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Abstract

Multivariable model-building is an important aspect of statistical analyses and should
be given careful consideration. A common issue when conducting an analysis is the
presence of partially-observed covariates. Missing data in covariates are known to
result in biased estimates of associations with the outcome and loss of power to detect
associations. The impact of missing data in the prediction context has been less stud-
ied. When using a dataset to train a model for prediction it is essential to evaluate
its performance. Two popular internal validation methods for evaluating a prediction
model are K-fold cross-validation and using the bootstrap algorithm to correct for
optimism. Methods for handling missing data in this process are not well established

and will be the primary focus of this thesis.

Multiple imputation is a method commonly used to handle missing data involving
replacing a missing value with a plausible value across multiple copies of the original
dataset and will be used here to handle the various challenges that missing data pose.
This thesis will assess how to combine multiple imputation with internal validation
techniques in an ‘ideal’ and ‘pragmatic’ setting. The use of two imputation models
is proposed, one to impute the dataset to estimate the coefficients of the prediction
model and the other to evaluate the prediction model. Consideration is given to data
leakage which can occur during the imputation process. The presence of missing data
further presents challenges when selecting covariates and flexibly modelling covariates.
An extension to the internal validation methods will include covariate selection and
assessment of the functional form of continuous covariates using fractional polynomi-
als. Finally, methods will be demonstrated using the Rotterdam breast cancer study

data which is a publicly available dataset.

The final part of the thesis turns to the handling of missing data in studies of associa-
tions. While methods for handling missing data in this context are well established for
simple settings, extensions to deal with considerations such as functional forms, covari-
ate selection and time-varying effects are more challenging, and it is not clear to what
extent they have been used in practice. This thesis presents findings from a systematic
review investigating how researchers commonly handle missing data in observational
time-to-event studies. A particular focus is given to the methods researchers used to
deal with unobserved values, assess the functional forms of continuous covariates and
select covariates for the model of interest. Recommendations for dealing with missing

values in practice while handling these complicated aspects of an analysis are given.
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1 Introduction

1.1 Background

Missing data are a common problem in observational data, occurring due to a failure to
observe a value for a covariate. This may be due to any number of reasons such as failure
to respond to questions in a questionnaire, data entry errors or patient loss to follow-up.
The presence of missing data can cause several issues for researchers when conducting a
statistical analysis. It can lead to a loss of power to detect associations between covariates
and the outcome of interest, as well as introduce bias into the estimates for these associa-
tions [1]. In addition, it can cause difficulties when making decisions on common analysis
issues. T'wo examples of this are the selection of covariates into a statistical model or allow-

ing for the flexible transformation of continuous covariates in the presence of missing data.

Multivariable model-building is an important aspect of many statistical analysis, being
commonly used in many types of studies. There are typically three classified aims of
quantitative research which are exploratory, causal or predictive in nature. An exploratory
model is used for descriptive purposes, it can suggest that an exposure or treatment is as-
sociated with an outcome but cannot help with drawing firm causal conclusions. A causal
model can be used to try and establish evidence for a causal relationship between a treat-
ment and an outcome. For an exploratory or causal model, the presence of missing data
can be problematic in inference as regression parameters can potentially be biased while
other covariates may incorrectly be noted to not be associated with an outcome. There
are now many recommendations in place concerning the handling of missing data in infer-
ence modelling (I have summarised recommendations in Table 4 of Chapter11). However,

another multivariable model-building setting involves prediction modelling which aims to
determine a patient’s risk of having or developing a health outcome. To date, much of
the published literature has focused on the effects of missing data in an inference setting
while the effects of missing data in a prediction modelling setting have been less formally
investigated. While much of the published literature and recommendations, which focus
on an inference setting, may transcribe to a prediction setting, it is important to note

some key differences.

Missing data in an inference setting is often concerned with bias which may be introduced
to regression parameters. However, bias in a prediction setting is only problematic if
it causes a model to produce worse predicted values. An additional difference, is using
information from the outcome when imputing missing values. In inference, maintaining
associations between imputed values and the outcome is essential. However, in a predic-
tion setting the question arises as to whether the very thing that is about to be predicted
should be used to impute missing values. Another consideration is that with inference

modelling a ‘final’ inference model is desired from which to draw associations between
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exposures and an outcome. Using missing data methods such as multiple imputation (this
will be introduced in Section1.6.2) will involve combining several analysis models together
to get one overall model. This may not be necessary in a prediction setting, which could
avoid difficulties associated with getting an overall model from multiple models which each
include different covariates or transformations of continuous covariates. In this thesis, I

will primarily focus on the handling of missing data in a prediction setting.

Covariate selection and the transformation of continuous covariates are two common deci-
sions made, in addition to missing data, during the development of multivariable prediction
models. Several systematic reviews have assessed the reporting of prediction models for
various health areas. Collins et al. (2011) [2] found that 41% of studies developing predic-
tion models for type II diabetes did not consider missing data. More recently, Navarro et
al. (2021) [3] noted that 41% of studies had handled missing data inappropriately when
developing prediction models using supervised machine-learning approaches, either omit-
ting records with missing data or using a ‘flawed’ imputation approach. Limited detail was
available from the review on why a complete-case analysis was considered flawed (there
are some circumstances for which a complete-case analysis can be acceptable to use [4]).
Similarly, Tsvetanova et al. (2021) [5] found a lack of reported detail on how missing data
are handled during the development, validation and implementation stages of a prediction
model. The handling of missing data is not solely a problem in a traditional regression-

based prediction model but also in machine-learning [6].

The TRIPOD statement [7] is a set of recommendations focusing on the analysis and
reporting of prediction models. These recommendations range from detailing the study
objectives clearly to explaining how the sample size of the study was decided and stat-
ing what type of prediction model was used. Specifically in relation to missing data, the
TRIPOD statement gives three recommendations. These are (i) stating the proportion
of missingness in each covariate, (ii) stating what method was used to handle missing
data and (iii) discussing any limitations that missing data has caused. As stated in a
systematic review on the reporting and handling of missing data in predictive research by
Masconi et al. (2015) [8], there is little consideration given to the effect of missing data in
risk prediction. Masconi concludes that formal guidelines may improve the reporting and

handling of missing data for future studies.

There are several published articles on handling missing data in prediction modelling but
advice can often conflict which can make it difficult to implement guidelines and rec-
ommendations in practice. A specific issue concerns the handling of internal validation
methods when data are partially-observed. A thorough study into combining missing data
methods with internal validation techniques is required and will be investigated in this

thesis.
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In the introduction chapter of this thesis I will detail the motivation for the work conducted
during the PhD. This will include the impact of missing data on observational studies and
how this thesis is a response to the practical question of how to combine internal validation
methods with multiple imputation. I will give an introduction to missing data, prediction

models and internal validation in this chapter.

1.2 Motivation

The tentative aim of my PhD was to develop strategies for handling missing data in
time-to-event analyses. This would have involved incorporating covariate selection, se-
lecting the functional form of continuous covariates (i.e. covariate transformation) and
the handling of time-varying effects when using multiple imputation (a method used to
impute missing values in datasets). In the first year of my PhD I focused on reviewing the
current literature on multiple imputation and conducting a systematic review concerning
how missing data are handled in practice. The systematic review covered different study
types, including studies of associations and prediction studies. This resulted in the work
presented in Chapterlland a corresponding paper was published [9]. T also investigated

fractional polynomials to handle covariate selection, covariate transformation and time-
varying effects with the ultimate aim being to combine an algorithm called ‘multivariable

fractional polynomial time’ with multiple imputation.

In November 2018 in the second year of the PhD I attended an informal missing data
discussion group where the question was raised by Professor Angela Wood regarding the
best way to combine multiple imputation and cross-validation when developing and vali-
dating a prediction model. As Professor Wood had no time to investigate this and it was
a problem which my supervisors and I found to be highly interesting, it was decided that
I would undertake a detailed investigation into the validation of prediction models in the
presence of missing covariate values as a primary aim of my PhD. I have since focused
on the handling of missing data when using cross-validation or the bootstrap optimism-

corrected algorithms.

1.3 Datasets to be used in the thesis

The majority of the data that will be used in this thesis to assess methods for handling
missing data in the development of prediction models will be simulated datasets. This
will allow for the evaluation of the methods under controlled circumstances where the

underlying data-generating processes are known [10].

In addition, the methods that perform well (based on findings from the simulation studies)
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will be applied to a real dataset. The Rotterdam breast cancer dataset is a publicly available
dataset, available fordownloadfrom the Institute of Medical Biometry and Statistics. It

has 2,982 fully-observed records and is used throughout the ‘Multivariable Model-Building’
book by Royston and Sauerbrei [11] for example analyses. In this thesis, I will use the

dataset to illustrate the final methods selected from the simulation studies.

1.4 The aim of this chapter

There are two key areas of statistical research which must be introduced in this chapter.
The first is missing data. I will briefly describe the underlying missing data mechanisms
which can cause missing values to arise, followed by discussing two common methods
(complete-case analysis and multiple imputation) which are used to handle missing data

in practice.

The second area is that of prediction modelling. I will briefly describe the uses of predic-
tion models before providing an overview of methods used for the evaluation of prediction
models, focusing on internal validation. This will detail two common internal validation
approaches (cross-validation and the optimism-corrected bootstrap) and explain several
performance measures that are used when evaluating model performance. Finally I will
introduce the concept of data leakage which will play an important role in the methods I

will propose in later chapters.

I will finish by outlining the remainder of the thesis at the end of this Chapter, giving a

brief summary of each subsequent chapter.
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1.5 An introduction to missing data

In this section I will give a brief overview of the area of missing data. As missing data
is a very common problem which arises in healthcare analyses, there are various texts
available giving a detailed overview of the area [12,13,14]. Here, I shall give a brief

introduction to the missing data concepts which are relevant to the thesis. This will
include a description of the underlying missing data mechanisms and a description of two
methods, complete-case analysis and multiple imputation, which are most commonly used
in practice to handle partially-observed data. In this section and throughout the thesis, I

will be focusing on the handling of missing data in covariates rather than outcomes.

1.5.1 Missing data mechanisms

Three ‘missing data mechanisms’ were defined by Rubin and Little (2002) [13, p. 12] to
explain the potential relationship between missing values and the rest of a dataset. Let R;
be an indicator variable specifying whether a value is missing (1) or not (0). Let a dataset
D contain an outcome Y and a matrix of covariates X. The subset of observed and miss-

ing covariates for patient 7 in D are denoted D; ops and D; ariss i.e. Dy = {Dj obs, Di,ariss }-

Missing completely at random (MCAR) implies that the probability of missingness is not

conditional on whether data are observed or missing.
Pr(R; = 1| D; ops, Dimiss) = Pr(R; = 1)

Missing at random (MAR) implies that the probability of data being missing is condition-

ally independent of the missing data given the observed data.
Pr(R; = 1| D 0ps, Diariss) = Pr(R; = 1| Dj ops)

Missing Not at random (MNAR) implies that the probability of data being missing de-

pends on both the observed and unobserved data.
PT(R'L =1 | Di,Obsa Di,Miss) 7& PI‘(RZ =1 | Di,Obs)

It is not possible to determine whether data are actually MAR or MNAR, though it is
possible to test MCAR against MAR (if we are willing to rule out MNAR). Instead, it is
determined by the plausibility of the missing mechanism within the context of the data.

In this thesis, I shall mainly discuss the performance of methods when data are MCAR or
MAR.
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1.6 Methods to handle missing data

A number of statistical methods have been developed for how to deal with missing data,
including weighting approaches like inverse probability weighting, looking only at the ob-
served values or imputing missing values with the mean or mode value for the covariate
being assessed. Here, I shall detail two methods: complete-case analysis and multiple
imputation. I previously stated in Sectionl.1that much of the published literature re-

garding missing data focused on the inference setting. Altering the missing data methods
discussed here to handle a prognostic setting, instead of the inference unbiased parameter

estimation setting, will be discussed in Chapter2.

1.6.1 Complete-case (CC) analysis

This is a common method used by researchers to deal with missing observations and is
often the default method for dealing with missing data in statistical software such as R
or Stata. It involves restricting the analysis of interest to the dataset of those who have

fully-observed data as seen in Figurel.l.

Original dataset CC dataset
y X1 Xo
; NA Y )('1 X2
3 2
4 NA 3
5 5
6 NA 7
7 8
8 9

Al Missing

no

Figure 1.1: An example of complete-case analysis. The total sample size for the data before and
after CC analysis is ng and nq, respectively, where n; < ng. The CC dataset is then used for the

analysis.

If data are MCAR then the results from complete-case analysis will lead to unbiased
estimates, as the records are still simply a random sample of the population. However,
this method is inefficient due to the discarding of information i.e. a smaller sample size is
used, as seen in Figurel.l. The complete-case analysis could also provide valid inference

in certain MAR scenarios such as regression analysis when the missing mechanism does not
depend on the outcome. For example, if there are missing values in either the outcome, the
covariates or both, then as long as the probability of being fully-observed is independent of
the outcome when conditioned on the covariates, a complete-case analysis will be unbiased
[12, p.24-25, 34-35].
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1.6.2 Multiple Imputation (MTI)

Originally proposed by Rubin [15], the idea behind MI is to create M copies of the orig-
inal dataset and replace the missing data in each imputed dataset with plausible values
using a model. Using several imputed datasets helps to account for the uncertainty in the
estimates of interest due to the imputation process. By accounting for this uncertainty
in imputed values, multiple imputation is efficient and can produce unbiased estimates of
regression parameters and standard errors under the MAR assumption. It is also flexible
and can handle various covariate types (continuous, binary etc.) or different datasets such
as longitudinal or multi-level data. A final result is obtained by summarising across these

imputed datasets, each of which has different imputed values.

The steps in the MI process are visualised in Figurel.2and described below:
1.Create M copies of the original dataset, D.

2.Replace missing data in each copy with plausible values drawn from the posterior

predictive distribution of the missing data conditional on the observed.

e This involves first forming an imputation model with parameters ¥, f(Daysiss |

Dops; ¥), under an assumption about the missingness mechanism.

e Initial values for 1) are estimated on the complete-cases. Given the initial values,
a draw of 1 can be taken from its posterior distribution. This can then be used

to impute the missing values.

e Taking draws from the model and the posterior distribution of % is repeated

M times.

3.Apply the analysis procedure (e.g. fit the analysis model of interest) to each imputed

dataset and get estimates of the parameters of interest, 3, for m =1,..., M.

4.Combine or ‘pool’ these estimates using Rubin’s rules. An overall point estimate is
obtained using Rubin’s first rule 5 = Z%zl Bm Rubin’s second rule estimates the

total variance of B [16]:

s 1 1 1 X .
Vaur(ﬁ):MZM/er<1+M>*M_lZ(ﬁm—ﬁ)2

m=1 m=1

where W, is the estimated variance of Bm

MI is typically conducted using the MCAR or MAR assumption, which I will focus on
within the PhD, although it can be extended to be implemented with MNAR [17].
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Y X7 Xo
NA

Observations

M imputed datasets
Y X5 Xo Y X5 Xo Y X5 Xo
L I Iy

o
o
[N}
o
=

Figure 1.2: Diagram explaining the multiple imputation procedure. NA denotes missing values

and I represents the imputed values which replace NA.

A popular MI method is joint modelling which involves drawing values for missing data
simultaneously from a multivariate distribution, typically multivariate normal. Another
MI method is full conditional specification (FCS), which is also known as multivariate
imputation by chained equations (MICE). MICE imputes missing data by cycling through
a series of univariate conditional models for each covariate with missing values conditional
on other covariates and the outcome. When cycling through these conditional models, the
most up-to-date values for the missing covariates not currently being imputed are used
(this algorithm is clearly detailed in [18, Section 4.1]). While joint modelling assumes a
multivariate distribution for all covariates, MICE allows each covariate to have its own
individual distribution for imputing which is beneficial when dealing with missing values

in continuous, binary and categorical covariates.

1.6.3 Congeniality in MI

Xie and Meng (2017) [19] discusses congeniality which is an important concept for the
validity of MI. When applying MI, there are two models which need to be specified:

1.The analysis model:
This is the model of interest (also known as the substantive model). An example
would be a generalized linear model regressing an outcome on several covariates,

with parameters 3: g(Y | X1, X2, X3,...;3)
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2.The imputation model:
This is the model used to impute the missing values in a covariate. If one covariate X3
is partially-observed, this regresses the covariate with the missing values, X, against

all other relevant covariates in the dataset. For example: f(X; |Y, Xo, X3,...;%)

For Rubin’s rules to hold these models must be congenial which implies there must exist
a joint model which has conditional models which corresponds to the analysis and impu-
tation models. If this is not the case the analysis model may lead to biased parameter
estimates. Auxiliary variables not included in the analysis model could be included in the
imputation model to improve efficiency of MI but would cause an uncongenial “richer”
model [12, p.64] and lead to bias in the Rubin’s rules variance estimator. Alternatively,
removing variables from the imputation model which are in the analysis model leads to a

“poorer” model which invalidates both Rubin’s rules parameter and variance estimates.

I will now give a brief example of uncongeniality. As discussed by Bartlett et al. (2015) [18],
uncongeniality can be seen in incorrect modelling of the functional form of a continuous
covariate. A covariate containing missing values, X1, has a quadratic association with the
outcome, Y, such that Y | X1,X12 is normal with mean a function of X; and X12. An
imputation model could introduce bias if it assumes that X is conditionally normal given
Y with mean a linear function of Y. This is because the two models cannot simultaneously
hold, i.e. they are uncongenial. The imputed data will only reflect a linear relationship

with the outcome whereas the observed are associated quadratically.

1.6.4 Imputation of covariates in Cox regression

In the description of MI above, I have focused on a generic outcome Y which could be
continuous or binary. There are some special considerations needed for a time-to-event
outcome. As the Rotterdam breast cancer dataset will be used to illustrate any future

methods, the imputation of covariates in Cox regression will be briefly discussed.

Bartlett et al. [18] and White and Royston (2009) [20] have proposed methods for han-
dling missing covariate values in the case of the analysis model being a Cox model. White
and Royston suggested an approximately valid imputation model which should contain
the event indicator, other covariates X and the Nelson-Aalen estimate of the cumulative
hazard, E’o(t), at the person’s observed event or censoring time. This is an uncongenial
approach unless parameters 3 from the analysis model and the imputation parameters are

equal to zero.
In comparison, Bartlett et al. use a modified MICE approach which accounts for the

analysis model in the imputation process in order to make the analysis and imputation

model congenial. This approach can be used in Cox, linear and logistic regression and can

36



accommodate transformations of continuous covariates in the analysis model.

While the approach from Bartlett et al. is considered to be the gold standard MI approach
(because full Bayes or likelihood are superior but harder to actually do) [9], it is not, as
yet, able to handle the selection of fractional polynomials (described in Sectionl.7), which
are relevant to later sections of the thesis. The ‘simpler’ approaches involving multiple
imputation and MICE are able to handle fractional polynomials [21]. As such, when
imputing the Rotterdam data in Chapter10, the method from White and Royston will be

used.

1.7 Flexible transformation of continuous covariates

There are many ways to handle continuous covariates in an analysis, some of which are
not recommended. One example is to categorise a continuous covariate using ‘cutpoints’,
for example those with a covariate value between 0 and 10 are group 1, those with values
between 10 and 20 are group 2 etc. However, categorising covariates is generally not rec-
ommended due to a loss of information, the analysis results can change depending on the
cutpoints used [22] and can cause ‘jumps’ in predicted values which are ‘unnatural’ [23,
p.178-180].

A covariate is commonly included into a model as a linear term [24]. However, transforming
covariates using non-linear functions can improve the fit of a prediction model [23, p.180-
184]. Splines can be used to flexibly model covariates by increasing the degree of the
piecewise polynomials, the level of flexibility can be controlled by either the number of
knots (used to section off the data) or by changing the allocated number of degrees of
freedom. An alternative to splines for flexible covariate transformations are fractional
polynomials (FPs) developed by Royston and Sauerbrei [11] which I will focus on in this

thesis.

1.7.1 Fractional Polynomials

FPs are a method for flexibly modelling nonlinear effects of a continuous variable X; where
X1 > 0 for all observations. FPs of degree 1 (FP1) are of the form X¥ for E € S. S is a set
of powers such that S = (—2, -1, —%, 0, %, 1,2, 3) where 0 represents a log transformation.
While this is the common set of fractional polynomials in the literature, other values can
also be considered. Due to set S including a logarithmic transformation and negative
exponents, there is a requirement that the values of a covariate X; should be greater than
zero (X1 € RE,). A FP of degree 2 (FP2) applied to a covariate, X1, is of the form
(X, X2, Ey # By

XE = x(Bul) _ P (1.1)
(X171, Xy log(X1)), E1= Ep
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A FP of degree D in linear regression for patient ¢ is of the form:
P
E[Y; | X = Bo+ Y BpXT, (1.2)
p=1

Logistic regression uses a logit function to link the linear predictor of covariates to the
probability of having an outcome. The logit link function of a value a is log (f‘a) A FP

of degree D in logistic regression for patient ¢ is of the form:
P
logit(P(Y; = 1| X;)) = fo+ Y _ BpXE, (1.3)
p=1

A FP of degree D in a Cox model for patient 7 is of the form
P
h(ti | X) = ho(t)exp | Y B, X[, (1.4)
p=1

where exponent E has dimension D and P is the number of covariates included in the

model.

One way to select among FP models (e.g. FP1 versus FP2) is by comparing the difference
in deviances to a chi-squared distribution. The appropriate degrees of freedom (DF) for

comparing models can be found in Tablel.1.

Table 1.1: The degrees of freedom (DF) for comparing the difference in deviances in fractional

polynomial (FP) models. The parameters highlighted in blue indicate those related to the degrees

of freedom.

Model A | Model B | DF | DF explanation
FP2 Null 4 Null: g

FP2: o+ S X[ + B X172
FP2 Linear 3 Lin: ag + a1 X1

FP2: By + X" + 5o X"
FP2 FP1 2 | FP1: ag + on X

FP2: By + B1 X1 + B X
FP1 Null 2 Null: «g

FP1: By + B X[
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FP algorithm: Selecting a FP for one covariate
The FP selection (FPS) algorithm below states the selection procedure for choosing an

appropriate FP for one covariate. The default function is linear.

1.Assume a linear function for covariate X3 in the regression model for Y.

2.Choose appropriate level of Type I error ( ag) and appropriate maximum degree D,

typically D = 2.

3.Test the best FP2 model for X; at the ag level against the null model. If the test
yields a non-significant p-value (at the chosen ap level), stop, otherwise continue.

This is equivalent to testing for an association with Xj.

4. Test the best FP2 model against a linear model. If the test yields a non-significant

p-value, stop, otherwise continue. This is equivalent to testing for non-linearity.

5.Test the best FP2 for X; against the best FP1. If the test yields a non-significant
p-value, the final model is FP1, otherwise FP2.

This algorithm can be extended to handle multiple covariates in the multivariable FP
(MFP) algorithm [11, p.117-118]. This iteratively cycles through all covariates to be con-
sidered for selection into the model and also determines whether any continuous covariates

should be transformed. The algorithm is available in AppendixA.

Combining FPs and MI

Typically MI assumes that the analysis model is fixed and already known but use of FPs
involves model selection via the MFP algorithm. Moreover, FPs require that any imputed
values be positive. Morris et al. (2015) [21] propose imputation methods for use when
covariates are transformed using FPs and the MFP model selection procedure is to be
applied. This involves either approximate Bayesian bootstrap or a rejection sampling
approach. Note that Morris et al. focused on combining MI with fractional polynomials
of degree 1, there is no satisfactory method for a degree greater than 1. Combining
FPs with MI will be covered in more detail in Chapter7where I shall use the work
conducted by Morris et al. to extend my proposed methods (which combine MI and
internal validation) to handle covariate selection and assessment of the functional form of

continuous covariates.
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1.8 Prediction Models

A prediction model aims to use various characteristics about a patient in order to predict
whether they have (or will have) an outcome of interest. A model can be written as some

function of covariates for patient 7 as previously seen in equationsl.2-1.4.

In addition to missing data, there are various issues to consider when developing a predic-
tion model [7]. These include, but are not limited to, ensuring the sample size is sufficient
[25,26,27,28], selecting covariates into the final model and deciding on the functional

form of continuous covariates [24,29].

There are various ways to include covariates into a model. Covariate selection could be
conducted a priori by adding a pre-identified set of covariates into a prediction model.
There are other more traditional methods such as stepwise regression which iteratively
evaluates the contribution of a covariate to the model of interest. Forward selection starts
with an empty model and then includes the covariate which is most significant (based on
a predefined significance level). It proceeds to add in the most significant covariates until
either all covariates are included or the inclusion of any of the remaining non-selected
covariates to the model does not improve the ‘model fit’. Backwards selection is similar
but reversed. The model starts with all potential covariates included and then evaluates
whether the removal of the least significant covariate badly impacts the model. Stepwise
methods can be straightforward to use but the selection process can have several disad-
vantages [23, p.213] such as covariate selection instability and it can also lead to worse
internally and externally validated performance than if a full model including all covariates
had been used.

Consideration of these various issues can help to prevent the overfitting of a prediction
model to the data it has been trained in. A model which suffers from overfitting lacks
generalisability and will not perform well when predicting outcomes for previously unseen
data. Shrinkage methods such as Lasso regression are intended to help to address overfit-

ting [30] and can be used when developing a prediction model.

The development of a final prediction model is not the focus of this thesis. However, the
procedure used to develop a prediction model must also be accounted for in the validation
process. Therefore, some of the issues that surround model-building, such as covariate

selection and the transformation of continuous covariates, will feature in Chapters7-10.
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1.9 Introduction to internal validation of prediction models

When developing a prediction model it is essential to know how well the model will per-
form when used to predict the outcome for a new individual. This could be an assessment
of how well the model performs in the data it was fitted to (internal validation). Alter-
natively, validation could include assessing how well the model performs in a population
which is slightly different from that used to fit the prediction model or from a different

time period (external validation).

Internal validation involves evaluating a prediction model using the same data used to fit
it. Internal validation is typically conducted at the initial development stage to assess
the validity of the model in the setting it was trained in. External validation is usually
conducted afterwards to assess how generalisable a prediction model is. There are several
ways to internally validate a model. In this thesis, I shall briefly overview apparent
performance and splitting the data into a training and test set. I shall then detail the cross-
validation and optimism-corrected bootstrap algorithms which will be used frequently
throughout Chapters2-10. These methods are available in more detail in [23, Chapter

17]. All methods detailed in this section will be for the scenario where data are fully-

observed.

1.9.1 Apparent performance

A simple approach to model validation is one in which the prediction model is evaluated
using the same data which was used for model development. This is the simplest form of
model validation but will lead to a model performance estimate which is over-optimistic,
particularly in small samples. This is due to all of the data having been used when fitting
the model, it is therefore trained to give good predictions specifically for the dataset. The
performance estimated when evaluating a prediction model using all of the data which
trained it is known as the apparent performance. This will be relevant in Sectionl.9.4

when discussing the optimism-corrected bootstrap algorithms.

1.9.2 Split the dataset into a training and test set

The split sample approach involves randomly splitting a dataset into two sub-datasets. An
example is demonstrated in Figurel.3where a two third training set versus one third test

set split has been used. The observations in the training set are used to fit a prediction
model. The observations in the test set are used to evaluate how well the prediction model

(fitted to the training set) will perform on ‘unseen’ data.

The advantage of splitting the data into a training and test set is that it is very easy to
do. However, there are several disadvantages. By splitting the data into two, the overall

amount of data available to train a prediction model or to evaluate it is reduced. The
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trained prediction model is losing out on valuable information and may be at increased
risk of overfitting to the data due to a smaller sample size i.e. the model will be less
generalisable or robust to new data. In addition, the trained prediction model is entirely
dependent on the way the data has been split into the training and test sets. A different
choice of split could produce a different and either better or worse performing prediction

model i.e. the results could be unstable and highly variable.

Observations

Y
X1
X2

Figure 1.3: An example of splitting data into a training set (white) and a test set (purple).

As the training and test split is easy to visualise and understand, it will be used in
Chapter2for illustrative purposes when discussing the imputation of data for the training
and evaluation of prediction models. It also serves as a good introduction step to cross-

validation which repeatedly splits the data into training and test sets.

1.9.3 Cross-validation (CV) methods

Cross-validation can be used to internally validate the predictive performance of a clinical
prediction model. It can be thought of as repetitive splits of the data into training and
test sets. The dataset is split into K folds. Figurel.4demonstrates cross-validation in

the case where three folds are used (K = 3).

. Model Performance
Observations

X1 1 Perfy

X1 2 Perf,

X 3 Perfs

X4 Final Perfouerair

Figure 1.4: An example of cross-validation for K = 3. Each fold is iteratively used as a test
set (purple) to evaluate each model formed in the training set (white). The three estimates of
performance Perfy, will be averaged to get an overall estimate of performance for the final prediction

model trained using all the data.

A training model is fit to the data which excludes the k' fold and the model’s perfor-

mance will be tested in the excluded fold. This process is repeated while iterating through
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the k folds for £k = 1,..., K. In this way, there will be K estimates of the predictive
performance (Perfy) of the K fitted models. An example of a performance measure is
the mean-squared error which will be introduced in Sectionl.10. These K estimates of

performance are combined by taking the mean to get an overall estimate of performance

K Perf
Pervaer(zll = k=1 Kk .

10-fold cross-validation (K = 10) is an improvement on validation using one training and
test split as all the data are used to develop a final prediction model and it has lower
Monte Carlo error. Then, when applying cross-validation the process used to develop the
prediction model is repeated iteratively in 90% of the data (ensuring a more stable pre-
diction model for evaluation) and tested on the remaining 10%. This produces less biased
results while ensuring their variability is both reduced and less dependent on the choice of
split. The method is more computationally intensive than a simple training and test split
as K prediction models must be fitted for validation, in addition to the development of a
final prediction model for use. However, repeating the cross-validation process (repeated

cross-validation) may be necessary to obtain ‘stable’ estimates of performance [23, p. 333].

1.9.4 Bootstrap (BS) methods

The bootstrap is another method that is commonly used to internally validate the pre-
dictive performance of a clinical prediction model. A bootstrap sample involves randomly
sampling observations (with replacement) from a dataset. The number of observations
in each bootstrap sample b = 1,..., B is the same as in the dataset, but the bootstrap
sample may have repeated observations. The basic idea is to sample with replacement
from the dataset to train and evaluate a model. In doing so, it is expected that 63.2% of
observations are represented at least once in a bootstrap sample [31, p.253]. Here, we will
describe several versions of using the bootstrap for internal validation when there are no

missing data.

The out-of-bag (OOB) bootstrap

A simple method of using the bootstrap to validate a prediction model is to use the OOB
method. This involves taking a bootstrap sample and fitting a prediction model to it.
This ‘bootstrap prediction model’ is then evaluated in the observations which were not

sampled in the bootstrap sample. The procedure is as follows:
1.Take a bootstrap sample, b, with replacement from the original data

2.Train a prediction model in bootstrap sample b using the same analysis procedure

as intended on the original data

3.Evaluate the prediction model in those individuals who were not sampled for the

bootstrap sample (out-of-bag)
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4.Repeat steps 1-3 B times and average the estimates of predictive performance to get

an overall performance measure.

This is also known as bootstrap cross-validation and provides a lower bound for the true
predictive performance [32]. Less information is available in the bootstrap sample due
to, on average, 63.2% of observations being sampled in a bootstrap sample. This means
that the method underestimates performance compared to all observations being used in

apparent performance [32].

The standard and 0.632 optimism-corrected bootstrap algorithms
There are several variations of using the bootstrap for correcting the optimism in the ap-
parent performance estimate [33]. Here I detail two: the default method, which will be

known as the standard method; and the 0.632 variation.

Evaluating a prediction model P in a dataset D for a particular performance measure
is noted as perf(P, D). For example, perf(P,D) could be the estimated MSE value from
evaluating prediction model P in dataset D. In the following algorithm a dataset is denoted
as D, where d represents either the full dataset (o) or the bootstrap sample (b) and a
prediction model developed in either the full dataset or bootstrap sample will be labelled
P,; for d = 0,b. The standard bootstrap method uses the following steps:

1.Train a prediction model P, on the full dataset. Evaluate the performance of P, in

the original data to estimate the apparent performance, perf(P,,D,).

2.Take a bootstrap sample b from the original data. Train a prediction model P, in

the bootstrap sample b.

3.Evaluate the performance of P, in bootstrap sample b to estimate the bootstrap

performance (perf(Py,, Dy)).

4.Evaluate the performance of P, in the original data to estimate the test performance
(perf(Py, D,)).

5.The bootstrap performance (of the prediction model fitted to bootstrap sample b) is
then compared to the test performance. This produces an estimate of optimism for

the bootstrap performance. This is estimated as:

Optimism; = bootstrap performance, — test performance,

6.Steps (2)-(5) are repeated for b=1,...,B.

7.The optimism-corrected performance (OCP) is then calculated as

B
1 .
OCP = Apparent performance — 5 bg_l Optimism,,
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Step 1 results in an over-optimistic performance estimate as a prediction model is trained
and evaluated in the same dataset. To adjust for this, the standard bootstrap algorithm

is utilised to estimate how optimistic the apparent performance is.

The bootstrap performance can be thought of as the apparent performance in the boot-
strap sample as it too is trained and evaluated in the same data (in this step, the data
is the bootstrap sample). To gauge how optimistic the bootstrap apparent performance
is, the model is then evaluated in the original dataset, which contains observations not
sampled in the bootstrap sample. The performance of the bootstrap model in this larger
dataset with new observations can be compared to the bootstrap performance to estimate
optimism. This attempts to replicate the scenario of evaluating P, in unobserved data, if

that option was available.

A variation of this validation method is the ‘0.632" algorithm which is similar to the
OOB bootstrap. Figurel.bdisplays the key differences between the standard and 0.632

algorithms. The 0.632 algorithm differs from the standard bootstrap by evaluating the
bootstrap prediction model P, only in those observations which were not selected in the
bootstrap sample in order to estimate the test performance. This means that Step3is ig-

nored and Step4is modified to only evaluate P, in those not bootstrap sampled. The OCP
of the 0.632 method is (0.368 x Apparent performance)+(0.632 x mean(Test performance))

(31, p.253].
C Original C Original
A
Bootstrap b
A 4
( Bootstrap b Not sampled
(a) Standard algorithm (b) 0.632 algorithm

Figure 1.5: The difference between the standard and 0.632 algorithms for one bootstrap sample
b. The solid lined arrow starts where the prediction model was developed and points to the data

where it is evaluated. Datasets coloured in purple are used for the evaluation of a prediction model.

The 0.632 method is similar to the OOB bootstrap as both methods involve evaluating
the ‘bootstrap prediction model” in those observations which were not selected into the
bootstrap sample. However, the 0.632 avoids the drawbacks of the OOB (underestimating
the true performance) as it uses a weighted average of the apparent performance (which

uses all observations) and the test performance.
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1.10 Performance measures

When evaluating how well a model performs using validation methods, we require some
measure by which to evaluate the model’s performance. We can typically segregate perfor-
mance measures into three categories: ‘overall measures’ (such as the mean-squared error

or Brier score [23]), discriminative ability and calibration.

An overall measure of performance uses the distance between two points to determine how
well a model performs, for example how close the predicted outcome is to the observed
outcome. It is a measure of performance regardless of whether the outcome is continu-
ous or binary. Examples of overall performance measures include the mean-squared error
when the outcome is continuous and the Brier score when the outcome is binary. These

are discussed in more detail below.

The discriminatory ability of a model measures whether a prediction model can differ-
entiate between the different levels of an outcome, for example can the prediction model
differentiate between high and low risk patients for a disease. An example of a discrimi-
natory performance measure is the area under the receiver operating characteristic curve,

which is equivalent to the c-statistic when the outcome is binary.

Finally, calibration assesses the agreement between predicted values and the outcomes
which were observed. There are several levels of calibration but in this thesis, I will focus

solely on weak calibration. The reasoning for this will be explained in Section1.10.4.

In this section, I will give a brief summary of the four performance measures which will
be used in the thesis to assess model performance. These measures are well documented
and commonly used in practice, a more detailed description can be found in [23, Chapter
15].

1.10.1 Continuous outcome: Mean-squared error (MSE)

The MSE or Mean-squared prediction error (MSPE) can be used to summarise the pre-
dictive ability of a model when the outcome is continuous. It is an overall measure of
model performance. The MSE measures how closely a model’s predicted values are to the
observed outcome, as seen in equation (1.5), and its values are non-negative (MSE € R™).
A lower value of the MSE indicates that the predicted values (y;) are close to the values
that were observed (y;) i.e. the model has good predictive ability. The MSE is therefore
defined as:

1 Nobs
MSE = b — ;) 1.5
N ;(y vi) (1.5)

46



Nyps is the number of records used to evaluate the prediction model. In the case of
estimating apparent performance, N,;s would be the total number of records in the dataset
on whom g; can be produced. If using a training and test split, N5 would be the number

of records in the test set used to evaluate the prediction model.

1.10.2 Binary outcome: Brier Score

The Brier score is parallel to the MSE when the outcome is binary. It compares the
predicted probability of the outcome happening, p;, to what was observed, y; using a

quadratic loss function:
Nobs

> (i — i) (1.6)

obs i—1

Brier =

The value of the Brier score estimate can range between 0 and 1. For example, if an
outcome occurs for a single observation (y; = 1) and the model is poor giving a predicted
probability of 0.2, the Brier score estimate would be (0.2 — 1)2 = 0.64, whereas a better
model may have a predicted probability of 0.8 which gives a Brier score estimate of (0.8 —

1)2 = 0.04. A lower Brier score value indicates a better performing model.

1.10.3 Binary outcome: Area under the curve (AUC)

The AUC estimate assesses a model’s discriminative ability i.e. how well it can differentiate
between those who have or do not have the outcome. The AUC refers to the area under
a receiver operating characteristic (ROC) curve. An ROC curve plots the probability of
being predicted to have the outcome given you have the outcome (sensitivity /true postive
rate) against the probability of being predicted to have the outcome given you do not have

the outcome (1-specificity or the false positive rate), an example can be seen in Figurel.6.
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Figure 1.6: An example of a ROC curve (black line).
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A well-performing model will have a curve tending to the top left corner of the ROC curve
i.e. it has high sensitivity and high specificity. This equates to a higher value of the area
under the curve which can range between 0 and 1. A value of 0.5 typically indicates a
model which does not perform any better than chance, while a higher value indicates the
model is doing better than a random guess. When the outcome is binary, the AUC is

equivalent to the concordance statistic.

1.10.4 Binary outcome: Calibration

A well calibrated model should provide reliable predicted risks which correspond to the
observed proportions of the event [34] i.e. if the predicted risk of an outcome is 7%, then
we expect 7% of observations to have the outcome at a group-level. There are several
levels of calibration: mean, weak, moderate and strong. The moderate and strong levels
assess calibration using plots. This would make assessment in multiply imputed datasets,
within cross-validation folds or bootstrap samples within multiple repetitions of simulated
data difficult. Here, I focus on weak calibration as it evaluates deviations in the slope and

intercept i.e. quantifiable estimates.

Weak calibration requires that there is no systematic under- or overfitting or under- or
overestimation of the risks [23]. This is evaluated by assessing deviation of the slope ¢ away
from 1. The logistic regression prediction model is applied to the observations which will
be used to evaluate the prediction model (such as those in a test set). Each observation 4
will have a predicted probability p; of having the outcome. A logistic regression model is

then used to compare the predicted probabilities with the outcome which was observed:

logit(y=1) = v+ (*p (L.7)

A value of { < 1 indicates overfitting, which means that the linear predictor has a tendency
to give extreme values i.e. high risks are overestimated while low risks are underestimated

34].

Deviations in the intercept « are compared to zero by constraining ( = 1 i.e. the intercept
is estimated using an offset [23, p.300]:

logit(y=1) = a + offset(p) (1.8)

A value of a < 0 implies that the predicted risks from a model are on average overestimated

and a value of a greater than zero implies that the predicted risks are underestimated.

While calibration could also be assessed when the outcome is continuous, it is not a very
popular measure for linear regression and was therefore not considered for a continuous

outcome in this thesis.
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1.11 Data leakage in prediction models

There are many considerations which must be taken into account when developing a pre-
diction model. As outlined in Sectionl.8some of these include considerations such as

sample size, covariate selection or how to handle missing data.

Another key consideration for the development of prediction models is that of data leak-
age. This concerns any prediction model which has an unfair advantage due to having
access to the unseen data it will be evaluated in. To explain this concept further, I con-
sider when it could arise in the situation of developing and evaluating a prediction model
using the split sample method (Section1.9.2). If the researcher trains any parameters or
hyperparameters using just the training set, then no leakage has occurred. However, if
the researcher had used all of the data to tune a hyperparameter, and then used this pre-
estimated hyperparamter value when fitting a prediction model in the training set, this
would cause data leakage. In terms of performance, data leakage can result in optimistic
estimates of performance. Even optimism correction algorithms, such as the standard or

0.632 bootstrap (Section1.9.4), are at risk of having optimistic estimates of optimism.

A very simple example of data leakage with a training and test split can be described
using the k-means clustering algorithm applied to a simple simulated dataset. The k-
means clustering method classifies a new observation to a cluster based on its proximity
to the centre of a cluster and the number of clusters £ must be estimated. Looking at
all available data in Figurel.7one might state that k& = 3. However, if the number of
clusters was estimated based on the training data k = 2 seems plausible. By using all of
the data to estimate the number of clusters k, information about the observations which
were not sampled for the training data has been leaked. Therefore a k-means model with
three clusters will do far better than the model with 2 clusters as would have been selected

if only the training data had been looked at.
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Figure 1.7: Simple example of data leakage: k-means

Another example could be using all available data to estimate the penalisation parameter,
A, in lasso regression [35] and using this estimate for the lasso regression model whose

covariate coefficients were estimated using the training data only.

Data leakage will be further discussed in Section2.8by introducing the concept of data

leakage through the imputation of missing data.

1.12 Outline of thesis

An outline of the remainder of the thesis is as follows:

e Chapter2reviews the current literature on combining MI with cross-validation and
introduces key concepts that will be used throughout the thesis. I will propose
methods for combining MI with cross-validation or with the bootstrap algorithms

and discuss the concept of data leakage through the imputation process.

e Chapter3details the set-up of an extensive simulation study for data with a con-
tinuous or binary outcome. The aim of the simulation study will be to assess the
proposed methods from Chapter2which combine MI with either cross-validation
or the bootstrap optimism-corrected algorithm. The simulated data will explore
multiple factors such as different missing data mechanisms, the influence of sample
size and the effects of increasing the proportion of missingness. As the results are

extensive, they are presented in the three following chapters.

e ChaptersdandSpresent results from the simulation study described in Chapter3.
The results in these chapters focus on the proposed methods which combine MI with

cross-validation.
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e Chapter6present results from the simulation study described in Chapter3. The
results in these chapters focus on the proposed methods which combine MI with the

bootstrap optimism-corrected algorithms.

e Chapter7introduces the use of fractional polynomials for covariate selection and

the choice of functional form when combining MI and internal validation algorithms.

e Chapter8details the set-up of a simulation study for data with a continuous out-
come. The aim of the study is to evaluate the methods proposed in Chapter7. These
methods combine MI and internal validation, while allowing for covariate selection

and the flexible transformation of continuous covariates using fractional polynomials.

e Chapter9presents the simulated data results for combining internal validation,

fractional polynomials and MI.

e Chapterl0demonstrates the methods for combining MI and internal validation
which are considered to have the best properties (based on the simulation investiga-

tions) in the Rotterdam breast cancer dataset.

e Chapterlldetails a systematic review which investigates the handling of missing
data in observational time-to-event analyses. This review was published in the BMC

Medical Research Methodology journal.

e Chapterl2contains a discussion of the methods and results presented in the thesis

and proposes potential extensions to the work that has been conducted to-date.

Appendices and a supplementary file containing plots are available at the end of the thesis.
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2 Internal validation when missing data are present in co-

variates

In this chapter I will discuss the problem that missing data present when developing
and evaluating prediction models. Current literature in the area will be discussed, as
will the intricacies of combining MI with validation techniques. Finally, I will propose
several methods for combining MI with either cross-validation or the bootstrap optimism-

corrected algorithms.

2.1 Introduction

Missing data complicate the development of clinical prediction models, determining their
performance, and their use to obtain predictions for new patients. There are three stages

to consider:
Stage 1:Handling missing data when training a clinical prediction model
Stage 2:Handling missing data while validating the prediction model
Stage 3:Handling missing data in new patients when applying the prediction model

MI is a common method used to handle missing data and may be a viable approach to
handling missing data in the prediction setting. Stage 1 has been well-researched, includ-
ing how to incorporate variable selection, functional forms of continuous covariates and
other considerations of model development when multivariable model-building. A more
exhaustive list of recommendations can be found in Table 4 of Chapterllbut some ex-

amples include: Wood et al. (2008) [36] who investigated combining MI with variable
selection, Morris et al. (2015) [21] who incorporated MI with fractional polynomials to
handle variable selection and choice of functional forms of continuous covariates or Seaman

et al. (2012) [37] who investigated covariate transformations when using MI.

The bootstrap and cross-validation algorithms are commonly used to internally validate
the predictive performance of a clinical prediction model. When data are fully-observed
the algorithms are implemented, as outlined in section1.9. In this chapter, I will focus on
the second stage and start by introducing two estimand-like measures which are important

and used regularly throughout this thesis.

2.2 Pragmatic and Ideal performance

Wood, Royston and White (2015) [38] investigated the use of MI when using a prediction
model to estimate predicted values and evaluate the model’s performance. Two estimand-
like measures were detailed in this paper. These measures are defined in terms of the

practical context in which the predictions would be used for future individuals:
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¢ Ideal model performance focuses on an ideal clinical setting where all individuals

have fully-observed predictors

¢ Pragmatic model performance is based in a real-world clinical setting where

some individuals have missing predictor values

Essentially, missing data for ideal model performance can be thought of as a feature that
happens to occur in the data the prediction model will be developed in, but would not
occur in future use i.e. in the data on which new predictions are to be made. When data
is observed for a new patient it will be fully-observed and the outcome can be predicted

with no need for MI.

Pragmatic performance is relevant when missing data are present in both the development
data and the data to which the model is to be applied (i.e. it is expected that any future
patient data will also have unobserved values in predictors). The handling of missing
data in new individuals for whom predictions are to be obtained must be considered in
addition to missing data in the dataset used for model development and evaluation. An
example could involve using a complete-case analysis as the method to handle missing
data. A prediction model is coded into a software programe and will throw up an error if
an ‘input’ value for a patient is missing. In this case, predictions could only be made for

those who are fully-observed (complete-case).

The phrasing of ideal and pragmatic is arguably not helpful and gives a negative conno-
tation towards the scenario where future patients are not fully-observed. One scenario is
not ‘lesser’ simply because it is more inconvenient. However, this is the terminology that

has been chosen by Wood et al. and I will use it throughout this thesis.

2.2.1 Imputation models to assess ideal or pragmatic performance

Wood et al. focused on estimating the apparent performance of a prediction model. When
assessing ideal performance, Wood et al. [38] recommended imputing the entire dataset M
times using an imputation model which includes the outcome. This maintains the associa-
tion between the imputed values and the outcome of interest. These M imputed datasets
can each be used to train a prediction model and obtain predicted values which can be
used to estimate apparent performance (Stage 1 and Stage 2). Apparent performance was

previously introduced in Sectionl.9.

For assessing pragmatic performance, Wood et al. state that basing predictions on imputed
data derived using the observed outcome may bias the predictions for a new individual,
because in practice the outcome would not be available for the MI process (as it would

not yet be observed for new patients i.e. Stage 3). As such, they recommend imputing the
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entire dataset of interest using two imputation models. The first model will include the
outcome Y and will allow for the association between the outcome and missing covariate
to be maintained for model development (Stage 1). The second imputation model will
exclude the outcome and the imputed datasets using this model will be used to evaluate

the trained prediction model to estimate the apparent performance (Stage 2).

2.3 A summary of the current published literature

A description of two potential ways to combine imputation methods with val-
idation algorithms

Before commencing a summary of the published literature, I will first define two ways which
can be considered to combine imputation methods such as MI with validation methods.
The first is MI-then-Validate. This involves multiply imputing the entire dataset first and
then applying the validation method to each imputed dataset. The second is Validate-
then-MI, which involves multiply imputing within the validation algorithm. For example,
CV-then-MI would involve first splitting the entire dataset, which is partially-observed,
into K folds. Within one iteration using fold k£ as the test fold and the other £ — 1 folds
as the training set, multiple imputation would be applied within the training and test
folds. That is, within the test fold (k), an imputation model would be fitted and used
to obtain M imputed versions of the test fold. This is repeated within the training set.
For a bootstrap method (BS-then-MI), it would involve taking a bootstrap sample of the
partially-observed data and then applying MI to the bootstrap sample.

Literature outlining ideal and pragmatic performance

Wood et al. (2015) [38] was discussed in Section2.2. They investigated using MI for

estimating predictions and model evaluation. They defined ideal and pragmatic model
performance and focused on how best to evaluate a prediction model when using apparent
performance (Sectionl.9) as a validation method. For ideal performance, they recom-

mended multiply imputing the dataset (including an outcome in the imputation model)
using one set of M imputed datasets to train and evaluate a prediction model. For prag-
matic performance, they recommended using two sets of imputed datasets. The first set
would be imputed including the outcome in the imputation model. These M imputed
datasets would be used to fit M prediction models. The entire dataset would be multiply
imputed a second time, this time with the outcome excluded from the imputation model,

to produce M imputed datasets in which to evaluate the prediction models.

Literature recommending pooling performance measures instead of predicted
values

Wood et al. primarily focused on when to apply Rubin’s rules when evaluating a prediction
model using multiple imputed datasets. Option 1 involved using the M prediction models

to get M estimates of predicted values for each individual in the dataset. These M
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predicted values could then be pooled using Rubin’s first rule to get a single predicted
value for each individual. These predicted values could then be used to estimate a measure
of performance. Option 2 involved using the prediction model fitted in the m!* imputed
data set to get predicted values for the individuals in the entire dataset (as they were
using apparent performance). These predicted values could then be used to estimate the
performance measure of interest. This was then repeated across the M imputed datasets,
for m = 1,..., M, resulting in a total of M estimates of performance which could then
be pooled using Rubin’s first rule to get an overall estimate of performance. Wood et al.
showed that option 2 was preferred as option 1 tended to over-estimate the performance
of the MSE.

Literature recommending using one pooled prediction model for future use

In addition to options 1 and 2, Wood et al. made a comparison between using Rubin’s
rules to collapse the M prediction models into one overall prediction model versus keeping
the M prediction models separate. However, they do not state how the predicted values
should be used if the prediction models are kept separate i.e. do they recommend pool-
ing the predicted values from the M prediction models for a future individual or keeping
the M predictions separate. Differences between predicted values were observed based
on whether an overall model or the M models were used and Wood et al. stated that
an overall model could give imprecise estimates of model performance. They state that
pooling the prediction model can be used in practice as it is unlikely that researchers will
keep prediction models unpooled. Similar work conducted by Miles (2015) [39] compared
whether to use one overall model to produce predicted values or to keep the M prediction
models separate and apply Rubin’s rules to the predicted values instead. Miles concluded
that both methods perform similarly but that using one final overall model is faster and

easier to implement.

Vergouwe et al. (2010) [40] illustrated how to develop and evaluate a prediction model
using a temporal external validation dataset when missing data are present in both the
development data and the external validation data. An overall prediction model was
estimated by applying Rubin’s first rule to the M prediction models fitted to the M
imputed datasets of the ‘training’ data. This overall model was then applied to the M
imputed datasets of the external dataset. The performance of the overall model was
estimated in each imputed external dataset and Rubin’s rules were then applied to get an
averaged estimate of performance, as recommended by Wood et al. Vergouwe et al. gave
no justification for (i) estimating an overall prediction model instead of keeping the M
prediction models separate or (ii) pooling the performance measure estimates estimated

in the external dataset instead of pooling the predicted values.
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Literature recommending MI-then- Validate

While Wood et al. (2015) did not describe it as such, their main focus was on the apparent
performance setting. They discussed several potential methods for handling training and
test sets which I have summarised in Table2.1. They stated that their method 1 (which
I term the MI-then-Validate approach) may be the most appropriate when using internal
validation algorithms, such as cross-validation, but also mentioned that their method 2 (a

Validate-then-MI approach) could be used.

Table 2.1: Proposed methods by Wood, Royston and White for handling missing data in training
and test sets. For methods 1 and 2, the outcome will be included in the imputation model if ideal

performance is of interest.

Proposed Method Estimand

1 TImpute the dataset and then split into a training and | Ideal or Pragmatic

test set.

2 Take the imputation model used to impute the train- | Ideal or Pragmatic

ing set and apply it to the test set

3 Impute the training and test sets separately including Ideal
outcome
4 Impute the training and test sets separately - training Pragmatic

set can include outcome, test set will exclude

Steyerberg and Vergouwe (2014) [41] outline steps for the development and validation of
prediction models. Their first step for developing a prediction model involves inspecting
the available data. If missing data are present they recommend imputing missing values in
this step 1 and validating the developed prediction model, using cross-validation or boot-
strap resampling, in a later step. No justification for this approach is given in the paper.
Their approach corresponds to MI-then-Validate. Similar recommendations are given by
Steyerberg (2019) [23, p.335-336]. There, Steyerberg also considered the use of bootstrap
in combination with MI. His focus is on the ideal performance setting and, citing Wood
et al., his recommendation is to first apply MI to the complete cohort and then obtain

bootstrap samples from these imputed datasets (i.e. MI-then-Validate).

Jaeger et al. (2020) [42] focused on the use of cross-validation in unsupervised learning.
Their recommendations are to impute first before applying cross-validation as they state
that this reduces variance in model error estimates. This method is discussed and critiqued
in section2.8. While they remark on data leakage (this concept was introduced in Section
1.11) being a concern while modelling they do not appear to have connected this with
the use of imputation methods. As such, their recommended method used all available
data to impute missing values. They used an unsupervised imputation approach called

k-nearest-neighbour imputation (details of this method are available in the Jaeger et al.
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paper). They compared imputing first, followed by cross-validation, with implementing
cross-validation first, followed by imputing. Their version of CV-then-impute involved
imputing the k — 1 training folds together. The same model used to impute the £ — 1
folds is then used to impute the k" test fold. This is then repeated K times, with
each fold iteratively being used as the test fold. Jaeger et al. evaluated their methods
using simulated data. Their outcome was continuous, the performance measure of interest
was the root-MSE (MSE®?® i.e. this is a study-level performance estimate rather than a
simulation performance measure) and they generated datasets of sample size 100, 500,
1,000 and 5,000.

Literature recommending Validate-then-MI

Musoro et al. (2014) [43] focused specifically on combining MI with, what I will term, the
standard optimism-corrected bootstrap algorithm (Sectionl.9.4). They stated that all
available data, including the outcome, were used when multiply imputing (i.e. fitting the
imputation model and drawing imputed values). I therefore suggest that they were im-
plicitly estimating ideal model performance. Both Validate-then-MI and MI-then- Validate
were considered and the apparent performance was estimated in the same manner for each
combination, as follows. The entire dataset was imputed M times and a prediction model
fitted to each imputed dataset. One overall prediction model was then estimated using
Rubin’s rules. This overall prediction model was then evaluated in the same M imputed
datasets. The M estimates of performance were then averaged to estimate the apparent
performance. Three versions of MI-then-Validate were considered, each version involved
applying the bootstrap algorithm to M imputed datasets. Version (i) involved applying
the bootstrap sampling procedure each time to the M imputed datasets i.e. obtaining
bootstrap samples separately in each of the M imputed datasets, so that the samples in
each imputed dataset are different. Version (ii) involved using the same set of B bootstrap
samples in each imputed dataset i.e. the bootstrap samples are fixed. Version (iii) applied
the bootstrap sampling procedure to one imputed dataset (i.e. M = 1). In order to
multiply impute within the bootstrap procedure ( Validate-then-MI), a bootstrap sample
is multiply imputed M times and a prediction model is fitted to each imputed bootstrap
sample. These M prediction models are pooled to get one overall prediction model for the
bootstrap sample (i.e. one overall prediction model per bootstrap sample). This overall
model is then used to estimate the bootstrap performance in the M imputed datasets of
the bootstrap sample. Rubin’s rules are applied to get an average estimate, and this is
referred to as the bootstrap performance. The overall model is next applied to each of the
M imputed datasets (containing all observations) to get M estimates of the test perfor-

mance, and these are then averaged using Rubin’s rules.

Musoro et al. evaluated their proposed methods using a simulation study with a contin-

uous outcome. One thousand simulated datasets were generated for a number of data-
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generating scenarios. Methods were assessed when the sample size was 500 or 1000 and
the MSE (Sectionl.10) was used as the performance measure of interest. Performance
estimates from the Validate-then-MI and MI-then-Validate methods were then compared
to estimates from a simulated ‘external validation set’ with no missing data. Version (i)
of MI-then-Validate (allowing the bootstrap samples to vary across the imputed datasets)
was found to underestimate the estimate of optimism i.e. bootstrap performance-test per-
formance was smaller than expected. Musoro et al. conclude that multiply imputing

within the standard algorithm is recommended ( Validate-then-MI).

Wahl et al. (2016) [44] investigated Validate-then-MI and MI-then-Validate methods to
combine multiple imputation with several internal validation algorithms. These internal
validation methods were bootstrapping (standard, 0.632, 0.632;.), K-fold cross-validation
and subsampling. For MI-then-Validate they imputed the entire dataset, using one set of
M imputed datasets, and then applied the validation algorithm. MI-then-Validate was
considered for both ideal and pragmatic performance due to the inclusion and exclusion
of the outcome in the imputation model. For Validate-then-MI, the outcome was included
in the imputation models fitted to the ‘training’ and ‘test’ sets (i.e. this is an assessment
of ideal performance). Specific details on how each internal validation was combined with
MI for the MI-then-Validate methods were difficult to ascertain as the methods were pre-
sented in a diagram. I will summarise my interpretation of their Validate-then-MI method
using the 0.632 bootstrap algorithm as an example. A bootstrap sample is taken from
the entire partially-observed dataset. This bootstrap sample is then multiply imputed M
times (including the outcome in the imputation model fitted to the bootstrap sample).
The observations which were not selected into the bootstrap sample are also imputed M
times using a separately fitted imputation model (the outcome is included in the impu-
tation model fitted to the not-selected observations). A prediction model is fitted to the
mt" imputed dataset within a bootstrap sample. This prediction model is then evaluated
in the m*" not-selected imputed dataset. This is repeated M times to get M estimates
of performance for the bootstrap sample. These M estimates are then averaged using
Rubin’s first rule to get an overall estimate of performance. This is then repeated for the

B bootstrap samples.

Wahl et al. used simulation studies to evaluate the various methods. These focused on
datasets with a binary outcome and multiple factors were varied, such as sample size (100,
200, 500 and 1000) and the number of covariates included in the prediction model (1, 5,
10, 20). Two hundred and fifty simulated datasets were generated to assess performance in
each data-generating scenario. The AUC, Brier score and calibration intercept and slope
were used as performance measures. Wahl et al. concluded that the Validate-then-MI
methods are preferred as they typically provide ‘unbiased estimates’. In addition, Wahl

et al. found that increasing the number of imputed datasets beyond 5 had little effect on
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the performance estimates but increasing the number of bootstrap samples from 10 to 50

improved accuracy of the estimates.

Mertens, Banzato and de Wreede (2020) [45] focused on combining cross-validation with
MI using a Validate-then-MI method. Three variations of Validate-then-MI were con-
sidered. For version (i), they propose first assigning observations randomly to K folds.
Within one iteration of cross-validation, fold k is used as a test fold and the remaining
k—1 folds are used as a training set. The observed outcomes in the test fold are temporar-
ily set as missing. All K folds are then imputed together using multiple imputation (the
imputation model includes the outcome) with M =1 (i.e. one imputed dataset is used). I
therefore suggest that they were implicitly estimating pragmatic model performance. The
prediction model fitted to the k — 1 imputed training folds is then used to get predicted
values for the imputed k** fold. This is repeated for k = 1,..., K until every observation
has a predicted value. This entire process is then repeated, with the observations assigned
to K different folds and imputed in a similar manner. Overall, each observation will have
K predicted values and these are then averaged. These averaged values for each observa-

tion in the dataset can then be used to estimate performance.

Version (ii) is similar to version (i) except M > 1 and each observation is only assigned
to a fold once (i.e. there is no repeating of the entire process as there is in version (i)).
Observations are randomly assigned to K folds. For one iteration of cross-validation where
the k' fold is used as the test set, again the outcomes in the test fold are temporarily
set as missing and the entire dataset is imputed together (with the outcome included in
the imputation model). The M imputed datasets are then split into M imputed k — 1
training folds and M imputed test folds. Prediction models are fitted in the M training
folds and Rubin’s rules are used to estimate one overall prediction model. This overall
prediction model is used to get predicted values in the M imputed test folds. This is then
repeated for £k = 1,..., K so that each observation will have M predicted values which
are then averaged. The averaged predicted values for each observation in the dataset can
then be used to get a performance measure of interest. Version (iii) is similar to version
(ii) as the M imputed test folds are collapsed into one imputed test fold by averaging the

M imputed values for each observation which had missing values.

Mertens et al. evaluated their three methods on two ‘real’ data sets of sample size 524
(153 deaths and 38 censored records) and 694 (184 deaths and 46 censored records). They
focused on a time-to-event outcome and the Brier score was used as a measure of accuracy.
An additional simulation study was used to simulate a binary outcome. The simulation
study used a sample size of 1,000 and considered an increasing number of imputed datasets
M = 1,10,100. Overall, Mertens et al. found version (i) to be the preferred approach,

recommending that averaging the M predicted values is preferred instead of using an
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overall prediction model (as used in versions (ii) and (iii)).

Literature concerning stage 3: handling a new/out-of-sample individual

Both Fletcher and Blume (2018) [46] and Hoogland et al. (2020) [47] focus on the third
stage of applying the prediction model in a missing data context i.e. how to obtain a
predicted value for a new patient with missing observations. This stage is not the main
focus of this thesis. Fletcher and Blume use a specific submodel for each missing data
pattern. They note that their pattern submodel approach performed well and is easy to
use in practice. When data are MCAR or MAR, they state that submodels and MI will
have similar predictive accuracy. Hoogland et al. compares submodels based on observed
data, marginalization over the missing variables and MI (using MICE). They found that
using submodels or MI by fixed chained equations performed well, based on the C-statistic

performance measure, when obtaining predictions for individual new patients.

Summary of this literature review

There is a wide array of literature in this field which often provides conflicting advice. It is
possible to find literature stating that either MI-then-Validate or Validate-then-MI is the
preferred way to combine MI and internal validation algorithms. In addition, much of the
published literature has focused on the ideal performance estimand. Recommendations
for the pragmatic performance of Validate-then-MI involve the removal of the outcome

from the list of variables which should be included in the imputation model.

In addition, there are many ways to combine cross-validation with MI or the bootstrap
methods with MI. One can average M prediction models (fitted within imputed training
datasets) to get one overall prediction model, which can estimate predicted values in M
test sets. Alternatively one can evaluate a prediction model fitted in the m'* imputed
training set and evaluate it in the m* imputed test set, repeating this for imputed train-
ing and test datasets m = 1, ..., M. Recommendations from Wood et al. (2015) state that
it is preferable to pool the performance estimates, rather than predictions. Whereas, when
combining MI and cross-validation Mertens et al. (2020) recommend pooling predicted

values and then using those to estimate a performance measure estimate.

Miles (2015) recommended pooling M prediction models to get one overall prediction
model which can be used to estimate predicted values. Wood et al. (2015) note that using
a pooled prediction model may give imprecise estimates of model performance, especially
if the regression parameters are very different across the M imputed datasets but argue

that, it is unlikely unpooled prediction models would be used in practice.

The aim of this chapter is not only to explore pragmatic performance methods, but also to

explore combining cross-validation or the bootstrap with MI in more detail than has been
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considered in the current literature, while taking into account the recommendation from
Wood et al. to pool performance estimates rather than predicted values. In addition, I
provide principled justification to determine the best way to incorporate these methods

when the ideal or pragmatic setting is of interest.

2.4 A short note on pooling prediction models versus keeping prediction

models unpooled when internally validating

Within this chapter I will propose methods for combining internal validation methods
(cross-validation and the optimism-corrected bootstrap algorithms) with MI. Due to the
nature of MI, there will be M prediction models used to estimate predicted values when
applying internal validation. There are three potential ways to use these M prediction
models. Option (i) involves pooling the M prediction models to get one ‘overall’ predic-
tion model. This prediction model can then be used to get one predicted value for each
new individual. Options (ii) and (iii) involves keeping the M prediction models unpooled
and estimating M predicted values for each individual used to evaluate the prediction
models. Option (ii) will pool these predicted values to get one overall predicted value
for each patient. Option (iii) involves keeping these predicted values unpooled, estimat-

ing the performance for each prediction model and then pooling the performance measure.

For all of the methods proposed in this section I will proceed with option (iii). This
involves keeping the prediction models unpooled for one bootstrap sample or within one
iteration of cross-validation (for example, M predicted values per individual per fold).
As stated by Wood et al. [38], pooling predicted values (option (ii)) can over-estimate
performance. Wood et al. also state that a pooled prediction model (option (i)) can give
imprecise estimates of model performance if the regression parameters are very different
across imputed datasets. In addition, all methods proposed in this chapter will be ex-
tended to handle covariate selection and transformations of continuous covariates when
fitting a prediction model in Chapter7. Not only could regression parameters potentially
be very different across imputed datasets, there is also the possibility that included covari-
ates or the functional form of continuous covariates could vary across imputed datasets.
Pooling prediction models that have selected different covariates for inclusion or which
have different transformations for continuous covariates is possible [21,36] but an unnec-
essary layer of added difficulty for a researcher in practice when prediction models can

just as easily be kept unpooled.

2.5 Using separate imputation models to impute the training and test

sets

In this section, I will propose the use of two imputation models regardless of whether ideal

or pragmatic performance is of interest. For explanatory purposes, I will focus on a simple
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setting where a dataset will be split into a training set (to fit a prediction model) and a
test set (to evaluate the prediction model). The dataset will contain an outcome, Y, a

partially-observed covariate X; and a fully-observed covariate Xo.

A lot of the literature to date has focused on using one set of imputed datasets to train and
evaluate prediction models. For example, Wahl et al. and many others who assessed the
MI-then-validate approach ([44,43,23]) produced one set of imputed datasets for which

to train and evaluate a prediction model.

I argue that two separate imputation models should be fitted, which would in turn produce
two sets of imputed datasets, regardless of whether your target is the ideal or pragmatic es-
timand. One of these imputation models (the training imputation model) and the imputed
datasets it produces should be used for training a prediction model. The other imputation
model (the test imputation model) and the imputed datasets it produces can be used to
evaluate the prediction models. Two imputation models and two sets of imputed datasets
should be used even if both imputation models contains the same covariates. If using
one set of imputed datasets which are then split into a training and test set, the imputed
training and test sets are correlated due to the same imputation model parameters hav-
ing been used for the MI process, leading to optimism that would not be detected. More
specifically when using one set of imputed datasets for ideal performance, the imputed test
sets are correlated with the observed training set records due to the inclusion of the train-
ing set’s outcome in the MI process. Similarly, the imputed training sets are correlated

with the observed test set records. This correlation will be further discussed in section2.8.

Whether focusing on ideal or pragmatic performance I suggest the use of two separate sets
of imputed datasets, one set specifically for estimating the coefficients of the prediction

model and the other set used for evaluating models.

2.5.1 A simple scenario with a single training and test split

To set up ideas, I will work through a very simple hypothetical description in the following
sections. In the simplest validation procedure the original data {Y, X, Xo} can be split
randomly into a training and test set as seen in Figure2.1. Y and X, are both fully-
observed while X; contains missing values. The training and test set will be imputed
separately using a training and test imputation model. There will be My,q;, imputed
datasets of the training set and in each one, a prediction model will be fitted. The test set

will be imputed My times and used to evaluate each of the My, 4, prediction models.
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X Original dataset

X2
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Training set Test set

H/_/

Training imputation model ~ Test imp. model

Training imputed Test imp.
dataset 1 dataset 1
Training imputed Test imp.
dataset Mtrain Mtest

Figure 2.1: An example of splitting data into a training set (white) and a test set (purple). The
training set is multiply imputed M4, times, fitting the imputation model only to the observations

in the training set. This is repeated for the test set.

2.5.2 Relating the training and test imputation models to ideal and pragmatic

performance

In Figure2.1, a training and test imputation model was used to impute the training

and test sets. In practice, when implementing either the ideal or pragmatic setting, the
training imputation model should include the outcome and any relevant covariates which
will improve the quality of the imputed values. Inclusion of the outcome will maintain
the association between it and the values of the variable being imputed in the training
set. However, multiple imputation of the test set will vary depending on whether ideal or
pragmatic performance is of interest. For ideal and pragmatic performance, the training
imputation model will both include the same relevant covariates (X2) and the outcome
(Y). It is the test imputation model which is different depending on the estimand. Table
2.2describes test imputation models for ideal or pragmatic performance in a training and
test split scenario (Figure2.1), where X is a covariate with missing values, Xs is a fully-

observed covariate and Y is the outcome.

To estimate ideal performance, the outcome Y can be included in the test imputation
model for imputing the test set in order to maintain the association between the imputed
values and the outcome. This replicates the scenario of a new patient being fully-observed
i.e. there will be no missing values in X; and therefore the underlying true data-generating

process relating X; to Y will be maintained, under the assumption of missing-at-random.
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Table 2.2: Imputing a covariate with missing data, Xi, in the test set under an ideal or prag-
matic performance estimand. X5 and Y are a fully-observed additional covariate and outcome,

respectively.

Estimand | Method | Test imputation model | Comments

Ideal X1 = f(Y + Xo;0) Using observed values of Y when fitting
imputation model.
Pragmatic | A Y = f(X1+ Xo;9y) | Values of Y in test set are set as
X1 =f(Y + Xo;v) missing. Both Y and X; are imputed.

Discard the imputed values of Y.

B X1 = f(Xo;v) Y removed completely from test impu-

tation model.

f(A; 1)) denotes the imputation model; A represents the covariates to be included

in the imputation model and model parameters ¥

When estimating pragmatic performance, future patients are expected to have missing
values in X7 under the same mechanism as in the current data used to train the model.
While it is possible to include the outcome Y in the test imputation model when estimat-
ing pragmatic performance (Pragmatic A) the actual observed values of Y in the test set
should not be included, since these would not be available to impute X in a practical
context. In these ‘mock future patients’, the outcome Y will not be known in practice
and therefore cannot be included to impute the missing values of X;. Instead, Y can be
treated as if it were missing and imputed in the MI process. These imputed Y values
can then be used to impute X;. The imputed values of Y will then be discarded. The
imputed values of X7, alongside the fully-observed Xs, can then be used to predict the
outcome Y. The intuitive justification for Pragmatic A is that the association between
the imputed values of X; and Y is maintained while also ensuring that X is not using the
observed values of Y as these would not be available for future patients. However, this ap-
proach may be difficult to implement in some situations. For example, in Figure2.1if we

wished to multiply impute the test set independently of the training set using Pragmatic
A, all observed values for Y would be temporarily ‘set’ to be missing and would have to
be imputed. However, now that the entire outcome is ‘missing’ in the test set the ques-

tion then arises on how Y can be imputed when there are no observed Y for the MI process.

One possible solution would be to take all of the original data, set the Y values for the
patients selected to be in the test set as missing and then impute Y and X as outlined in
Table2.2method Pragmatic A. After imputing, the imputed dataset is restricted to those

patients which are in the test set. However, in implementing this solution it is ensured
that the test imputed datasets are correlated with the training set as the available outcome

values from the training set are used.
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Alternatively, Pragmatic B ensures complete independence of the training and test datasets.
The outcome Y can be removed completely from the test imputation model and the other
relevant covariates can be used to impute the missing values to estimate pragmatic perfor-
mance (Pragmatic B). In the example in Figure2.1, X5 can be used to impute X;. While
this model does not maintain the association between the missing values in the covariate
and the outcome in the test set, it may be the only feasible model available for certain
validation procedures. However, the training imputation model when estimating prag-
matic performance should include the outcome, even if the outcome will be excluded in

the test imputation model, in order to avoid bias to the parameters of the prediction model.

While one could argue that in a prediction setting we are less interested in the bias of
model parameters, these parameters are used to estimate predicted values for new ob-
servations. Therefore, bias in the parameters will influence the predicted values. An
alternative approximately unbiased single imputation method for the pragmatic setting
could be to impute a missing value using the mean of X; conditioned on other covariates
(i.e. a complete-case analysis estimate of E[X; | Xo;)]) [48]. However, this would only

produce unbiased estimates of 3 under MCAR.

In this section I have detailed the use of imputation models in relation to ideal or prag-
matic performance. For the description, I have used a simpler validation technique which
involves splitting a dataset into a training and test set (Figure2.1). This serves as a good
introduction to the application of imputation models to cross-validation which allocates
data to K folds and then splits the observations into a training set (folds 1 to £ — 1) and

a test set (fold k), iteratively using each fold as a test set.

In the following sections I will detail methods which will either:

e multiply impute the data first, followed by applying the validation algorithm to each
of the multiply imputed datasets. This will be known as MI-then-Validate where

validate could be cross-validation or bootstrapping

e apply the validation algorithm first, followed by MI. For example, split the data
into K folds and then split the data into a k — 1 training set and k" fold test set,
or take a bootstrap sample of the dataset. Then the k — 1 training set, the k fold
test set or the bootstrap sample can be multiply imputed. This will be known as
Validate-then-MI
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2.6 Proposed methods for Cross-validation

When combining cross-validation with MI the order in which each algorithm should be
implemented must be considered. This accounts for whether to multiply impute first and
apply cross-validation to each imputed dataset or whether to cross-validate first (apply
the K-fold splitting first) and then multiply impute the folds. Table2.3details several

possible methods for combining the two when cross-validating first followed by MI in a
pragmatic setting. While I use the MSE as the performance measure of interest to describe
the methods, the methods are the same for other performance measures, for example: the

AUC or Brier score.

The methods in Table2.3can be classified according to how to impute the training folds
within one iteration of cross-validation. Impute training folds separately (Method A),
impute the k& — 1 training folds together (Methods B, C, F, G, I) or impute all folds
together and then exclude fold & (Methods D, E, H).
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Table 2.3: Methods for combining cross-validation and MI for a pragmatic scenario when a

covariate is partially-observed. Cross-validation will be applied first (i.e.

randomly assigned to K folds), followed by MI.

observations will be

Pragmatic performance

Training

Test

Method

1.Separately in each fold k=1,..., K, fit
a training imputation model which in-
cludes Y and produces My,q;n imputed
datasets for each fold i.e. impute each

fold separately.

2.For the folds to be used for train-
ing (folds_g) combine together their
imputed datasets to make a training
set of K — 1 folds for each miprein =
1,..., Mirgin - this will produce My qin

training imputed datasets.

3.Fit a prediction model to each of the
Myyqin training imputed datasets, to

get models Py, Keep the models

train *
unpooled i.e. do not use Rubin’s rules
to get a final model averaged over the

imputed datasets.

1.In the Kk fold fit a test impu-
tation model excluding Y but
still including other covari-
ates. This will produce Myest
imputed datasets for the k"

fold.

2.For Miest = ]-a B Mt68t7
evaluate prediction model
Provoin in the Moo test im-

puted datasets of fold & to get
Mies; estimates of the MSE.
Use Rubin’s first rule to av-
erage the M s estimates of
the MSE. This will produce
an overall estimate of MSE
for P,

Mtrain *

3.Repeat Step2for each

P,

Mtrain

1, ..., Mypgin.

for Mtrain

4. Take the Mjyq;n overall MSE
estimates from each predic-
tion model from Step3and

use Rubin’s first rule to get a
final estimate of MSE across

the Myyqin prediction models.

A

folds_j, denotes the k — 1 training folds which exclude the k" test fold
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Table 2.3: Methods for combining cross-validation and MI for a pragmatic scenario when cross-

validating first (continued)

Pragmatic performance

Training Test Method
1.Combine the folds to be used for Refer to Test steps for Method | B
training (folds_g). Fit the training A
imputation model including Y and
relevant covariates to folds_; and 1In k" fold fit a test im- | C
produce My, q;n imputed training putation model excluding Y
datasets and using the other covari-
Then apply Training step 3 from method ates from all K folds. This
A to produce Myyq;n prediction models: will produce Mies imputed
P, for Mypgin = 1 Miyain datasets which should be re-
train AR
stricted to the observations
included in the k" fold.
Then apply Test steps 2-4 from
method A
1.Fit the imputation model including Y Refer to Test steps for Method | D
to all folds and produce M qin A
training imputed datasets. Restrict
the imputed datasets to the
observations included in folds_y, Refer to Test steps for Method | E
C
Then apply Training step 3 from method
A to produce My;q, prediction models
Refer to Training steps for method B 1.In each training imputed F

dataset, Myrqin, impute the
k" fold using relevant covari-
ates from all folds (the im-
puted values in folds_j taken
as ‘true’ values) and exclud-
ing Y. Restrict test imputed
datasets to observations in
the k' fold.

Then apply Test Steps 2-4 from
method A

folds_j, denotes the k — 1 training folds which exclude the k" test fold
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Table 2.3: Methods for combining cross-validation and MI for a pragmatic scenario when cross-

validating first (continued)

Pragmatic performance

Training Test Method
Refer to Training steps for | 1 1p the &' fold, set Y as missing. G
method B

2.Using all folds fit a test imputation model
including the outcome and relevant co-
variates to impute the incomplete co-
variate and outcome Y. This will out-
put Myes: test imputed datasets - restrict
these to the observations that should be
in the k** fold and discard the imputed

Y values.

Then implement Test steps 2-4 from Method

A to get an overall summary performance

measure
Refer to Training steps for | Refer to Test steps for Method G H
method D
Refer to Training steps for | | 1p the £t” fold, set Y as missing. I
method B

2.To impute the k™ fold, use the same im-
putation model as in Training steps to im-
pute Y and X - discard imputed values
of Y.

Then implement Test steps 2-4 from Method
A to get an overall summary performance

measure

While the above methods were described for a pragmatic performance scenario they can
be used to estimate ideal performance by including the outcome Y in the test imputation
model. All methods can be adapted for ideal performance by including the outcome in
the test imputation model, except for Methods G-I (due to the observed outcome for fold
k being set to missing). To adapt method C and F for ideal performance, it is important
to set Y to missing in the & — 1 training folds when fitting the test imputation model to

the test fold and producing the test imputed datasets.

All methods in Table2.3will be evaluated in the pragmatic and, where relevant, ideal
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scenario. Method I would be difficult to implement in practice as it involves using the
training imputation model to impute the test set. Currently, it is not a feature of the
mice package in R [49] to conduct out-of-sample imputation i.e. new data/the test set
are unable to be imputed based on the imputation model from the training data. The
MI imputation model parameters can be extracted in Stata for the multivariate normal
command (command: mi impute mvn) but not for chained equations (command: mi im-
pute chained). As noted by [47], the only package in R which outputs imputation model
parameters is the Amelia package ([50]) which, similar to Stata (command: mi impute
mvn), assumes multivariate normality. This may dissuade analysts from using Method I
in practice and it was therefore not examined. To implement Method I when software
does allow for the extraction of the imputation model in R it is important to include fully
missing records to the k — 1 training folds so that the imputation model will be able to

impute the outcome, as well as the missing covariate, in the test set.

Table2.4details two methods (J and K) when imputing first, followed by applying cross-

validation to the imputed datasets (MI-then-CV'). Method J involves imputing the dataset
once overall, either with or without the outcome depending on whether the ideal or prag-
matic setting is of interest as used in [43,44]. Method K involves fitting two imputation
models to the dataset. The first model (a training imputation model) will include the
outcome Y in order to fit training models in the £ — 1 training folds. The second impu-
tation model (a test imputation model) can either include or exclude the outcome for the

imputed test datasets to evaluate each of the training models.

2.6.1 An additional consideration for MI

The amount of overall missingness in the dataset and reflecting this within fold assign-
ment should be considered. For the methods described above, I chose to randomly sample
individuals in a stratified manner to ensure that each fold had the same proportion of ob-
served and missing values as in the original dataset. This maintains the same distribution
of missingness in each fold and also has the added benefit of preventing a test fold from
having a large proportion of (or entirely consisting of) missing data. This is particularly
relevant when fitting an imputation model to a test fold which has a small number of
observations. For example, the test fold contains 20 observations, of which 17 randomly

contain missing values in one or several covariates.
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Table 2.4: Methods for combining cross-validation and pragmatic imputation for an incomplete

covariate when imputing first

MI procedure Method

1.Impute the original dataset, including relevant covariates in the impu- | J
tation model for the pragmatic scenario or relevant covariates and the

outcome for the ideal scenario. This will produce M imputed datasets.

2.In each imputed dataset, apply the cross-validation procedure to get an

overall estimate of performance

3.Apply Rubin’s rules to the M estimates from Step2to get an overall

estimate of performance across the M imputed datasets

1.Impute the original dataset, including relevant covariates and the out- | K
come in the imputation model. This will produce My;q;, training imputed

datasets.

2.Impute the original dataset, including relevant covariates (and the out-
come if focusing on an ideal setting) in the imputation model. This will

produce M;.s: test imputed datasets.

3.For training imputed dataset myqiy train a model P, , on the k£ —1
folds (with fold k to be used as the test set). This training model is then
evaluated using the k" fold in each of the Mj.q test imputed datasets.
Rubin’s rules are applied to get an overall estimate of performance for

model P,

mirain, When fold k is used as the test set.

4.Repeat Step3for k =1,..., K. Use cross-validation averaging rules to get

an overall estimate of performance for training imputed dataset my,qin.

5.Repeat steps3and4for imputed dataset Mirain = 1, - . ., Mirqin and apply

Rubin’s rules to get an overall estimate of performance.

2.7 Proposed methods for the bootstrap algorithms

The Ideal and Pragmatic B methods from Table2.2will be examined for the bootstrap

algorithm. Recall that Pragmatic A allowed for the inclusion of Y in the test imputation
model while Pragmatic B excluded the outcome from the test imputation model. It would
be possible to use method Pragmatic A for the standard algorithm to estimate the test
performance as it is evaluated in both those who were or were not sampled for the boot-

strap. Those who were not sampled could have their outcome set as missing. However,
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it would not be possible to use Pragmatic A in the 0.632 alternative as the prediction
model fitted to the bootstrap sample is evaluated in those observations not included in
the bootstrap sample. Therefore, when setting Y to missing in this ‘test set” Y would be
fully unobserved and it would not be possible to impute it. Therefore, inclusion of Y in

the test imputation model for pragmatic performance is not examined here.

In the following sections, I will detail how to combine MI and the bootstrap algorithms.
The performance measure estimate used to evaluate a prediction model P in a dataset D

is denoted perf(p, D).

2.7.1 BS-then-MI

The standard algorithm

For the standard bootstrap algorithm there are three measures of interest: Apparent,
Bootstrap (Apparent performance in the Bootstrap sample) and Test. Recall, a training
imputation model will include any relevant covariates and the outcome to impute missing
values in a covariate. The test imputation model can include or exclude the outcome,
depending on whether ideal or pragmatic performance is of interest. The algorithm is as

follows:

1.The original sample ( 0) contains missing data. Impute it using both training and

test imputation models to get the Apparent performance:

(a)Use the training imputation model to get Myqi, imputed datasets

(b)In each of these imputed datasets myyqin, train the prediction model P,

train *
(c)Impute the original sample again but this time using the test imputation model

to get Myesr imputed datasets (t =1,..., Miest).

(d)For each mypain = 1,..., Myain calculate the prediction model’s performance
across the test imputed datasets, ¢, and use Rubin’s first rule to get an overall
estimate of performance for each model:

Mtest

perf(Pmt'rain7 0) =
t=1

perf(Pmtrain ’ t)
Mtest

(e)Use Rubin’s first rule to get an overall estimate of apparent performance

Mtrain
perf( Pmtrain ) 0)

Apparent =
Mtrain

m=1

2.Sample from the original data with replacement to get a bootstrap sample b. Impute

it using both training and test imputation models to get the Bootstrap performance:
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(a)Use the training imputation model to get My,.q:, imputed datasets of bootstrap
sample b.

or each imputed dataset, mj. . =1,..., Myqn of bootstrap sample b, train
b)F h i ted dataset rrain = 1 M, f bootst le b, trai

the prediction model P,,»

train

(c)Impute bootstrap sample b using the test imputation model to get Myes im-
puted datasets

(d)For each mj. ., = 1,..., Mipqin calculate the prediction model’s performance
across the bootstrap test imputed datasets, t*, and use Rubin’s first rule to get
an overall estimate of the bootstrap performance for each model:

Mtest perf(Pp:  t*)

Miest

perf(Pm*

train’ )_

tr=1
(e)Use Rubin’s first rule to get an overall estimate of the bootstrap performance
for bootstrap sample b

Mtrain perf(szrain, b)

Bootstrap, =
Mt'rain

1

* p—
Mirain™

3.Finally, to get the Test performance:

(a)Impute the original sample using the test imputation model to get a different

set of Myes imputed datasets (t' = 1,..., Myest) to those in step (1c)

(b)For each bootstrap prediction model from step (2b) Pz formy, ., = 1,..., Mirain,
calculate the performance across the test imputed datasets ¢’ = 1,..., Miest
from step (3a) and use Rubin’s first rule to get an overall estimate of the test
performance for each bootstrap model:

MteSt perf(Pm:rain

* 0) =
train’ M
P—1 test

1)

per f(Pp

(c)Use Rubin’s first rule to get an overall estimate of the test performance across

the My qin prediction models

Mt'ra,in
perf(Pm;rain ) 0)
TeStb B Z Mtrain

* —
train

4.The optimism is then estimated as the difference between the bootstrap and test

performance:

Optimismy, = Bootstrap, — Testy
5.Repeat steps (2) - (4) B times

6.To estimate the optimism-corrected performance,

B
1
OCP = Apparent — 5 ; Optimismy,
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The 0.632 algorithm
In this variation of the bootstrap algorithm only the apparent and test performance are

of interest.

The 0.632 algorithm when bootstrapping first, followed by MI, has similar steps to the

standard algorithm above but with some minor changes as noted below:

e The bootstrap performance is not calculated (because the 0.632 version is using a

more classic sample splitting approach) so steps (2¢) - (2e) are not necessary

e For step (3a) take those observations not sampled in the bootstrap sample from the
original sample. Impute this subsample of not selected observations using the test

imputation model to get t' = 1,..., M;.s imputed datasets.

e For step (6) the optimism-corrected performance becomes a weighted average (recall
that on average, approximately 63.2% of observations in a bootstrap sample are

unique) of the apparent performance and B test performances

B
1
OCP = (0.368 x Apparent) + <0.632 X 5 ;Testb>

2.7.2 MlI-then-BS

The standard algorithm

1.Step 1 to get the Apparent performance is the same as for BS-then-MI in section
2.7.1. The original sample (0) contains missing data. Impute it using both training

and test imputation models to get the Apparent performance:

(a)Use the training imputation model to get Myqi, imputed datasets

(b)In each of these imputed datasets My qin, train the prediction model P,

train *
(c)Impute the original sample again but this time using the test imputation model

to get Myesr imputed datasets (t =1,..., Miest).

(d)For each mypain = 1,..., Myain calculate the prediction model’s performance
across the test imputed datasets, ¢, and use Rubin’s first rule to get an overall
estimate of performance for each model:

Mtest

perf(Pmt'rain7 0) =
t=1

perf(Pmtrain ? t)
Mtest

(e)Use Rubin’s first rule to get an overall estimate of apparent performance

. perf(Pmtrain7 0)

Apparent =
Mtrain

m=1
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2.Sample with replacement from training imputed dataset mypqs, With replacement
to get a bootstrap sample b. In order to estimate the bootstrap performance for

bootstrap sample b:

(a)Train a prediction model Ptt“ain,

p i bootstrap sample b
(b)Set the imputed missing values in bootstrap sample b back to missing. Im-
pute these missing values using the test imputation mode to get M;.s; imputed

datasets

(c)Calculate the performance across the test imputed datasets t* =1,..., Mieqt

Miest perf( P} t*)

train,b’

Mtest

Bootstrap, , =
t*=1
3.In order to get the test performance from the prediction model trained on bootstrap

sample b:

(a)Impute the original sample using the test imputation model to get a different

set of Miest imputed datasets (¢ = 1,..., Miest) as in step (3a) of BS-then-MI
(b)For prediction model P;

train,

datasets t' = 1,..., Mgt from step (3a) and use Rubin’s first rule to get an

» calculate the performance across the test imputed

overall estimate of the test performance for each bootstrap model:

Miest perf( P}

train,b’
Testy,, = E
V=1 Mtest

t')

4.Calculate the optimism for bootstrap b of imputed dataset m:

Optimism, , = Bootstrap,, , — Testy,

5.Repeat steps (2)-(4) B times to get B estimates of optimism. To get the optimism-

corrected performance for imputed dataset m:

B
1
OCP,, = Apparent — B ; Optimismy,

6.Repeat steps (2) - (5) for mypgin = 1, ..., Mirain to get Mypqin estimates of the OCP.

7.Using Rubin’s first rule, take the mean of the Mjy.q;, estimates of the OCP to get

an overall estimate.
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The 0.632 algorithm
When there are no missing data present two measures of performance are calculated: Ap-

parent and Test.

The 0.632 algorithm when imputing first, followed by bootstrapping follows a similar

algorithm as the standard algorithm above but with some minor changes as noted below:

e The bootstrap performance is not calculated so steps (2b) - (2c) are not necessary

e For step (3a) take those observations not sampled in the bootstrap sample from the
original sample. Impute this subsample of not selected observations using the test

imputation model to get t' = 1,..., M;.s imputed datasets.
e Step (4) is no longer performed

e For step (5) the optimism-corrected performance becomes a weighted average of the

apparent performance and B test performances

B
1
OCP = (0.368 x Apparent) + (0.632 X5 ;Testb>

2.7.3 Other considerations

For both MI-then-BS and BS-then-MI, an additional consideration will be whether the
training and test imputed datasets used to calculated the apparent performance can be
reused to calculate the bootstrap or test performance. As combining bootstrapping with
MI can be a computationally intensive procedure, especially for BS-then-MI, which mul-
tiply imputes B x M times, reusing imputed datasets will reduce the number of times it

is necessary to impute and help with computational efficiency.

When conducting the bootstrap, to date, none of the current literature has made clear
how they bootstrapped with respect to the missing data. I will use the stratified bootstrap
method to ensure the same proportion of observed and missing is present in each bootstrap
sample. The stratified bootstrap was implemented in order to avoid the possibility of

sampling observations which all contained missing values in the covariates.
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2.8 Data Leakage

Data leakage is a prediction concept that needs to be carefully considered when estimating
parameters of the prediction model. It can be a cause for a prediction model appearing
to predict well during internal validation but when deployed for use in reality the model
instead performs poorly. Thinking again in terms of a simple training and test split sce-
nario, data leakage could occur due to information from the test set being ‘leaked’ to the
prediction model being fitted in the training set. Therefore, the prediction model will
perform well on the test set (of which it had prior knowledge of the observations) but
when it encounters completely new observations (of which it has no prior knowledge on)
it may perform badly. Data leakage has previously been detailed in Sectionl.11which

also gives an intuitive example for how leakage can affect an analysis, demonstrated by

the k-means classification method.

Without careful consideration, data leakage may also arise when imputing missing data as
seen in Figure2.2. When imputing first, all of the dataset is used to impute the missing
values and as such these imputed values now contain information that came from fitting
a model to the entire dataset. This association between training and test sets was previ-
ously discussed in section2.5. When splitting the imputed dataset into a training and test
set, observations in the test set are no longer completely independent of the data used to

estimate the prediction model coefficients in the training set, and data leakage occurs.

This leakage does not occur in Figure2.2(b) as the MI procedure takes place after splitting
the data into a training and test set. The training imputed datasets only have access to
the data in the training set during the MI process. Similarly, the test set does not gain
any leakage from the training set as it is also independently imputed without including

any observations from the training set.
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----» imputation model

knowledge of all data through imputa-

tion process

— prediction model (application)

- leakage between training and test sets

Original dataset

T
!
|
|

\ h 4

3 Original imputed dataset m

! ~—

*|  Training Test

i 4

(a) Imputing missing data followed by splitting the dataset

into training and test sets

Original dataset

Training Test
v v
Training imputed .| Test imp.
dataset Mirain | Msest

(b) Splitting data into a training and test set and then

imputing each separately

Figure 2.2: An example of splitting data into a training set (grey) and a test set (purple) before

or after imputing the original data.
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2.8.1 Data Leakage in cross-validation

For cross-validation, data leakage can be considered in the same way as in the simple
training and test split example. In one iteration of K-fold cross-validation, the dataset is
split into k — 1 folds which make up the ‘training set’. The observations in the k" fold are

used to evaluate the prediction model fitted in the training set i.e. the k" fold is a ‘test set’.

Similarly to the training and test split example in Figure2.2(a), data leakage occurs when
multiply imputing first and then applying cross-validation to each imputed dataset (Meth-
ods J and K). However, for CV-then-MI methods it is necessary to pay close attention
as to which parts of the dataset are included when multiply imputing the training and
test folds. When cross-validating first the data are split into the k — 1 training folds and
the k" test fold, followed by imputing the training and test folds separately which avoids
data leakage. CV-then-MI methods with no data leakage are methods A and B. While
Method C imputes the k — 1 training folds independently of the holdout fold &, fold k is
imputed using the relevant covariates from the k — 1 training folds. However, as Y from
the training folds is excluded from the MI process, method C should not be correlated
with the training set. Methods D, E, F and H all include the holdout fold, including the
outcome, when imputing the training set imputed datasets. Methods G and H include the

outcome of the training folds when imputing the test fold.

It will be possible to examine the impact of data leakage in the MI step by comparing

certain methods together.

Methods Comparing

B vs. D, or the impact of including the test fold observations when drawing
Cuvs. E imputed values for the training set

B vs. C, or the inclusion of the training folds observations when drawing im-
Dvs. E puted values for the test set

2.8.2 Data Leakage in the bootstrap algorithms

Figure2.3depicts data leakage which is present for both  BS-then-MI and MI-then-BS in
the standard algorithm. Due to imputing the entire original dataset first in MI-then-BS,
the subsequent prediction models fitted to the bootstrap samples now have an association
with all observations in the original dataset and not just those observations selected for the
bootstrap sample. Therefore, when evaluating a prediction model (fitted to the bootstrap
sample) in those who are not sampled, the model now has an unfair advantage through the
MI process. It is also of note, that the standard algorithm calculates both the apparent and
bootstrap performance where a model is trained and tested in the same sample (original

and bootstrap, respectively). While this is data leakage, it is an inherent
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Figure 2.3: Data leakage flow in the standard algorithm for combining multiple imputation (MI) and the bootstrap (BS). This demonstrates leakage for one

bootstrap sample b and one imputed dataset m.




part of the standard algorithm.

For BS-then-MI when using the standard algorithm the leakage for the apparent and boot-
strap performance is present. However, when using MI-then-BS the bootstrap prediction
models have an association with all observations in the original dataset. This is not an

issue for BS-then-MI as MI occurs after the bootstrap sample.

Similarly for the 0.632 algorithm in Figure2.4when imputing the entire original dataset
first in MI-then-BS, the subsequent bootstrap samples now have an association with all
observations. When testing a bootstrap model in those who weren’t sampled the model
now has an unfair advantage through the MI process. This leakage is not present in BS-
then-MI.

Similarly to using all folds to impute the training set or test set in cross-validation, reuse
of the imputed datasets used to calculate apparent performance is expected to have the
same type of leakage. The apparent performance imputed datasets use data from the
entire dataset, and thus reusing these imputed datasets to sample observations for the

bootstrap sample is also expected to cause data leakage.

Whether data leakage is an issue in the MI process is currently unknown and will be

investigated in subsequent chapters using simulation studies.
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Figure 2.4: Data leakage in the 0.632 algorithm for combining multiple imputation (MI) and the bootstrap (BS). This demonstrates leakage for one bootstrap

sample b and one imputed dataset m.




2.9 Conclusion

In this chapter I have summarised relevant current literature for combining internal vali-
dation with MI. Methods have been proposed to combine MI and two internal validation
strategies. Despite the many methods under consideration here, the list of potential ways

to combine is by no means exhaustive.

Much of the current literature has used the results of simulation studies to classify whether
MI or validation should take place first. Wood [38] proposed several ways to combine, sug-
gesting that imputing first may be most appropriate. Jaegar et al. [42] and Steyerberg
[23] have suggested imputing first as a viable method. Alternatively, Musoro[43], Wahl
[44] and Mertens [45] recommended or used a validation first approach. In this chapter, I
have discussed the potential impact of data leakage through the MI process and this may
be a potential justification for determining the best way to incorporate internal validation
and MI. I have also explored and explicitly explained how to combine the two and which
methods are prone to data leakage. This is in addition to evaluating the proposed methods

via a simulation study presented in later chapters.

For ideal and pragmatic performance, I have proposed using two imputation models. The
training imputation model will maintain the association between missing covariates and
the outcome. For pragmatic performance, the test imputation model will exclude the
observed outcome as in reality, this would not yet be known. For ideal performance, the
test imputation model will include the observed outcome, as in practice we expect future

values to be fully-observed.
In the next chapter, I will outline a simulation study which will be used to evaluated the

methods I have proposed in this chapter. The simulation study will evaluate the methods

for both a continuous and binary outcome.

83



3 Designing a simulation study to evaluate methods for

combining MI and internal validation techniques

This chapter describes the design of simulation studies that aim to evaluate methods for
combining internal validation techniques with MI. The simulation design is more complex
than most simulation studies and therefore, I spend this chapter on the set-up and results
which will be described in subsequent chapters. The outline of this chapter follows the
ADEMP structure recommended by Morris et al. [10] for clear reporting of simulation

studies. I will assess the proposed methods for both continuous and binary outcomes.

3.1 Aim

Chapter2outlined proposed methods for combining MI with cross-validation (Section2.6)

and the bootstrap algorithms (Section2.7). The aim of the following simulation studies is
to identify which of the proposed methods performs well across a range of different settings,
including different amounts of missing data and multiple missing data mechanisms. The
simulation studies will be used to assess the proposed methods for both cross-validation

and the bootstrap optimism-corrected algorithms.

3.2 Data-generating mechanisms (DGM)

For the continuous outcome a linear model will be used as the prediction model, and
logistic regression will be used for the binary outcome. For both scenarios, the linear
predictor will have two correlated Normally distributed covariates, X; and Xo. They will

be generated with correlation p = 0.5.

S IvaE: 25  px5%10
X, 21 |px5x10 100

3.2.1 Continuous outcome

The continuous outcome, Y, was generated using Y ~ N (i, 0%), where
* u=Po+ 1 X1+ 2 X2
e 02 = (BVar(Xy) + B3Var(Xz) + 281 82Cov(X1, X2)) x 1;%752

The model is written like this in order to allow the variance of the outcome (0?) to be
adjusted for varying levels of R-squared (R?) while keeping the values of 3 constant. Three
values were considered for R?: 0.01. 0.1 and 0.3. The derivation for the adjustment of o2
to allow for different values of R? is available in AppendixB. In all simulation scenarios the
values of the 81 and (B parameters were one with the slope through the origin (5y = 0),
allowing for assessment of the proposed methods in the simple scenario of a prediction

model with no complexity.

84



3.2.2 Binary outcome

The binary outcome, Y, was generated using a Bernoulli distribution with the probability

of the outcome for patient j (j = 1,...,nps):

i = exp(Bo + B1Xj1 + B2 X 2)
T T+ exp(Bo + BrXj1 + BaX2)

In all scenarios the values chosen for the log odds ratio parameters were 5; = log(1.1)

and B = log(1.1) corresponding to odd ratios of 1.1. Sy = —3.676 was selected so that
approximately 30% of individuals have Y = 1. This value of 8y was found by iterating
through a range of values from -25 to 0 with 10,000 simulated datasets, each with a sample

size of 1,000.

3.2.3 Introducing missingness

Missingness was induced in one covariate, X7, for the continuous and binary outcome
DGMs. Scenarios in which the missingness in X; does and does not depend on Xs or on
the outcome Y are considered. For patient j the probability of X; being missing is:

exp(¢o + Yo Xo; + 1¥3Y5)
1+ eXp(l/Jo + 1/12X27]‘ + 1#3YJ)

(3.1)

TX1,j =

Using equation (3.1), three missing data scenarios were considered:
LMCAR ( 92 =0,93 =0)
2.Covariate-dependent MAR ( g # 0,13 = 0)
3.Covariate- and outcome-dependent MAR ( 19 # 0,13 # 0)

For the two MAR mechanisms non-zero values of 9 and 3 were selected to produce
weak and strong MAR. This strength was calibrated based on the area under a ROC
curve (AUC) from regressing the missing indicator on the covariates related to missing-
ness. Values for ¢y were then selected such that approximately 25% or 40% of observations

in X; were set as missing.

Table3.1shows the finalised 1 parameter values and the AUC of missingness when the
outcome is continuous. When missingness is MCAR or covariate-dependent MAR, miss-
ingness does not depend on the outcome and therefore the values of 19 are unaffected by
the R? values. For covariate- and outcome-dependent MAR, the values of 1 are selected

to maintain a similar missingness AUC for the three R? values.
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Table 3.1: Specification of parameter values g, 12, 93 to ensure MCAR, weak MAR and strong
MAR with approximately 25% (1)0,25) or 40% (t)0,40) of observations induced to be missing.

Mechanism R? V3 Y2 | Yo25 | Yoa0 | AUC
MCAR All R% | 0 0 -1.1 | -0.41 | 0.500
weak covariate-dependent MAR Al R? | 0 0.05 | -1.25 | -0.53 | 0.634
strong covariate-dependent MAR Al R? |0 0.1 |-1.52 |-0.69 | 0.743
weak outcome-dependent MAR 0.01 0.003 | O -1.22 | -0.5 0.609
0.1 0.009 | 0 -1.375 | -0.665 | 0.604
0.3 0.016 | 0 -1.56 | -0.85 | 0.607
weak outcome- and 0.01 0.003 | 0.05 | -1.38 | -0.63 | 0.675
covariate-dependent MAR 0.1 0.009 | 0.05 | -1.76 | -0.79 | 0.685
0.3 0.016 | 0.05 | -1.76 | -0.99 | 0.699
weak outcome- and strong 0.01 0.003 | 0.1 |-1.63 |-0.78 | 0.762
covariate-dependent MAR 0.1 0.009 | 0.1 |-2.05 |-0.95 | 0.772
0.3 0.016 | 0.1 |-2.05 |-1.16 | 0.783

Table3.2displays the finalised parameter values for inducing missingness in X7 when the

outcome is binary.

Table 3.2: Specification of parameter values g, 12, 93 to ensure MCAR, weak and strong MAR

for missingness dependent and not dependent on the outcome.

Mechanism o P3| Yo25 | Yo40 | AUC
MCAR 0 0 -1.1 | -0.4 | 0.501
weak covariate-dependent MAR 0.05]0 -1.25 | -0.54 | 0.635
strong covariate-dependent MAR 0.1 |0 -1.52 | -0.67 | 0.743
weak outcome-dependent MAR 0 09 1-14 |-0.7 | 0.600
weak outcome- and covariate-dependent MAR 0.0509|-1.6 |-0.83 ] 0.707
weak outcome- and strong covariate-dependent MAR | 0.1 | 0.9 | -1.88 | -0.97 | 0.791

3.2.4 Factors to vary in the simulation

Above I specified that different simulation scenarios will be considered for three values of
R? for the continuous outcome, three missing data mechanisms, and two levels of missing-
ness. Other factors that were varied included the sample size, and the number of imputa-
tions (M) used when performing MI - though this is a feature of the analysis rather than
the DGM. The proposed methods will be assessed across 108 different simulated scenarios
for the continuous outcome and 36 for the binary outcome. Each scenario was initially
assessed with 1000 repetitions, however this was increased to 2000 in order to minimise

Monte Carlo error. The factors varied (factorially) across scenarios and their values are
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found in Table3.3.

Some values in Table3.3such as a sample size of 100 patients or R-squared value of
0.01 were used to assess how the methods may perform in extreme scenarios. Increasing

dependence of missingness on another covariate and also on the outcome is examined.

Table 3.3: Factors which will be varied for the continuous outcome simulations

Factors Notation | Values

All scenarios

Number of individuals Tobs {100, 300, 1000}
Number of repetitions used Nsim {2000}

Proportion of missingness Prniss {25%, 40%}
Dependence of missingness on Xo | 1) {0, 0.05, 0.1}
Continuous outcome only

Level of R-squared R? {0.01, 0.1, 0.3}
Dependence of missingness on Y | 3 {0, 0.003, 0.009, 0.016}

Binary outcome only

Dependence of missingness on Y | 3 {0, 0.9}

3.3 Estimands

In each simulation scenario and using each analysis method (see below) I assess the ideal
and pragmatic estimates of performance measures. However, we lack a clear ’benchmark’
for the performance of a method. The ideal and pragmatic performance measure estimates
for each repetition will be compared to the performance measure estimated from the same
repetition but with fully observed X;. We expect pragmatic estimates to underestimate
those of ideal performance [38]. Similarly to the comparison with the fully-observed data,
both ideal and pragmatic performance will be compared to a target ideal and pragmatic
estimate using a larger simulated dataset generated using the same DGMs. This is dis-
cussed in more detail in section3.6.

p—

For all methods in the ideal and pragmatic setting an overall performance measure (Perf;,,)

will be estimated. This will be compared to both:

e the performance measure calculated in the fully-observed case (Perf,s)

—

Perf;p,p, — Perfops

e a larger validation set to estimate the target performance (Perfyq get)

—

Perfimp — Perftarget
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3.4 Methods

The proposed methods for combining MI with cross-validation and bootstrapping de-
scribed in Sections2.6and2.7, respectively, will be assessed. They will be compared with

methods already proposed in the literature such as using one set of imputations to train
and evaluate prediction models. Particularly for the bootstrap, methods will also look at
the reuse of imputed datasets for calculating the bootstrap or test performance to improve
computational efficiency. MICE will be used [49], Bayesian linear regression [14, p.67-74]
will be used when the outcome is continuous and predictive mean matching [14, p.77-84]

when the outcome is binary.

3.5 Performance Measures

The choice of performance measures for the continuous and binary outcome will now be

outlined.

3.5.1 Continuous outcome

The performance measure for the prediction models when the outcome is continuous is
the MSE. For method imp and simulated repetition, r = 1,..., ngm, the overall MSE for
each DGM is:

Nsim

MSET,imp

MSE;p =

Nsim —

The fully-observed MSE and the target MSE from a larger validation set will also be

estimated:
1 nS'Lm o
MSE s = > MSE;.ohs
Nsim T
r=1
1 Nsim o
MSEtarget = Z MSEr,target

Nsim —1

—

As outlined in Section3.3, MSE;,,, will be compared with the averaged MSE when data are
fully-observed (MSE;;,;, —MSEq,) and with the target performance (MSE;p,;, — MSEqrget)-

These are equivalent to the Perf,,,, Perfi,,4e¢ and Perf;,,, notation outlined in Section3.3.

3.5.2 Binary outcome

Initially, the Brier score was considered as this is the binary outcome equivalent of the
MSE. The AUC is another popular metric used and reported with logistic regression and

was also considered.

In addition, the calibration intercept and slopes will be calculated. While calibration could

also be assessed within the continuous outcome scenario, it is not a very popular measure
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for linear regression and was not considered here.

Each of these performance measures will be averaged across the 2000 simulated repetitions
and compared to their fully-observed and target performance, as detailed in the continuous

outcome case above.

3.6 Finding the ‘Target’ performance measure

Comparing the averaged estimate of performance to a target value of the performance
measure estimated using a larger validation set was discussed in section3.3. In this

section, I will detail the different steps that were taken to estimate Perf;q,4e; and explain
why these methods were discarded. Finally, I will present the method used to generate

Perfta,nget .

3.6.1 Generating very large datasets to estimate the target MSE

The first simulation study undertaken was when the outcome was continuous and it was

of interest to compare MSE;,;,;, to a target MSE. Initially, 100 large external datasets of
size 100,000 were simulated using the same DGMs (Section3.2).

To estimate the target ideal performance, the prediction model (with the true value of
parameters for X; and X9) was applied to each large simulated dataset, with X; fully-
observed, and the MSE was obtained. The resulting MSEs were then averaged over the

100 datasets to get an overall performance estimate for the ideal target MSE.

For the pragmatic setting, each large simulated dataset, with X; partially-observed, was
imputed (M = 25) using a test imputation model i.e. the imputation model only included
the other covariate Xo. The prediction model (using the true parameter values for X; and
X2) was applied to each imputed dataset and Rubin’s first rule was used to get an overall
MSE estimate. This was repeated across the 100 large datasets and the resulting MSEs

were then averaged to get an overall performance estimate for the pragmatic target MSE.

When compared with the output from the proposed methods there was a tendency with
both increasing sample size and increasing R-squared for the difference between the im-
putation methods and the target MSE (MSEj,;, - MSE¢44et) to be overoptimistic. This
implied that performance from the imputation methods were performing better than the
target MSE. This trend was also present when using validation methods on the fully ob-

served replications (MSEqps - MSE¢arget)-

This method was evaluating the performance of the true prediction model rather than the

model of interest which is the one that is fit to the data. Therefore, this method to find
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the target MSE of the performance measure was discarded and was not attempted for the

binary outcome case.

3.6.2 Using the fully-observed data

To get around the fact that there was no target value for comparing methods, the fully-
observed data was used. Comparing ideal performance to the performance in fully-
observed data (MSE;p,; ideal - MSEqs)) was considered to be the gold standard approach
for comparing methods by Wood et al. [38]. They also expect that pragmatic per-
formance should underestimate the ideal performance i.e. |MSEjpprag — MSEgs| >
IMSEjmp,ideal — MSEqps|.

Based on Wood et al. [38], ideal performance of methods could be compared to the fully-
observed data. Pragmatic performance of methods would be compared using the fully-
observed data and also by looking at how the methods performed in the ideal scenario.
In this way, I could determine whether the pragmatic performance of a method was per-
forming well ( MSE;np prag — MSEgs — 0) or whether it actually had a tendency to under
or overestimate the difference (underestimate: MSE;pp prag — MSEqps < 0; overestimate:
MSEimp prag — MSEgps > 0 ).

3.6.3 Simulating AUC target performance for the binary outcome

Another attempt to find a target value of performance included attempting to simulate
data with a pre-specified value of the AUC. This can be simulated easily for one covariate,
X1, by converting the AUC into a Cohen’s d value [51] and sampling two vectors which
are d standard normal distributions apart, these are then combined to create covariate
X1. Therefore, a dataset can be simulated with outcome Y and covariate X; with the
underlying true value set as the AUC of interest. This was considered alongside the method
described below in section3.6.4, which is easier to implement and therefore this was not

considered any further.

3.6.4 Generating a test set for each repetition

The final way considered to generate a true value for the performance measures of the
simulation study was to generate a sufficiently large dataset to test models in, using the
same DGM detailed in section3.2for both the continuous and binary outcomes. The test

dataset generated for each DGM contained 100,000 observations, missingness was induced

under the same mechanisms as before.

Ideal performance estimates are compared with an estimate from the fully-observed gen-

erated test dataset. For pragmatic performance estimates the test dataset is imputed
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(M = 5) by fitting a test imputation model to the data (excluding the outcome). Prag-
matic performance estimates are compared to the Rubin’s rule averaged performance es-

timate from the M pragmatically imputed test datasets.

There are two methods to estimate target performance from the large generated dataset.
Both theoretically will produce true values of a performance measure and are described

below.

Method 1: Test each internal validation prediction model
Sections2.6and2.7outlined the proposed methods for combining multiple imputation

with cross-validation and bootstrapping, respectively.

For all proposed cross-validation methods, a prediction model is fitted to k — 1 folds. This
model could then be applied to the larger test dataset to get an estimate of performance
for this prediction model. This would be repeated for k = 1,..., K and the resulting
estimates would be averaged to get a target estimate. Similarly, when using the 0.632
bootstrap optimism-correction method, each bootstrap-trained prediction model can be

evaluated in the large test set to get a test performance estimate.

However, this means that we would be finding a target value which is specific to cross-

validation. This would be different to the target value for the bootstrapping algorithms.

Method 2: Use as an external validation style dataset

In general practice when using internal validation, a model is trained using the entire
dataset available. It is then validated using the same dataset to get a performance esti-
mate of the modelling procedure. Internal validation is an option when there is a lack of

availability of a similar external dataset to evaluate the model.

Instead of using the large test dataset to evaluate each prediction model from the valida-
tion process (as described in Method 1 above), it could instead be used to evaluate the
final model trained from the dataset. For example, in simulated repetition r the dataset
is imputed using the training imputation model and an overall model is determined using
Rubin’s rules. This model can be evaluated in the large test dataset (either the fully-
observed version for ideal performance or its imputed version for pragmatic performance).
The internal validation methods are then applied to repetition r and the estimated per-

formance can be compared to the large test dataset performance.
Comparing the performance of this model evaluated in a larger similar dataset with the

internal validation estimate has an advantage compared to testing each internal validation

prediction model. Method 2 estimates one overall target value for each repetition which
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allows cross-validation and the bootstrap optimism-corrected methods to be compared.

This method was used to approximate the target value of each performance measure.

3.7 Conclusion

In this chapter I have discussed the set-up of the simulation study to be used for both
cross-validation and the bootstrap internal validation algorithms. I have outlined two
ways to compare the performance estimates from the proposed methods in the simulation
study - the first comparing with the estimate from the fully-observed data and the second

using a large test set to evaluate the final developed model fitted to imputed datasets.
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4 Simulation study results for cross-validation: continuous

outcome

In Chapter3I described the design for a simulation study to investigate the performance

of methods when combining MI with internal validation.

4.1 Introduction

In this chapter I present the results from combining MI with cross-validation. The impact
of data leakage, which was introduced in Chapter2, on the methods to impute the missing
data will also be assessed. The output from the simulation study for the continuous out-
come will be presented here, the results for the binary outcome are available in Chapter
5. A small selection of graphs have been made available in this chapter, selected for ei-
ther having important results or being representative of results across various DGMs. All
graphical output from the simulation study is available in the supplementary plot chapter
(SectionS1).

Several factors were varied for the continuous setting as detailed in Table3.3. Results
will be detailed below for these factors which included sample size, value of R-squared
and dependence of missingness on other covariates. In section3.5notation was presented
for the averaged estimate of MSE in the fully-observed data (MSE.s) and the larger
validation set (MSEqrget). In addition, MSE,,.4 will represent the pragmatic performance

of an imputation method and MSE,4.,; will represent the ideal performance.

4.2 Summary of the fully-observed data

I begin by summarising the fully-observed data, which is the simulated data before miss-
ingness is introduced in the covariate X;. With increasing R? and sample size the variation
of the outcome Y decreases (Table4.1). Similarly, the MSE decreases slightly with in-
creased sample size (Table4.2). Increasing R? causes the MSE to decrease from 17,388
for N = 1000 when R? = 0.01 to 410 when R* = 0.3.

Table 4.1: The mean and variance of the outcome Y across the 2000 simulated datasets. The

min and max values of Y are the minimum and maximum across all repetitions.

Ngs | Summary statistics | R? = 0.01 R?>=0.1 R?>=0.3

100 Mean (var) | 26.91 (17502) | 26.97 (1748) | 26.98 (582)
Min, Max | -611.05, 690.76 |-177.57, 228.47 | -85.72, 140.80

300 Mean (var) | 27.10 (17555) | 27.02 (1757)| 27.00 (586)
Min, Max | -583.63, 642.53 |-167.02, 224.88 | -83.72, 141.48

1000 Mean (var) | 27.02 (17473) | 27.01 (1746) | 27.01 (582)
Min, Max | -671.94, 680.66 |-190.08, 227.56 |-101.81, 140.20
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Table 4.2: Summary of the MSE estimates when data are fully-observed. This is summarised

from the 2000 simulated repetitions.

N=100 N=300 N=1000
R? Mean Variance | Mean Variance | Mean Variance
0.01 | 17,831 13,431,859 | 17,546 4,087,025 | 17,388 1,238,694
0.10 | 1,633 114,500 | 1,598 33,237 | 1,578 10,028
0.30 422 7,457 413 2,183 410 675

4.3 A brief summary of the cross-validation methods

The methods presented in this chapter are summarised in full in Table2.3but are briefly

resummarised below in Table4.3.

Table 4.3: Brief summary of methods A-K for combining multiple imputation and cross-validation

Method | Training set Test set

CV-then-MI

A Each fold imputed separately includ- | k' fold imputed by itself using Xo

ing Y and X3 in the imputation model | and possibly Y

B Y, X5 used to impute k — 1 training | Same as A

folds by themselves

C Same as B k" fold imputed using all K folds and
including X5 and possibly Y

D Y, X5 used to impute k — 1 training | Same as A

folds using all K folds and restricting
to k—1 folds after imputation process

E Same as D Same as C

F Same as B Take the imputed and observed values
from the k—1 training folds and use to
impute the unobserved values in the
k" fold.

G Same as B Set Y missing in k** fold and impute
X1 and Y using data from all K folds
before restricting back to the k* fold

H Same as D Same as G

MI-then-CV

J Impute the dataset first using one set of imputed datasets

K Impute the dataset first using two sets of imputed datasets - one for training

the model on k — 1 folds and the other for evaluating the model in the k"
fold
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4.4 A brief overview of results for cross-validation

Due to the large number of results from the simulation studies presented in this chapter
which assess the various methods under multiple DGMs, I will first present results for two
methods when R? = 0.1. The aim is to introduce the reader to how the results are being
displayed and interpreted as well as introducing the impact that data leakage can have on

the results.

I will briefly compare method B, which applies cross-validation first and then imputes, to
method J which imputes the data first before applying cross-validation. Method B has no
data leakage issues while method J is considered to be the method with the highest risk
of leakage. The MSE results from each method are compared to the estimates of the MSE
from applying cross-validation to the fully-observed data (MSEps) i.e. MSE;;,;, - MSEps.

For all sample sizes and missing data scenarios, the estimated pragmatic performance
of both method B and method J overestimates MSE s i.e. MSE,;qq,imp - MSEgs > 0.
Method B tends to overestimate MSE,s to a greater degree (|[MSE,;qg,8 — MSEs|) than
method J for all sample sizes. However, with increasing sample size the magnitude of the
difference (|MSE,;qg,imp — MSEs|) for both methods decreases and the difference becomes
more similar between the two methods. This can be seen across all missing data scenarios
for R* =0.1.

The estimated ideal performance of method B tends to overestimate MSE,;, for all sample
sizes. However, method J underestimates MSE,s for all sample sizes. This means that
the results from method J are over-optimistic for ideal performance i.e. the method gives
better performance post-imputation than what would have been observed if missing data
were not present. The magnitudes of under- or overestimation of the two methods are

similar across all missing data scenarios and for sample sizes greater than 100.

In the following section, I will present a summary of results for all methods in a similar
manner as above. Recall that a ‘good’ prediction model would have a lower MSE score.
Therefore, over-estimation of MSE;s implies worse performance after handling missing
data than if the data had all been observed to begin with. Under-estimation of MSE s
suggests that the method is over-optimistic; that is, it is performing better than if we had
observed the data. In the following results, it will be shown that many of the methods

which are subject to data leakage tend to have over-optimistic ideal performance.
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Comparison of CV-then—MI (B) and MI-then-CV (J) when R-sq=0.1
MCAR and covariate-dependent MAR
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Figure 4.1: The difference MSE;,,;, - MSE,;s when R? = 0.1 for M =5 when 25% of values are
missing in X;. Each sub-graph displays results for a sample size of 100, 300 and 1000. Row 1
presents results when data are MCAR or covariate-dependent MAR. Row 2 presents results when
data are outcome-dependent MAR, or outcome- and covariate-dependent MAR. Ideal performance
is in red and pragmatic performance is in blue. The error bars summarise results from the 2000
repetitions and the limits represent the Monte Carlo 95% confidence interval of MSE;,,,;, - MSE 5.
CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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4.5 Detailed results for cross-validation

In this section I will summarise the results from the simulation study when the outcome
is continuous. The results for 25% missingness and M = 5 will initially be presented
before discussing increasing the number of imputed datasets, increasing the percentage of

missingness or comparing the results to a target MSE estimate.

4.5.1 Comparing results to the MSE estimate when data are fully-observed

MCAR and covariate-dependent MAR

Figured.2displays the estimates of various methods when compared to the MSE estimates
when data are fully-observed. The plot shows results when data are weak covariate-
dependent MAR but is representative of the MCAR or strong covariate-dependent MAR

scenarios (additional figures in supplementary plotsS1.1.1).

When data are MCAR or covariate-dependent MAR and for small values of R-squared
the complete-case analysis tends to overestimate MSE ;s (MSEcc — MSEps > 0) and is
more variable than the MI methods. With increasing sample size, Monte Carlo standard
error is reduced for the complete-case analysis and with increased R? the complete-case

outperforms the other methods.

For a sample size of 100 and R? = 0.01, the pragmatic performance of method A (impute
each fold separately) outperforms all other methods which exclude the holdout fold k from
imputing the training k¥ — 1 folds (B, C, F, G). When R? = 0.1 it performs similarly to
methods C, F and G but is out-performed by methods C, F and G for R? = 0.3. Over-
all, method J has the best performance with the lowest difference (MSE jprqg — MSE )
overall for increasing R? and sample size. With increasing sample size to 300 and 1000

the pragmatic performance of all methods is similar.

For low R-squared and small sample size, the ideal performance of method F has the
smallest difference (MSEp jgeqr — MSEqs) for all methods which exclude the holdout fold
k from imputing the training k — 1 folds. With higher R? and increased sample size, the
methods tend to have similar performance for the ideal setting. Method A outperforms
method B for small and moderate sample size while they perform similarly for a sample
size of 1000. Method K has the smallest difference overall across all methods but tends
to be over-optimistic (MSEKk jgeas — MSEgs < 0), as is method J. The ideal performance
for methods C and E largely overestimate MSEs and tends to be more variable than the

other methods.
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Weak covariate—-dependent MAR
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Figure 4.2: The difference MSE;;;,;, - MSE,,, when data are weakly covariate-dependent MAR
for M = 5 when 25% of values are missing in X;. The error bars summarise results from the 2000
repetitions and the limits represent the Monte Carlo 95% confidence interval of MSE;,,;, - MSEqps.
CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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Outcome-dependent MAR
Figured.3displays the estimates of various methods when compared to MSE ;s when
data are weak outcome- and covariate-dependent MAR. This graph is representative of all

outcome-dependent MAR scenarios (additional graphs available in supplementary plots).

When data are outcome-dependent MAR, and for all sample sizes and levels of R-squared
complete-case analysis underestimates MSE ;s (MSEcc — MSEqs) and is more variable

than the imputation methods.

For all sample sizes and levels of R-squared, the ideal performance of MI-then-C'V meth-
ods J and K tend to underestimate the MSE s (MSEjnp ideat — MSEgps < 0, imp = J,
K). With increasing sample size, the difference between the estimated and fully-observed
MSE for all methods tends to zero and ideal performance tends to outperform pragmatic
performance. Two exceptions are methods C and E whose ideal performance greatly over-
estimates MSE;s. These methods have an average difference greater than 300 for R? of
0.1 and 0.3, and therefore are not visible in the figure for these values of R? due to the
scale of the vertical axis. Across all scenarios the ideal performance for methods C and E
is poor and overestimates MSE.s. As can be seen in the first row of Figure4.3, the ideal

performance estimates for C and E are highly variable compared to the ideal performance
of other methods. Across all scenarios, ideal performance of MI-then-C'V methods J and
K tends to underestimate the MSE whereas CV-then-MI methods A-H tend to overesti-
mate the MSE.

For a sample size of 100, ideal performance for methods A, B and D tends to overestimate
MSEps more so than pragmatic performance. With increasing R-squared ideal perfor-
mance is better than pragmatic performance for method A but not for methods B or D.
However, increasing the sample size to 300 results in ideal performance being better than

pragmatic performance.

For pragmatic performance and sample sizes of 100 or 300, method A has a smaller differ-
ence than method B (MSE 4 prag — MSEqps < MSEB prag — MSEgps ). When excluding the
kt" fold from imputing the k — 1 training folds for small sample sizes, method F tends to
have the smallest difference between its MSE estimate and MSE ;. MI-then-CV method
J tends to have the smallest difference (MSE jrqg — MSE s overall for all scenarios. With
increasing sample size, the pragmatic performance of the imputation methods tends to

perform similarly.

Overall (excluding ideal performance for methods C and D), methods A-K perform simi-
larly with increasing levels of R-squared and increasing sample size for ideal performance

when compared with MSE;s. Similarly the pragmatic performance of the methods
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Figure 4.3: The difference MSE;;,;, - MSE,;; when data are weakly outcome- and covariate-

dependent MAR for M = 5 when 25% of values are missing in X;. The error bars summarise

results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval
of MSE; ;. - MSEqps. CC (complete-case); methods A-K are described in Table2.3and summarised

in Table4.4.
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performs similarly with increasing sample size. The ideal performance of methods J and
K tends to underestimate MSE,;; while the ideal or pragmatic performance of all other

methods overestimate MSE, ;.

4.5.2 Increasing the number of imputed datasets from 5 to 25

Figure4.4shows results for comparing 5 versus 25 imputed datasets when estimating prag-

matic performance and comparing it to MSEps (MSEjy,;, — MSEs). The results in the
graph are for the scenario when data are weak outcome-dependent MAR and R? = 0.01
but are reflective of all scenarios for both pragmatic and ideal performance (additional

plots in Supplementary plotsS1.1.4).

Increasing the number of imputed datasets has little effect on the various methods’ MSE
estimates when comparing them to MSE;s. For all imputation methods, using 25 imputed
datasets results in similar estimates to using 5 imputed datasets, with similar Monte Carlo

variability across the 2000 repetitions.
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Figure 4.4: The difference MSE;;,,;, - MSE.s when data are weakly outcome-dependent MAR
for M = 25 versus M = 5 when 25% of values are missing in X;. The error bars summarise results
from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of
MSEp - MSEgps. CC (complete-case); methods A-K are described in Table2.3and summarised
in Table4.4.
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4.5.3 Increasing the percentage of missingness to 40%

Figured.5displays the results for comparing missing data methods to the fully-observed

MSE when 25% versus 40% of values in X7 are missing. The graph presents results when
data are weak outcome- and covariate-dependent MAR for R? = 0.1, results are similar for
ideal and pragmatic performance in all other scenarios (additional plots in Supplementary

plotsS1.1.3).

When data are MCAR or covariate-dependent MAR, the complete-case analysis when
40% of X7 values are missing performs similarly to when 25% of data are missing but has
increased variability. When missingness is dependent on the outcome and potentially on
covariate X», as seen in Figure4.5, complete-case analysis has an increased magnitude
IMSEcc — MSE 5| and variability when 40% of the values for X; are missing, compared
to 25%.

For pragmatic performance, the MSE estimates when 40% of X, values are missing tend to
overestimate MSE;s compared to when 25% of values are missing (MSE;;p 40 — MSEqps >
MSEimp 25 — MSEs). In some instances, the magnitude of the difference when 40% of
the data are missing may be slightly smaller than when data are 25% missing, such as
method J for a sample size of 300 in Figure4.5, but this changes back to being bigger with
increased sample size. The variability of the MSE estimates across repetitions is greatly

increased when compared to 25% of values being missing.

For ideal performance, the difference between the imputation methods’ MSE estimates and
MSE,;s when 40% of X7 values are missing tends to be similar or greater than when 25%
of values are missing. Similarly to complete-case analysis and pragmatic performance, the
variability of the ideal performance estimates of MSE (MSE;,;, 40 — MSE;5) have greatly

increased for 40% of values missing compared to 25%.
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Figure 4.5: Comparing the impact of increasing the percentage of missingness on the difference

MSE;nmp - MSE s when M = 5, R? = 0.1 and data are weakly outcome- and covariate-dependent

MAR. The error bars summarise results from the 2000 repetitions and the limits represent the
Monte Carlo 95% confidence interval of MSE;;,,, - MSE,;s. Red denotes MSE;,,,,, - MSE,;s when
25% of Xy values are missing and blue denotes MSE;,, - MSEs when 40% of X3 values are

missing. The top row presents the results for pragmatic performance and the bottom row presents

results for ideal performance. CC (complete-case); methods A-K are described in Table2.3and

summarised in Table4.4.
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4.5.4 Comparing to the target performance

Briefly as a reminder for the target MSE, the ideal performance of the proposed methods
and MSE;s were compared to the ideal target MSE estimate. This is estimated by apply-
ing a prediction model, developed using all data, to the fully-observed data in the larger
test set to get an MSE estimate, MSE;q;get.00s (Section3.6). The pragmatic performance

of the proposed methods is compared to applying a prediction model, developed using all
data, to the imputed datasets of the larger test set (MSE;q,get,imputed). The complete-case
estimate of the MSE is obtained from applying a prediction model to the observed cases of
the larger test set (MSE¢4rget,cc). Figure6.13displays results for comparing the various

methods MSE estimate with their respective ideal, pragmatic or CC target MSE. Graphs

from all scenarios are available in the supplementary plot sectionS1.1.5.

MCAR and covariate-dependent MAR
Figure4.6presents results for comparing MSE estimates to the target MSE (MSE ,,, —
MSE4rget) when data are weakly covariate-dependent MAR. The results are similar for

MCAR and strong covariate-dependent MAR.

For all scenarios when R? = 0.01 or for R?> = 0.3 when the sample size is 100 or 300, MSE s
tends to approximate the MSE performance in the fully-observed larger test set. In all
other scenarios, MSE.s tends to under- or overestimate MSE;qget,obs- For low or high
values of R-squared (R? = 0.01,0.3) and for a sample size of 100 (or 300 when R? = 0.3),
the complete-case analysis estimate tends to approximate the complete-case target esti-
mate (MSEcc — MSEqqrget,cc). For all other scenarios, the complete-case method tends

to either over- or underestimate MSE;qget,cC-

For R? = 0.01 and sample size of 100, the ideal performance MSE estimate of meth-
ods A, B, D and F tends to overestimate MSE;qrget.0bs (MSEimp ideat — MSEiarget,obs for
imp = A, B, D, F). All other imputation methods tend to overestimate the target MSE
but their 95% confidence intervals overlap with zero. With increasing sample size, all of
the proposed methods have similar ideal performance when compared to MSE;q,get,obs,
except methods C and D which continue to overestimate. For low R-squared and small
sample size, the pragmatic performance MSE estimate of method B tends to overestimate
MSE;qurget,imputed- With increasing sample size, all methods have similar pragmatic per-

formance when compared to MSE;q,get,imputed (MSEimp prag — MSEtarget imputed)-

For R? = 0.1 and sample size is 300 or 1000, all ideal performance estimates underestimate
MSE;qrget,obs and the pragmatic performance of the proposed methods underestimates
MSE;qrget,imputed- For a sample size of 100, the ideal performance estimate of methods A

and F closely approximates MSE;q;get,0bs- The ideal performance of method B, C, D and
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Figure 4.6: The difference MSE;;,,;, - MSE;4rge: When data are weakly covariate-dependent MAR
for M = 5 when 25% of values are missing in X;. The error bars summarise results from the
2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of MSE;,, -
MSE;qrget- CC (complete-case); methods A-K are described in Table2.3and summarised in Table
4.4.
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E tend to overestimate MSE;q;get,0bs While all other methods tend to underestimate their
respective target MSE. For a sample size of 100, the pragmatic performance of methods A,
B, C, D, F and G approximates MSE;urget imputed- The pragmatic performance of method
E, H, J and K tend to underestimate the target MSE in the fully-observed large test set
while all other methods tend to underestimate MSE;q;get, imputed- With increasing sample

size, all methods tend to perform similarly when compared to the various target estimates.

For R? = 0.3 and sample size of 100, the ideal performance for methods A-F tend to
overestimate MSE;,,get 0ps- The ideal performance of methods J and K tends to underes-
timate MSE;q;get,0bs but the 95% confidence intervals overlap with zero. The pragmatic
performance of method B and D tend to overestimate MSE;qyget imputed- All other meth-
ods confidence intervals overlap with zero with the mean point estimate of the pragmatic
performance of methods A,C,F and G overestimating MSE 4, get,imputed @and the point es-
timate of E.H,J and K underestimating. With increasing sample size the performance of

all methods tends to perform similarly when compared to the various target estimates.

Outcome-dependent MAR

Figure4.7presents results for comparing MSE estimates to the target MSE (MSE ;p,;, —
MSEqrget) when data are weakly outcome- and covariate-dependent MAR. When data are
outcome-dependent MAR and R? = 0.1 all methods tend to overestimate their respective
target MSE. The MSE estimate when data are fully-observed or for the various proposed

methods tends to overestimate MSE;,,get,0ps for the various scenarios.

When sample size is 300 or 1000, all methods tend to perform similarly when compared
to the various target MSE estimates across the various scenarios, excluding the ideal
performance of methods C and E which overestimates MSE;q;get,obs- When sample size
is 100, the pragmatic performance of methods A, C, F and G are similar when compared
to MSEiurget,imputed; While methods B and D tend to have a larger magnitude of the
difference. The ideal performance of methods A and F tend to be similar when compared
to MSE;qrget,obs; While methods B and D have a larger magnitude of the difference. The
ideal and pragmatic performance of methods J and K tend to approximate MSE;q;get,obs

or MSEta'rget,imputed well.
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Figure 4.7: The difference MSE;,, - MSE;4,4e¢ when data are weakly outcome- and covariate-
dependent MAR for M = 5 when 25% of values are missing in X;. The error bars summarise
results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of
MSE;y.p - MSE qrget. CC (complete-case); methods A-K are described in Table2.3and summarised
in Table4.4.
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4.6 Is data leakage an issue within the imputation process?

In section2.81 discussed the issue of data leakage in the imputation process and how

we could investigate the impact of this leakage by comparing several methods, which are
briefly re-summarised in Table4.4. The methods to compare data leakage range from
having no leakage (method B) to those with the highest amount of leakage (method J).
Methods A (which has no leakage) and F-H have no similar methods from which to compare
the inclusion and exclusion of folds to assess the impact of data leakage and, therefore,

will not be discussed here.

Table 4.4: Brief summary of methods B-E and J-K for combining multiple imputation and cross-

validation

Method | Train imputations Test imputations

B Y, X5 used to impute k — 1 training | k" fold imputed by itself using X»
folds by themselves and possibly Y

C Same as B k" fold imputed using all K folds and

including X9 and possibly Y

D Y, X5 used to impute k£ — 1 training | Same as B
folds using all K folds and restricting
to k—1 folds after imputation process

E Same as D Same as C

J Impute the dataset first using one set of imputations before applying cross-
validation to each imputation set

K Impute the dataset first using two set of imputations - one for training the
model on k — 1 folds and the other for evaluating the model in the k** fold

Figure4.8compares the methods summarised above when data are weakly outcome- and
covariate dependent MAR with high R?. Similar methods, with one method having a

higher amount of data leakage, are compared side-by-side.

For sample size of 100 and R?> = 0.01, the difference between the ideal and pragmatic
performance of method B and MSE,, is large and does not fit onto the scale of Figure
4.8(refer to Figures4.2and4.3). When sample size is 100 and for various R? values,
the pragmatic performance of method B (MSER prqg — MSE,) is twice the difference of
method C (MSE¢ prqg — MSEgs). This is similarly seen when comparing method D with
E suggesting that using all the covariate data from all folds to impute the missing data in
the holdout k" fold has a strong impact on evaluating model performance. This difference
can be seen for a moderate sample size of 300 but for a sample size of 1000 methods B and
C perform similarly, as do D and E. For a sample size of 1000 each holdout fold contains

100 observations, of which approximately 75% are fully-observed. Any influence from
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Figure 4.8: Assessing data leakage within the imputation process for cross-validation. The
difference MSE;,;, - MSEqs is compared when data are weak outcome- and strong covariate-
dependent MAR. For R? = 0.01, 0.1 and 0.3, the average MSE when data are fully-observed is
approximately 17,800, 1600 and 400, respectively. CC (complete-case); methods A-K are described

in Table2.3and summarised in Table4.4.
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the leakage of the additional 90% of the data appears to be minimal.

By comparing B with D it is possible to assess the leakage relevant to including observa-
tions from the test fold when drawing imputed values for the £ — 1 training folds. For
all sample sizes, we can see that D has a smaller difference (MSEp prqg — MSEs) than
method B (MSEpg prqg — MSEs). Although, the magnitude of this is not as large as
when comparing B with C when n.ps = 100, with increasing sample size C and D perform

similarly.

This leakage can also be seen for ideal performance when comparing methods B and D.
However, this is not the case when comparing B with C for ideal performance. The
difference between C’s MSE estimate for ideal performance and the fully-observed MSE
(MSE¢ ideat — MSEps) was approximately 350 across the three sample sizes. Recall that
for imputing the holdout fold for method C the outcome was set to missing in the other
k — 1 folds and was therefore imputed alongside X7 in order to avoid any leakage by as-
sociating the outcome in the training folds with the test fold. By doing this, only Y in
the holdout fold is available and the outcome Y in the k — 1 folds needs to be imputed,
meaning that Y is missing for 90% of observations when performing imputation. This
was found to introduce a large amount of bias and uncertainty into the ideal performance
MSE estimates compared to their pragmatic version and is therefore not a recommended

way to approach ideal performance in cross-validation.

Method E imputes the training folds using data from all K folds before restricting to the
k—1 folds to fit the prediction model. Similarly, all K folds are used to impute the dataset
before restricting to the observations in the & test fold so, in total, two imputation sets
are used. However, if ideal performance is of interest, the outcome in the k£ — 1 folds is ex-
cluded from the imputation of the k* test fold. This process is repeated for k =1,..., K.
Method K is essentially the same as method E but all Y observations are used for imput-
ing the test set. Method E and K perform similarly for pragmatic performance. However,
removing values of Y in the training folds for ideal performance has caused method E to
perform poorly by overestimating the MSE, similarly to method C. By using all available
covariate and outcome data the ideal performance for method K has performed similarly
to MSE 5.

For the ideal scenario, methods J and K have a tendency to underestimate the MSE for
all sample sizes across all values of R-squared. Method J has a tendency to have more op-
timistic performance than method K but with increasing sample size and R-squared they
tend to perform comparably. This is also seen within the pragmatic version of the methods.
While both methods J and K are impacted by data leakage due to the imputation step

being performed first in these methods, method J is more prone to it than method K. For
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ideal performance, the imputation model for both method J and K involves covariate Xo
and the outcome. However, method K involves using both a training imputation model to
fit models and a test imputation model to evaluate the fitted prediction model. Whereas
method J uses one set of imputations to both train and evaluate prediction models. We
can see that by using two imputation models, method K tends to be less optimistic than
method J.

Figure4.9compares methods in terms of whether they are subject to data leakage when
data are outcome- and covariate- dependent MAR when compared with a larger test
set (MSE;y,p — MSE¢qrget). With increasing sample size, all methods tend to perform
similar when compared to the target MSE estimate. When sample size is 100 or 300, the
methods with the most amount of data leakage tend to have a difference closer to zero
(MSEimp — MSEi4rget — 0). In other missing data and R? scenarios, the methods with the
most amount of data leakage tend to have the highest magnitude of the difference with
MSEtarget-
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difference MSE;,, - MSE;4rget is compared when when R? =0.1,0.3 and data are weak outcome-

and strong covariate-dependent MAR. Method results are compared to estimates from a larger test

set. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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4.7 Discussion of results for continuous outcome

The aim of this simulation study was to identify the most appropriate way to combine MI
and cross-validation by using a simulation study covering a range of scenarios. In general,
as the amount of data leakage increased across the methods the smaller the difference
between imputed and fully-observed MSE tended to become. In certain scenarios there
was a tendency for the methods with the most data leakage (MI-then-CV methods J and
K) to underestimate the MSE.

Methods A and B are methods with no data leakage present and, with increasing sample
size, performed similarly to those which had the advantage of data leakage. Method A
imputes each fold separately using a train and test imputation model which can lead to
a total of 2K2M imputed datasets. Method B imputes the k — 1 training folds and k"
test fold separately which produces 2K M imputation datasets. While method A is more
computationally intensive than B, this only added on an extra one to two hours of com-
putational time in general across all scenarios on a high performance cluster. Imputing
each fold separately appears to produce better results than imputing k — 1 folds together
for small sample sizes of 100. Each fold to be imputed contains 10 observations, of which
two or three are missing values. It is possible that the imputed values based on seven or
eight fully-observed rows will be more variable than method B which has, on average, 68
fully-observed rows out of 90 observations. The variability in imputations for method A
may lead to a more robust training model which is better at predicting observations in
the test set than method B. The test set has also been imputed based on approximately 7
fully-observed rows out of 10 and therefore the imputed values will be more variable than

the imputed values in the training set of method B.

I found that methods that are subject to more data leakage (methods C-E, J-K) tended
to result in a smaller difference between the estimated MSE and MSE s, compared with
methods that are not subject to leakage (methods A and B). An exception to this was
the ideal performance of methods C and E. With both increasing sample size and R?, the
difference in MSE;,;,,;, and MSE,,s decreased for their pragmatic versions but remained
high for ideal performance. For both methods, in an effort to avoid data leakage through
including the outcome from the training folds, Y in the k — 1 folds was set as missing.
Therefore, for ideal performance both X7 in all K folds and Y in the k — 1 folds needed to
be imputed. However, imputing Y when only 10% of the values of Y have been observed
is typically not advisable as seen by the large amount of over-estimation of the MSE com-

pared to other methods.

As all methods will be further explored for a binary outcome scenario in the next chapter,

I will not yet make any recommendations as more exploration is needed. Chapterbwill
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assess the simulation study results for the various cross-validation methods combined with

MI when the outcome is binary.
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5 Simulation study results for cross-validation: binary out-

come

5.1 Introduction

Several performance measures were evaluated in the binary outcome setting: AUC, Brier
score and ‘weak calibration’ which were originally described in Sectionl.10. Similarly
to the continuous outcome scenario, various sample sizes and levels of missingness were
examined for the binary outcome case. For a quick reminder on how results will be com-
pared, a brief overview of the analysis comparing methods B and J is available in Section
4.3when the performance measure of interest is the MSE. All methods were previously

described in Section2.6and summarised in Table4.3.

For each performance measure, results for the complete-case analysis when sample size
is 100 are available for at least 1920 repetitions. Thirty percent of the observations have
the outcome and approximately 25% of the data have a missing value. A complete-case
analysis resulted in records with the outcome present being removed from a fold which

lead to difficulties in obtaining results.

5.2 Summary of the simulated fully-observed data

Tableb.1presents a summary of the AUC, Brier score and calibration in the fully-observed

data, before missingness is introduced. For the AUC, a value approaching 1 indicates good
performance whereas for Brier score, a smaller value is preferred. For all sample sizes the
mean AUC is approximately 0.78 and the mean Brier score is 0.17. Calibration is assessed
using the calibration intercept and slope (Sectionl.10). Large deviations from zero or one
for the intercept and slope, respectively, can indicate poor calibration. For N = 100 the
intercept and slope vary massively, with the slope still having some variation for N = 300.
These unstable results will be discussed in Section5.8. When sample size equals 1000, the

calibration intercept and slope tend towards zero and one.

Table 5.1: Summarising performance when data are fully-observed for the 2000 simulated datasets

‘ AUC ‘ Brier ‘ Intercept ‘ Slope
N =100
Mean (var) | 0.79 (0.003) 0.17 (< 0.001) | -1.35e+11 (3.65e+25) 80.94 (8.93e+05)
(Min, Max) | 0.63, 0.95 0.10, 0.25 -2.70e+14, 0.13 -5656.91, 39710.70
N =300
Mean (var) | 0.78 (< 0.001) | 0.17 (< 0.001) -0.03 (< 0.001) 1.80 (60.31)
(Min, Max) | 0.66, 0.88 0.12, 0.20 -0.17, 0.02 0.91, 196.09
N = 1000
Mean (var) | 0.78 (< 0.001) | 0.16 (< 0.001) -0.01 (< 0.001) 1.04  (0.00)
(Min, Max) | 0.73, 0.84 0.14, 0.18 20.03, 0.01 0.99, 1.15
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5.3 Detailed results: Area under the ROC curve

A higher AUC estimate generally suggests the model is performing well. Therefore, if
a method overestimates the AUC estimated when data are fully-observed, AUC s, the
method is considered to over-optimistic i.e. the model performs better when data have

been imputed than if the data had not been missing to begin with.

5.3.1 Comparing the methods’ AUC to the estimate of the AUC when data

are fully-observed

MCAR and covariate-dependent MAR

Figureb.1displays results for the various cross-validation methods’ ( imp) estimates of
the AUC which are compared to AUCyps (AUCjmp — AUCys) when data are MCAR or
covariate-dependent MAR.

When sample size is 100 and data are MCAR or covariate-dependent MAR, the complete-
case analysis tends to overestimate the AUCys (AUCce — AUCys > 0.01). For the
MCAR scenario, with increasing sample size the difference decreases to zero (AUC¢o¢o —
AUC s nb—oo> 0). For the covariate-dependent MAR scenarios when the sample size

is 300 or 1000, the complete-case analysis estimate of the AUC tends to underestimate
AUC, 4 (AUCCC — AUC s < 0).

The pragmatic performance of all methods underestimates AUC 45 (AUCimp prag—AUCops <
0). Similarly to the continuous outcome case, method A (impute each fold separately) has
a smaller difference than method B (impute the kth test fold separately to the k — 1
training folds) i.e. |[AUCA prag — AUCups| < |[AUCB prag — AUCps|. This can be observed
for all sample sizes when data are MCAR or covariate-dependent MAR. This was also
noted for the MSE when the outcome is continuous. Method B has the largest magnitude
|AUCB prag — AUC 5| across all imputation methods while method J (impute all K folds
together using one set of imputed datasets) tends to have the smallest magnitude of the
difference. The pragmatic performance of methods C, F and G, is similar in relation to
AUC,ps. Their magnitude (|JAUCmp prag — AUCgpsl, imp = C, F, G) is smaller than the
magnitude of method B but larger than the magnitude of method A when the sample size

is 100 or 300. All methods tend to perform similarly when the sample size is 1000.

The ideal performance of C'V-then-MI methods A-H underestimates AUC ¢ for all sample
sizes when data are MCAR or covariate-dependent MAR (AUC;pp idear — AUCops < 0,
imp = A-H). Whereas the ideal performance of methods J and K (MI-then-CV') tends to
overestimate AUC s (AUCmp ideat — AUCqps > 0, imp = J, K).

116



MCAR and covariate-dependent MAR
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Figure 5.1: The difference AUC;y,,, - AUCps when data are MCAR or covariate-dependent MAR

for M = 5 when 25% of values are missing in X;. The error bars summarise results from the 2000

repetitions and the limits represent the Monte Carlo 95% confidence interval of AUC;,,, - AUC pps.
The average AUC when data are fully-observed is 0.78. CC (complete-case); methods A-K are
described in Table2.3and summarised in Table4.4.
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Across all sample sizes, the magnitude of the difference (|JAUC;pp idear — AUCqps|) for
methods J and K tends to be the smallest while method B tends to have the largest.
For a sample size of 100, the ideal performance of methods A, F and E perform similarly
and have the smallest magnitude of difference for all C'V-then-MI methods. With an
increase in sample size to 300 methods E and F have the smallest magnitude of difference
(|AUC imp,ideat —AUCops|, imp =E, F) while method A performs similarly to methods C and
E. With an increase in sample size to 1000 all CV-then-MI methods (methods A-H) tend
to perform similarly with a magnitude less than 0.0025 (JAUC;pp. ideal —AUCqps| < 0.0025).

Outcome-dependent MAR
Figure5.2displays results for the various cross-validation methods’ ( imp) estimates of
the AUC which are compared to AUC,ps (AUC;p,, — AUCps) when data are outcome-

dependent or outcome- and covariate-dependent MAR.

Similarly to the MCAR and covariate-dependent MAR, scenarios, the complete-case anal-
ysis tends to overestimate AUC,s for a sample size of 100 (AUCcc — AUCys > 0).
When data are outcome-dependent MAR and sample size is 300 or 1000 the complete-
case analysis estimates AUC,,s well. When data are outcome- and covariate-dependent
MAR and sample size is 300 or 1000, the complete-case analysis underestimates the AUC
value (AUCge — AUCys < —0.01).

The pragmatic performance of all methods underestimates AUC 45 (AUCipmp prag—AUCps <
0, imp = A-H, J, K). For all sample sizes and missing data scenarios, the pragmatic per-
formance of method B has the largest magnitude of the difference (|JAUCE prag —AUCps|),
with method D having the second largest magnitude. Method B (impute the training folds
using the k—1 folds only) has a larger magnitude than method D (impute the training folds
using all K folds before restricting to the k& — 1 folds to fit the prediction model). Method
B imputes the test fold using only data available in the k** fold and is outperformed by
method D which uses all K folds to impute the test fold before restricting to the data in
the k™ fold to evaluate the prediction model. Method A performs similarly to methods
C, F and G while method J tends to have the smallest magnitude of all the methods
(JAUC jprag — AUCgps|) for all sample sizes. With increasing sample size the magnitude
of the difference decreases for all sample sizes and the methods tend to perform similarly

in relation to AUC,,s when the sample size is 1000.

The ideal performance of methods A-H underestimate AUC ,p5 (JAUC mp,ideal — AUCgps| <
0, imp = A, ..., H) while methods J and K tend to overestimate AUC,,; when sample
size is 100 or 300 (|AUC;mp,ideat — AUCops| > 0, imp = J, K) and underestimate AUC
for a sample size of 1000. Again, method B has the largest magnitude of difference for all

sample sizes when data are outcome-dependent or outcome- and covariate-dependent
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Figure 5.2: The difference AUC;, - AUCqs when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%
confidence interval of AUC;y,;, - AUCys. The average AUC when data are fully-observed is 0.78.
CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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MAR. For all sample sizes and missing data scenarios, methods J and K have the small-
est magnitudes of difference which are less than 0.005 (JAUC;np idear — AUCqps| < 0.005,
imp = J, K).

The ideal performance of method D (observations from all folds are used to impute the
k — 1 training folds) has a slightly smaller magnitude of the difference than method B
(only observations from the k& — 1 folds are used when imputing the training folds) for
sample sizes of 100 and 300. The difference in magnitude between method D and B is
due to the use of all folds in the training folds imputation process. This comparison can

also be made for method E which has a smaller magnitude of the difference than method C.

Method C (observations from all folds used to impute the k** test fold) has a much smaller
magnitude than method B (only observations from the k" test fold used to impute the
test fold) for small and moderate sample sizes. This difference in magnitude due to the use
of all folds in the test fold imputation process can also be seen when comparing method

E (which uses all folds) to method D (which uses only the test fold).

For large sample sizes methods A-H (CV-then-MI) tend to perform similarly when com-
pared to AUC,ps while methods J and K (MI-then-CV') have the smallest magnitude.
When the sample size is 1000, the magnitude of the difference is less than 0.005 for all
methods (JAUCp,ideat — AUCops| < 0.005).

5.3.2 Increasing the number of imputed datasets from 5 to 25

Figureb.3displays results comparing the use of 5 versus 25 imputed datasets (M) when
data are outcome-dependent or outcome- and covariate-dependent MAR (AUC;pp ar —
AUC,ps). The results are for the pragmatic performance but are generalisable also to the
ideal performance in all missing data scenarios. All graphs comparing 5 versus 25 imputed
datasets for the ideal and pragmatic performance are available in the Supplementary plots

sectionS2.1.3.

Increasing the number of imputed datasets from 5 to 25 has had little impact on the meth-
ods” AUC estimates when compared to AUC ,ps (AUCmp vr=5 —AUCps = AUCpmp vr=25 —
AUC,s). This can be seen for the various cross-validation methods for all missing data

and sample size scenarios.
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Outcome-dependent MAR
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Figure 5.3: The difference AUC;;,,,, - AUC,ps when data are outcome-dependent or outcome- and

covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing in X;. The

error bars summarise results from the 2000 repetitions for pragmatic performance and the limits
represent the Monte Carlo 95% confidence interval of AUC;,,, - AUCps. The average AUC when
data are fully-observed is 0.78. CC (complete-case); methods A-K are described in Table2.3and

summarised in Table4.4.
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5.3.3 Increasing the percentage of missingness to 40%

Figureb.4displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various cross-validation methods when data are weakly outcome-
and covariate-dependent MAR. The figure presents the AUC estimates when 25% or 40%
of X1 values are missing compared to AUCys (AUC;,,, 0 — AUCys). The results are
generally representative of the comparison between 25% and 40% missingness for ideal
and pragmatic performance for all missing data scenarios and sample sizes. All plots are

available in SectionS2.1.20f the Supplementary Plots.

The complete-case analysis tends to perform similarly or have overlapping confidence in-
tervals when 25% or 40% of the X7 values are missing when data are MCAR or covariate-
dependent MAR. When data are outcome-dependent MAR and sample size is 300 the
larger percentage of missingness results in a larger magnitude than when 25% of val-
ues are missing (JAUCoc 959 — AUCqs| < [AUCoe40% — AUCqs|). When the sample
size is 1000 they both perform similarly when compared toAUC,;s. For weak outcome-
dependent and weak or strong covariate-dependent MAR, the magnitude of the differ-
ence tends to be smaller for the higher percentage of missingness when sample size is
300 (|JAUCoc40% — AUCqs| < [AUCce 259 — AUCqs|) but with increased sample size
to 1000 this reverts to the higher percentage of missingness having a larger magnitude
([AUCcc25% — AUCobs| < [AUCcc 0% — AUCobs))-

The pragmatic performance of methods A-F and H tend to have a larger magnitude of
the difference between the methods’ AUC estimates and AUCs for a sample size of
300 or 1000 for all missing data scenarios. Method G, J and K tend to have similar
(|AUC;p.25% — AUCups| = |[AUC,,,, 40% — AUC | where imp = G, J or K).

The ideal performance of methods A-F (methods G and H do not have an ideal performance
estimate) tend to have a larger magnitude when the percentage of missingness is 40%
compared to a percentage of 25% (JAUC;,,;, 959 — AUCups| < [AUC;;p 40% — AUCps]
where imp = A, ..., F) for all sample sizes and missing data scenarios. Similarly to the
pragmatic performance, the ideal performance estimate of the AUC for methods J and K

performs similarly regardless of the percentage of missing data present in variable Xj.

122



Difference between imputed and fully-observed AUC

Prag

Ideal

-0.01

-0.02

-0.03

-0.01-

-0.02-

-0.03-

Ngps=300
Excudefoldk [ Includek |[ MI-CV
| :
+ t
© K ® G ¥ 6 O e W I X
Exclude fold k [ Includek | mi—cv
000 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ;*; —— I,
N B C ¢ o T 'S

Weak outcome- and covariate-dependent MAR

-0.01

-0.02

-0.03

-0.01

-0.02

-0.03

Nops=1000

Exclude fold k

[ Include k

MI-CV

cC

M ® C ¢ O

0 €

Exclude fold k

Include k ‘

M-cv_

25
-~ 40

S ° G

Cross—validation methods

Figure 5.4: Comparing the impact of increasing the percentage of missingness on the difference
AUCG;,, - AUC,ps when data are outcome- and covariate-dependent MAR when M = 5. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of AUC;y,;, - AUCyps. Red denotes AUC;,,,;, - AUCqs when 25% of X,

values are missing and blue denotes AUC,,,;, - AUC,ps when 40% of X; values are missing. The

top row presents the results for pragmatic performance and the bottom row presents results for
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ideal performance. The average AUC when data are fully-observed is 0.78. CC (complete-case);
methods A-K are described in Table2.3.



5.3.4 Comparing each method’s AUC to the target estimate of the AUC from

a larger validation set

Similarly to the continuous outcome scenario in Section4.5, the ideal performance of
the proposed methods and AUC,,s were compared to the ideal target AUC estimate,
AUCqrget,obs- This is estimated by applying a prediction model, based on all data in a
repetition, to the fully-observed data in the larger test set. The pragmatic performance
of the methods is compared to applying a repetition’s prediction model to the imputed
datasets of the larger test set (AUCqrget,imputed). The complete-case estimate of the AUC
is compared to applying a repetition’s prediction model to the observed cases of the larger

test set (AUCqarget,cC)-

MCAR and covariate-dependent MAR
Figureb.5presents the ideal and pragmatic performance estimates of the various meth-
ods when compared to their respective target AUC estimate, when data are MCAR or

covariate-dependent MAR.

For a sample size of 100, the complete-case estimate tends to overestimate the complete-
case target estimate of the AUC (AUCcc — AUCqqrget,cc > 0) and does not fit onto
the scale of Figure5.5. With increasing sample size the magnitude of the difference be-
tween the complete-case analysis and AUC4rger,cc tends to be less than 0.005 (AUCcoe —

AUC4rget,cc < 0.005) and either under- or overestimates the target estimate.

When sample size is 100, the pragmatic performance of all methods tends to overestimate
AUCqrget,imputed by approximately 0.02 (AUC;p prag — AUCrarget,imputed = 0.02). When
sample size is 100, method B, which tended to have the largest magnitude when compared
to AUCs, now tends to have the smallest magnitude ([AUCB prag — AUCqarget imputed|)-
Methods J and K tend to have the largest magnitude when sample size is small, closely
followed by methods A, E and H. With increasing sample size, the pragmatic performance
of the methods tends to perform similarly with the magnitude of the pragmatic perfor-
mance estimates tending to be less than 0.005 (|AUC;p prag — AUC arget imputed| < 0.005)
when sample size is 300 and less than 0.0025 when sample size is 1000. When data are
MCAR or strong covariate-dependent MAR, the pragmatic performance of the methods
tends to underestimate the pragmatic target AUC estimate, while the methods tend to

overestimate the AUC target estimate when data are weak covariate-dependent MAR.

The ideal performance of all methods when sample size is 100 overestimates AUC 47 get,obs
(AUCimp,ideat — AUCrarget,obs > 0). When sample size is 100, method B tends to have
the smallest magnitude of the difference while methods J and K have the largest. For a
sample size of 300 there is a downwards pull for all methods, the C'V-then-MI methods
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Figure 5.5: The difference AUC;;,, - AUC4rge¢ when data are MCAR or covariate-dependent
MAR for M = 5 when 25% of values are missing in X;. The error bars summarise results from
the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of AUC;yy,), -
AUC,4rget- The average AUC when data are fully-observed is 0.78. CC (complete-case); methods
A-K are described in Table2.3.
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A-F now tend to underestimate the target estimate while the MI-then-CV methods tend
to overestimate or approximate the target estimate well. With increasing sample size to
1000 all methods tend to perform similarly and the magnitude of the difference tends to
be less than 0.005 for all methods (|JAUC;np ideal — AUCtarget,obs| < 0.005).

Outcome-dependent MAR
Figureb.6presents the ideal and pragmatic performance estimates of the various meth-
ods when compared to their respective target AUC estimate, when data are outcome-

dependent or outcome- and covariate-dependent MAR.

The complete-case analysis estimate of the AUC tends to overestimate AUC;4get,cc for
all sample sizes and missing data scenarios, at times not fitting onto the scale of the graph
in Figureb.6when sample size is 100. With increasing sample size, the magnitude of

the difference between the complete-case analysis estimate and the complete-case target

estimate tends to decrease.

Similarly to the MCAR and covariate-dependent MAR scenario, the pragmatic perfor-
mance of all methods tends to overestimate AUC;q,get imputed When sample size is 100
(0.015 < AUCimpprag — AUCarget imputed < 0.03). Method B tends to have the smallest
magnitude (|AUCB prag — AUCtarget,imputea|) While methods J and K tend to have the
largest. Increasing the sample size of the methods to 300, the magnitude of the difference
for all methods tends to be less than 0.005 (JAUCmpprag — AUCrarget,imputea] < 0.005).
Methods A, C, E-H tend to perform well when sample size is 300, while methods B and
D tend to have a slightly larger magnitude. For a sample size of 1000 all methods tend to

perform similarly.

When sample size is 100, the ideal performance of all methods tends to overestimate
AUCqrget,obs- Method B tends to have the smallest magnitude (JAUCB jgeai —AUCrarget,obs|)
while the ideal performance of the C'V-then-MI methods A-F tend to have a smaller mag-
nitude than the MI-then-C'V methods, which tend to have a magnitude around 0.02.
For a sample size of 300 the CV-then-MI methods’ ideal performance underestimates
AUC 4rget,0bs While the MI-then-CV methods overestimate AUC 4, get 0bs (i-€. they're over-
optimistic). Methods B and D tend to have the largest magnitude while the other methods
have a magnitude less than 0.0075. With increased sample size to 1000, all methods tend

to perform similarly with a magnitude less than 0.005.
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Outcome-dependent MAR
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Figure 5.6: The difference AUC;,y,p, - AUC;qrger when data are outcome-dependent or outcome-
and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The error
bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%
confidence interval of AUC;p,, - AUCq4rger. The average AUC when data are fully-observed is
0.78. CC (complete-case); methods A-K are described in Table2.3.
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5.4 Detailed results: Brier score

A lower Brier score estimate generally suggests the model is performing well. Therefore,
if a method underestimates the Brier score estimated when data are fully-observed the
method is considered to be over-optimistic i.e. the model performs better when data have

been imputed than if the data had not been missing to begin with.

5.4.1 Comparing each method’s Brier score to the estimate of the Brier score

when data are fully-observed

MCAR and covariate-dependent MAR
Figureb.7displays results for the various cross-validation methods’ ( imp) estimates of the
Brier score which are compared to the Brier score estimate when data are fully-observed

(Brierjmy, — Brierg,s) when data are MCAR or covariate-dependent MAR.

When data are MCAR, the complete-case analysis estimate tends to overestimate Brier .
Increasing the sample size from 100 to 1000 causes the magnitude of this difference to de-
crease from 0.00122 to 0.00029. When data are covariate-dependent MAR, the complete-

case analysis estimate underestimates Brier,,s with a magnitude of at least 0.005.

For all sample sizes when data are MCAR or covariate-dependent MAR, the pragmatic
performance of all methods overestimates Brier,,;. For a sample size of 100 and 300 across
all missing data scenarios, methods J and K have the smallest magnitude (|Brier jprqq —
Brierys| &~ 0.0025), followed by methods A and E. Method B has the largest magnitude
(greater than 0.005 when sample size is 100 and approximately 0.003 for a sample size of
300). With increased sample size to 1000 all methods perform similarly when data are

MCAR or covariate-dependent MAR.

For all sample sizes when data are MCAR or covariate-dependent MAR, the ideal perfor-
mance of all CV-then-MI methods (methods A-F only as methods G and H do not have
an ideal performance estimate) overestimates Briery,s. Methods J and K (MI-then-CV)
underestimate Brier,,s when sample size is 100 or 300 (over-optimistic) but tends to per-
form similarly to Brier,,s when sample size is 1000 across all missing data scenarios. When
the sample size is 100, method A tends to have the smallest magnitude of the difference
across all C'V-then-MI methods. Method B tends to have the largest magnitude of dif-
ference (|Brierp jgeqi — Briergys|) while the methods similar to B but which either include
the test fold when imputing the training fold (method D) or include the training folds
when imputing the test fold (method C) tend to have a smaller magnitude than B. With

increasing sample size, the methods tend to perform similarly when compared to Brier ;.
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MCAR and covariate-dependent MAR
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Figure 5.7: The difference Brier;,, - Briery,s when data are MCAR or covariate-dependent MAR
for M = 5 when 25% of values are missing in X;. The error bars summarise results from the 2000
repetitions and the limits represent the Monte Carlo 95% confidence interval of Brier;,,, - Brierqps.
The average Brier score when data are fully-observed is 0.17. CC (complete-case); methods A-K

are described in Table2.3and summarised in Table4.4.
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Outcome-dependent MAR
Figureb.8displays results for the various cross-validation methods’ ( imp) estimates of the
Brier score which are compared to Brieryps (Brierjy,, — Brier,,s) when data are outcome-

dependent or outcome- and covariate-dependent MAR.

For all sample sizes and missing data scenarios, the complete-case analysis underestimates
Brier,ps with a magnitude greater than 0.01 (|Briercc — Brieryps| > 0.01). For the stronger
MAR scenarios (rows two and three of Figure5.8) the complete-case analysis estimate does

not fit onto the scale of the graph.

For all sample sizes and missing data scenarios, the pragmatic performance of all methods
overestimates Brier,,s. For a sample size of 100, method B tends to have the largest mag-
nitude of the difference which is greater than 0.008 (|Brierp prqq — Briergs| > 0.008) while
method J tends to have the smallest magnitude of approximately 0.003. For C'V-then-MI,
methods A, E and H tend to have the smallest magnitudes which are approximately 0.004.
With increasing sample size the methods tend to perform similarly, with method J having

the smallest magnitude of the difference while method B has the largest.

For all sample sizes and missing data scenarios, the ideal performance of all CV-then-
MI methods A-F overestimates Brier,ps. Methods J and K (MI-then-CV') underestimate
Brier,,s when sample size is 100 or 300 (i.e. over-optimistic) but tends to perform similarly
to Brier,,s when sample size is 1000 for all missing data scenarios. For a sample size of
100, methods A, E and F tend to have the smallest magnitudes of difference with Brier s
across the CV-then-MI methods while methods J and K have the smallest magnitude
overall. With increased sample size to 300, the magnitude of all methods is less than
0.005 (|Brierjmp,ideat — Briergys| < 0.005). For a sample size of 1000, methods J and K
approximate Brier,,s well, while methods E and F have the smallest magnitude across the

CV-then-MI methods while method B still has the largest magnitude.
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Outcome-dependent MAR
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Figure 5.8: The difference Brier;,,, - Briery,,s when data are outcome-dependent or outcome-
and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The error
bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%
confidence interval of Brier;y,, - Briers,s. The average Brier score when data are fully-observed is
0.17. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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5.4.2 Increasing the number of imputed datasets from 5 to 25

Figure5.9displays results comparing the use of 5 versus 25 imputed datasets when data

are outcome-dependent or outcome- and covariate-dependent MAR (Brier;p,, p —Briergps).
The results are for the pragmatic performance but are generalisable also to the ideal per-
formance in all missing data scenarios. All graphs for the ideal and pragmatic performance

are available in the Supplementary plots sectionS2.2.3.
As seen in Figureb.9, the performance of all methods is unaffected by an increased number

of imputed datasets when estimating the Brier score performance. This holds for all sample

sizes and missing data scenarios for pragmatic and ideal performance.

132



Outcome-dependent MAR
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Figure 5.9: The difference Brier;,,, - Brierq,s when data are outcome-dependent or outcome- and

covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing in X;. The

error bars summarise results from the 2000 repetitions for pragmatic performance and the limits

represent the Monte Carlo 95% confidence interval of Brier;,,, - Briery,s. The average Brier score
when data are fully-observed is 0.17. CC (complete-case); methods A-K are described in Table2.3

and summarised in Table4.4.
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5.4.3 Increasing the percentage of missingness to 40%

Figure5.10displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various cross-validation methods when data are weakly outcome-
and covariate-dependent MAR. The figure presents the Brier score estimates when 25%
or 40% of X1 values are missing compared to Brier, (Brier;,,, o — Brierys). The results
are generally representative of the comparison between 25% and 40% missingness for ideal
and pragmatic performance for all missing data scenarios and sample sizes. All plots are

available in SectionS2.2.20f the Supplementary Plots.

When data are MCAR, the complete-case analysis performs similarly regardless of whether
25% of 40% of X values are missing. For all MAR scenarios, an increased percentage
of missingness results in a larger magnitude of the complete-case analysis estimate when

compared to Brierg,s (|Briercc o5y, — Briergy| < |Brierce agy, — Briergys|).

For all sample sizes and missing data scenarios the pragmatic performance of methods G,
J and K perform similarly regardless of the percentage of missing data in X;. For all other
methods, an increased percentage of missingness causes an increase in the magnitude of

the difference between their estimate of the Brier score and Brier .

For all sample sizes and missing data scenarios the ideal performance of the MI-then-
CV methods J and K perform similarly regardless of the percentage of missing data
in X;. For all other methods (methods A-F), an increased percentage of missingness
causes an increase in the magnitude (|Brier;,,, 959 — Brieryys| < |[Brier;,,, 409 — Briergs|

for imp = A, ... | F).
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Weak outcome- and covariate-dependent MAR
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Figure 5.10: Comparing the impact of increasing the percentage of missingness on the difference
Brier;y,, - Brierq,s when data are outcome- and covariate-dependent MAR when M = 5. The error
bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%
confidence interval of BrierCi,,, - Briery,s. Red denotes Brier;,,, - Brierqys when 25% of X; values
are missing and blue denotes Brier;,,, - Briery,s when 40% of X; values are missing. The top
row presents the results for pragmatic performance and the bottom row presents results for ideal
performance. The average Brier score when data are fully-observed is 0.17. CC (complete-case);
methods A-K are described in Table2.3. 135



5.4.4 Comparing each method’s Brier score to the target estimate of the

Brier score from a larger validation set

As previously discussed for the AUC results, the ideal performance of the proposed meth-
ods and Brierq,s were compared to the ideal target Brier score estimate (Brieriq,get,obs)-
This is estimated by applying a prediction model, based on all data in a repetition, to the
fully-observed data in the larger test set. The pragmatic performance of the imputation
methods is compared to applying a repetition’s prediction model to the imputed datasets
of the larger test set (Brierirget imputed). The complete-case estimate of the Brier score is
compared to applying a repetition’s prediction model to the observed cases of the larger

test set (Briersorget,co)-

MCAR and covariate-dependent MAR

Figure5.11presents the ideal and pragmatic performance estimates of the various methods
when compared to their respective target Brier score estimate, when data are MCAR or
covariate-dependent MAR. The magnitude of the difference between the methods’ Brier
score estimate and the target estimate is less than 0.0075 when sample size is 100, less

than 0.005 for a sample size of 300 and less than 0.0025 for a sample size of 1000.

When data are MCAR or strong covariate-dependent MAR, the complete-case analysis
estimate overestimates Brier;q,ger, cc (Brierco — Brierigrger,cc > 0). When data are weak
covariate-dependent MAR, and sample size is 100, the complete-case analysis estimate
approximates the target estimate well but with increasing sample size the complete-case

analysis tends to underestimate Brieriq,ger,cC-

When data are MCAR or strong covariate-dependent MAR and sample size is 100, the
pragmatic performance of methods A, E, H, J and K tend to approximate Brier o, get imputed
well (Brietimp prag — Brietiarget imputed = 0 for imp = A, E, H,J,K). The other methods
tend to overestimate Brier;q,get imputed With method B having the largest magnitude of the
difference (|Brier g prog — Brietiarget imputea]). With increasing sample size all methods tend
to perform similarly and overestimate Brier;arget imputed- When data are weak covariate-
dependent MAR and sample size is 100, all methods tend to approximate Brier;o,get imputed
well (i.e. their confidence intervals overlap with zero) except for methods B and J who
tend to over- and underestimate Brieryq,get,imputed, Tespectively. For a sample size of 300
or 1000, all methods tend to underestimate Brier;q,get imputed- Method B has the smallest
magnitude while method J has the largest. For a sample size of 1000 all methods perform

similarly.

When data are MCAR or strong covariate-dependent MAR. and sample size is 100, the
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MCAR and covariate-dependent MAR
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Figure 5.11: The difference Brier;y,, - Brier;q,ger when data are MCAR or covariate-dependent
MAR for M = 5 when 25% of values are missing in X;. The error bars summarise results from
the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Brier;y,, -
Brier;qrget. The average Brier when data are fully-observed is 0.17. CC (complete-case); methods
A-K are described in Table2.3.
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ideal performance of all methods overestimates Brier;q,get,ops- For CV-then-MI, methods
A and E have the lowest magnitude (|Briermp ideal — Brietiarget,obs|) while methods J and
K tend to have the lowest magnitude overall. With increasing sample size to 300 the
magnitude of the difference for all methods is less than 0.0025 when data are MCAR or
weak covariate-dependent MAR and less than 0.005 for strong covariate-dependent MAR.
When data are MCAR or strong covariate-dependent MAR, all methods tend to slightly
overestimate Brieryq,get,0ps- When data are weak covariate-dependent MAR, methods A-F
overestimate Brier;q,ges,ops and methods J and K underestimate Brier;q,ges,ops (i-€. over-
optimistic). With increased sample size to 1000, all methods underestimate Briertqrget obs

and perform similarly.

Outcome-dependent MAR

Figure5.12presents the ideal and pragmatic performance estimates of the various methods
when compared to their respective target Brier score estimate, when data are outcome-
dependent or outcome- and covariate-dependent MAR. The magnitude of the difference
between the methods’ Brier score estimate and the target estimate is less than 0.01 when
sample size is 100, less than 0.005 for a sample size of 300 and less than 0.0025 for a
sample size of 1000. The complete-case analysis estimate underestimates Brier;y,4et,cc for
all sample sizes and missing data scenarios (Briercc — Briersgrger,cc < 0). With increas-
ing strength of missingness, the magnitude of the difference (|Briercc — Brieriarget,cc|)

increases.

When the sample size is 100 or 300, the pragmatic performance of methods A, C, E-H,
J and K tend to perform well, either approximating Brier;q,get imputea Well or having very
small magnitudes (|Brietmp prag — Brieriarget,imputed|)- Methods B and D tend to overes-
timate Brier;q,get,imputed for all sample sizes and missing data scenarios. With increasing

sample size to 1000 all methods perform similarly.

The ideal performance of the CV-then-MI methods A-F overestimates Brier;q,ges,obs for
sample sizes of 100 or 300 for all missing data scenarios. The performance of methods J and
K (MI-then-CV') tends to underestimate Brier;q,get,0ps When data are weak outcome- and
covariate-dependent MAR and overestimates Brierq,ges,0ps for the other missing scenarios.
For a sample size of 100 or 300, methods B and D tend to have the largest magnitude
(|Brierimp,ideat — Briettarget,obs|, imp =B, D) while methods J and K tends to have the
smallest magnitude. With increasing sample size to 1000, the performance of all methods
is similar except for the weak outcome- and strong covariate-dependent MAR, scenario

where methods J and K have the smallest magnitudes.
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Figure 5.12: The difference Brier;,), - Brier;q,ge; Wwhen data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Brier;p,, - Brierigrger. The average Brier when data are fully-observed is
0.17. CC (complete-case); methods A-K are described in Table2.3.
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5.5 Detailed results: Calibration intercept

For a sample size of 100 when data are MAR, the various performance estimates of the
calibration intercept estimate are very unstable when compared to the intercept estimated
when data are fully-observed. This can also be seen for the bootstrap calibration results
in AppendixC. The estimates of the calibration intercept for a sample size of 100 when
data are fully-observed were previously noted to vary widely in Section5.2(Table5.1).

Here, we will focus on results for a sample size of 300 and 1000.

5.5.1 Comparing each method’s Calibration intercept to the estimate of the

Calibration intercept when data are fully-observed

MCAR and covariate-dependent MAR

Figureb.13displays results for the proposed methods’ ( imp) estimates of the calibration
intercept which are compared to Intercept,,, (Intercept,,,, — Intercept,,s) when data are
MCAR or covariate-dependent MAR.

The complete-case analysis estimate underestimates Intercept . (Intercept~—Intercept,,, <
0). For covariate-dependent MAR when sample size is 300, the magnitude of the underes-
timation is greater than 0.015 and it does not fit onto the scale of Figure5.13. However,
with increasing sample size the magnitude of the difference (|Intercept - — Intercept )

decreases when data are MCAR or covariate-dependent MAR.

For all sample sizes when data are MCAR or covariate-dependent MAR, the pragmatic per-

formance of methods B and D overestimate Intercept,,, (Intercept — Intercept ;4 >

imp,prag
0 for imp = B, D). For a sample size of 300 when data are covariate-dependent MAR,

they do not fit onto the scale of the graph. With increasing sample size, the magnitude

of the difference decreases (|Intercept; — Intercept

imp,prag | — 0, imp = B7 D) The prag-

obs

matic performance of the other methods tends to underestimate Intercept,,, when data

obs

are MCAR. When data are weak or strong covariate-dependent MAR, methods E and

K tend to overestimate Intercept ,, while the remaining methods either underestimate or

obs

approximate Intercept ;. well.

obs

Similarly for the ideal performance, methods B and D overestimate Intercept, s (Intercept;,,,, ;gear—

Intercept,,, > 0 for imp = B, D) with a magnitude greater than 0.1. The ideal perfor-

obs

mance of the remaining methods either over- or underestimate Intercept, ;. but with similar

obs

magnitudes.
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MCAR and covariate-dependent MAR

Nops=100 Nops=300 Nops=1000
Exclude fold k | [Include k MI-CV Exclude fold k | [Include k| MI-CV | Exclude fold k | [Include k MI-CV
0.02 0.02
075
T )
0.01 0.01
k3 ¥
0.50
y2=0 == =
0.001 -~ [E---gwpa|r--3F0 ==3E 0.0 --| =~ semamman |- -gos oo T
0.25 3 =
-0.01 -0.01
0.001==| [+ e eo—om| T T om0 ten] I
o
8
I cC RBCTYG DTV 3K cC RBCTYG DEV VK G RBCEG DEW JK
c
c
iel
© [cC [Exclude fold k| [Include k MI-C Exclude fold k | [Include k| MI-CV Exclude fold k_[Include k| MI-CV
Q T pa
= 0.02 0.021
o
O
2 0.75
[0]
2 0.01 0.01
?
> 0.50 == =r
2=t
- Y720 .
S 0.001 -~ F=----= Toamy oot e T 0.007 -] [ -t g et
T Iz
3 0.25 1
(]
£
»
b -0.01 -0.011
c 0.00+4-| FFe44-FF{4-4-|FF oo - | |oeeiq
[0}
E
I3 C RBCEG DEV K C RBCTEG DEW JK C RBCFG DEW I
[0]
o
5
é Exclude fold k_[Include k MI-C Exclude fold k | [Include k| MI-CV Exclude fold k_[Include k MI-CV
a 0.02 0.02
0.75
ey x
0.01 0.01 = =
0.50
1
V2= =
10 3
0.001--|f=---= oy S L T | P USR] B R
0.25 T
.
= -0.01 -0.011 ~Cc¢
0.00+==| oot H-FF{{~—e=| | -} 1 oo=| | [+ - |deal
- Pragmatic
C RBCEG DEV K C RBCTEG DEW JK C RBCFG DEW K

Cross—validation methods

Figure 5.13: The difference Interceptiy,, - Interceptoy,s when data are MCAR or covariate-
dependent MAR for M = 5 when 25% of values are missing in X;. The error bars summarise
results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval
of Intercept;m, - Interceptops. The average Calibration intercept when data are fully-observed is
0.02 for larger sample sizes. CC (complete-case); methods A-K are described in Table2.3and

summarised in Table4.4.

141



Outcome-dependent MAR

Figureb.14displays results when data are outcome-dependent or outcome- and covariate-
dependent MAR. The graph presents the comparison of the various methods’ (imp) esti-
mates of the calibration intercept to the intercept estimate when data are fully-observed
(Intercept,,,,, — Intercept ).

imp

The complete-case analysis estimate of the calibration intercept underestimates Intercept
for a sample size of 300 and 1000, at times not fitting onto the scale of the graph when
sample size is 300. Increasing the sample size to 1000 decreases the magnitude of the
| = 0).

underestimation (|Intercept,,,,, — Intercept

imp obs

The pragmatic performance of all methods overestimates Intercept ,, for a sample size of

obs
300 or 1000 across all missing data scenarios. When sample size is 300, methods A and
J have the smallest magnitudes (|Intercept;,,, ,rq, — Intercept,,,| < 0.0025 for imp = A,
J) while methods B and D have the largest. When sample size is 1000, method J has the
smallest magnitude of the difference across all methods while methods A and F-H tend to

perform similarly with the lowest magnitude for CV-then-MI methods.

The ideal performance of all methods also overestimates Intercept ;. for all sample sizes
and missing data scenarios. For the MI-then-C'V methods when sample size is 300 or
1000, method J (impute once) has a smaller magnitude that method K (impute using a
training and test imputation model). For the CV-then-MI methods, methods A and F
tend to have the smallest magnitude (|Intercept;,,,, jgeq — Intercept,,s| < 0.0025 for imp =
A, F) while methods B and D have the largest (|Intercept,,,, ;4o — Intercept | > 0.015
for imp = B, D).
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Figure 5.14: The difference Intercepti,, - Intercepto,s when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The

error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo

95% confidence interval of Intercept;,, - Interceptops. The average Calibration intercept when data

are fully-observed is 0.02 for larger sample sizes. CC (complete-case); methods A-K are described
in Table2.3and summarised in Table4.4.

143



5.5.2 Increasing the number of imputed datasets from 5 to 25

Figure5.15displays results comparing the use of 5 versus 25 imputed datasets when

data are outcome-dependent or outcome- and covariate-dependent MAR (Intercept;,,,,, ys —
Intercept,,s). The results are for the pragmatic performance but are generalisable also to
the ideal performance in all missing data scenarios. All graphs comparing 5 versus 25
imputed datasets for the ideal and pragmatic performance are available in the Supple-

mentary plots sectionS2.3.3.

The use of 25 imputed datasets to estimate the calibration intercept has little effect when
compared to 5 imputed datasets (Intercept,,,, yy—5 — Intercept,,, = Intercept;,,,, ny—o5 —
Intercept,y,). This can be seen for all methods across all data-generating scenarios for

sample sizes of 300 or 1000.
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Outcome-dependent MAR
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Figure 5.15: The difference Interceptiy,, - Intercepto,s when data are outcome-dependent or

outcome- and covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing

in X7. The error bars summarise results from the 2000 repetitions for pragmatic performance and

the limits represent the Monte Carlo 95% confidence interval of Intercept;m, - Interceptops. The

average Calibration intercept when data are fully-observed is 0.02 for larger sample sizes.

(complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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5.5.3 Increasing the percentage of missingness to 40%

Figure5.16displays results demonstrating the impact that an increased percentage of miss-
ingness can have on the various methods when data are weakly outcome- and covariate-
dependent MAR. The figure presents the calibration intercept estimates when 25% or 40%

of X values are missing compared to Intercept,,, (Intercept — Intercept,,). The re-

imp,%
sults are generally representative of the comparison between 25% and 40% missingness for
ideal and pragmatic performance for all missing data scenarios and sample sizes. All plots

are available in SectionS2.3.20f the Supplementary Plots.

The complete-analysis estimate when 25% of X values are missing tends to have a
smaller magnitude than when 40% of values are missing (|Interceptc 950, — Intercept,,s| <
[Intercept e 499 — Intercept,,|) for all sample sizes and missing data scenarios. The

complete-case analysis estimates do not fit onto the scale of Figure5.16.

The pragmatic performance of methods A, B and D has a larger magnitude when the per-
centage of missingness is increased when data are MCAR, or covariate-dependent MAR.
The other methods either perform similarly or have overlapping confidence intervals when
comparing the percentage of missingness. When data are outcome-dependent or outcome-
and covariate-dependent, methods G, J and K tend to perform similarly regardless of the
percentage of missing values. The magnitude for all other methods increases with an in-
creased percentage (|Intercept;,,, o594, — Intercept,,s| < [Intercept;,,, 199 — Intercept | for
imp =A-F,HK).

When data are MCAR or covariate-dependent MAR, the ideal performance of methods
B and D has a larger magnitude when the percentage of missing values increases to 40%
compared to when 25% of X7 values are missing. For all other methods, the confidence
intervals for the intercept estimate when 40% of values are missing either overlap or encom-
pass the point estimate and confidence intervals with a smaller percentage of missingness.
When data are outcome-dependent or outcome- and covariate-dependent, methods A, J
and K perform similarly or have overlapping confidence intervals regardless of the per-
centage of missing values while for all other methods |Intercept,,,, o5, — Intercept,s| <
| for imp =B-F,G and H.

[Intercept;,,;, 409 — Intercept s
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Weak outcome- and covariate-dependent MAR
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Figure 5.16: Comparing the impact of increasing the percentage of missingness on the difference
Intercept;m,p - Intercepty,s when data are outcome- and covariate-dependent MAR when M = 5.
The error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo
95% confidence interval of Intercept;m, - Interceptops. Red denotes Intercept;y,, - Interceptqps when
25% of X; values are missing and blue denotes Intercept;,, - Interceptops when 40% of X; values
are missing. The top row presents the results for pragmatic performance and the bottom row
presents results for ideal performance. The average Calibration intercept when data are fully-
observed is 0.02 for larger sample sizes. CC (COPA}?lete—case); methods A-K are described in Table
2.3.



5.5.4 Comparing each method’s calibration intercept to the target estimate

of the calibration intercept from a larger validation set

As previously discussed for the continuous outcome scenario for the AUC and Brier

score results, the ideal performance of the methods and Intercept, . are compared to

obs
the ideal target intercept estimate (Intercept;q,gesops)- This is estimated by applying a
prediction model, based on all data in a repetition, to the fully-observed data in the
larger test set. The pragmatic performance of the imputation methods is compared
to applying a repetition’s prediction model to the imputed datasets of the larger test
set (Interceptyy,get imputed). 1he complete-case estimate of the intercept is compared

to applying a repetition’s prediction model to the observed cases of the larger test set

(Intercepttarget,CC) :

MCAR and covariate-dependent MAR

Figureb.17presents the ideal and pragmatic performance estimates of the various meth-
ods when compared to their respective target calibration intercept estimate, when data
are MCAR or covariate-dependent MAR. For all sample sizes, the complete-case analysis
underestimates Intercept,,, .. cc with a magnitude of approximately 0.5 (|Intercept,,, —
Interceptyq,ger.cc| & 0.5). As a result, the complete-case estimate can not be seen in

Figureb.17due to the scale of the graph.

For a sample size of 300 or 1000, the pragmatic performance of all methods overestimates
Interceptyq, get imputed (INtrCept;pyy, rag — Interceptyy, get imputea > 0)- Methods B and D
tend to have a slightly larger magnitude than the other methods which all perform simi-

larly with a magnitude less than 0.05.

When data are MCAR or weak covariate-dependent MAR, and sample size is 300, the

ideal performance of all methods tends to underestimate Intercept,,, (Intercept

obs obs,ideal —

Interceptyq, et obs < 0). Methods B and D tend to have a slightly smaller magnitude than
the other methods which perform similarly to each other. When sample size is 300 and data

are strong covariate-dependent MAR, methods B and D overestimate Intercept,,, while

obs

the other methods still underestimate Intercept When the sample size is increased

obs*

to 1000, all methods overestimate Intercept,,, and methods B and D have the largest

magnitude of the difference.
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MCAR and covariate-dependent MAR
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Figure 5.17: The difference Interceptim, - Interceptiarger when data are MCAR or covariate-
dependent MAR for M = 5 when 25% of values are missing in X;. The error bars summarise
results from the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval
of Interceptimp - Interceptiarger. The average Calibration intercept when data are fully-observed

is 0.02 for larger sample sizes. CC (complete-case); methods A-K are described in Table2.3.
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Outcome-dependent MAR
Figureb.18presents the ideal and pragmatic performance estimates of the various meth-
ods when compared to their respective target calibration intercept estimate, when data

are outcome-dependent or outcome- and covariate-dependent MAR.

For sample sizes of 300 or 1000, the complete-case analysis estimate of the calibration
intercept underestimates Intercept,q, 4 cc With a magnitude of approximately 0.5 for all
missing data scenarios. As such, the complete-case estimate does not fit onto the scale of
Figureb.18.

For sample sizes of 300 or 1000 and all missing data scenarios, the pragmatic performance
of all methods overestimates Intercept,y, get imputed (INt€rcepty,, 100 —Intercepty g, et imputed >
0). When the sample size is 300, methods A and J tend to have the smallest magnitude
(|Intercept; .y, prag — INterceptyy, get imputedls mp =A, J), methods B and D have the largest
magnitude, and the remaining methods (methods C, E-H and K) perform similarly to each
other. When sample size is 1000, method J has the smallest magnitude and methods B
and D have the largest magnitude. The remaining methods perform similarly when com-

pared to the target pragmatic estimate.

For sample sizes of 300 or 1000 and all missing data scenarios, the ideal performance

of methods B and D tend to approximate Intercept,, well or slightly overestimate it

obs

(Intercept,,,;, idear — Interceptyy, get imputea = 05 imp =B, D). All other methods (methods

A, C, E, F, J and K) underestimate Intercept,,, for all sample sizes and missing data

obs

scenarios and perform similarly to each other.
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Outcome-dependent MAR
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Figure 5.18: The difference Intercept;y,, - Intercept,orge: When data are outcome-dependent or
outcome- and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The
error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo
95% confidence interval of Interceptiy,, - Interceptiqrger. The average Calibration intercept when
data are fully-observed is 0.02 for larger sample sizes. CC (complete-case); methods A-K are
described in Table2.3.
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5.6 Detailed results: Calibration slope

Similarly to the calibration intercept, for a sample size of 100 the various performance
estimates of the calibration slope estimate are very unstable when compared to the slope
estimated when data are fully-observed. For a sample size of 300, the results are slightly

improved but still have large variation. Results will be discussed for a sample size of 1000.

5.6.1 Comparing each method’s Calibration slope to the estimate of the Cal-

ibration slope when data are fully-observed

MCAR and covariate-dependent MAR
Figure5.19displays results for the various methods’ ( imp) estimates of the calibration
slope which are compared to the slope estimate when data are fully-observed (Slope

Slope,,s) when data are MCAR or covariate-dependent MAR.

imp

The complete-case analysis overestimates Slope,,, for a sample size of 1000 when data are

obs

MCAR or covariate-dependent MAR. The magnitude (|Slopeqsc — Slopey,|) is approxi-
mately 0.02.

The pragmatic performance of all methods underestimates Slope_;, with a magnitude be-

obs
tween 0.03 and 0.06, except for method J which has the smallest magnitude across all
methods j0.001. Methods A, B and D perform similarly with the smallest magnitudes
across the C'V-then-MI methods while methods C,E-H perform similarly with larger mag-

nitudes. Method K performs similarly to methods C, E-H.

The ideal performance of methods A, B and D overestimate Slope,,, (Slope

imp,ideal ~—

Method A
tends to have the smallest magnitude of the difference amongst the C'V-then-MI methods

Slope imp =A, B, D) while the other methods underestimate Slope

obs» obs*

while method D tends to have the largest. Overall, methods J and K have a smaller
magnitude than the C'V-then-MI methods while all methods have a magnitude less than
0.01.
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MCAR and covariate-dependent MAR
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Figure 5.19: The difference Slope;p,, - Slope,s when data are MCAR or covariate-dependent

MAR for M = 5 when 25% of values are missing in X;. The error bars summarise results from

the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Slope;,,

- Slopeyps. The average Calibration slope when data are fully-observed is 1.04 for larger sample

sizes. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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Outcome-dependent MAR

Figureb.20displays results for the various cross-validation methods’ ( imp) estimates of the
calibration slope which are compared to the slope estimate when data are fully-observed
(Slope;,,,,—Slope,;,s) when data are outcome-dependent or outcome- and covariate-dependent
MAR.

The complete-case analysis overestimates Slope ;. when sample size is 1000 for all missing

obs

data scenarios. The magnitude is approximately 0.02.

The pragmatic performance of all methods underestimates Slope ;. for a sample size of

obs
1000 when data are outcome-dependent or outcome- and covariate-dependent MAR. Meth-
ods A tends to have the smallest magnitude (|Slope;,,;, ,rqg — Slope,s|), closely followed
by methods B and D across the C'V-then-MI methods while method J has the smallest
magnitude overall. Methods C, E-H and K tend to perform similarly and have the largest

magnitude across all methods.

The ideal performance of methods A, B and D overestimates Slope,,, with a smaller
Across all CV-then-

MI methods, method A tends to have the smallest magnitude while the ideal performance

magnitude than methods C, E and F which underestimate Slope

obs*

of methods J and K has the smallest magnitude of the difference overall.
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Figure 5.20: The difference Slopein,, - Slopesss when data are outcome-dependent or outcome-

and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The error

bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%

confidence interval of Slopejn, - Slopegys. The average Calibration slope when data are fully-

observed is 1.04 for larger sample sizes. CC (complete-case); methods A-K are described in Table

2.3and summarised in Table4.4.
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5.6.2 Increasing the number of imputed datasets from 5 to 25

Figure5.21displays results comparing the use of 5 versus 25 imputed datasets when

data are outcome-dependent or outcome- and covariate-dependent MAR (Slope;,,;, pr —
Slope,,s). The results are for the pragmatic performance but are generalisable also to the
ideal performance in all missing data scenarios. All graphs comparing 5 versus 25 imputed
datasets for the ideal and pragmatic performance are available in the Supplementary plots

sectionS2.4.3.

The use of 25 imputed datasets to estimate the calibration intercept has little effect when
compared to 5 imputed datasets (Slope;,,, py—5 — Slopeyys = Slope;,,, pr—25 — Slope,g).
This can be seen for all methods across all data-generating scenarios for a sample size of

1000.
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Outcome-dependent MAR
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Figure 5.21: The difference Slopein,, - Slopesss when data are outcome-dependent or outcome-
and covariate-dependent MAR for M = 25 versus M = 5 when 25% of values are missing in
X1. The error bars summarise results from the 2000 repetitions for pragmatic performance and
the limits represent the Monte Carlo 95% confidence interval of Slope;,,, - Slopesys. The average
Calibration slope when data are fully-observed is 1.04 for larger sample sizes. CC (complete-case);
methods A-K are described in Table2.3and summarised in Table4.4.
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5.6.3 Increasing the percentage of missingness to 40%

Figure5.22displays results demonstrating the impact that an increased percentage of miss-

ingness can have on the various methods when data are weakly outcome- and covariate-
dependent MAR. The figure presents the calibration slope estimates when 25% or 40%
of X7 values are missing compared to Slope,,s (Slope;,,, % — Slope,,). The results are
generally representative of the comparison between 25% and 40% missingness for ideal
and pragmatic performance for all missing data scenarios and sample sizes. All plots are

available in SectionS2.4.20f the Supplementary Plots.

For the complete-case analysis and pragmatic performance of all C'V-then-MI methods (ex-
cept method G), an increased percentage of missing values results in an increased magni-
tude of the difference between the estimated slope and Slope  (|Slope;,,,;, 259 —Slope,s| <
|Slope;,,, 40% — Slopeyys|). This holds across all missing data scenarios. Methods G, J and

K tend to have similar performance in relation to Slope,;,, regardless of the percentage of

obs»

missing values.

An increased percentage of missingness tends to result in an increased magnitude of the
ideal performance for the majority of the C'V-then-MI methods when data are MCAR or
MAR. Methods A, B and D tend to have similar or small increases in magnitude with
increased missingness ([Slope;,,,,, 409 — Slope,,|) while methods C, E and F tend to have
larger differences in magnitude. The MI-then-C'V methods J and K perform similarly

regardless of the percentage of missingness across all missing data scenarios.
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Weak outcome- and covariate-dependent MAR
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Figure 5.22: Comparing the impact of increasing the percentage of missingness on the difference
Slopeimp - Slopegys when data are outcome- and covariate-dependent MAR when M = 5. The
error bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo
95% confidence interval of Slopeim, - Slopeoys. Red denotes Slope;s,y - Slopesss when 25% of X
values are missing and blue denotes Slope;,,p, - Slopeyss when 40% of X values are missing. The
top row presents the results for pragmatic performance and the bottom row presents results for
ideal performance. The average Calibration slope when data are fully-observed is 1.04 for larger

sample sizes. CC (complete-case); methods A—Iiﬁe described in Table2.3.



5.6.4 Comparing each method’s calibration slope to the target estimate of

the calibration slope from a larger validation set

As previously discussed for the AUC, Brier score and calibration intercept results, the ideal

performance of the cross-validation imputation methods and Slope_;, were compared to

obs
the ideal target slope estimate (Slope,, 4es obs)- This is estimated by applying a prediction
model, based on all data in a repetition to the fully-observed data in the larger test set.
The pragmatic performance of the imputation methods is compared to applying a repeti-
tion’s prediction model to the imputed datasets of the larger test set (Slopey,, ger imputed)-
The complete-case estimate of the slope is compared to applying a repetition’s prediction

model to the observed cases of the larger test set (Slopeq,get.cc)-

Similarly to the comparison of the methods with the Slopeys, the slope estimates are
unstable for small and moderate sample sizes. As such, the results will be discussed for

sample size of 1000.

MCAR and covariate-dependent MAR
Figureb.23presents the ideal and pragmatic performance estimates of the various meth-

ods when compared to their respective target calibration slope estimate, when data are
MCAR or covariate-dependent MAR.

The complete-case analysis overestimates Slope;,, 4t o (Slopece — Slopeygyger.cc > 0)
with a magnitude of approximately 0.9. The complete-case analysis estimate does not fit

onto the scale of Figureb.23for the covariate-dependent MAR scenarios.

The pragmatic performance of all methods tends to overestimate Slope,,, get imputea fOr all
methods. Method J tends to have the largest magnitude of overestimation ([|Slope ., —
Slope;yyget, imputeal) of approximately 0.1 while the other methods tend to perform simi-

larly with an overestimation of approximately 0.05.
The ideal performance of all methods also overestimates the target ideal estimate for all

methods (S1ope;,,, idear — SloPCgrger obs > 0). Again, the methods all tend to perform

similarly in relation to Slope,,,ger ops, With magnitudes of approximately 0.05.
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MCAR and covariate-dependent MAR
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Figure 5.23: The difference Slope;m, - Slopearger When data are MCAR or covariate-dependent
MAR for M = 5 when 25% of values are missing in X;. The error bars summarise results from
the 2000 repetitions and the limits represent the Monte Carlo 95% confidence interval of Slope;,,
- Slopetarget- The average Calibration slope when data are fully-observed is 1.8 for a sample size
of 300 and 1.04 for a sample size 1000. CC (complete-case); methods A-K are described in Table
2.3.
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Outcome-dependent MAR
Figureb.24presents the ideal and pragmatic performance estimates of the various meth-
ods when compared to their respective target calibration slope estimate, when data are

outcome-dependent or outcome- and covariate-dependent MAR.

Similarly to the MCAR and covariate-dependent MAR, scenarios, the complete-case anal-
ysis overestimates Slopey,,.g.t.cc (Slopece — Slopey,ger o > 0) and does not fit onto the

scale of Figureb.24for the outcome- and weak /strong covariate-dependent MAR scenarios.

The pragmatic performance of all methods overestimates Slope; g, ger imputea for all methods
(Slop€;pp prag — SlobPeiarget imputed > 0). Method J has the largest magnitude of this
difference. The other methods tend to perform similarly with methods A, B and D having
a slightly larger magnitude than methods C, E, F-H and K but all approximately have a
magnitude of 0.05. The ideal performance also overestimates Slope,;.get obs fOr all methods.

The methods all perform similarly to each other when compared to Slope,,; get obs-
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Outcome-dependent MAR
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Figure 5.24: The difference Slope;,, - Slope;arger Wwhen data are outcome-dependent or outcome-
and covariate-dependent MAR for M = 5 when 25% of values are missing in X;. The error
bars summarise results from the 2000 repetitions and the limits represent the Monte Carlo 95%
confidence interval of Slopejmp - Slopeiarget. The average Calibration slope when data are fully-
observed is 1.8 for a sample size of 300 and 1.04 for a sample size 1000. CC (complete-case);
methods A-K are described in Table2.3.
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5.7 Is data leakage an issue within the imputation process?

In section2.81 discussed the issue of data leakage in the imputation process and how we
could investigate the impact of this leakage by comparing several methods, which were
previously re-summarised in Table4.4. The impact of data leakage was previously dis-

cussed for a continuous outcome scenario in Section4.6.

The methods to compare data leakage range from having no leakage (method B) to those
with the highest amount of leakage (method J). Methods A (which has no leakage) and
F-H have no similar methods from which to compare the inclusion or exclusion of folds
to assess the impact of data leakage when training or evaluating a prediction model and,

therefore, will not be discussed here.

In the following analysis, method B will be compared with method C, and method D with
method E. This comparison allows us to assess the impact of using only the observations
available in the k%" test fold to impute the test fold (method B or D) versus using observa-
tions from all K folds to impute the k" test fold (method C or E). Comparing method B
with method D (or method C with E) will assess using the observations in the k —1 train-
ing folds to impute the training set (method B or C) versus using all K folds to impute
the k — 1 training folds before restricting to the & — 1 training folds to fit the prediction
model. In other words, method B versus method C compares the use of all data on the
imputation of the test fold while comparing method B versus D compares the inclusion of
the test fold when imputing the training folds. Method E can be compared with method
K to understand the impact of using two sets of imputed datasets for training and testing
models but excluding values of the outcome (from the k& — 1 training folds) to impute the
test set to prevent data leakage. Method K can be compared with method J to assess the
influence of using two sets of imputed datasets (one for training and the other for testing,
method K) compared to using one set of imputed datasets (for both training and testing

the prediction models, method J).

The comparisons of all methods (for example, method B versus method C) can be seen
across all data-generating scenarios in Figures5.1land5.2for the AUC, in Figures5.7and
5.8for the Brier score, in Figures5.13and5.14for the calibration intercept and finally, in
Figures5.19and5.20for the calibration slope when comparing the performance measure of
interest to the estimate when data are fully-observed. For the comparison of the methods’
estimates with a target estimate in a larger validation set, please see Figures5.5and5.6for
the AUC, Figures5.11and5.12for the Brier score, Figures5.17and5.18for the calibration
intercept and Figures5.23and5.24for the calibration slope. For comparison purposes,

I will focus on the weak outcome- and covariate-dependent scenario to investigate data

leakage but the trends discussed will be generalisable across the majority of the missing
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scenarios. All data leakage comparison graphs for the AUC, Brier score and calibration

intercept and slope are available in SectionS2.50f the Supplementary Plots.

AUC

Figureb.25presents results assessing the impact of data leakage on the AUC by com-
paring methods and their inclusion or exclusion of training or test folds when data are
weak outcome- and covariate-dependent MAR. The top row of the Figure compares the
AUC with the AUC estimated when data are fully-observed (AUCj;;,, — AUCs) while the
bottom row compares the AUC with the target ideal or pragmatic estimate of the AUC
(AUCjmp — AUCqrget)-

Comparing AUC;,,;, — AUCps, the magnitude of this difference is two times larger for
method B than method C for both ideal and pragmatic performance when sample size is
100 or 300. However, the absolute differences are small (approximately 0.0075 and 0.005
for sample sizes of 100 and 300, respectively). This can similarly be seen when comparing
method D with E suggesting that using all the covariate data from all folds to impute the
missing data in the k" test fold has a strong impact on model performance. Increasing the
sample size to 1000, this difference in magnitudes between methods B and C (or methods

D versus E) is not as severe.

Methods B versus D and C versus E are compared to understand the impact of including
the test fold when imputing the training folds. For all scenarios, method D has a smaller
magnitude (JAUCp — AUCps|) than B, similarly method E has a smaller magnitude than
C. However, the differences between their magnitudes are all approximately 0.0025 when

sample size is 100 or 300 and less than 0.001 for a sample size of 1000.

Method E versus K can be used to understand the impact of using two sets of imputed
datasets for training and testing models but excluding values of the outcome (from the
k — 1 training folds) to impute the test set to prevent data leakage. Methods E and K
both have similar pragmatic performance across all sample sizes. However for the ideal
performance, by removing values of Y from the training folds so that they are not used in
the imputation of the test fold, method E performs poorly compared to method K which

uses all of the outcome (from all K folds) to impute.

Comparing method K with J to assess the influence of using two sets of imputed datasets
(one for training and the other for testing) compared to using one set of imputed datasets
(for both training and testing the prediction models). Both methods perform similarly
for ideal imputation, with method J having a smaller magnitude than K (|AUC j;gear —

AUCps| < |AUCK ideat — AUCpps|). For pragmatic performance, method J has a smaller
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Weak outcome- and covariate-dependent MAR
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Figure 5.25: Assessing data leakage within the imputation process for cross-validation. The
differences AUC;,,p - AUCgp5 and AUG;,,p - AUCtgpger are compared when data are weak outcome-
and strong covariate-dependent MAR. Methods are compared to both the AUC estimate when data
are fully-observed (Full-obs, row 1) and the target estimate (Target, row 2) from a larger validation

set. CC (complete-case); methods A-K are described in Table2.3and summarised in Table4.4.
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magnitude method K for the majority of scenarios. This is perhaps due to the increased
correlation among imputed values used for training and testing in method J from using
one set of imputed datasets. By contrast, method K uses two different imputation models

and two sets of imputed datasets which are less correlated to each other.

When comparing the methods for handling missing data in a larger validation set and
for a small sample size of 100, method B (no leakage) has a smaller magnitude |AUCp —
AUC4rget| than C (leakage when imputing the test set) and D (leakage when imputing
the training folds) for both ideal and pragmatic imputation. Method K tends to have a
smaller magnitude than method J for both ideal and pragmatic performance. Increasing
the sample size to 300, the magnitude of the pragmatic performance has decreased to less
than 0.005 for all methods. The ideal performance of method B is larger than method C
and method D when sample size is 300. When the sample size is 1000 the various CV-then-
MI methods have similar ideal and pragmatic performance. The pragmatic performance
of methods J and K are larger than all other methods and method J has the largest
magnitude of the difference for ideal performance. All methods for the ideal and pragmatic

performance have a magnitude less than 0.005 when sample size is 1000.

Brier Score

The results for the Brier score are similar to those for the AUC when comparing data
leakage using the various comparative methods. Figureb.26displays results comparing
the Brier score to the Brier score when data are fully-observed and the target estimate
from a validation set when data are weak outcome- and covariate-dependent MAR. The

comparisons made are generally the same across DGMs.

For both ideal and pragmatic performance, methods C and D both have a smaller magni-
tude of the difference than method B when compared to Brier,,s. The ideal and pragmatic
performance of method E has a smaller magnitude of the difference than method B. For
pragmatic performance, both methods J and K overestimate Brier,,s. Method J (uses
one set of imputed datasets to train and evaluate models) has a smaller magnitude of
the difference than method K (uses two imputed datasets) for all sample sizes. However,
the ideal performance of methods J and K underestimates Brier,,s (i.e. they are over-

optimistic) but method K has a smaller magnitude of the difference than method J.

For both ideal and pragmatic performance, methods C and D both have a smaller magni-
tude of the difference than method B when compared to Briersqrget. The ideal performance
of methods B, C and D either overestimate or approximate Brier;qrget,ons While the ideal
performance of method E tends to underestimate the target Brier score estimate (i.e. is
over-optimistic). The ideal and pragmatic performance of methods J and K underesti-

mates Brier;grger (i-€. they are over-optimistic). The ideal and pragmatic performance
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Figure 5.26: Assessing data leakage within the imputation process for cross-validation. The
differences Brier;y,, - Briery,s and Brier;,), - Brieriq,4.+ are compared when data are weak outcome-
and strong covariate-dependent MAR. Methods are compared to both the Brier score estimate when
data are fully-observed (Full-obs, row 1) and the target estimate (Target, row 2) from a larger
validation set. CC (complete-case); methods A-K are described in Table2.3and summarised in
Table4.4.
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of method J tends to be larger than the ideal and pragmatic performance of method K,

respectively, when compared to Brierig,ges i.6. method J is more optimistic than method K.

For the majority of the scenarios the difference between the estimated Brier score and
either Brieryps or Brieryq,ger is less than 0.01. The magnitude of the differences across meth-
ods between the estimated Brier score and either Brierqps or Brieriqrget,obs /BrieTiarget imputed

become more similar with increasing sample size.

Calibration intercept and slope
Figures5.27and5.28display data leakage comparisons for the calibration intercept and

slope, respectively.

For the calibration intercept, both methods C and D had lower magnitudes of the dif-
With

increasing sample size the difference between methods (when compared to Intercept )

ference than method B when comparing the estimated intercepts to Intercept,,.

decreases. The ideal and pragmatic performance of the CV-then-MI methods B, C, D,

and E tend to overestimate the calibration intercept when compared to the Intercept,,,.

The ideal performance of methods J and K is similar when compared to Intercept How-

obs*

ever, the pragmatic performance of method J has a smaller magnitude of the difference

with Intercept ,, than method K. The pragmatic performance of all methods are some-

obs
what similar when compared to Interceptyg,ges imputed- 1 he ideal performance of methods
B and D tend to overestimatelntercept,,,ges ops While the other methods underestimate
Intercept;q,ger obs (With methods J and K having the largest magnitudes of the differ-
ence). With increasing sample size, the ideal performance of all methods approximates

Intercepty g, get obs-

The calibration slope had very large differences and variation in their estimates for both
fully-observed and larger validation set comparisons when the sample size was small or
moderate. For a sample size of 1000, method B has a smaller magnitude of the difference

than method C when compared to Slope_,, for both ideal and pragmatic performance.

obs

Similarly, method D has a smaller magnitude of the difference than method E when

compared to Slope However, when comparing to the larger validation set method C

obs*

has a smaller magnitude of the difference than method B when compared with Slope; ;. 4e;
(Slopeyarget,obs OF SlODetgyget imputea)- Methods J and K have similar ideal performance

when their estimated slopes are compared with Slope,s or Slope,, get obs- For pragmatic

obs
performance, the magnitude of the difference between the estimated slope and Slope, is
smaller for method J than method K. However, when the estimated slopes are compared to
Slopeygrget imputed> the magnitude of the difference is smaller for method K, while method

J has the largest magnitude of the difference across all methods being compared.
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Figure 5.27: Assessing data leakage within the imputation process for cross-validation. The
differences Intercept;,, - Intercepto,ss and Intercept;y,, - Interceptsq,ge¢ are compared when data
are weak outcome- and strong covariate-dependent MAR. Methods are compared to both the
calibration intercept estimate when data are fully-observed (Full-obs, row 1) and the target estimate
(Target, row 2) from a larger validation set. CC (complete-case); methods A-K are described in
Table2.3and summarised in Table4.4.
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Figure 5.28: Assessing data leakage within the imputation process for cross-validation. The dif-

ferences Slope;pn,, - Slopeoss and Slope;,,, - Slopearger are compared when data are weak outcome-

and strong covariate-dependent MAR. Methods are compared to both the calibration slope esti-

mate when data are fully-observed (Full-obs, row 1) and the target estimate (Target, row 2) from a

larger validation set. CC (complete-case); methods A-K are described in Table2.3and summarised

in Table4.4.
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5.8 Discussion of results for the binary outcome

The aim of this study was to investigate the appropriate ways to combine MI and cross-
validation for a binary outcome when the three performance measures of interest were
the AUC, Brier score and Calibration intercept and slope. In addition, an analysis of the
impact of data leakage on the imputation process by comparing various methods was also

investigated.

Overall, all imputation methods had a tendency to underestimate the AUC estimate when
data are fully-observed. For the AUC, a higher value closer to 1 usually indicates good
model performance. An exception to the underestimation of AUC,, was the MI-then-
CV methods which occasionally over-estimated the performance or were over-optimistic
(i.e. stated that the model performed better after imputation than it did when data were
fully-observed). For the Brier score, a smaller score indicates better model performance.
In general, the various C'V-then-MI methods tended to overestimate the Brier score when
data are fully-observed. The MI-then-CV methods tended to underestimate the Brier
score for small sample sizes or were over-optimistic i.e. the imputed model states better
performance than if data had been fully-observed. Methods J and K have the highest
levels of data leakage, the missing values have been imputed using knowledge of the out-
come and covariates in the test folds. This increases any correlation between the imputed
values and the values of the outcome in the test fold. Therefore, any prediction model
trained using these imputed values will have an unfair advantage when it is evaluated in
the test fold - hence the model having a more optimistic performance measure estimate

after imputation, than if the data had never been missing to begin with.

For the calibration intercept and slope, deviations away from 0 and 1, respectively, can
indicate poor performance. For large sample sizes the majority of the imputation meth-
ods overestimated the intercept by less than 0.02 and underestimated the slope by less
than 0.08. For small and moderate sample sizes, calibration performance was poor even
when data were fully-observed, with an average slope value of 80 (Table5.1), however
this decreased to values between 1 and 2 for larger sample sizes. The issue of unstable
calibration results appeared to result from small sample sizes. This is supported by Van
Calster et al. [52] and Riley et al. [30] who both concluded that small sample sizes can
lead to miscalibration of predictions and that shrinkage methods do not help to resolve

this issue.

The ideal performance of methods C and E performed poorly when assessing the MSE for
the continuous outcome. However, their performance measures in the binary scenario did
not react similarly. As C and E had to additionally impute Y, which was set to be 90%

missing, the imputed value for Y of 0 or 1 was far less variable than in the continuous case
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(see variance of continuous Y in Table4.1) which may have resulted in better imputations.

5.9 Conclusions

This chapter aimed to assess methods for combining MI and cross-validation. It was shown
that for all performance measures, complete-case analysis performs poorly in certain MAR
scenarios. The consequences of using a complete-case analysis could be over-optimistic es-
timates of performance for the AUC or Brier score when data are covariate- dependent
MAR or outcome- and covariate-dependent MAR. It may also result in a larger magnitude

of the calibration intercept or slope than the best performing imputation methods.

The effects of data leakage in the imputation process were assessed for the AUC, Brier
score and calibration intercept and slope. Data leakage was not an issue for method A
or B (CV-then-MI methods) while methods J and K (MI-then-CV') had the most leakage
out of all the methods. Methods C-H had some form of data leakage through the use of

the training or test folds in the imputation process.

Method A had better performance than method B for small and moderate sample sizes,
while both had comparable methods of performance for larger sample sizes and tended to

perform similarly to the methods that had an “advantage” due to data leakage.

For small sample sizes, the ideal performance of MI-then-C'V (methods J and K) tended
to underestimate the MSE suggesting that the prediction model performed better post
imputation than if the data had been fully-observed (i.e. the methods are over-optimistic)
and I have suggested that this is a direct result of data leakage in the imputation process.
This over-optimism was similarly seen for a small sample size when the performance mea-
sure of interest is the AUC or Brier score. All other imputation methods tended to state
that the prediction model did not perform as well post-imputation than if the data had

been fully-observed.

In agreement with the previous literature, I propose that MI-then-C'V methods are at the
highest risk of data leakage and should be avoided. Method A is at no risk of data leakage
and is the best method to combine MI and cross-validation for moderate sample sizes.
With larger sample sizes, method B performs similarly to method A and also avoids data

leakage.
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6 Simulation study results for the bootstrap: continuous

outcome

In Chapter3I described the design of a simulation study to investigate the performance
of various methods which combined MI with an internal validation method. Results for
combining MI with cross-validation were then presented and discussed in Chaptersdand
D.

6.1 Introduction

This chapter will present the results from combining MI with the optimism-corrected boot-
strap algorithm, including the standard and 0.632 versions. As in the previous chapters,
the impact of data leakage from the imputation process will be assessed. In addition, the
reuse of imputed datasets to estimate performance will be assessed. The findings from the
simulation study for the continuous outcome will be presented and, due to the quantity of
results produced, all graphs are available in the supplementary plot chapter (SectionS3),

in addition to the graphs presented in this chapter. The simulation results for the binary

outcome are presented in AppendixC.

The methods which will be evaluated in this chapter were fully described in Section2.7

but are re-summarised in Table6.1. The methods fall into two broad classes- those in

which the imputation is performed first (MI-then-BS), and those in which the bootstrap
samples are obtained first (BS-then-MI). The methods detailed in Tabl