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Abstract 
The World Health Organization recently launched its 2021-2030 
roadmap, Ending the Neglect to Attain the Sustainable Development 
Goals, an updated call to arms to end the suffering caused by 
neglected tropical diseases. Modelling and quantitative analyses 
played a significant role in forming these latest goals. In this 
collection, we discuss the insights, the resulting recommendations 
and identified challenges of public health modelling for 13 of the 
target diseases: Chagas disease, dengue, gambiense human African 
trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, 
rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH), 
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Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis 
(VL) and yaws. This piece reflects the three cross-cutting themes 
identified across the collection, regarding the contribution that 
modelling can make to timelines, programme design, drug 
development and clinical trials.
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          Amendments from Version 1
Following reviewer advice, the largest change is the addition of 
a new paragraph in challenges, that broaches two non-mutually 
exclusive issues; 1) model-use hierarchy, from broad large-scale 
guidance to ground-level implementation and 2) model access at 
localised levels to aid decision making. 

Other changes include the clarification of misleading text.  

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Disclaimer
The views expressed in this article are those of the authors.  
Publication in Gates Open Research does not imply endorsement 
by the Gates Foundation.

A renewed roadmap for a new decade
The World Health Organization’s (WHO) 2021-2030 Neglected 
Tropical Disease (NTD) Roadmap was launched on Janu-
ary 28th, 2021, renewing the commitment of the global NTD  
community to end the suffering caused by these diseases1. The 
development of the roadmap was guided by extensive global 
stakeholder consultation, including consultation with mathemati-
cal and statistical modellers. Modellers were asked to assess the 
technical feasibility of proposed goals, to identify major challenges  
for achieving the new goals from a transmission dynamics  
perspective, possible acceleration strategies, and key outstanding  
research questions2. Technical commentaries have been pub-
lished as a collection in Gates Open Research3–15, which 
detail these insights for 13 NTDs: Chagas disease, dengue,  
gambiense human African trypanosomiasis (gHAT), lymphatic 
filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, 
soil transmitted helminthiases (STH), Taenia solium taeniasis/  
cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws.

Neglected tropical diseases continue to affect over one billion 
people16 as the result of the considerable inequalities in global  
healthcare systems that fail to support those most in need17. 
The burden of NTDs falls largely on the poorest communi-
ties, resulting in an unrelenting cycle of poverty that is driven by  
negative social, health and economic impacts of infection on 
individuals and families, augmenting existing social divides. For  
infections with a substantial zoonotic component, morbidity and 
mortality among livestock also affect people’s livelihood with 
economic impacts that transcend medical implications. Notable  
progress to reduce the burden of NTDs has been made as a 
result of the commitments made in 2012 through the WHO  
2020 NTD Roadmap18 and the London Declaration on NTDs19. 
As a result, 500 million people no longer require interventions 
against several NTDs and 40 countries, territories and areas have 
eliminated at least one disease1. These wins are the outcome of 
concerted and consolidated efforts from endemic communities 
and invaluable volunteers, governments, donor agencies and the 
pharmaceutical industry. Despite such early gains, reaching the  
endgame presents some of the greatest challenges – namely  

sustaining those early gains whilst identifying and averting 
small numbers of sparsely distributed cases. The 2030 roadmap 
is shaped around three pillars that aim to support global 
efforts to maintain the gains, address the challenges and  
ultimately combat NTDs1: 1. Accelerating programmatic action. 
2. Intensifying cross-cutting approaches and 3. Shifting operating  
models and culture to facilitate in country ownership.

The use of mathematical and statistical modelling in NTD 
research and policy has until recently, and with a few excep-
tions (e.g., onchocerciasis20), lagged behind other groups of 
infectious diseases that receive more focus and funding (often, 
diseases that impact wealthier individuals and nations, or 
those perceived to potentially impact these). However, this is  
changing with the advent of groups like the NTD Modelling 
Consortium21, who have developed the Policy-Relevant Items 
for Reporting Models in Epidemiology of Neglected Tropical  
Diseases (PRIME-NTD) principles, as a guide to communicate  
the quality and relevance of modelling to stakeholders20.  
This has added clout to the call for modelling in the policy  
arena as well as setting a high bar of best practice for the 
wider modelling community. Having now gained significant  
traction, the use of modelling in NTD policy has contributed  
to new intervention tools22, vector control strategies23–26,  
shaped policy responding to COVID-19-related programme 
disruptions27–35 and has aided in the development of WHO  
guidelines36,37. For this positive relationship to continue, it is 
imperative to invest in a mutual understanding through ongoing  
conversation between policy-makers and modellers, to determine  
what kind of questions are the “right” questions, how to  
interpret uncertainty and what the models can and cannot be  
used for.

This piece introduces a collection of papers borne of a meet-
ing in Geneva, in April 2019 attended, among others, by the 
NTD Modelling Consortium and convened by the WHO:  
Achieving NTD control, Elimination and Eradication Targets  
Post-2020; Modelling Perspectives & Priorities2. As new 
management targets and strategies took shape, the meeting  
provided policy makers and modellers the space to ask and 
answer specific questions regarding the proposed 2030 goals 
and the intended strategies to achieve them. Although the  
roadmap covers a range of diseases with diverse epidemiologies  
and differing management recommendations, the priority  
questions identified by modelers and stakeholders during  
the 2019 meeting and echoed by the authors of the technical  
commentaries shared three similar themes that should be 
considered in NTD modelling moving forward: timelines,  
programme design, and clinical study design. 

Timelines
Goals are only worth setting in the context of time. It is there-
fore not surprising that many of the technical commentaries 
in this collection identified timelines as a priority issue. The  
public health and economic benefits of reaching goals are  
innumerable but can only be achieved by the target year through  
appropriate mobilisation of diverse resources. Modelling in 
the forms of past inference and forward projections can align  
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many moving parts (for example epidemiological, demographic, 
and social considerations) to inform our understanding of the 
reasons why programmes succeed or fail38,39. Forecasts have 
played a crucial role in understanding whether the 202040 and 
associated collection41,42, 202543 and 20303–15,34 goals can be 
reached under current strategies with the caveat that long-term  
predictions naturally become more uncertain.

In some instances, whether a goal can or will be met on time 
is relatively easy to ascertain – for example it is a resound-
ing no for leprosy and rabies, which are hindered by passive 
case control, long quiescent incubation periods, and inadequate 
investment in interventions15,44. Alternatively, the goals for  
schistosomiasis11, STH8, and onchocerciasis13 seem achievable 
in some or most settings, depending on localised parameters like 
baseline prevalence, and already experienced duration of and 
adherence to mass drug administration (MDA) programmes. 
In the case of T. solium, a lack of internationally agreed goals 
for elimination or control curtails the ability to effectively  
model timelines; for example, the 2021-2030 NTD roadmap 
proposes the overall milestone of achieving “intensified  
control in hyperendemic areas”, without agreeing on techni-
cal definitions for T. solium endemicity levels, or defining  
measurable criteria for attaining “intensified” control14.

Programme design
The diseases considered by the London Declaration and WHO 
roadmaps are at differing stages in their trajectories. Whilst 
some are on the cusp of achieving their goals, others face politi-
cal and epidemiological barriers to progress. Both scenarios 
raise several priority questions regarding programme design, 
where ‘programme’ can mean intervention or surveillance. In  
addition to determining success or failure within the defined 
intervention time frames, modelling has provided insights 
into key factors of operational design like the treatment cover-
age necessary to reach goals in a given setting. Where it may 
not be possible, models can be used to test the efficacy of sepa-
rate and combined chemotherapeutic37 and non-pharmaceutical  
interventions23,45,46, including combined interventions that target 
multi-host systems for zoonotic NTDs14. Additionally, deciding  
the optimal timing47 or frequency48,49 of treatment, and knowing  
who to treat50,51 are essential to the success of all interventions.  
Of course, the intervention strategies most likely to lead to 
achievement of the goals may not be sustainable in terms of 
cost to individuals, governments, or donors. By partnering  
highly detailed transmission models with cost-effectiveness  
analysis, modelling can also contribute to tailored insights 
regarding the affordability and benefits versus costs of  
interventions52–62. Models can also be used to explore integration  
between NTD programmes, or to understand the potential 
cross-utility of existing NTD programmes on other helminth 
species, such as exploring the additional benefit of national  
schistosomiasis control programmes using praziquantel on  
T. solium prevalence in co-endemic areas14. Understanding this  
cross-utility is vital to intensifying cross-cutting approaches –  
one of the three core pillars of the roadmap, that differentiates  
the framework from its predecessor. 

These are all very practical features of intervention programmes 
that can in principle be planned for, but underlying features of 
target populations and human nature can undermine this. Survey  
data in recent years have made it evident that whilst the aim 
may be to deliver treatment at a certain geographical and 
therapeutic coverage, it is not analogous with consumption,  
as treatment is systematically not ingested by some63,64, or 
is not disseminated to the full intended group, reducing the 
true coverage. There are a variety of reasons for this65,66, but 
it is likely that similar mechanisms impact participation in  
surveillance, therefore biasing the estimates of prevalence,  
particularly when treatment and surveillance are co-occurring  
(e.g., gHAT9,67, rabies15,68). Modelling shows that the impact 
of this variable effective coverage depends on the pathogen in 
question and transmission intensity64,69–71 but it undoubtedly  
has an impact on reaching public health goals72,73, and on the 
reliability of the projected intervention intensity needed to 
reach them. It has also been suggested (in the context of VL  
though applicable beyond), that modelling results – and  
therefore policy based on them – may be erroneous without  
better capturing socio-economic and human behaviour risk  
factors, including feedback loops of behaviour change as a 
result of perceived risk74. This also highlights the need for  
ongoing surveillance and the use of modelling throughout to 
provide real-time insight into post-intervention population-level  
infection dynamics.

Once a strategy has been deemed effective and prevalence  
targets are attained, it is likely that these interventions 
either transition, such as going from MDA to identified case  
management, or they stop all together. Establishing robust  
surveillance strategies at this point is vital, but obviously not  
everyone can be regularly sampled and not every incident infection  
case will be detected. Stochastic events like reinfection and 
reintroduction are risks that can drive resurgence. Modelling can 
support the identification of the optimal surveillance strategy  
and determine which prevalence or intensity indicators 
need to be monitored to ensure the desired public health 
goal75–77, although challenges remain in developing long-term  
strategies78. Modelling can make useful contributions in developing  
sustainable, effective interventions and surveillance strategies  
and should therefore be included in any programmatic 
design from the start. As embodied by the 2021-2030 NTD  
roadmap, impactful interventions cannot be achieved by working  
in silos, but instead require continuous communication  
between all parties of an interdisciplinary team.

Drug development and clinical study design
Though modelling is increasingly used in public health decision  
making, the use of modelling to direct clinical trial design 
and drug development is not so common, and even less so for 
NTDs. Chemotherapeutic interventions are the cornerstone  
of large-scale intervention strategies to reach goals like 
elimination as a public health programme or elimination of  
transmission. Though treatment options are limited for 
the likes of STH, LF and trachoma, they are themselves  
considered sufficiently effective at reducing prevalence and  
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transmission. There is therefore a cautiously sanguine view that  
consistent application and uptake is enough to reach target  
public health goals1,4,5. However, confidence in the existing treat-
ment for onchocerciasis (targeted for elimination of transmis-
sion) is less apparent because the standard ivermectin dose only 
kills skin dwelling transmission stages with sub-optimal efficacy 
against adult stages. Modelling suggests this will not be suf-
ficient to reach public health goals13,79, pressing the need for 
novel chemotherapeutics. However, financial returns on invest-
ments into NTDs are limited and therefore largely unappealing, 
particularly because of the heavy reliance by endemic nations 
on donations from pharmaceutical producers. Increased use 
of mathematical modelling could reduce the financial waste  
associated with the drug-development-to-distribution-pipeline79.  
If we consider this pipeline in three parts; pre-clinical, clinical  
trial and distribution, it is clear that modelling can provide  
valuable insight at each stage. Onchocerciasis and LF have 
recently benefited from pharmacokinetic-pharmacodynamics  
modelling, translating pre-clinical non-human experimental  
results into quantitative insights relevant to human  
treatment80. Clinical trial simulations are designed to include 
all aspects of a clinical trial protocol including (but not  
limited to) recruitment criteria, drug properties/effectiveness  
and follow-up times81, providing valuable guidance that 
translates into more effective, efficient, cost-efficient and 
robust clinical trials. In addition to providing insight into the  
optimal distribution of new drugs82, rethinking the distribution  
of existing drugs to achieve public health targets can also be  
guided by modelling37,48.

Challenges
Modelling has certainly addressed many of the key questions 
asked of modellers at the 2019 meeting2. However, cross-
disease challenges remain83. The most common of these,  
highlighted by all groups involved in the meeting report2 and 
this collection, is undoubtedly a lack of data or poor data  
quality. This could be because certain parameters simply  
cannot be measured; because of vast heterogeneity or because  
they have yet to be collected84. A previous collection details the 
data needs to improve modelling51,84–94, across the NTDs, so 
great detail will not be provided here. However, for example, 
VL has a highly variable incubation period, unknown duration  
of asymptomatic infection and estimates for the duration  
of lasting immunity are ill-defined6,85,95, introducing uncertainty  
into the temporal dynamics underlying any projections.  
Chagas disease, gHAT and leprosy also suffer from r 
elatively long, but indeterminate incubation periods9,12,21 
impacting case detection and adding greater uncertainty in  
epidemiological estimates fitted to by models85,96. Asymptomatic  
or pre-symptomatic infection is common of many NTDs and 
presents a significant challenge to their management. For exam-
ple, asymptomatic VL infections cannot be treated, whereas 
it is possible to treat asymptomatic gHAT but only if it is able 
to be detected. Identifying their respective proportions in an  
infected population, particularly in the absence of high  
surveillance coverage, means accounting for this group using  
roundabout methods and proxy diagnostics6,9.

Many diagnostics are indirect, proxy measures of case detec-
tion, often with less than perfect sensitivity or specificity97,98, 
and have a direct effect on perceived prevalence and indi-
vidual burdens of infection99,100. Given that models are only 
as good as the data to which they are fitted, this has a signifi-
cant impact on the utility of model results. For example, in the 
instances of STH and intestinal schistosomiasis (Schistosoma  
mansoni), WHO targets are given in terms of eggs per gram of 
faecal matter as detected with the Kato-Katz method, which 
notoriously suffers from poor sensitivity, particularly for low 
intensity infections101, invariably underestimating prevalence. 
Where a multi-host system is present for zoonotic NTDs, 
though it is possible to measure infection through direct obser-
vation of parasite stages in the animal host(s)14, via necropsy or  
other methods102, it is likely that this approach is inappropri-
ate for monitoring and evaluating the likes of T. solium con-
trol programmes, due to the large animal sample sizes required 
to detect a statistically meaningful impact on transmission, 
especially in low prevalence settings14. Molecular xenom-
onitoring (testing vectors for the parasite instead of human  
hosts) for LF and onchocerciasis has shown promise103 but 
operational research gaps remain, impacting large-scale  
utilisation104. Reconciling these different streams of imperfect  
diagnostic data will be key to their utility in modelling and  
indeed to reaching and sustaining public health goals.

The operational units over which epidemiological data are  
collected, and projections made are also often over somewhat 
arbitrary administrative borders that infectious diseases do not 
adhere to. For rabies, non-spatial models are inadequate for 
capturing the low-endemicity incidence rates15 such that more 
data-intensive modelling approaches are required. In addition  
to questionable detection success, VL surveillance has oper-
ated over geographical units that are too large to evaluate the 
success of control methods6, despite modelling showing that 
transmission is highly localised over smaller spatial scales  
(i.e. 85% of inferred transmission distances ≤300m)105.  
Similarly for onchocerciasis, modelling shows that the 
rate at which interventions can be scaled down depend 
strongly on the spatial units of assessment13,106. Clustering of  
T. solium porcine cysticercosis around human taeniasis carriers,  
particularly evident in South American communities,  
demonstrates the need for spatially explicit models in certain 
settings14,107, such as the recently developed CystiAgent model 
for Peru108, capable of testing spatially structured interventions.  
From this it is evident that whilst spatial heterogeneity 
requires nuanced model structure, the leading challenge here is  
the paucity of data at the spatial level necessary to parameterise  
the models for spatially relevant insights. This will become 
ever more important as all NTDs move towards low-prevalence  
and spatially-heterogenous incidence patterns.

The assumptions made to overcome these uncertainties often dif-
fer across models – which then produce differing results. This is 
somewhat overcome by the practice of model comparison109,110,  
which highlights important biological and population proc-
esses that impact epidemiological trajectories, Understanding 
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where these differences in modelling results come from and  
what these differences can tell us is critical to the interpretation 
of modelling results. This waves a clear flag for collaborative  
opportunities between modellers, field epidemiologists and 
clinicians, to generate the necessary data to inform model 
parameters, or provide setting-specific insight, improving  
projections and the cross-discipline understanding of 
model results. Indeed, the optimal working relationship is 
a synergistic pathway, where the model’s needs drive data  
collection, the data shapes further model iterations, and these  
then inform policy and the outcomes at the programmatic and 
clinical level51,83–94. Improving communication between these  
groups is critical to achieving the desired public health  
gains20.

The integration of modelling across public health hierarchy 
is also crucial but is an ongoing challenge. Whilst leading 
global health bodies like the WHO use modelling results to  
generate broad guidance at the international level, the truth is 
that this one-size-fits-all approach is unlikely to sufficiently 
describe intervention needs in every setting, such that local deci-
sion makers may be unsure why interventions – as advised by 
modelling – have not reached public health targets, when to  
stop MDA79, or why resurgence occurs. This is not necessar-
ily a failure of the modelling process, but of the framework in 
which modelling results are used and the way in which model 
results are accessed. One way to overcome this, and indeed 
many of the above challenges, is to provide in-country/ local  
decisions makers with modelling tools, making clear what data 
are needed to provide location-specific insights. Such tools 
do exist and efforts to extend the availability of these are ongo-
ing where research and public health funding allow; for gHAT 
across the Democratic Republic of Congo, modelling has been 
used to identify target health zones, accompanied by an interac-
tive visual tool111. A tool for LF is also available112, however 
the authors highlight the advantages and disadvantages associ-
ated with such tools. For example, the level of expertise needed 
to harness the tool and interpret the results will depend on the 
level of automation113 – which itself creates further trade-offs 
between usability and correct model specification, with fewer  
parameters available for change within an interface, limit-
ing calibration to local settings. There is also an increased 
risk of incorrect interpretation including poor understanding 
of uncertainty and where it comes from, which could lead to  
reduced trust in the results and modelling methods. It is there-
fore imperative to balance the availability of tools at local  
scales with the expertise to use the models correctly.

Conclusion
The increased use of mathematical and statistical modelling over 
the last decade has helped move the field of NTDs into a more 
quantitative space, providing the link between epidemiological 
concepts and observed reality. For modelling to continue to fill 
this role and influence decision-making, ongoing conversations  
and engagement between all parties will be paramount. These 
will, in turn, overcome the continuous challenges of data 
quality and access, and the consequent model assumptions 

required. As programme and disease management move towards 
a country-ownership framework under the new roadmap,  
it will be key that modelling follows suit, overcoming  
systematic notions of knowledge ownership and challenging  
associated power dynamics114–116. In this way, future modelling  
will work to support this new NTD landscape. 

Data availability
No data are associated with this article.
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Organization in the 2021-2030 roadmap for NTDs. The article provides a good overview of the 
series which in turn provides welcome visibility into how mathematical models informed the 
development of the 2030 roadmap.The article makes the case for use of modeling in regards to 
informing: 1) Programmatic timelines, 2) Program design and 3) Drug development.   
 
With regard to the first 2 items (timelines and program design), the case is clearly made for the 
potential of modeling to inform these, at least at a global level. What is less clear is how modeling 
can inform decision making at a national level to answer similar questions. This would require the 
use of an interactive tool that can be used by NTD program managers and their partners to input 
their parameters (e.g. disease agent, vector species, baseline prevalence, different intervention 
details, etc). They would in turn be provided with predictions on timelines and answers to 
questions such as: what would be the impact of: increasing coverage? Reducing those never 
treated by x %? Adding complimentary control methods? Increasing frequency of treatment? Such 
tools are available for other health areas like maternal and neonatal health (e.g 
http://www.healthpolicyplus.com/ns/pubs/18466-18842_MHTools.pdf; 
http://www.mandate4mnh.org/; 
Jones-Hepler et al., 20171) 
 
With regards to drug development I am not aware of the need for new drugs for LF or trachoma 
(the references provided did not collaborate and these are not listed as challenges in the 
Roadmap).  
  
As a reviewer I was asked to comment on whether the article adequately referenced different 
views and opinions, to which I respond, only partially. The article is authored by modellers who 
have a much clearer insight into the pro modelling perspective. There are still many in the NTD 
community who remain skeptical - due to one of the challenges that is clearly presented in this 
article, that is the reliability of the data on which the models are built. It would be helpful to have 
all the assumptions, parameters, and data sources used in the models published online in one 
easy-to-access place. This would enable more informed discussions to take place, across a wider 
group of participants, as existing evidence is weighed in making policy decisions. It would also be 
helpful to have a summary from this of the biggest evidence gaps - to drive research and 
documentation of programmatic results. 
 
References 
1. Jones-Hepler B, Moran K, Griffin J, McClure E, et al.: Maternal and Neonatal Directed Assessment 
of Technologies (MANDATE): Methods and Assumptions for a Predictive Model for Maternal, Fetal, 
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What is less clear is how modeling can inform decision making at a national level to answer similar questions. This 
would require the use of an interactive tool that can be used by NTD program managers and their partners to input 
their parameters (e.g. disease agent, vector species, baseline prevalence, different intervention details, etc). They 
would in turn be provided with predictions on timelines and answers to questions such as: what would be the impact 
of: increasing coverage? Reducing those never treated by x %? Adding complimentary control methods? Increasing 
frequency of treatment? Such tools are available for other health areas like maternal and neonatal health (e.g 
http://www.healthpolicyplus.com/ns/pubs/18466-18842_MHTools.pdf; http://www.mandate4mnh.org/; 
Jones-Hepler et al., 20171) 
 
 
A similar point has been raised by reviewer 1. A new final paragraph of the Challenges 
section has been added. In short, the translation of international-level policy to local-
level implementation does mean that local-level specific details are often overlooked, 
and general policy recommendations fail to meet all conditions of that setting. Whilst 
providing tools locally is an obvious path to improve national (or smaller) level control, 
it comes with a trade-off. In making the models more user-friendly, some of the 
complexities that allow for fine scale tuning of certain parameters may have to 
become fixed, such that the insight is less specific. There is also the matter of 
interpretation and understandings the limitations of the models. As such, local 
expertise is still necessary even in the hands of decision-makers. 
 
With regards to drug development I am not aware of the need for new drugs for LF or trachoma (the references 
provided did not collaborate and these are not listed as challenges in the Roadmap).  
 
This misunderstanding was a result of poor sentence structure. We have rectified this 
by rewriting the opening to the Drug development and clinical study design section. 
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As a reviewer I was asked to comment on whether the article adequately referenced different views and opinions, to 
which I respond, only partially. The article is authored by modellers who have a much clearer insight into the pro 
modelling perspective. There are still many in the NTD community who remain skeptical - due to one of the 
challenges that is clearly presented in this article, that is the reliability of the data on which the models are built. It 
would be helpful to have all the assumptions, parameters, and data sources used in the models published online in 
one easy-to-access place. This would enable more informed discussions to take place, across a wider group of 
participants, as existing evidence is weighed in making policy decisions. It would also be helpful to have a summary 
from this of the biggest evidence gaps - to drive research and documentation of programmatic results. 
 
It is out with the scope of this article to provide a thorough overview of the data 
needs to improve modelling insights. There is however a PLoS NTD collection that was 
cited in the main text. To make this clearer, text has been added text to the Challenges 
section, directing the reader to this in-depth collection. With regards to the 
assumptions, parameters and data sources; these are provided in every publication 
that presents modelling results, and the code for each model is public. These are not 
included here because there are no models specifically presented here.  
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This open letter summarises the contributions of (infectious) disease modelling to inform 
elimination efforts for Neglected Tropical Diseases (NTDs), highlighting key areas of contributions 
(timelines/forecasts/predictions, Programme/intervention/surveillance design, and drug 
development) and naming some of the key challenges. To be frank, it appears to me the kind of 
letter that doesn't fit very well into the peer-review paradigm as the goal is primarily to introduce a 
collection of papers. However, I have tried to answer the peer-review questions as posed and 
provide constructive feedback where I can. I should note that my relevant area of knowledge is 
mostly around LF and infectious disease modelling more broadly, so my review is skewed towards 
topics most relevant to LF. 
 
Regarding the correctness of all statements, to my knowledge, nearly all the statements are 
correct. However, I would like to highlight one statement which seemed at odds with the 
literature. The line comes in paragraph 10: 'To reach goals like elimination as a public health 
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programme (trachoma, STH, schistosomiasis and LF) and elimination of transmission 
(onchocerciasis) novel drug development will be critical'. With regards to LF, I don't agree with this 
statement, i.e. I don't think new drug development is critical for the elimination of LF as a public 
health problem. Moreover the statement appears to contradict the Consortium's recent paper 
specifically on LF elimination targets (NTD Modelling Consortium Lymphatic Filariasis Group, 2019
1). From my knowledge of LF, the existing drugs (ivermectin, albendazole, and diethylcarbamazine) 
work well and as long as drugs are matched to the setting, side effects are not major concerns. 
The Consortium's existing work suggests that the 2030 goals can be achieved with these existing 
drugs if programmes can effectively deliver enough rounds of MDA before 2030. The main barrier 
to this elimination campaign is achieving high coverage (with the existing drugs) and reaching 
areas or people who have consistently low treatment coverage. Even a 100% effective and safe 
medicine won't help if some people or foci aren't being treated. Whether this criticism can be 
extended to the other diseases mentioned here is beyond my knowledge. This is the only point in 
the paper I have real reservations about. 
 
I have indicated in my review that the letter only partly references differing views and opinions. 
Though I don't think this represents a major defect of the letter, I should explain why I chose this 
response. As the main thrust of the letter is that modelling has been and can continue to be useful 
for directing elimination efforts, presenting differing views and opinions would involve finding 
examples of where models have misdirected elimination efforts or sharing the opinions those who 
hold that 'models are a waste of time'. While I have certainly come across those who hold the 
latter view, they tend not to express their view in the form of citable literature, so the absence of 
their opinions is perhaps to be expected! However, as regards instances where models have 
misdirected elimination efforts, given the large volume of literature covered, there are probably 
examples of this — i.e. where a model recommended an intervention that turned out to be far 
from adequate. Whether these examples are publicly available and known to the authors is 
another question. If they know of good examples, the authors might consider including these, 
perhaps with a note about how these failures have informed future modelling work. 
 
Having said all this, I think the 'challenges' section of the paper covers the major challenges 
reasonably enough. This section can perhaps be improved by giving more examples of how these 
challenges translate into things that models cannot or have not yet been able to do; currently the 
section feels a little too modelling-centric rather than programme-centric. An example of 
something models have not been able to do (that I am aware of) is around critical prevalence 
thresholds for LF/oncho elimination. Various models investigating these have found that the 
critical threshold varies substantially based on setting-specific assumptions. However, knowing 
that the threshold will be different in different settings doesn't really help you pick a target 
threshold that's appropriate for your setting. And since there haven't been resources in place to fit 
models to every setting, we have ended up with the very crude 1/2% prevalence thresholds which 
will be unnecessarily low in some settings and too high in others (e.g. places with high and highly 
heterogenous biting rates). This to me is an example not of the failure of modellers, but a 
limitation of modelling as an approach to help inform specific interventions/programmes. You 
might argue that the 1%/2% thresholds are targets not necessarily meant to be identified with 
critical transmission tipping points. However my reading of the non-modelling literature and 
conversations with non-modellers suggests that many people believe that the 1%/2% target 
thresholds entail the interruption of transmission and that many believe that the universal 
application of these thresholds have a rigorous evidence base. Moreover, discussion of 
resurgence often blame failure to achieve the threshold rather than suggesting that the threshold 
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might be wrong for the setting. Again this perhaps points to a failure of communication rather 
than a failure of the modelling itself, but as this letter is about how modelling informs practice, 
this example (or better example along a similar line) may be relevant for inclusion (if they can 
manage to express it more succinctly than I have!). 
 
A final minor point: 
P10. Misplaced comma in "by endemic nations, on donations". 
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Regarding the correctness of all statements, to my knowledge, nearly all the statements are correct. However, I would 
like to highlight one statement which seemed at odds with the literature. The line comes in paragraph 10: 'To reach 
goals like elimination as a public health programme (trachoma, STH, schistosomiasis and LF) and elimination of 

Gates Open Research

 
Page 17 of 19

Gates Open Research 2022, 5:112 Last updated: 23 MAR 2022

http://www.ncbi.nlm.nih.gov/pubmed/31728440
https://doi.org/10.12688/gatesopenres.13065.1


transmission (onchocerciasis) novel drug development will be critical'. With regards to LF, I don't agree with this 
statement, i.e. I don't think new drug development is critical for the elimination of LF as a public health problem. 
Moreover the statement appears to contradict the Consortium's recent paper specifically on LF elimination targets 
(NTD Modelling Consortium Lymphatic Filariasis Group, 20191). From my knowledge of LF, the existing drugs 
(ivermectin, albendazole, and diethylcarbamazine) work well and as long as drugs are matched to the setting, side 
effects are not major concerns. The Consortium's existing work suggests that the 2030 goals can be achieved with 
these existing drugs if programmes can effectively deliver enough rounds of MDA before 2030. The main barrier to 
this elimination campaign is achieving high coverage (with the existing drugs) and reaching areas or people who 
have consistently low treatment coverage. Even a 100% effective and safe medicine won't help if some people or foci 
aren't being treated. Whether this criticism can be extended to the other diseases mentioned here is beyond my 
knowledge. This is the only point in the paper I have real reservations about. 
 
The reference to LF was with regards to the fact that it has been targeted for 
elimination as a public health problem, rather than the need for new therapeutics 
specifically for LF. However, we acknowledge that the sentence was misleading and 
have rewritten the opening to the Drug development and clinical study design section.  
 
I have indicated in my review that the letter only partly references differing views and opinions. Though I don't think 
this represents a major defect of the letter, I should explain why I chose this response. As the main thrust of the letter 
is that modelling has been and can continue to be useful for directing elimination efforts, presenting differing views 
and opinions would involve finding examples of where models have misdirected elimination efforts or sharing the 
opinions those who hold that 'models are a waste of time'. While I have certainly come across those who hold the 
latter view, they tend not to express their view in the form of citable literature, so the absence of their opinions is 
perhaps to be expected! However, as regards instances where models have misdirected elimination efforts, given the 
large volume of literature covered, there are probably examples of this — i.e. where a model recommended an 
intervention that turned out to be far from adequate. Whether these examples are publicly available and known to 
the authors is another question. If they know of good examples, the authors might consider including these, perhaps 
with a note about how these failures have informed future modelling work. 
 
The second paragraph of Programme designhighlighted some of the ways in which 
inherent features of the target populations (largely related to behaviour – adherence, 
treatment access etc) can impact the model projections. This has been made more 
explicit with the addition of a specific example regarding VL. 
 
Having said all this, I think the 'challenges' section of the paper covers the major challenges reasonably enough. This 
section can perhaps be improved by giving more examples of how these challenges translate into things that 
models cannot or have not yet been able to do; currently the section feels a little too modelling-centric rather than 
programme-centric. An example of something models have not been able to do (that I am aware of) is around critical 
prevalence thresholds for LF/oncho elimination. Various models investigating these have found that the critical 
threshold varies substantially based on setting-specific assumptions. However, knowing that the threshold will be 
different in different settings doesn't really help you pick a target threshold that's appropriate for your setting. And 
since there haven't been resources in place to fit models to every setting, we have ended up with the very crude 1/2% 
prevalence thresholds which will be unnecessarily low in some settings and too high in others (e.g. places with high 
and highly heterogenous biting rates). This to me is an example not of the failure of modellers, but a limitation of 
modelling as an approach to help inform specific interventions/programmes. You might argue that the 1%/2% 
thresholds are targets not necessarily meant to be identified with critical transmission tipping points. However my 
reading of the non-modelling literature and conversations with non-modellers suggests that many people believe 
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that the 1%/2% target thresholds entail the interruption of transmission and that many believe that the universal 
application of these thresholds have a rigorous evidence base. Moreover, discussion of resurgence often blame 
failure to achieve the threshold rather than suggesting that the threshold might be wrong for the setting. Again this 
perhaps points to a failure of communication rather than a failure of the modelling itself, but as this letter is about 
how modelling informs practice, this example (or better example along a similar line) may be relevant for inclusion (if 
they can manage to express it more succinctly than I have!). 
 
This is an interesting point and, if we have distilled it correctly, we completely agree. 
What you describe is perhaps not so much a failure of modelling, or something models 
cannot do, but is a symptom of the framework in which we apply mathematical 
modelling to NTDs. Large-scale international-level policy and guidance is the outcome 
of mathematical models that are indeed fit to data from specific locations, likely using 
more than one model, however it is unlikely that this insight will adequately describe 
all settings. So, there is a disparity across the public health hierarchy from 
international-level modelling use to a local level. The point you raise about non-
modellers then using certain values as wrote is, as you rightfully state, an outcome of 
communication and understanding. This is a nuanced point connected to local access 
to, and use of, models. Reviewer two has raised the point that a discussion should be 
had in this letter around the topic of making models available as tools. These two 
comments are not mutually exclusive. We have therefore addressed them 
simultaneously in an new final paragraph of the Challenges section.  
 
A final minor point: 
P10. Misplaced comma in "by endemic nations, on donations". 
 
This has been rectified, thank you.  
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