overestimate

the Brier score estimated when data are fully-observed (Brierimp − Brierobs > 0), while

the other methods which involve reusing imputed datasets or MI-then-BS impute once

tend to underestimate the fully-observed Brier score estimate (Brierimp − Brierobs < 0).

Method BS-then-M I tends to have the largest magnitude (|Brierimp − Brierobs|) but with
increasing sample size all methods perform similarly with a magnitude less than 0.005

(|Brierimp − Brierobs| < 0.005).
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Figure C33: Error bars of the difference in the Brier score from the imputation methods and

the Brier score estimate when data are fully-observed, with Monte Carlo 95% confidence intervals,

when data are outcome-dependent or outcome- and covariate-dependent MAR. CC (complete-

case); methods are described in Section2.7or Table6.1.
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Increasing the number of imputed datasets from 5 to 25

FigureC34displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when data

are outcome-dependent MAR but are representative of the results when data are MCAR

or covariate-dependent MAR (available in Supplementary PlotsS4.2.4). Due to increased

computation time when using 25 imputed datasets the comparison a reduced set of meth-

ods were assessed. Results are available for methods BS-then-MI, MI-then-BS and MI-

then-BS impute once which are based on 1000 repetitions.

The estimates of the Brier score perform similarly in relation to Brierobs, for all methods

regardless of whether 5 or 25 imputed datasets are used.
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Figure C34: The difference Brierimp - Brierobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brierimp - Brierobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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Increasing the proportion of missingness to 40%

FigureC35compares the pragmatic and ideal performance when 25% of X1 values are

missing to 40% missingness when data are weak outcome- and covariate-dependent MAR.

The results in the figure are representative of all missing data scenarios, additional graphs

for ideal and pragmatic performance comparing the proportion of missing values increas-

ing from 25% to 40% can be found in supplementary plots SectionS4.2.3.

For the complete-case analysis, the estimate of the Brier score when 40% of X1 values

tends to underestimate the fully-observed estimate of the Brier score more than the esti-

mate of the Brier score when 25% of X1 values are missing.

For pragmatic performance, the estimate of the Brier score when 40% of X1 values tends

to overestimate the fully-observed estimate of the Brier score more than the estimate of

the Brier score when 25% of X1 values are missing. There is also an increase in the vari-

ability across the 2000 repetitions for the 40% missing case when compared to 25% of

values missing in X1.

For ideal performance, the magnitude of the difference between the Brier score when 40% of

X1 and the Brier score estimate when data are fully-observed is greater than the magnitude

for 25% of X1 values being missing (|Brierimp,25% − Brierobs| < |Brierimp,40% − Brierobs|)
when data are MCAR or covariate-dependent MAR. In general, when data are outcome-

dependent or outcome- and covariate-dependent MAR the magnitude of the difference

between the Brier score estimated when 40% of values are missing and the fully-observed

estimate is similar to or greater than the Brier estimate comparison when 25% of the values

are missing (|Brierimp,25% − Brierobs| ≤ |Brierimp,40% − Brierobs|). The Monte Carlo 95%

confidence intervals when 40% of values are missing are wider and tend to encompass or

overlap the confidence intervals when 25% of values are missing. The exception is method

BS-then-MI whose confidence intervals do not overlap for the majority of scenarios when

sample size is 300.
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Figure C35: Error bars of the difference in the Brier score from the imputation methods and the

Brier score estimate when data are fully-observed, with Monte Carlo 95% confidence intervals, when

data are outcome- and covariate-dependent MAR. The graph compares the Brier score estimates

when 25% of X1 values are missing versus 40% missing for ideal and pragmatic performance. CC

(complete-case); methods are described in Section2.7or Table6.1.
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Comparing to the target performance

As previous described for the MSE and AUC, the ideal performance of the bootstrap

imputation methods and the Brier score estimate when data are fully-observed were com-

pared to the ideal performance of the target Brier score which is estimated from applying

a prediction model, based on all data in a repetition, to the fully-observed data in the

larger test set (Briertarget,obs). The pragmatic performance of the imputation methods

is compared to applying a repetition’s prediction model to the imputed datasets of the

larger test set (Briertarget,imputed). The complete-case estimate is compared to applying a

repetition’s prediction model to the observed cases of the larger test set (Briertarget,CC).

MCAR and covariate-dependent MAR

When data are MCAR, the complete-case analysis underestimates Briertarget,CC when

the sample size is 100 (BrierCC − Briertarget,CC < 0). When sample size is increased

to 300, the difference between the complete-case estimate and Briertarget,CC is centred

around zero when data are MCAR or strong-covariate dependent MAR. When data are

weak covariate-dependent MAR, the complete-case estimate underestimates Briertarget,CC .

With increasing sample size the difference between the complete-case analysis estimate and

Briertarget,CC decreases.

For a sample size of 100 and 300, the pragmatic performance of all imputation-based

methods tends to underestimate Briertarget,imputed (Brierimp−Briertarget,imputed < 0). The

magnitude of this difference is smallest for method BS-then-MI and largest for method MI-

then-BS impute once. All other imputation based methods (BS-then-MI reuse imps, MI-

then-BS with or without fixed bootstrap samples, MI-then-BS reuse test imps, MI-then-

BS reimpute) perform similarly. For a sample size of 1000, all methods perform similarly

when compared to Briertarget,imputed, either overestimating (MCAR or strong covariate-

dependent MAR) or underestimating (weak covariate-dependent MAR) Briertarget,imputed.

For a sample size of 100 and 300, the ideal performance of all imputation methods tends

to underestimate Briertarget,obs. The exception is when the sample size is 300 and data are

strong covariate-dependent MAR as the ideal performance of method BS-then-MI tends

to slightly overestimate Briertarget,obs. When comparing the ideal performance of the

methods with Briertarget,obs, the underestimation for method BS-then-MI tends to have

the smallest magnitude while method MI-then-BS impute once tends to have the largest

magnitude. When sample size is 1000, all methods perform similarly when compared

to Briertarget,obs, either under- or overestimating the ideal target estimate in the same

direction as the pragmatic performance discussed previously.
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Figure C36: The difference between the imputed Brier score and the Brier score estimate from

a larger test set when data are MCAR or covariate-dependent MAR. Errorbars represent Monte

Carlo 95% confidence intervals. CC (complete-case); methods are described in Section2.7or Table

6.1.
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Outcome-dependent MAR

The complete-case analysis tends to underestimate Briertarget,CC for all sample sizes and

missing data scenarios. When sample size is 100, the magnitude of this underestimation

is greater than 0.005 (|BrierCC − Briertarget,CC | > 0.005) but with increasing sample size

to 1000, the magnitude decreases to approximately 0.0025.

For pragmatic performance the results are similar to the MCAR and covariate-dependent

MAR scenarios. The pragmatic performance of all imputation based methods tend to

underestimate Briertarget,imputed for sample sizes of 100 and 300. Method BS-then-MI

tends to underestimate Briertarget,imputed the least while method MI-then-BS impute once

tends to underestimate it the most. For a sample size of 1000 the methods tend to per-

form similarly, although Method MI-then-BS impute once still has the largest magnitude

of underestimation. When sample size is 1000 and data are weak outcome-dependent

and strong covariate-dependent MAR, the pragmatic performance of method MI-then-BS

impute once underestimates Briertarget,imputed (i.e. it is over-optimistic), while all other

imputation based methods overestimate the target estimate.

For ideal performance when sample size is 100 or 300, method BS-then-MI has the lowest

magnitude of underestimation when compared to Briertarget,obs. Methods BS-then-MI

reuse imps, MI-then-BS reuse test imps and MI-then-BS impute once have the largest

magnitude of underestimation when compared to the ideal target estimate. For a sample

size of 1000, all methods tend to perform similarly when compared to Briertarget,obs.
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Figure C37: The difference between the imputed Brier score and the Brier score estimate from

a larger test set when data are outcome-dependent or outcome- and covariate-dependent MAR.

Errorbars represent Monte Carlo 95% confidence intervals. CC (complete-case); methods are

described in Section2.7or Table6.1.
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C.7.3 Calibration intercept

MCAR and covariate-dependent MAR

FigureC38displays the results for the various missing data methods’ estimate of the cali-

bration intercept which is compared to the estimate of the calibration intercept when data

are fully-observed (Interceptimp − Interceptobs).

For MCAR and covariate-dependent MAR, the complete-case estimate tends to underes-

timate the calibration intercept estimated when data are fully-observed (InterceptCC −
Interceptobs < 0). With increasing sample size to 1000, the magnitude of this difference

tends to decrease.

For a sample size of 100, the ideal and pragmatic performance estimates of the calibration

intercept estimate are very unstable with a large magnitude when compared to the inter-

cept estimated when data are fully-observed. The estimates of the calibration intercept

for a sample size of 100 when data are fully-observed were noted to vary widely (Chapter

4, Table5.1).

When sample size is 300 or 1000, the ideal and pragmatic estimates of the various imputa-

tion based methods tend to perform similarly to the estimate of the calibration intercept

when data are fully-observed. They either under- or overestimate the estimate when data

are fully-observed but the Monte-Carlo confidence intervals overlap with zero. The mag-

nitude of the mean estimate of the difference between the ideal or pragmatic performance

with the fully-observed estimate tends to be less than 0.001 for all imputation based

methods (|Interceptimp − Interceptobs| < 0.001).
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Figure C38: Error bars of the difference in the Calibration intercept estimate from the imputation

methods and the calibration intercept estimate when data are fully-observed, with Monte Carlo

95% confidence intervals, when data are MCAR or covariate-dependent MAR. CC (complete-case);

methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC39displays the results for the various missing data methods’ estimate of the cali-

bration intercept when data are outcome-dependent or outcome- and covariate-dependent

MAR. These estimates are compared to the estimate of the calibration intercept when

data are fully-observed (Interceptimp − Interceptobs).

The complete-case estimate tends to underestimate the calibration intercept estimated

when data are fully-observed (InterceptCC − Interceptobs < 0). With increasing sample

size to 1000, the magnitude of this difference tends to decrease but is still larger than the

magnitude when data were MCAR or covariate-dependent MAR.

The pragmatic performance of the various imputation based methods tends to overesti-

mate the estimate of the calibration intercept when data are fully-observed for sample

sizes of 300 or 1000 (Interceptimp − Interceptobs > 0). Method MI-then-BS impute once

tends to have the smallest magnitude (|InterceptMI−BS−once − Interceptobs|), performing

similarly to the fully-observed estimate of the calibration intercept. The pragmatic per-

formance of all other imputation based methods tends to perform similarly to each other

and overestimate the fully-observed estimate by 0.01, approximately.

The ideal performance of the various imputation methods tends to overestimate the the

calibration intercept estimate when data are fully-observed for sample sizes of 300 or 1000

(Interceptimp−Interceptobs > 0). Method BS-then-MI tends to have the largest magnitude

of overestimation when sample size is 300 and the other methods all perform similarly in

relation to the intercept estimated when data are fully-observed. For a sample size of 1000

all methods tend to perform similarly. The magnitude for all methods tends to be less

than 0.005 (|Interceptimp − Interceptobs| < 0.005).
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Figure C39: Error bars of the difference in the Calibration intercept estimate from the imputation

methods and the calibration intercept estimate when data are fully-observed, with Monte Carlo

95% confidence intervals, when data are outcome-dependent or outcome- and covariate-dependent

MAR. CC (complete-case); methods are described in Section2.7or Table6.1.
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Increasing the number of imputed datasets from 5 to 25

FigureC40displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when data

are outcome-dependent MAR but are representative of the results when data are MCAR

or covariate-dependent MAR (available in Supplementary PlotsS4.3.4). Due to increased

computation time when using 25 imputed datasets the comparison a reduced set of meth-

ods were assessed. Results are available for methods BS-then-MI, MI-then-BS and MI-

then-BS impute once which are based on 1000 repetitions.

The estimates for the comparison of the calibration intercept for the various methods to

Interceptobs, perform similarly regardless of whether 5 or 25 imputed datasets are used.

418



BS first Impute first

0.00

0.25

0.50

0.75

 

Nobs=100
BS first Impute first

0.00

0.01

0.02

 

Nobs=300
BS first Impute first

0.00

0.01

0.02

 

Nobs=1000

2=0

BS first Impute first

0.00

0.25

0.50

0.75

 

BS first Impute first

0.00

0.01

0.02

 

BS first Impute first

0.00

0.01

0.02

 

2=
1
20

BS first Impute first

0.00

0.25

0.50

0.75

 

BS first Impute first

0.00

0.01

0.02

 

BS first Impute first

0.00

0.01

0.02

 

25
5

2=
1
10

Outcome−dependent MAR

0.632 bootstrap algorithm

D
iff

er
en

ce
 b

et
w

ee
n 

im
pu

te
d 

an
d 

fu
lly

−o
bs

er
ve

d 
C

al
ib

ra
tio

n 
In

te
rc

ep
t

Figure C40: The difference Interceptimp - Interceptobs when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Interceptimp - Interceptobs. CC (complete-case); methods are described

in Section2.7or Table6.1.
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Increasing the proportion of missingness to 40%

FigureC41compares the pragmatic and ideal performance when 25% of X1 values are

missing to 40% missingness when data are weak outcome- and covariate-dependent MAR.

The results in the figure are generally representative of all missing data scenarios, addi-

tional graphs for ideal and pragmatic performance comparing the proportion of missing

values increasing from 25% to 40% can be found in supplementary plots SectionS4.3.3.

For complete-case analysis, the estimate of the calibration intercept when 40% of X1 val-

ues are missing tends to be larger in magnitude than the comparison when 25% of values

are missing when data are MAR. For MCAR, the estimate when 40% of values are missing

compares similarly to when 25% of values are missing. When sample size increases from 300

to 1000, the estimate when 40% of values are missing tends towards the estimate when 25%

of values are missing (|Interceptimp,40%− Interceptobs| −→ |Interceptimp,25%− Interceptobs|).

For pragmatic performance, the estimate of the calibration intercept when 40% of X1

values are missing tends to be similar to or larger in magnitude than the comparison

when 25% of values are missing when data are MCAR or covariate-dependent MAR for

all methods (|Interceptimp,40% − Interceptobs| ≥ |Interceptimp,25% − Interceptobs|). When

data are outcome-dependent or outcome and covariate-dependent the calibration intercept

estimate when 40% of values are missing tends to have a larger magnitude than when 25%

of values are missing (|Interceptimp,40%− Interceptobs| > |Interceptimp,25%− Interceptobs|).
The exception to this is MI-then-BS impute once whose estimates perform similarly re-

gardless of 25% or 40% of X1 values are missing.

For ideal performance, the calibration intercept estimate when 40% of values are missing

tends to perform similarly to when 25% of values are missing when data are MCAR. For

covariate-dependent, outcome-dependent or outcome- and covariate-dependent MAR the

estimate when 40% of values are missing tends to have a similar or larger magnitude

than the estimate when 25% of values are missing (|Interceptimp,40% − Interceptobs| ≥
|Interceptimp,25% − Interceptobs|).
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Figure C41: Error bars of the difference in the Calibration intercept from the imputation meth-

ods and the intercept estimate when data are fully-observed, with Monte Carlo 95% confidence

intervals, when data are outcome- and covariate-dependent MAR. The graph compares the inter-

cept estimates when 25% of X1 values are missing versus 40% missing for ideal and pragmatic

performance. CC (complete-case); methods are described in Section2.7or Table6.1.
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Comparing to the target performance

As previous described for the MSE, AUC and Brier score, the ideal performance of the

bootstrap imputation methods and the calibration intercept estimate when data are fully-

observed were compared to the ideal performance of the target calibration intercept which

is estimated from applying a prediction model, based on all data in a repetition, to the

fully-observed data in the larger test set (Intercepttarget,obs). The pragmatic performance

of the imputation methods is compared to applying a repetition’s prediction model to the

imputed datasets of the larger test set (Intercepttarget,imputed). The complete-case estimate

is compared to applying a repetition’s prediction model to the observed cases of the larger

test set (Intercepttarget,CC).

As seen when previously comparing the methods’ calibration estimates to the intercept

estimate when data are fully-observed, the results for sample size of 100 are very unstable

for all missing data scenarios and the results will not be further analysed until the Dis-

cussion section.

MCAR and covariate-dependent MAR

FigureC42presents results for the comparison of the various methods’ calibration intercept

estimate to the target calibration intercept when data are MCAR or covariate-dependent

MAR.

The complete-case analysis tends to underestimate Intercepttarget,CC , with an approxi-

mate value of -0.48, and does not fit onto the scale of the results presented in FigureC42.

The pragmatic performance of the methods involving imputation (imp) tends to overesti-

mate Intercepttarget,imputed (Interceptimp,prag−Intercepttarget,imputed > 0). The magnitude

of this difference is less than 0.05 for MCAR and weak covariate-dependent MAR, and

less than 0.0625 for strong covariate-dependent MAR. All methods have similar prag-

matic performance when compared to Intercepttarget,imputed. With increasing sample size

the magnitude of the difference decreases, as does the variability across the 2000 repeti-

tions.

The ideal performance of the various imputation based methods tends to approximate

or overestimate Intercepttarget,obs when data are MCAR or strong covariate-dependent

MAR. When data are weak covariate-dependent MAR, the methods tend to underesti-

mate Intercepttarget,obs. The magnitude of the mean difference tends to be less than 0.025

(Interceptimp,ideal − Intercepttarget,imputed < 0.025). With increasing sample size the mag-

nitude of the difference decreases. All methods tend to perform similarly when compared

to Intercepttarget,obs.
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Figure C42: Error bars of the difference in the Calibration intercept estimate from the imputation

methods and the target estimate of the calibration intercept, with Monte Carlo 95% confidence

intervals, when data are MCAR or covariate-dependent MAR. CC (complete-case); methods are

described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC43presents the comparison of the various missing data methods calibration in-

tercept estimate with the complete-case, ideal and pragmatic target estimate.

Similarly to the MCAR and covariate-dependent MAR, the complete-case analysis tends

to underestimate Intercepttarget,CC and does not fit on the scale used in FigureC43.

The pragmatic performance of the various imputation based methods tends to overes-

timate Intercepttarget,imputed (0.025 < Interceptimp,prag − Intercepttarget,imputed < 0.062).

The pragmatic performance of the various BS-then-MI and MI-then-BS methods all per-

form similarly in relation to Intercepttarget,imputed, except for method MI-then-BS impute

once which tends to have a smaller magnitude (|Interceptimp,prag−Intercepttarget,imputed|).

The ideal performance of the imputation based methods tends to underestimate Intercepttarget,obs

when data are weak outcome-dependent and either weak or strong covariate-dependent

MAR. When data are weak outcome-dependent MAR, all methods tend to approximate

Intercepttarget,obs well. The magnitude of the difference tends to be less than 0.025

(|Interceptimp,prag − Intercepttarget,imputed| < 0.025) when sample size is 300 and this de-

creases with increased sample size.
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Figure C43: Error bars of the difference in the Calibration intercept estimate from the impu-

tation methods and the target estimate of the calibration intercept, with Monte Carlo 95% con-

fidence intervals, when data are outcome-dependent or outcome- and covariate-dependent MAR.

CC (complete-case); methods are described in Section2.7or Table6.1.
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C.7.4 Calibration slope

MCAR and covariate-dependent MAR

FigureC44displays the results for the various missing data methods’ estimate of the

calibration slope when data are MCAR or covariate-dependent MAR. These results are

compared to the estimate of the calibration slope when data are fully-observed (Slopeimp−
Slopeobs).

The complete-case analysis tends to underestimate the estimate of the calibration slope

when data are fully-observed. When the sample size is 100, the magnitude of the differ-

ence tends to be between 0.025 and 0.05 (0.025¡|SlopeCC − Slopeobs| < 0.05). Increasing

the sample size to 300 or 1000 decreases the magnitude to less than 0.025 when data are

MCAR or covariate-dependent MAR.

The pragmatic performance of the methods tends to underestimate the estimate of the

calibration slope when data are fully-observed. When sample size is 100, method BS-then-

MI tends to underestimate the calibration slope when data are fully-observed the most

while method MI-then-BS impute once tends to underestimate it the least. The other

methods perform similarly in relation to the estimate when data are fully-observed with

an average difference of -0.05. With increased sample size method BS-then-MI tends to

perform similarly to the other methods, except for method MI-then-BS impute once which

has a magnitude less than 0.01 (|SlopeMI−BS−once − Slopeobs| < 0.01).

The ideal performance of the imputation based methods underestimates the calibration

slope estimate when data are fully-observed. When sample size is 100 method BS-then-

MI tends to underestimate the fully-observed calibration slope estimate the most with a

magnitude of approximately 0.025. Methods MI-then-BS with or without fixed bootstrap

samples and MI-then-BS reimpute perform similarly in relation to the fully-observed es-

timate with a magnitude of around 0.02. Methods BS-then-MI reuse imps, MI-then-BS

reuse test imps (with or without fixed bootstrap samples) and MI-then-BS impute once

perform most similarly to the fully-observed estimate of the calibration slope. With in-

creased sample size the ideal performance of all the imputation methods tends to decrease

and perform similarly to the fully-observed estimate when data are MCAR or covariate-

dependent MAR.

426



CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

Nobs=100
CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 
 

Nobs=300
CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

Nobs=1000

2=0

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

2=
1
20

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

CC BS first Impute first

CC

(a) BS−then−MI

a − reuse imps

(b) MI−then−BS

b − fixed BS

b − reuse test imps

b − reuse and fixed

b − reimpute train imps

(c) Impute once

−0.10

−0.05

0.00

0.05

 

 

CC
Ideal
Pragmatic

2=
1
10

MCAR and covariate−dependent MAR

The standard bootstrap algorithm

D
iff

er
en

ce
 b

et
w

ee
n 

im
pu

te
d 

an
d 

fu
lly

−o
bs

er
ve

d 
C

al
ib

ra
tio

n 
Sl

op
e

Figure C44: Error bars of the difference in the Calibration intercept estimate from the imputation

methods and the calibration intercept estimate when data are fully-observed, with Monte Carlo

95% confidence intervals, when data are MCAR or covariate-dependent MAR. CC (complete-case);

methods are described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC45displays the results for the various missing data methods’ estimate of the

calibration slope which is compared to the calibration slope estimated when data are

fully-observed (Slopeimp − Slopeobs). The Figure displays the results for the outcome-

dependent and outcome- and covariate-dependent MAR scenarios.

The complete-case analysis tends to underestimate the estimate of the calibration slope

when data are fully-observed. When the sample size is 100, the magnitude of the difference

tends to be between 0.025 and 0.05 (0.025¡|SlopeCC − Slopeobs| < 0.055). Increasing the

sample size to 300 or 1000 decreases the magnitude to less than 0.025.

The pragmatic performance of all imputation methods tends to underestimate the esti-

mate of the calibration slope when data are fully-observed. The magnitude of this differ-

ence (|Slopeimp − Slopeobs|) tends to be between 0.05 and 0.08. For a sample size of 100

the method BS-then-MI tends to have the largest magnitude of underestimation while the

other methods tend to perform similarly. With increasing sample size all methods perform

similarly when compared to the calibration slope estimate when data are fully-observed.

The exception is method MI-then-BS impute once which has a magnitude less than 0.01 for

all sample sizes when data are outcome-dependent or outcome- and covariate-dependent

MAR.

The ideal performance of all imputation methods underestimates the calibration slope

estimate when data are fully-observed for outcome-dependent and outcome- and covariate-

dependent MAR. For a sample size of 100 method BS-then-MI has the largest magnitude

when compared to the slope estimate when data are fully-observed (0.03 < |SlopeBS−MI−
Slopeobs| < 0.05). Methods MI-then-BS with or without fixed bootstrap samples and MI-

then-BS reimpute train imps have the next highest magnitudes of underestimation which

tends to approximately be 0.025. Methods BS-then-MI reuse imps, MI-then-BS reuse test

imps (with or without fixed bootstrap samples) and MI-then-BS impute once have the

smallest magnitude of underestimation. With increasing sample size the magnitude of all

methods decreases to be less than 0.025 for a sample size of 300 and less than 0.01 for a

sample size of 1000.
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Figure C45: Error bars of the difference in the Calibration intercept estimate from the imputation

methods and the calibration intercept estimate when data are fully-observed, with Monte Carlo

95% confidence intervals, when data are outcome-dependent or outcome- and covariate-dependent

MAR. CC (complete-case); methods are described in Section2.7or Table6.1.
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Increasing the number of imputed datasets from 5 to 25

FigureC46displays the results for comparing the various imputation based methods when

using 5 or 25 imputed datasets. The results in the graph are for the scenario when data

are outcome-dependent MAR but are representative of the results when data are MCAR

or covariate-dependent MAR (available in Supplementary PlotsS4.3.4).Due to increased

computation time when using 25 imputed datasets the comparison a reduced set of meth-

ods were assessed. Results are available for methods BS-then-MI, MI-then-BS and MI-

then-BS impute once which are based on 1000 repetitions.

The estimates for the comparison of the calibration slope for the various methods to

Slopeobs, perform similarly regardless of whether 5 or 25 imputed datasets are used.
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Figure C46: The difference Slopeimp - Slopeobs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 25 when 25% of values are missing in X1. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopeimp - Slopeobs. CC (complete-case); methods are described in Section

2.7or Table6.1.
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Increasing the proportion of missingness to 40%

FigureC47compares the pragmatic and ideal performance when 25% of X1 values are

missing to 40% missingness when data are weak outcome- and covariate-dependent MAR.

The results in the figure are generally representative of all missing data scenarios, addi-

tional graphs for ideal and pragmatic performance comparing the proportion of missing

values increasing from 25% to 40% can be found in supplementary plots SectionS4.3.3.

The complete-case analysis when 40% of X1 values are missing tends to underestimate the

fully-observed slope estimate more than when 25% of X1 values are missing for all missing

data scenarios. With increasing sample size the magnitude of the complete-case analysis

when 40% of values are missing decreases and tends towards the magnitude when 25% of

values are missing (|SlopeCC,40 − Slopeobs| −→ |SlopeCC,25 − Slopeobs|).

For pragmatic performance the estimates of the calibration slope when 40% of X1 val-

ues were set as missing underestimates the calibration slope when 25% of X1 values are

missing (|Slopeimp,40 − Slopeobs| −→ |Slopeimp,25 − Slopeobs|) for all missing data scenarios.

This holds true for all imputation methods except MI-then-BS impute once which tend to

perform similarly in relation to the calibration slope estimate when data are fully-observed.

Similarly for the ideal performance of all imputation methods, the calibration slope es-

timate when 40% of values are missing tends to underestimate the slope estimate when

25% of values are missing (Slopeimp,40 − Slopeobs < Slopeimp,25 − Slopeobs) for all miss-

ing data scenarios. With increasing sample size from 300 to 1000, the magnitude of the

underestimation decreases i.e. |Slopeimp,40 − Slopeobs| −→ |Slopeimp,25 − Slopeobs|.
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Figure C47: Error bars of the difference in the Calibration slope from the imputation methods and

the slope estimate when data are fully-observed, with Monte Carlo 95% confidence intervals, when

data are outcome- and covariate-dependent MAR. The graph compares the intercept estimates

when 25% of X1 values are missing versus 40% missing for ideal and pragmatic performance. CC

(complete-case); methods are described in Section2.7or Table6.1.
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Comparing to the target performance

As previous described for the MSE, AUC, Brier score and calibration intercept, the ideal

performance of the bootstrap imputation methods and the calibration slope estimate when

data are fully-observed were compared to the ideal performance of the target calibration

slope which is estimated from applying a prediction model, based on all data in a rep-

etition, to the fully-observed data in the larger test set (Slopetarget,obs). The pragmatic

performance of the imputation methods is compared to applying a repetition’s prediction

model to the imputed datasets of the larger test set (Slopetarget,imputed). The complete-

case estimate is compared to applying a repetition’s prediction model to the observed cases

of the larger test set (Slopetarget,CC).

MCAR and covariate-dependent MAR

FigureC48presents the various missing data methods results for the calibration slope

when compared to the complete-case, ideal and pragmatic target estimate when data are

MCAR or covariate-dependent MAR.

The complete-case analysis estimate tends to overestimate Slopetarget,CC by approximately

0.75 (SlopeCC − Slopetarget,CC ≥ 0.75). It does not fit onto the scale of the graph for the

weak and strong covariate-dependent MAR in FigureC48(second and third row of the

figure).

When sample size is 100, the pragmatic performance of method BS-then-MI tends to ap-

proximate Slopetarget,imputed well. Method MI-then-BS impute once performs the worst

across all imputation methods, overestimating Slopetarget,imputed by at least 0.05. All other

imputation methods perform similarly, overestimating Slopetarget,imputed by at most 0.01.

With increasing sample size, all methods tend to perform similarly to each other in re-

lation to Slopetarget,imputed, except method MI-then-BS impute once which continues to

overestimate the target estimate by around 0.05 (SlopeMI−BS−once−Slopetarget,CC ≥ 0.4).

For ideal performance when sample size is 100, method BS-then-MI tends to underestimate

Slopetarget,obs. Method BS-then-MI tends to have the largest magnitude of the difference

with Slopetarget,obs across all methods but has overlapping confidence intervals with MI-

then-BS, MI-then-BS fixed BS and MI-then-BS reimpute. With increasing sample size,

all imputation methods tend to overestimate the ideal target estimate of the calibration

slope and perform similarly. When data are weak outcome- and covariate-dependent

MAR, methods BS-then-MI, MI-then-BS, MI-then-BS fixed BS and MI-then-BS reimpute

approximate Slopetarget,obs well while the other methods overestimate Slopetarget,obs.
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Figure C48: Error bars of the difference in the Calibration intercept estimate from the imputation

methods and the target estimate of the calibration intercept, with Monte Carlo 95% confidence

intervals, when data are MCAR or covariate-dependent MAR. CC (complete-case); methods are

described in Section2.7or Table6.1.
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Outcome-dependent MAR

FigureC49presents the various missing data methods results for the calibration slope

when compared to the complete-case, ideal and pragmatic target estimate when data are

outcome-dependent or outcome- and covariate-dependent MAR.

Similarly to when data were MCAR or covariate-dependent MAR, the complete-case anal-

ysis tends to overestimate Slopetarget,CC by over 0.75 (SlopeCC − Slopetarget,CC > 0.75)

for all sample sizes.

The pragmatic performance of methodMI-then-BS impute once overestimates Slopetarget,imputed

and has the largest magnitude of all the methods’ pragmatic performance (SlopeMI−BS−once−
Slopetarget,imputed > 0.4). With increasing sample size the magnitude of its overestimation

tends to decrease but it still has the largest magnitude across all missing data scenarios.

When data are weakly outcome- and covariate-dependent MAR for all sample sizes, all

methods tend to overestimate Slopetarget,imputed (Slopeimp − Intercepttarget,imputed > 0).

Method BS-then-MI has the lowest magnitude across all methods, method MI-then-BS

impute once has the largest and all other methods perform similarly. Increasing the sam-

ple size to 1000 all methods tend to perform similarly with a magnitude of approximately

0.01, except for method MI-then-BS impute once. When data are weakly outcome- and

strongly covariate-dependent MAR, the pragmatic performance of method BS-then-MI

tends to underestimate Slopetarget,imputed more than the other imputation methods (BS-

then-MI reuse imps and the MI-then-BS variations, excluding MI-then-BS impute once).

Although with increasing sample size to 300 or 1000 it tends to perform similarly.

Similarly to the pragmatic performance, the ideal performance of method BS-then-MI

tends to underestimate Slopetarget,obs and has the largest magnitude (|SlopeBS−MI −
Slopetarget,obs|) when sample size is 100 or 300. When data are weakly outcome- and

covariate-dependent MAR and sample size is 300 or 1000, the ideal performance of method

BS-then-MI, either approximates Slopetarget,obs well or has the smallest magnitude of the

difference with it. With increasing sample size all methods tend to perform similarly to

each other in relation to Slopetarget,obs.
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Figure C49: Error bars of the difference in the Calibration intercept estimate from the impu-

tation methods and the target estimate of the calibration intercept, with Monte Carlo 95% con-

fidence intervals, when data are outcome-dependent or outcome- and covariate-dependent MAR.

CC (complete-case); methods are described in Section2.7or Table6.1.
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C.8 Is data leakage an issue for the standard and 0.632 bootstrap algo-

rithms?

The aim of the binary outcome simulation study was to identify the most appropriate

way to combine the 0.632 or the standard bootstrap validation algorithm with multiple

imputation. Data leakage for the 0.632 and standard bootstrap validation algorithm was

previously discussed for a continuous outcome in Section6.6and was initially introduced

in Section4.6.

Generally, the impact of data leakage was more noticeable for small sample sizes, as pre-

viously noted in the data leakage discussion for cross-validation (Sections4.6and5.7)

and the continuous outcome scenario for the bootstrap algorithms (Section6.6). This was

seen for the AUC, Brier score and calibration intercept and slope as method BS-then-MI

(the method which is not subject to data leakage through the imputation process) would

have the largest magnitude of over- or underestimation compared to the other methods in

relation to Perfobs.

When comparing a methods’ performance to the fully-observed performance measure,

method BS-then-MI reuse imputed datasets tended to have a smaller magnitude than

method BS-then-MI |PerfBS−MI−reuse − Perfobs| < |PerfBS−MI − Perfobs|. Method BS-

then-MI reuse imps reuses is subject to data leakage as observations from the imputed

datasets are reused to form an imputed training and testing dataset for the bootstrap

samples. For both ideal and pragmatic performance, this leakage has caused method BS-

then-MI reuse imps to perform better than method BS-then-MI when compared to the

fully-observed estimate of the performance measure.

The impact of reusing imputed datasets which were imputed using information from the

entire dataset can also be seen when comparing the various MI-then-BS methods. Simi-

larly to the MSE performance measure scenarios, reusing imputed datasets (methods MI-

then-BS reuse test imps with or without fixed bootstrap samples) lead to over-optimistic

estimates of ideal performance for the AUC and Brier score when compared to method

MI-then-BS. As previously stated in Section6.6, using all covariate and outcome data to

impute missing values in the bootstrap sample can lead to an estimate of performance

which is better than if the data had been fully-observed. This over-optimism of the

fully-observed estimate appears to come from the increased leakage due to knowledge of

the outcome. The over-optimism can be seen when comparing the ideal performance of

method MI-then-BS reuse test imps with MI-then-BS for the AUC or Brier score perfor-

mance measures but not for the pragmatic performance (FiguresC1,C2,C7,C8).
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C.9 Comparing internal validation algorithms

As discussed in Section6.7, we can use the target estimate of the AUC, Brier score and

calibration intercept and slope to compare the various internal validation algorithms.

FigureC50presents results for the various performance measures assessed for the binary

outcome for the cross-validation, 0.632 and standard bootstrap algorithms when data are

weak outcome- and covariate-dependent MAR. The results presented in the graph are

generally representative of the results for each performance measure across all scenarios

(all graphs are available in the Supplementary Plots SectionS4.7).

Previously for the MSE in Section6.7the cross-validation results were more variable than

the bootstrap 0.632 and standard bootstrap algorithms. Here, for the AUC both bootstrap

methods perform similarly while the cross-validation methods tend to be more variable

when the sample size is small. With increasing sample size, all internal validaiton methods

tend to perform similarly.

For the Brier score, the cross-validation methods tend to overestimate the target estimate

while the bootstrap methods tend to underestimate the target Brier score when the sam-

ple size is small. For a large sample size, the internal validation methods perform similarly.

Due to the instability of the calibration intercept when the sample size is small it is im-

possible to compare the various internal validation methods.For larger sample sizes, the

methods tend to perform similarly with cross-validation for the pragmatic performance

slightly outperforming the pragmatic performance of both the standard and 0.632 boot-

strap algorithms.

For the calibration slope, the cross-validation methods are outperformed by the bootstrap

methods for all sample sizes and missing data scenarios. For small sample sizes the stan-

dard bootstrap method performs better than the 0.632 variation and by sample size of

1000 the two variations perform similarly for the various methods.
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Figure C50: Comparing cross-validation and the 0.632 and standard bootstrap algorithms using

the target performance for the AUC, Brier score and calibration intercept and slope. Error bars

of the difference in the imputed performance estimate and the estimate from a larger test set are

presented for the weak outcome- and covariate-dependent MAR scenario. CC (complete-case); CV

methods A-K are described in Table2.3; bootstrap methods are described in Section2.7or Table

6.1.
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D Chapter11: Systematic review - Supplementary file 1

D.1 Search Terms

Table C1: Search Terms used in Medline and Embase databases

# Terms

1 exp neoplasm/

2 exp RADIATION ONCOLOGY/ or exp MEDICAL ONCOLOGY/ or exp

PSYCHO-ONCOLOGY/ or exp SURGICAL ONCOLOGY/

3 tumo?r.mp.

4 cancer.mp.

5 exp pancreas cancer/ or exp female genital tract cancer/ or exp central nervous

system cancer/ or exp nasopharynx cancer/ or exp hypopharynx cancer/ or exp

cancer antibody/ or exp ovarian cancer cell line/ or exp breast cancer resistance

protein/ or exp cancer palliative therapy/ or exp cancer size/ or exp endometrial

cancer cell line/ or exp cancer diagnosis/ or exp ”HCC cell line (colorectal cancer)”/

or exp cancer staging/ or exp cancer cell/ or exp lung cancer/ or exp experimental

pancreatic cancer/ or exp vulva cancer/ or exp uterine cervix cancer/ or exp cancer

graft/ or exp cancer immunology/ or exp brain cancer cell line/ or exp colorectal

cancer cell line/ or exp germ cell cancer/ or exp larynx cancer/ or exp cancer

therapy/ or exp cancer genetics/ or exp skin cancer/ or exp mouth cancer/ or exp

cancer statistics/ or exp breast cancer-related lymphedema/ or exp disseminated

cancer/ or exp second cancer/ or exp cancer surgery/ or exp childhood cancer/

or exp human epidermal growth factor receptor 2 positive breast cancer/ or exp

colon cancer cell line/ or exp esophageal cancer cell line/ or exp cancer survivor/

or exp cancer transplantation/ or exp small cell lung cancer/ or exp pelvis cancer/

or exp cancer adjuvant therapy/ or exp advanced cancer/ or exp lung cancer cell

line/ or exp early cancer/ or exp urogenital tract cancer/ or exp rectum cancer/

or exp breast cancer molecular subtype/ or exp metastatic colon cancer/ or exp

castration resistant prostate cancer/ or exp triple negative breast cancer/ or exp

cancer recurrence/ or exp cancer chemotherapy/ or exp small intestine cancer/ or

exp oropharynx cancer/ or exp Institute for Cancer Research mouse/ or exp poorly

differentiated thyroid cancer/ or exp non muscle invasive bladder cancer/ or exp

differentiated thyroid cancer/ or exp abdominal cancer/ or exp cancer center/ or

exp ”head and neck cancer”/ or exp ovary cancer/ or exp cancer prognosis/ or exp

blood cancer cell line/ or exp ”hereditary breast and ovarian cancer syndrome”/ or

exp cancer incidence/ or exp cancer pain/ or exp muscle invasive bladder cancer/ or

exp biliary tract cancer/ or exp cancer growth factor/ or exp cancer susceptibility/

or exp cancer cell culture/ or exp bladder cancer cell line/ or exp digestive system

cancer/
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Table C1: Search Terms (continued)

# Terms

5 or exp cancer control/ or exp nervous system cancer/ or exp hereditary colorectal

cancer/ or exp cervical cancer cell line/ or exp childhood cancer survivor/ or exp

cancer survival/ or exp liver cancer cell line/ or exp multimodality cancer therapy/

or exp gastric cancer cell line/ or exp inflammatory breast cancer/ or exp brain

cancer/ or exp metastatic colorectal cancer/ or cancer*.mp. or exp testis cancer/

or exp gallbladder cancer/ or exp liver cancer/ or exp cancer radiotherapy/ or exp

esophagus cancer/ or exp colorectal cancer/ or exp prostate cancer/ or exp uterus

cancer/ or exp occult cancer/ or exp cancer registry/ or exp cancer localization/

or exp cancer testis antigen/ or exp heart cancer/ or exp cancer mortality/ or

exp breast cancer/ or exp cancer resistance/ or exp cancer specific survival/ or

exp cancer tissue/ or exp cancer patient/ or exp cancer associated fibroblast/ or

exp cancer screening/ or exp cecum cancer/ or exp cancer vaccine/ or exp adrenal

cancer/ or exp respiratory tract cancer/ or exp multiple cancer/ or exp estrogen

receptor positive breast cancer/ or exp tongue cancer/ or exp stomach cancer/

or exp cancer grading/ or exp hereditary nonpolyposis colorectal cancer/ or exp

pancreatic cancer cell line/ or exp cancer classification/ or exp non melanoma skin

cancer/ or exp cancer fatigue/ or exp prostate cancer cell line/ or exp early cancer

diagnosis/ or exp colon cancer/ or exp cancer model/ or exp cancer stem cell/

or exp vagina cancer/ or exp penis cancer/ or exp cancer risk/ or exp non small

cell lung cancer/ or exp thyroid cancer/ or exp cancer cell line/ or exp ”cancer of

unknown primary site”/ or exp cancer prevention/ or exp breast cancer cell line/ or

exp kidney cancer/ or exp bladder cancer/ or exp endometrium cancer/ or exp anus

cancer/ or exp cancer immunotherapy/ or exp ”HCC cell line (cervical cancer)”/

or exp bone marrow cancer/ or exp cancer research/ or exp metastatic breast

cancer/ or exp urinary tract cancer/ or exp cancer inhibition/ or exp basal like

breast cancer/ or exp cancer immunization/ or exp progesterone receptor positive

breast cancer/

6 1 or 2 or 3 or 4 or 5

7 missing data.mp.

8 drop out.mp.

9 non-response.mp.

10 incomplete data.mp.

11 exclude* data.mp.

12 7 or 8 or 9 or 10 or 11
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Table C1: Search Terms (continued)

# Terms

13 6 and 12

14 exp survival analysis/

15 hazard ratio.mp.

16 time-to-event analysis.mp.

17 cox model.mp. or Proportional Hazards Models/

18 time-dependent.mp.

19 time varying.mp.

20 relative ratio.mp.

21 14 or 15 or 16 or 17 or 18 or 19 or 20

22 13 and 21

23 22 and 2012:2018.(sa year).
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D.2 Data extraction checklist

Table C2: Checklist for data extraction

Heading Checklist More detail

Journal

Year

First Author

Analysis Models used � Kaplan-Meier

� Log rank test

� Cox model

� Exponential

� Weibull

Complexity of analysis model � Univariable

� Multivariable

Functional form � Checked?

� If yes, Martingale residuals?

� Other method?

PH assumption � Checked?

� Schoenfeld Residuals

� KM or log-log plots

� Interaction with time

� If other, specify

� If checked, was there an attempt

to handle missing data other than

a CC analysis?

PH= proportional hazards
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Table C2: Checklist for data extraction (continued)

Heading Checklist More detail

Analysis Covariate selection � Explicitly stated?

� A priori involved?

� Univariable model with p <

α

� Chi-square

� T-test

� Fishers exact test

� Likelihood ratio test

� Forward selection

� Backward selection

� Other, specify

Missing data Outside of CC analysis, was extent

of missing specified

� in text

� in table

� shown in a plot

Assumptions stated? � If yes, which one?

� If no, presumably which one?

Methods to handle missing data � Were methods declared in

full text or supplementary

material?

� Initial size of sample (be-

fore excluding due to missing

data or other criteria)

� After applying exclusion cri-

teria not relating to missing

data, was it unclear whether

there were any missing co-

variate data?
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Table C2: Checklist for data extraction (continued)

Heading Checklist More detail

Missing data Methods to handle missing data � Out of the initial sample

size, how many subjects

were excluded in an initial

phase (prior to any descrip-

tive statistics or analysis) be-

cause they had missing data

on one or more covariates?

� Out of the initial sample size,

how many subjects were ex-

cluded in an initial phase

(prior to any descriptive

statistics or analysis) due to

other exclusion criteria?

� Did the reporting make it

possible to ascertain the

numbers excluded due to

missing data or due to other

exclusion criteria?

� If the reporting did not make

it possible to ascertain the

numbers excluded due to

missing data or due to other

exclusion criteria, what was

the total number excluded in

the initial phase for any rea-

son?

� Of which, was it possible

to determine at least some

of the exclusion was due to

missing data?

� If yes, how many were con-

firmed to be excluded due to

missing data?

� Final sample size after all ex-

clusion criteria applied to be

used for analysis?447



Table C2: Checklist for data extraction (continued)

Heading Checklist More detail

Missing data Methods to handle missing data � If excluded missing data,

what would sample size for

analysis have been if missing

data had been kept?

� After exclusions in an initial

phase due to either missing

data and/or other criteria,

are there missing values in

any additional study covari-

ates?

� If missing data still present

in analysis sample, were co-

variates containing Nas used

in model?

� Did initial phase include re-

moving those with incom-

plete data in some covari-

ates?

� Did initial phase include a

CC analysis?

� Was complete-case analysis

used during or post initial

phase?

� Stated no. of people with

complete records?

� If no, could no. of complete

records be worked out from

information in paper?

� Removed covariates from

analysis due to large amount

of missing data?

� If removed, are they thought

to be highly predictive?
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Table C2: Checklist for data extraction (continued)

Heading Checklist More detail

Missing data Methods to handle missing data � Included a missing indicator

in model?

� Minimum value imputation

� Maximum value imputation

� Mean value imputation

� Mode value imputation

� LOCF

� Was MI used?

� If yes, uni or multi?

� Specify if Joint MVN, FCS

etc.

� If yes, included time, log

time, event indicator or

Nelson-Aalen estimate?

� If yes, specify no. of impu-

tations?

� Was a sensitivity analysis

used?

� Were there any Time-

dependent covariates or

time-varying effects with

missing data?

Software used State whether SAS, SPSS, Stata,

R, S-plus or Mplus
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