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A B S T R A C T   

Background: Antibodies against mycobacterial proteins are highly specific, but lack sensitivity, whereas cytokines 
have been shown to be sensitive but not very specific in the diagnosis of tuberculosis (TB). We assessed com-
binations between antibodies and cytokines for diagnosing TB. 
Methods: Immuoglubulin (Ig) A and IgM antibody titres against selected mycobacterial antigens including Apa, 
NarL, Rv3019c, PstS1, LAM, “Kit 1” (MTP64 and Tpx)”, and “Kit 2” (MPT64, Tpx and 19 kDa) were evaluated by 
ELISA in plasma samples obtained from individuals under clinical suspicion for TB. Combinations between the 
antibody titres and previously published cytokine responses in the same participants were assessed for diag-
nosing active TB. 
Results: Antibody responses were more promising when used in combination (AUC of 0.80), when all seven 
antibodies were combined. When anti-“Kit 1”-IgA levels were combined with five host cytokine biomarkers, the 
AUC increased to 97% (92–100%) with a sensitivity of 95% (95% CI, 73–100%), and specificity of 88.5% (95% 
CI, 68.7–97%) achieved after leave-one-out cross validation. 
Conclusion: When used in combination, IgA titres measured with ELISA against multiple Mycobacterium tuber-
culosis antigens may be useful in the diagnosis of TB. However, diagnostic accuracy may be improved if the 
antibodies are used in combination with cytokines.   

1. Background 

Tuberculosis (TB) remains one of the leading causes of death 
worldwide and was responsible for nearly 1.5 million deaths in 2019 
[1]. Early case detection and proper treatment are highly important for 
the control of the disease. To reduce the burden of the disease, rapid and 
accurate tools for both the diagnosis and monitoring of TB treatment 
response are required. The diagnosis of TB still largely relies on initial 
clinical suspicion and subsequent microbiological confirmation by 

Ziehl-Neelsen staining, molecular diagnosis and culture [2]. However, 
these methods have several drawbacks: smear microscopy remains the 
most common and affordable method used especially in resource poor 
settings, but its sensitivity is compromised and in addition, this 
approach is unable to distinguish between Mycobacterium tuberculosis 
(M.tb) complex organisms and non-tuberculous mycobacteria, live and 
dead bacilli, amongst other limitations [3], making it impractical to be 
used as a tool to monitor TB treatment response [4,5]. Although culture 
as the gold standard test for TB is more sensitive, this method requires 
bacterial growth for up to 6 weeks before case detection and is not 
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readily available in resource-limited settings. The automated gene 
amplification test GeneXpert (Cepheid Inc., Sunnyvale, USA) yields 
rapid results and is also able to detect resistance to rifampicin [6] but the 
use of the test is limited in resource-limited settings due to high oper-
ating costs and infrastructural needs [2]. Diagnostic tests that are based 
on sputum, including these microbiological and molecular methods, are 
not very useful in individuals with difficulty in providing sputum sam-
ples such as children. Immunodiagnostic assays may be useful for the 
diagnosis of TB since they have the potential to be easily adaptable into 
rapid, point-of-care tests, which would be suitable at primary health 
care centres in resource-limited settings. 

Previous studies have shown that exposure to M.tb elicits antibody 
production to various antigens [7,8]. TB serological diagnostic assays 
have been widely investigated and have been improved over the years 
by using highly purified recombinant antigens, as previous generations 
of the assays were criticized for their low sensitivity in TB endemic re-
gions [9,10]. Moreover, inflammatory biomarkers have been shown to 
have potential in the diagnosis of TB [11,12]. As these inflammatory 
biomarkers have sub-optimal specificity for TB, it is not known whether 
combining the cytokine biomarkers with their good sensitivity but poor 
specificity with antibodies with good specificity but poor sensitivity, will 
result in a better diagnostic biosignature for TB. A biosignature making 
use of both classes of biomarkers may therefore benefit from the 
strengths of each individual diagnostic approach. 

In previous work, we evaluated antibodies against novel M.tb anti-
gens for their ability to diagnose TB and as tools for monitoring of the 
response to TB treatment. These studies revealed that a combination of 
multiple antibody classes (IgA, IgG, IgM) against multiple M.tb antigens 
including LAM, Tpx and PPE proteins diagnosed TB with high accuracy 
[13]. Furthermore, combinations between other antibodies including 
anti-alanine dehydrogenase IgG, anti-Tpx IgG, anti-ESAT-6 IgG and 
anti-ESAT-6 IgA, measured prior to TB treatment initiation showed 
promise as markers for the prediction of early TB treatment response 
[14]. However, in other work done by Legesse et al., it was demon-
strated that the discriminatory ability of M.tb-specific IgA antibodies 
was better than IgG antibodies for active TB and endemic controls in 
Africa [15]. This was also the case between healthy individuals with 
close contacts of TB patients and individuals without such contacts in 
another study [16]. Other studies also demonstrated a protective role for 
IgA in murine models of mycobacterial infection [17]. Contrary to our 
previous work, the present study focused on IgA antibodies. Further-
more, we also explored the utility of IgM antibodies against LAM as this 
kit was not available in previous panels evaluated in our high endemic 
TB setting. 

The aim of the present study was therefore to explore the diagnostic 
potential of IgA antibodies against six M.tb specific antigens, and IgM 
antibodies against LAM in plasma samples from active TB patients and 
individuals with other respiratory diseases (ORD). We subsequently 
combined responses against the antibodies, with host inflammatory 
biomarker responses, to evaluate potential increased diagnostic perfor-
mance resulting from the additional evaluation of host inflammatory 

biomarkers together with the antibody responses. 

2. Methods 

2.1. Study participants 

Participants enrolled into the present study were individuals who 
presented with signs and symptoms requiring investigation for TB at the 
Fisantekraal Community Clinic in the outskirts of Cape Town, South 
Africa. The study was a sub-study of a larger diagnostic biomarker 
project (the African European Tuberculosis Consortium; AE-TBC), that 
was conducted at field sites in six African countries between June 2010 
and December 2013. As previously described [11,18,19], all study 
participants presented with signs and symptoms suggestive of active TB, 
including persistent cough lasting ≥2 weeks and at least one of either 
fever, malaise, recent weight loss, night sweats, knowledge of close 
contact with a TB patient, haemoptysis, chest pain or loss of appetite, 
and were recruited prior to clinical or laboratory assessment for TB. 
Participants were eligible for the study, if they were 18 years or older 
and willing to give written informed consent for participation in the 
study, including consent for HIV testing. Patients were excluded if they 
were pregnant, had not been residing in the study community for more 
than 3 months, were severely anaemic (haemoglobin <10 g/l), were on 
anti-TB treatment, had received anti-TB treatment in the previous 90 
days or if they were on quinolone or aminoglycoside antibiotics during 
the past 60 days. The study was approved by the Health Research Ethics 
Committee of the Faculty of Medicine and Health Sciences of the Uni-
versity of Stellenbosch (Ethics reference number: N10/08/274). 

2.2. Sample collection 

As previously described [20], 6 ml of blood was collected into hep-
arinized BD vacutainer tubes (BD Biosciences, Franklin Lakes, NJ, USA) 
at enrolment and transported to the laboratory at 4–8 OC for further 
processing. Upon receipt in the laboratory, tubes were centrifuged at 
2000 rpm for 10 min after which plasma was harvested, aliquoted and 
stored at − 80 

◦

C until analysed. Sputum samples were collected from all 
study participants and cultured using the MGIT method (BD Bio-
sciences). Positive MGIT cultures were examined for acid fast bacilli 
using the Ziehl-Neelsen technique (to check for contamination), fol-
lowed by Capilia TB testing (TAUNS, Numazu, Japan), to confirm the 
isolation of organisms of the M.tb complex, before being designated as 
positive cultures. 

2.3. Classification of study participants 

As previously described [11,20], participants were classified as 
definite TB patients (sputum culture confirmed), probable TB (a com-
bination of Chest X-ray or AFB smear positivity with confirmed clinical 
response to anti-TB treatment), other respiratory diseases (ORD) or 
questionable disease status using a combination of clinical, radiological, 
and laboratory findings. As also described previously [11], individuals 
with ORD had other diagnoses, including upper and lower respiratory 
tract infections and acute exacerbations of chronic obstructive pulmo-
nary disease or asthma, but we did not attempt to identify these or-
ganisms due to funding limitations. 

2.4. Antigen preparation 

Cloned and purified recombinant proteins of M.tb were used for the 
production of the ELISA kits. All protein antigens were purified at 
LIONEX Diagnostics and Therapeutics, Braunschweig, Germany, using 
standard chromatographic methods (affinity chromatography, ion ex-
change chromatography, size exclusion chromatography) as previously 
described [13,14,21]. 

Abbreviations 

PstS1 Periplasmic phosphate-binding lipoprotein 
Apa alanine and proline rich secreted protein 
NarL nitrate/nitrite response transcriptional regulatory 

protein 
LAM lipoarabinomannan 
kDa kilo Dalton 
“Kit 1” MTP64+Tpx 
“Kit 2” MPT64+Tpx+19 kDa 
WHO World Health Organisation  
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2.5. Enzyme -linked immunosorbent assay 

ELISA experiments were performed on all study participants ac-
cording to manufacturer’s instructions (LIONEX Diagnostics and Ther-
apeutics, Braunschweig, Germany), as previously described [22]. The 
investigators performing the experiments were blinded to the clinical 
groups. All antigens against which antibodies were evaluated are listed 
in Table 1. 

2.6. Evaluation of host inflammatory biomarker responses 

In a previous study that was conducted on the same subset of the 
study participants [20] the concentrations of 74 host inflammatory 
biomarkers were evaluated in plasma. These biomarkers were: 
alpha-2-macroglobulin (A2M), haptoglobin, C-reactive protein (CRP), 
serum amyloid P (SAP), procalcitonin (PCT), ferritin, tissue plasminogen 
activator (TPA), fibrinogen, serum amyloid A (SAA) (Bio-Rad Labora-
tories, Hercules, CA, USA), vitronectin, extracellular matrix protein 1 
(ECM1), antithrombin III, vitamin D binding protein (VDBP), sFas, 
granzyme A, sFasL, sCD137, granzyme B, perforin, myoglobulin, 
ADAMTS13, P-selectin, lipocalin-2, growth differentiation factor (GDF) 
− 15, thrombopoietin (TPO), stem cell factor (SCF), B-cell attracting 
chemokine (BCA)-1, epithelial neutrophil activating protein (ENA-78), 
thymic stromal lymphopoietin (TSLP), I-309(CCL-1), stromal cell 
derived factor-1 alpha (SDF-1α), IFN-γ, IFN-α2, interferon gamma 
inducible protein (IP)-10 (CXCL10), macrophage inflammatory protein 
(MIP)-1β, tumor necrosis factor (TNF)-α, TNF-β, vascular endothelial 
growth factor (VEGF), soluble CD40 ligand (sCD40L), apolipoprotein 
(Apo) A-1, Apo CIII, complement component 3 (CC3), transthyretin, 
complement factor H (CFH), total plasminogen activator inhibitor-1 
(PAI-1), neural cell adhesion molecule (NCAM), brain-derived neuro-
trophic factor (BDNF), cathepsin D, myeloperoxidase (MPO), matrix 
metalloproteinase (MMP)-2, MMP-9, monokine induced by gamma 
interferon (MIG/CXCL9), granulocyte chemotactic protein-2 (GCP2), 
interferon inducible T-cell alpha chemoattractant (I-TAC/CXCL11), 
hemofiltrate CC chemokine-1 (HCC1), α1-antitrypsin, pigment epithe-
lium derived factor (PEDF), macrophage inflammatory protein-4 
(MIP-4/CCL18), complement C4, interleukin (IL)-17F, IL-17A, IL-22, 
IL-33, IL-21, IL-23, IL-25, IL- 31, IL-28A, IL-16, IL-1β, IL-12(p40), IL-13, 
IL-11 and IL-29 (Merck Millipore, Billerica, MA, USA), and were eval-
uated as described in detail in Ref. [20]. Only data from participants that 
were common between the two studies were evaluated in the current 
study. 

2.7. Statistical analysis 

Data were analysed using Statistica (Statsoft, TIBCO Software, Palo 
Alto, CA, USA) and Graphpad Prism version 5 (Graphpad Software Inc., 
CA, USA). Differences in antibody responses between TB patients and 
individuals with ORD were analysed using the Mann-Whitney U test. 
The diagnostic abilities of individual antibody responses were assessed 

by receiver operator characteristics (ROC) curve analysis. The cut-off 
values for each antibody and associated sensitivity and specificity 
were determined by selecting the maximum values of Youden’s index 
[23]. The predictive abilities of combinations between different anti-
bodies and between antibodies and cytokines were investigated by 
general discriminant analysis (GDA), with leave-one-out cross 
validation. 

3. Results 

A total of 156 study participants, 22 of whom were definite and 4 
that were probable TB patients [11] were included in this study (Fig. 1). 
The mean age of all study participants was 37 ± 11.2 years and 28 (n =
4 TB and n = 24 ORD; 18%) were HIV infected. The clinical and de-
mographic characteristics of study participants are shown in Table 2. 

3.1. Utility of individual anti-M.tb antibodies in the diagnosis of TB 

Titres of Ig A antibodies against six antigens (Apa, NarL, Rv3019c, 
PstS1, “kit1”; a mixture of MTP64 and Tpx, and “Kit2”; a mixture of 
MPT64, Tpx and 19 kDa, and titres of IgM antibodies against LAM 
(Table 1) were evaluated in plasma samples from all study participants. 
When antibody levels detected in the TB patients (n = 26) were 
compared to the levels obtained in the 130 individuals with ORD with 
the Mann-Whitney U test, IgA antibodies against four M.tb antigens 
(Rv3019c, “Kit 1”,”Kit 2” and NarL) differentiated significantly between 
TB patients and individuals with ORD (Table 3, Fig. 2). When the 
diagnostic accuracies of the antibodies were evaluated by ROC curve 
analysis, anti-NarL IgA was the only individual antibody that showed 
promise, with an area under the ROC curve (AUC) of 0.74 (95% CI, 
0.64–0.83), and sensitivity and specificity of 92% (95% CI, 75–99%) and 
52% (95% CI, 34–60%) respectively, regardless of HIV infection status 
of the study participant. When HIV infected individuals were excluded, 
the most useful antibodies were Rv3019c Ig A (AUC of 0.70, 95%CI, 
0.56–0.54) and NarL IgA (AUC of 0.75, 95% CI, 0.65–0.86) (Supple-
mentary Table 1). 

3.2. Utility of multi-antibody models in the diagnosis of TB 

When all seven antibodies (anti-Rv3019c IgA + anti-PstS1 IgA +
anti-“Kit 1” IgA + anti-“Kit 2” IgA + anti-Apa IgA + anti-NarL IgA +
anti-LAM IgM) were used in combination, regardless of HIV status of the 
study participant, the antibodies discriminated between TB and ORD 
with an AUC of 0.80 (95% CI, 0.72–0.88), sensitivity of 65.4% (95% CI 
44.4–82%) and specificity of 76.9% (95% CI, 68.6–83.7%) (Fig. 3). After 
leave-one-out cross validation, the sensitivity of the combination was 
58% (95% CI, 37.2–76%) and specificity was 78% (95% CI, 
66.9–82.3%), with positive and negative predictive values of 58% (95% 
CI, 37.2–76.0%) and 75.3% (95% CI, 66.9–82.3%) respectively. 

When the GDA procedure was repeated after excluding the HIV 
infected individuals, the AUC for the seven-antibody combination was 
0.79 (95% CI, 0.7–0.89), with a sensitivity of 55% (95% CI, 32.7–74.9%) 
and specificity of 80.2% (95% CI,71.1–87.1%). After leave-one-out- 
cross validation, the sensitivity was 50% (95% CI, 37.2–76%) and 
specificity was 76% (95% CI, 66.9–82.3%) (Fig. 3). 

3.3. Diagnostic accuracy of combinations between antibodies and 
cytokines 

Aliquots of plasma from a subset of study participants included in 
this study were previously used in a study that focused on host inflam-
matory biomarkers [20]. To ascertain whether the measurement of cy-
tokines may improve the accuracy of the antibody responses, we 
assessed the diagnostic potential of combinations between the anti-
bodies evaluated in the current study and host inflammatory biomarker 
responses that were previously measured in the common study 

Table 1 
Recombinant antigens of M. tuberculosis used in this study.  

M. tuberculosis antigens Mol mass (kDa) Rv number Ig Class 

EsxR (TB10.3) 36 Rv3019c IgA 
PstS1 37.37 Rv0934 IgA 
“Kit 1” - - IgA 
“Kit 2” - - IgA 
Apa 32.7 Rv1860 IgA 
NarL 23.9 Rv0844c IgA 
LAM - - IgM 

“Kit 1” = MTP64+Tpx, “Kit 2” = MPT64+Tpx+19 kDa. 
PstS1 = Periplasmic phosphate-binding lipoprotein, Apa = alanine and proline 
rich secreted protein, NarL = nitrate/nitrite response transcriptional regulatory 
protein, LAM = lipoarabinomannan, kDa = kilo Dalton. 
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participants (n = 46; n = 20 culture confirmed TB and n = 26 ORD). 
When the host inflammatory biomarker- and antibody data for each 
participant were fitted into GDA models, regardless of HIV status, a 
biosignature comprising of one antibody kit (anti-“Kit 1” IgA) and 5 host 
markers namely; neural cell adhesion molecule (NCAM)-1, vitronectin, 
complement factor H, ferritin and α-2 macroglobulin (A2M) (model 1) 
diagnosed TB with a sensitivity of 95% (95% CI, 73–100%) and speci-
ficity of 88.5% (95% CI, 68.7–97.0%). The accuracy of this biosignature 
did not change after leave-one-out cross validation (Fig. 4). The positive 
and negative predictive values of this biosignature were 86.4% (95% CI, 
64–96.4%) and 95.8% (95% CI, 76.9–99.8%), respectively. An alterna-
tive biosignature (model 2) comprising three host inflammatory bio-
markers (NCAM-1, vitronectin and sFas) and two antibodies (Apa IgA 
and NarL IgA) diagnosed TB with an AUC of 0.91 (95% CI, 0.82–1.00), 
sensitivity of 100% (95% CI, 79.9–100%) and specificity of 80.8% (95% 
CI, 60.0–92.6%) after leave-one-out cross validation. 

When the diagnostic accuracies of the antibodies and host inflam-
matory biomarkers that were included in each of the two biosignatures 
(models 1 and 2 respectively) were evaluated separately (to assess the 
contribution of each biomarker type to the models), the host inflam-
matory biomarker – only signatures were more accurate as might be 
expected. However, the addition of the antibodies to the models 
increased both the sensitivity (by 10%) and specificity (especially in the 
case of model 2 which included more antibodies) by 11.6% (Table 4). 

4. Discussion 

Serological diagnostic methods for TB have extensively been studied 
with variable success [9]. Although the WHO advised against the use of 
commercial serological tests for the diagnosis of TB due to their sub-
optimal performance in a policy document [24], it encouraged further 
investigations on strategies to improve the accuracies of these tests. In 
the present study, we evaluated the serodiagnostic potentials of anti-
bodies against seven M.tb specific antigens (Apa, NarL, Rv3019c, PstS1, 
LAM, “kit1”; a mixture of MTP64 and Tpx, and “Kit2”; a mixture of 
MPT64, Tpx and 19 kDa), for the immunological diagnosis of TB. IgA 
titres against NarL, Rv3019c, “Kit 1” and “Kit 2” were significantly 
different between TB patients and individuals with ORD, with the most 
promising single antibody being anti-NarL IgA. The diagnostic perfor-
mance of antibodies improved when combined with host inflammatory 
biomarkers. 

NarL has been described as a putative nitrate response regulator and 
is part of the membrane fraction of M.tb [25,26]. IgA antibodies against 
NarL in serum samples have previously been investigated for the diag-
nosis of active TB and discriminated between active TB patients and 
healthy controls (in contrast to ORD controls used in the present study) 
with 78.6% sensitivity and 100% specificity [21]. Our findings that IgA 
antibodies against NarL may be useful in the diagnosis of TB are 
therefore in keeping with these previous observations. 

Fig. 1. Flow diagram showing the study design and 
classification of study participants. CRF, case report 
form; ELISA, Enzyme linked immunosorbent assay; 
TB, Pulmonary tuberculosis; ORD, Individuals pre-
senting with symptoms and investigated for pulmo-
nary TB but in whom TB disease was ruled out. 
#Combinations between antibodies and cytokines 
were evaluated in a subset of study participants (n =
46; n = 20 culture confirmed TB, and n = 26 ORD) 
who were included into a previous study [20].   
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When the TB-specific antibodies were used in combination with host 
inflammatory protein biomarkers, namely IgA antibodies against ‘kit 1’ 
(a mixture of MTP64 and Tpx) plus 5 host markers (NCAM-1, vitro-
nectin, CFH, ferritin and α-2-macroglobulin), the antibody-host in-
flammatory biomarker signature diagnosed TB with accuracy that was 
superior to what was obtained with antibodies alone (sensitivity of 95% 
and specificity of 88.5% after leave-one-out cross validation). In another 
of such signatures comprising more antibodies (model 2), combinations 
between NCAM-1, vitronectin, sFas and two antibodies (Apa IgA and 
NarL IgA) also showed strong potential, with the inclusion of the host 
inflammatory biomarkers increasing the sensitivity and specificity of the 
two antibodies (Apa +NarL) by values of 35% and 11.6% respectively. A 

5-marker biosignature (NCAM-1+SAP + ferritin + CFH + ECM-1) 
diagnosed TB with a sensitivity of 95.2% and specificity of 89.3% after 
leave-one-out cross validation in the initial host inflammatory 
biomarker study (19), with other previous studies also demonstrating 
the promising nature of host inflammatory biomarker-based signatures 
in the diagnosis of active TB [11,27,28]. Despite these previous studies 
showing the undeniable value of host inflammatory biosignatures in the 
diagnosis of TB, we showed in this study that the accuracy of these 
signatures may also improve by the concurrent testing of antibodies, as 
the addition of antibody (Apa + NarL) responses from the same partic-
ipants increased both the sensitivity and specificity of the inflammatory 
marker combination (NCAM-1 + vitronectin + sFas) by 10% and 15.4% 
respectively. These data show that the combination of inflammatory 
biomarker responses with antibody levels may be a useful approach for 
the diagnosis of TB and requires evaluation in independent studies. 

Apa is an actively secreted antigen of M.tb and IgA responses against 
this antigen diagnosed TB disease in serum samples with promising 
accuracy [13,29]. Although IgA antibodies against Apa did not perform 
well as an individual biomarker in the current study, it’s inclusion in the 
alternative antibody + cytokine signature (model 2) and the fact that it 
was the most frequently occurring antigen in the multi-antigen bio-
signatures that were generated shows that it may indeed be a useful 
diagnostic candidate and requires further evaluation. This antigen was 
also included in an antigenic cocktail (Apa, CFP-10, ESAT-6, PstS-1 and 
Ag85) that was generated in a Cuban population for the diagnosis of 
active TB, and diagnosed TB with a sensitivity of 87.1% and specificity 
of 97.1% [30]. 

Despite several studies demonstrating the potential usefulness of 
host inflammatory biomarkers in the diagnosis of TB [11,12,28,31], it is 
well-established that these markers are not particularly disease specific, 
as their levels are raised in multiple infections and non-infectious in-
flammatory conditions. Combining host inflammatory biomarkers with 
antibodies may be a useful approach, which will benefit from the 
strengths of either type of biomarker as demonstrated in the current 
study. NCAM-1 has been found to be important in cell-cell or cell-matrix 
interactions [32] and its role in lung tumor progression has been 
described [33]. NCAM-1 was found to be the most frequently occurring 
biomarker in the TB biosignatures identified in our previous study [20]. 
The other prominent members of the antibody + cytokine signatures 
(ferritin and A2M) are acute phase proteins that have previously been 
shown to have potential as biomarkers for the diagnosis of TB [34,35]. A 
further prominent member of this combination (complement factor H) is 
a soluble complement regulator that is important in the alternative 
pathway [36], and which also showed potential in previous TB diag-
nostic studies [11]. Our observations regarding the potential usefulness 
of these biomarkers when evaluated alongside antibodies as TB diag-
nostic candidates require validation in future larger studies. 

Although the sample size for this study (n = 156) was relatively 
small, it was considerably larger than sample sizes employed in most 

Table 2 
Clinical and demographic characteristics of study participants.  

Number of 
participants 

All 
Participants 

Definite 
TB 

Probable 
TB 

All TB ORD 

(n = 156) (n = 22) (n = 4) (n =
26) 

(n =
130) 

Males, n (%) 65 (42) 6 (27) 0 (0) 6 (23) 59 
(45) 

Mean age, 
(Years)±SD 

37 ± 11.2 39 ± 9.9 40 ± 11.4 39 ±
9.9 

37 ±
11.5 

HIV Infected, n 
(%) 

28 (18) 4 (18) 0 (0) 4 (15) 24 
(18) 

Quantiferon results 
Positive, n (%) 104 (70) 16 (80) 3 (75) 19 

(79) 
85 
(69) 

Negative, n (%) 43 (29) 3 (15) 1 (25) 4 (17) 39 
(31) 

Indeterminate, n 
(%) 

1 (1) 1 (5) 0 (0) 1 (4) 0 (0) 

Symptoms at enrolment 
Cough, n (%) 156 (100) 22 (100) 4 (100) 26 

(100) 
130 
(100) 

Weight loss, n (%) 103 (66) 16 (23) 4 (100) 20 
(77) 

83 
(64) 

Sputum 
production, n 
(%) 

155 (99) 22 (100) 4 (100) 26 
(100) 

129 
(99) 

Night sweats, n 
(%) 

110 (71) 19 (86) 4 (100) 23 
(88) 

87 
(67) 

Malaise, n (%) 87 (56) 15 (68) 3 (75) 18 
(69) 

69 
(53) 

Fever, n (%) 44 (28) 10 (45) 2 (50) 12 
(46) 

32 
(25) 

Anorexia, n (%) 80 (51) 13 (59) 4 (100) 17 
(65) 

63 
(48) 

Haemoptysis, n 
(%) 

23 (15) 4 (18) 1 (25) 5 (19) 18 
(14) 

Chest pain, n (%) 115 (74) 19 (86) 3 (75) 22 
(85) 

93 
(72) 

Short Breath, n 
(%) 

129 (83) 18 (82) 3 (75) 21 
(81) 

108 
(83) 

Abbreviations: TB = pulmonary tuberculosis, SD = standard deviation. 

Table 3 
Median optical density values (and inter-quartile ranges in parenthesis) and diagnostic accuracies of individual antibodies against M. tuberculosis antigens 
in plasma samples to distinguish between TB (n ¼ 26) and individuals with ORD (n ¼ 130). Cut-off values were selected based on the Youden’s index.  

M. tuberculosis antigens Ig class TB ORD P- 
value 

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Cut-off Value 

Rv3019c (TB10.3) IgA 0.054 (0.03–0.07) 0.35 (0.02–0.05) 0.0029 0.69 (0.57–0.81) 54 (33–73) 82 (74–88) >0.0495 
PstS1 IgA 0.044 (0.03–0.07) 0.034 (0.02–0.05) 0.07 0.61 (0.49–0.73) 77 (56–91) 48 (39–57) >0.0325 
Kit 1 IgA 0.056 (0.04–0.08) 0.042 (0.03–0.06) 0.028 0.64 (0.52–0.76) 73 (52–88) 60 (51–68) >0.0465 
Kit 2 IgA 0.058 

(0.038–0.078) 
0.041 
(0.029–0.057) 

0.011 0.66 (0.55–0.77) 54 (33–73) 76 (68–83) >0.0575 

Apa IgA 0.024 (0–0.037) 0.025 
(0.006–0.044) 

0.42 0.55 (0.43–0.67) 92 (75–99) 26 (18–35) <0.0410 

NarL IgA 0.066 (0.05–0.09) 0.040 (0.03–0.06) 0.0001 0.74 (0.64–0.83) 92 (75–99) 51 (34–60) >0.0405 
LAM IgM 0.073 (0.04–0.1) 0.071 (0.05–0.1) 0.98 0.50 (0.37–0.62) 73 (52–88) 35 (26–43) <0.0865 

“Kit 1” = MTP64+Tpx, “Kit 2” = MPT64+Tpx+19 kDa, PstS1 = Periplasmic phosphate-binding lipoprotein, Apa = alanine and proline rich secreted protein, NarL =
nitrate/nitrite response transcriptional regulatory protein, LAM = lipoarabinomannan, kDa = kilo Dalton. 
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similarly published studies. The use of specimens that were collected 
from individuals that presented at a primary health care centre in a high 
burden setting with symptoms requiring investigation for TB, prior to 
the establishment of a clinical diagnosis, is a strength of our study. 
Although our findings may be relevant and have implications for the 
design of future point-of-care tests based on cytokines and antibodies, 
more validation studies, including sufficiently powered studies con-
ducted in other geographical regions are required to confirm our ob-
servations. Such future studies should include more HIV-infected 
individuals and patients presenting with symptoms for other diseases 
that are often confused with TB including bacterial or viral upper or 
lower respiratory tract infections, acute exacerbations of chronic 

obstructive airway disease end malignancy, to evaluate the specificity of 
the biosignatures. 

In conclusion, our study is proof-of-concept that the combination of 
antibodies against M.tb antigens and host inflammatory biomarkers may 
be a useful approach for diagnosis of active TB. Further studies, also 
including other highly promising antibody-based biomarkers such as 
anti-LAM-IgG [13], are required to confirm and further improve the 
usefulness of this approach. 
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latory protein, No TB = Individuals with other respiratory diseases (ORD). 

Fig. 3. Accuracy of multi-antibody models in the serodiagnosis of TB. Receiver operator characteristics (ROC) curve showing the accuracy of a seven-marker 
biosignature (anti-Apa IgA, anti- “Kit 1” IgA, anti-“Kit 2” IgA, anti- NarL IgA, anti-Rv3019c IgA, anti- PstS1 IgA and anti-LAM IgM) in all study participants, regardless 
of HIV infection (A), ROC curve showing the diagnostic accuracy of the seven-marker biosignature (anti-Apa IgA, anti- “Kit 1” IgA, anti-“Kit 2” IgA, anti- NarL IgA, 
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phosphate-binding lipoprotein, Apa = alanine and proline rich secreted protein, NarL = nitrate/nitrite response transcriptional regulatory protein, LAM = lip-
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Fig. 4. Accuracy of an antibody plus host inflammatory marker biosignature in the diagnosis of TB disease. Receiver operator characteristic curve showing 
the diagnostic accuracy of the six-marker biosignature (anti-“Kit 1” IgA, NCAM-1, vitronectin, Complement factor H, ferritin and A2M) in all participants, regardless 
of HIV infection (A). Bar graph showing the frequency of analytes (antibodies and host inflammatory biomarkers) in the top 7 general discriminant analysis (GDA) 
models that most accurately classified study participants as TB or ORD irrespective of HIV status (B). “Kit 1” = MTP64+Tpx. 

Table 4 
Percentage increase in sensitivity and specificity obtained through the concurrent evaluation of host inflammatory biomarkers and antibodies in the same study 
participants.  

Biosignature Biosignature type (and 
model from this study) 

AUC (95% CI) Sensitivity, % (95% CI), 
after LOOCV 

Specificity, % (95% CI), 
after LOOCV 

% Increase in 
Sensitivity* 

% Increase in 
specificity* 

“Kit 1” Ig A Antibody only (model 1) 0.64 
(0.52–0.76) 

73 (52–88) 60 (51–68) NA NA 

NCAM-1, vitronectin, CFH, 
ferritin, A2M 

Inflammatory markers only 
(Model 1) 
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(0.93–1.00) 
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100 (79.9–100%) 80.8 (60.0–92.6%) 10 11.6 

“Kit 1” = MTP64+Tpx, Apa = alanine and proline rich secreted protein, NarL = nitrate/nitrite response transcriptional regulatory protein, CFH = complement factor 
H, A2M = alpha-2-macroglobulin; 95% CI = 95% Confidence Interval, AUC = Area under the receiver operator characteristics curve, LOOCV = Leave-one-out cross 
validation. *% increase values shown were obtained by subtracting the sensitivity and specificity of the respective antibody only or inflammatory biomarker only 
models (whichever was highest) from the combined antibody + host inflammatory biomarker model values. 
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