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Abstract 

Background:  The COVID-19 epidemic has differentially impacted communities across England, with regional varia-
tion in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over 
the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation 
was initially restricted to clinical need (“pillar 1”) before expanding to community-wide symptomatics (“pillar 2”). This 
study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage 
could be reconciled by drawing inference from COVID-19-related deaths.

Methods:  We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) 
throughout the first wave (1 January 2020–30 June 2020), adjusting for the local epidemic timing and the age, dep-
rivation and ethnic composition of its population. We combined predictions from this model with case data under 
community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the 
likely trajectory of infections implied by the deaths in each LTLA.

Results:  A model including temporally- and spatially-correlated random effects was found to best accommodate the 
observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case 
counts under community-wide symptomatic testing suggest a total of 275,000–420,000 cases over the first wave - a 
median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates 
to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total 
infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in 
Leicester to 96% in Gloucester with a median of 23%.

Conclusions:  Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the 
first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we 
could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of ini-
tial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.
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Introduction
The COVID-19 epidemic has impacted communi-
ties heterogeneously across England since evidence 
first emerged of local transmission in March 2020 [1]. 
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Spatio-temporal patterns in transmission - driven, for 
example, by connectivity between regions, timing of 
initial exposure and impact of control measures - offer 
valuable insight into the development of the epidemic. 
However, such patterns are difficult to observe and 
interpret from raw reported case data alone, due to une-
ven vulnerabilities in the local population and changes 
in surveillance policy over time [2].

In particular, laboratory confirmation of cases was 
initially restricted to urgent clinical need of patients 
and healthcare staff (“pillar 1”) before being expanded 
to encompass all symptomatic cases in the wider com-
munity (“pillar 2”) from 18 May 2020 [3]. These data 
therefore reflect different subsets of total infections at 
different points of the epidemic. Deaths - in particular 
the broad class of COVID-19-related deaths, includ-
ing both test-confirmed and clinically suspected cases 
(where the disease is considered to be the primary cause 
of death or a contributing factor) - can be considered 
more consistently recorded over time. We seek to exploit 
the biological link between the two sources of data to 
obtain a clearer picture of the burden of COVID-19 dur-
ing the first wave, and to quantify the extent of under-
ascertainment - by which we mean the gap between 
reported, confirmed cases and total infections - during 
scale up of testing.

Observed variation in the rate of COVID-19-related 
deaths can be considered a result of two spatially varying 
components: variation in incidence of infection and var-
iation in fatality risk among those infected. Several indi-
vidual-level characteristics have been highlighted as risk 
factors for COVID-19 case fatality - including age, dep-
rivation and belonging to certain ethnic groups - all of 
which are themselves geographically clustered (Fig. S1). 
The influence of this on a population level is evident in 
local summaries of mortality rates in England and Wales 
[4], and will lead to substantial variation in the number 
of infections which give rise to observed deaths among 
the populations of different local areas. These fac-
tors should therefore be taken into account in order to 
understand how the relative number of deaths to infec-
tions varies over space and time. Changes in surveillance 
affect the probability of an infection being reported as 
a case and are therefore also important to account for 
when observing changes in the relative number of deaths 
to cases over time.

Previous studies have demonstrated several differ-
ent methods for estimating the number of cases from 
reported deaths. Jombart et  al. [5] offered an early 
attempt to infer symptomatic cases from the occurrence 
of a single death, concluding that there would have been 
in the region of several hundreds of cases by the time 
the first death was recorded. Russell et  al. [6] proposed 

an approach based on published estimates of baseline 
case-fatality rates to estimate the proportion of unre-
ported cases over time directly, at national and regional 
levels for a range of early-affected countries. Nicholson 
et al. [7] further discuss the impact of ascertainment bias 
in the UK’s surveillance systems and present an approach 
to quantify it through a joint analysis of targeted sympto-
matic and randomised testing data.

There have also been a number of studies exploring the 
spatial dynamics of COVID-19, within various country 
settings. Castro et al. [8] considered the timing of deaths 
and cases to understand the detected and undetected 
movement of the epidemic across Brazil. Cuadros  et 
al. [9] explored differences in temporal trends in inci-
dence rates between rural and urban counties in the US, 
but did not consider the proximity of counties in space. 
Amdaoud et  al. [10] evaluated spatial autocorrelation 
statistics to analyse the early spread of COVID-19 across 
Western Europe, and explored how death rates related 
to demographic characteristics and measures of wealth, 
health care and social trust.

Other work exploring variation in mortality between 
local geographies of the UK has not accounted for the 
lack of independence between the units of interest, 
implicitly assuming that geographical regions can be con-
sidered independent after adjusting for a set of popula-
tion covariates [11]. However, small and frequently zero 
counts in death data at a local level can limit precision of 
estimates when analysed independently. Sartorius et  al. 
[12] do explicitly account for this dependence, adding 
a data-driven spatial structure in the form of correlated 
random effects within a mechanistic SEIR model, but fit 
to pillar one case counts only, assuming these represent a 
fitted proportion of total infections constrained between 
5 and 40%, as informed by two systematic reviews of the 
asymptomatic proportion. This does not account for the 
proportion of individuals who are symptomatic but do 
not obtain a confirmed diagnosis.

This analysis aims to extend the concept of inferring 
infections and cases from deaths down to a local level 
while accounting for varying population characteristics, 
timing of first exposure and other unexplained sources 
of spatial correlation. With this approach we pursue a 
clearer understanding of the relative burden of disease 
across the country and how each locality contributes to 
the national picture.

Materials and methods
Data sources
Anonymised line lists of reported COVID-19-related 
deaths between 1 January and 30 June 2020 were pro-
vided by Public Health England (PHE). COVID-19-re-
lated deaths were considered to include those with 
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COVID-19 recorded as an underlying cause, or where 
COVID-19 was mentioned as a contributing factor but 
not specified as cause of death. These two categories 
included a total of 52,560 reported deaths in England 
which occurred between 5 January and 30 June 2020, of 
which 39,332 had laboratory-confirmed infections and 
13,228 non-confirmed but suspected. Counts were then 
aggregated by lower-tier local authority (LTLA), week 
of death (counted from Wednesday 1 January 2020) and 
10-year age group. Aggregation by week was chosen in 
order to avoid excessive zero or low counts and potential 
day-of-week reporting effects, and to obtain a smoother 
representation of the epidemic curve. Records which 
did not have a LTLA provided (n = 74) were excluded. 
Local authority shapefiles and single-age population esti-
mates were obtained from the Office for National Statis-
tics (ONS) [13, 14] and matched to the aggregated death 
data. For descriptive purposes, the distributions of rates 
of deaths and confirmed cases across LTLAs are summa-
rised by median and inter-quartile range (IQR).

LTLAs can be classified into one of four geographical 
categories: London borough (10.3% of total LTLAs), metro-
politan district (11.5%), non-metropolitan district (60.3%) 
and unitary authority (17.9%). The former two categories 
capture the major urban areas of the country (including 
Birmingham, Liverpool, Manchester, Sheffield, Leeds and 
Newcastle) with high connectivity both nationally and 
internationally, while the latter capture predominantly rural 
areas and smaller towns or cities.

PCR-confirmed  cases (i.e. COVID-19 infections iden-
tified through both pillar 1 and pillar 2 surveillance) 
were obtained from the same source and aggregated to 
the same spatial and temporal resolution. Finally, esti-
mates of infection prevalence in England were obtained 
from the ONS COVID-19 infection survey pilot (15) 
which was initiated in May 2020. These are presented as 
an estimated percentage (plus 95% confidence interval 
based on the survey sample size) of the population who 
would test positive via PCR for COVID-19 during roll-
ing fortnightly intervals.

Case definitions
For the remainder of the paper, infections confirmed with 
a positive PCR test and recorded in official case data prior 
to the expansion of symptomatic community testing on 
18 May 2020 will be referred to as pre-P2 cases, and infec-
tions confirmed following expansion of testing will be 
referred to as post-P2 cases. It is noted that, due to pilot-
ing of pillar 2 testing among high-risk groups, a propor-
tion of pre-P2 cases will have been detected via the pillar 
2 route. We conservatively define the surveillance policy 
change from the point at which pillar 2 was fully available 
to all symptomatic individuals - assuming that case data 

from this point most accurately reflect the increased cov-
erage of the expanded system - and define the terminol-
ogy according to this distinction. We will also introduce 
the concept of predicted-P1+P2 cases, meaning the pre-
dicted infections which would have been PCR-confirmed 
in the hypothetical scenario in which symptomatic com-
munity testing had been in place since the beginning of 
the epidemic (January 2020). These predicted-P1+P2 
cases form a subset of total symptomatic cases, con-
ditional on the additional criteria that the case must be 
both symptomatic and seek and obtain a confirmatory 
positive test result. Lateral flow devices were not intro-
duced for asymptomatic testing until later in the year [3] 
and therefore are not considered here. All references to 
deaths imply COVID-19-related deaths, i.e., those where 
either PCR-confirmed or clinically diagnosed COVID-19 
infection is recorded on the death certificate.

Model structure
Bayesian mixed effects models for deaths per week and 
per LTLA were fitted using integrated nested Laplace 
approximation (INLA), implemented via the R package 
R-INLA [15, 16].

To facilitate comparison in observed deaths across 
local authorities with different population age distribu-
tions, age-adjusted expected deaths, E, were calculated 
for each LTLA to serve as an offset in models. Expected 
counts were based on age-specific weekly mortality 
rates averaged over the observed time period and over 
the country as a whole. See Additional file 1 for details. 
Weekly reported deaths in LTLA i were assumed to fol-
low a negative binomial (NB) distribution, with log link 
function, offset by log (Ei).

In addition to age, two population level characteristics 
were considered as risk factors for case fatality: level of dep-
rivation and distribution of ethnicity. The Index of Multiple 
Deprivation (IMD) score is defined as a relative measure of 
deprivation between Lower Super Output Areas (LSOAs) 
and incorporates a range of social, economic and health 
factors [17]. LSOAs are defined such that each belongs to a 
unique LTLA, therefore IMD scores could be aggregated to 
the median across all LSOAs in each LTLA and categorised 
by quintiles. To account for the heterogeneous distribution 
of ethnicity across the country, the percentage of minority 
ethnic groups in each LTLA population (relative to white 
as the national majority) was calculated according to esti-
mates from the most recent (2011) census of England and 
Wales (specifically table DC2101EW “Ethnic group by sex 
by age”, all persons and all age categories) [18]. The number 
of residents self-identifying as non-white was aggregated 
from a five-category classification (White, Mixed/multi-
ple ethnic, Asian/Asian British, Black/African/Caribbean/
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Black British, and Other) and calculated as a proportion of 
the total LTLA population.

The temporal dependence in the data was modelled 
using a combination of random effects with random 
walk (RW) correlation structures [19]. A second-order 
random walk (RW2) on the number of weeks since the 
first observed death (the “epidemic” week) was intended 
to capture the shifted epidemic curve in each LA. Addi-
tionally, a first-order random walk (RW1) on calendar 
week was included to capture any overall deviations from 
these epidemic trends (potentially as a result of policy 
and behavioural change). As such, the number of deaths 
in any one LTLA during 1 week are a priori assumed to 
be correlated with the number of deaths across the prior 
2 weeks. Models in which the second-order RW on epi-
demic week was fitted separately within each of the four 
geography categories were also considered.

Models without any specified spatial structure were 
compared to those with independent and identically-
distributed (IID) random effects per LTLA, and with a 
combination of IID and structured, conditional auto-
regressive effects (as described by Besag, York and Mollié 
[20], hereafter referred to as BYM), parameterised with 
a mixing parameter 𝜙 between the two [21]. The latter 
allowed assessment of the contribution of local spatial 
correlation to the fit of the model, relative to purely ran-
dom (IID) variation.

Six models were fitted and compared:

(A)	Baseline Observed deaths ~ log(E) (offset) + Over-
all epidemic trend (RW2) + calendar week trend 
(RW1) + covariates (IMD, % minority); no spatial 
structure.

(B)	 A + geography-dependent epidemic trends
(C)	A + IID spatial structure.
(D)	B + IID spatial structure.
(E)	 A + BYM spatial structure.
(F)	 B + BYM spatial structure.

The distributions of structured random effects (spatial 
and temporal) were fit with penalised complexity priors 
on the precision and BYM mixing parameters [22], and 
fixed effects fit with weakly-informative gaussian priors 
centred at zero. A more detailed specification of all mod-
els can be found in the Additional file 1.

All analyses were performed in R version 3.6.3 (2020-02-
29). All code used to run these analyses have been made 
available at https://​doi.​org/​10.​5281/​zenodo.​57636​64.

Model comparison
Models were compared using the Widely Applicable 
Information Criterion (WAIC) [23] and log score [24]. 
Pearson residuals between fitted values and observed 

were averaged per LTLA and mapped as a visualisation of 
the spatial structure unexplained by each model. Poste-
rior samples (n = 1000) were drawn to explore the uncer-
tainty in predictions and aggregated over LTLAs to give 
total trajectories over time.

Comparison to post‑P2 cases
It was assumed that post-P2 cases (swabbed from 18 May 
2020 onwards) were reflective of the higher coverage sur-
veillance and less obscured by capacity constraints. A 
fixed lag of 1 week between date of swabbing and date of 
death was applied to infer predicted-P1 + P2 cases from 
modelled deaths in the primary analysis, while a sensitiv-
ity analysis was conducted assuming two- and three-week 
lags. This choice was informed by the swab-death delay 
distribution observed in this dataset (median 6 days, IQR 
8 days), while also considering an external report from 
the COVID Clinical Information Network (CO-CIN) 
[25] which suggested an overall longer and more varied 
distribution (median 13 days, IQR 14 days) between onset 
of symptoms and death. The possibility was considered 
that the lag between testing and death may have been 
shorter early in the epidemic, with cases predominantly 
being tested in a hospital setting when symptoms were 
already severe. However, the available data on swabbing 
and death dates did not suggest a difference between 
pre- and post-P2 cases (median 6 days pre-P2 and 7 days 
post-P2, with equal quartiles of 3–11 days), and therefore 
one fixed lag was assumed for the entire period. It was 
assumed that variation over this period of time in the 
ratio of post-P2 cases to deaths would be predominantly 
a result of varying completeness of observation of cases, 
rather than of a difference in underlying case-fatality risk.

The approach taken to infer predicted-P1 +P2 cases 
from reported deaths consisted of three steps. First, 
smoothed trajectories of deaths per week and per LTLA, 
corrected for spatial heterogeneity in case-fatality risk 
factors, were obtained from the fitted model (1000 poste-
rior samples predicted at averaged covariate values with 
non-age-stratified population offset). An LTLA-level ratio 
of cases per covid-related death (post-P2 case per death 
ratio, CPDR) was then estimated for every week beyond 
18 May 2020 and for each posterior sample, lagging the 
modelled death counts by 1 week (two and three weeks for 
the sensitivity analysis) and comparing to post-P2 cases. 
CPDRs were summarised over all post-P2 weeks to obtain 
a median and IQR for each LTLA, which were then used to 
scale up the posterior samples over the whole time period. 
This yielded an estimate of the magnitude of cases giv-
ing rise to those deaths, which would have been detected 
under expanded surveillance. The distributions across 
posterior samples are summarised into 1, 25, 75 and 99% 

https://doi.org/10.5281/zenodo.5763664
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quantiles - yielding 50 and 98% Credible Intervals (CrI) - 
for presentation.

Inferring infection and rate of detection
The previous steps yield local trajectories of COVID-19 
cases which would have been detected through com-
bined hospital and community-based symptomatic test-
ing, had such capacity been available throughout the 
first epidemic wave. However, post-P2 cases detected 
under expanded surveillance remain a subset of the 
total number of infections, which also include those that 
are asymptomatic or otherwise undetected. The ONS 
COVID-19 infection survey pilot [26] suggested that 
per fortnight between 27 April and 24 May 2020 around 
0.25% of the population of England would have tested 
positive for COVID-19, with this percentage steadily 
decreasing to 0.03% by the beginning of July. To inves-
tigate the gap between total infection incidence and 

detected cases, these data were combined with post-P2 
case counts over the same period to infer a rate of detec-
tion under expanded surveillance (see Additional file 1). 
This rate of detection was then applied to the entire tra-
jectories of predicted-P+P2 cases to estimate the num-
ber of infections represented by those detected cases. 
Observed pre- and post-P2 counts could then be com-
pared to these estimated infections to infer the percent-
age of infections detected over time and within each 
LTLA.

Results
A summary of the observed incidence of covid-related 
deaths and pre−/post-P2 confirmed cases is shown in 
Fig. 1. Over time, the early exposure of London is clear 
in both deaths and confirmed cases, with the two epi-
demic curves following a similar shape and peaking prior 
to the other geographies. Outside of London, confirmed 

Fig. 1  Rates of COVID-19-related deaths and confirmed cases in England, by geography and week of death, and by lower-tier local authority 
(LTLA). (A, B): Weekly rates per 100,000 population of COVID-19-related deaths and confirmed cases, respectively, by geography type. Trajectories 
of reported deaths follow a smooth epidemic curve while the peak in case counts appears to be truncated across geographies outside of the 
early-affected London region, potentially as a result of national lockdown measures but also of testing constraints. Dashed vertical lines mark 
dates of significant policy changes with respect to confirmatory testing of suspect cases. (C, D): The same data instead presented as total rates per 
100,000 per LTLA, across the entire first wave (1 January 2020 to 30 June 2020). Time periods are set according to the date of specimen and date of 
death, respectively
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case counts appear to be truncated between the end of 
March and the end of April, approximately coinciding 
with the implementation of the national lockdown on 23 
March 2020.

Overall, COVID-19-related mortality rates ranged from 
10 per 100,000 in South Hampshire to 196 per 100,000 in 
Hertsmere (median [IQR]: 90.6 [71.4, 112.1]). Cumulative 
incidence of confirmed cases was more varied between 
LTLAs, ranging from 71 per 100,000 in Torridge in North 
Devon, to 1040 per 100,000 in the East Midlands city of 
Leicester (median [IQR]: 379.2 [298.3, 491.5]). Supple-
mentary Fig. S1 illustrates the substantial variation in the 
population characteristics assumed to contribute to case-
fatality risk across the country.

Model selection
By comparison of information criteria (WAIC) and 
cross-validated log score, it is clear that adjustment for 
epidemic timing and the specified fatality risk covari-
ates (model A) were insufficient alone to explain the spa-
tial distribution of deaths across England. Out of the six 
candidate models, the BYM spatial model and temporal 
trends specific to the geography of the LTLA was selected 
as offering the lowest WAIC and best cross-validated 
fit (model F) (Table  1). Models with unstructured, IID 
random effects per LTLA performed comparably to the 
BYM model and the overall magnitude of error appeared 
to be reduced, but spatial structure in the residuals was 
still evident (Supplementary Fig. S2).

Final model
The final model suggested strong associations between 
weekly rates of COVID-19-related deaths in a LTLA, 
quintiles of deprivation score and proportion of 
minority ethnicities in the population (RR = 1.27 with 
95% CrI [1.10–1.47] between the 1st and 4th quin-
tiles of IMD; RR = 1.01 [1.006–1.015] per percentage 
increase in minority ethnic population), after adjusting 
for the size and age distribution of the local population 
(Supplementary Table S2). Despite a clear monotonic 
trend through the first four quintiles of deprivation 
score, the difference between the 1st and 5th (most 

deprived) quintiles dropped slightly and was estimated 
with a wider CrI (RR = 1.21 [0.97, 1.49]), perhaps due 
to the smaller number of LTLAs which fall into this 
category. Differences in the shape of the epidemic 
between each geography type were best captured by 
four separately fitted trends as opposed to one overall 
trend, and residual heterogeneity between LTLAs (i.e., 
not captured by covariates) was explained by a combi-
nation of spatial correlation and random noise.

Posterior samples drawn from the selected model 
illustrated a close fit to the epidemic trajectories over-
all and within each specific geography (Fig.  2). Fits for 
a random sample of individual LTLAs are illustrated in 
Supplementary Fig. S3.

The fitted posterior for the BYM mixing parameter, Φ, 
implies that at least 86% (posterior mean 95, 95% CrI: 
[86–99%]) of the residual spatial variation (account-
ing for the specified covariates and temporal trends) 
could be explained by correlation between neighbouring 
LTLAs as opposed to random noise. This suggests that 
there is correlation in observed mortality in neighbour-
ing areas which is not explained by similarities in the 
size, age distribution, ethnic composition or deprivation 
level of their populations. A decomposition of the fit-
ted spatial random effects for each LTLA is illustrated in 
Supplementary Fig. S4.

Comparison to post‑P2 cases
Prior to the expansion of pillar 2 surveillance, the median 
CPDR per LTLA was 4.1 confirmed cases per covid-
related death (IQR [3.4,5.0]). From 18 May 2020 onwards, 
this increased to a median of 5.2 with more variation 
between LTLAs (IQR [3.3,8.6]). Further detail of the spa-
tial heterogeneity in CPDR across the country is illus-
trated in Supplementary Fig. S5.

Figure 3 illustrates the trajectories of predicted-P1+P2 
cases inferred from the model-predicted deaths per 
LTLA, aggregated overall and by geography. Although the 
more comprehensive surveillance was assumed to be in 
place by mid-May, the trajectories of inferred and actual 
cases appear similar from the end of April to early May, 

Table 1  Overall model comparison by WAIC and log score

Model WAIC Log score Diff WAIC Diff log score

B + BYM spatial 24,750 2.601 – –
B + IID spatial 24,801 2.606 51 0.005

A + BYM spatial 25,602 2.690 851 0.089

A + IID spatial 25,665 2.697 914 0.096

Geog-specific temporal (B) 26,344 2.768 1593 0.167

Temporal only (A) 26,865 2.823 2115 0.222
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when testing was accessible to care home residents and 
staff, over 65s and key workers [19]. Overall, the recon-
structed epidemic curve of predicted-P1+P2 cases yields 
a median of over 100,000 additional cases - an increase of 
45% - over the course of the first wave (Table 2).

The four geography types contribute unevenly to this 
difference. In London, the reconstructed counts suggest 
a relative under-representation of the peak incidence 
in observed confirmed cases, which narrows relatively 
rapidly from April onwards as numbers decline and 
testing capacity increases. The implied under-ascer-
tainment in London is of a much smaller magnitude 
than the other three geographies; in particular for 
metropolitan districts and unitary authorities, results 
suggest that, at the height of the epidemic, confirmed 
cases potentially constituted less than half of the symp-
tomatic cases which would have been detected under 
the expanded system. For the predominantly rural 

non-metropolitan districts the difference at the peak is 
less substantial, though still greater than that of Lon-
don. From late-April, total confirmed case incidence 
across these LTLAs actually exceeds the reconstructed 
counts, by a small margin which diminishes towards 
the beginning of the summer (see Fig. 3A).

Assuming a longer two-week lag between testing and 
death yields a much larger difference of 86%, and for 3 
weeks this increases further to 135%. A comparison of 
reconstructed national totals based on three different 
lags is included in Supplementary Table S3 and illus-
trated in Fig. 4. It is clearly shown that assuming a longer 
lag between case confirmation and death yields a higher 
and earlier peak in the reconstructed trajectory of cases.

Estimation of total infections
Figure  5 illustrates the estimated national incidence of 
infection according to the ONS infection survey pilot, 

Fig. 2  Final model fit (1000 posterior samples) over time, as a national total and by geography type. The final model describes observed weekly 
COVID-19-related deaths per LTLA in terms of the size, age, ethnicity and deprivation level of the population, temporal trend and spatial correlation 
between neighbouring LTLAs. Observed rates of covid-related death per 100,000 population are shown in black (A) and white (B). Each grey/
coloured line represents one sampled trajectory from the fitted model, and variation between these reflects uncertainty in the fit
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alongside total observed and reconstructed cases across 
the country. Comparison of observed cases from weeks 
starting 18 May to 15 June 2020 with these estimated 
total infections suggested an overall rate of detection of 
25% (95% CI propagated from infection prevalence esti-
mates: 13–58%). The total wave of infections over the 
entire period implied by this rate of detection is indicated 
by the grey curve.

This yields a cumulative total of 1.3 million infections 
(98% CrI 1.04 to 1.74 million) throughout the first wave, 
of which the observed confirmed cases (n  = 231,817) 
constitute 17.5% (98% CrI 13.3 to 22.3%).

Within each LTLA, cumulative incidence of confirmed 
cases constituted a median of 23% of estimate total infec-
tions (Fig. 6A). The highest rates of detection were found 
in Gloucester and Teignbridge in the south-west, both 
with estimates of over 96% (98% CrIs [87, 110%] and [81, 
121%], respectively), while less than 7% detection was 
estimated in Leicester, Tunbridge Wells and Bradford 
(98% CrIs [3, 11%], [6, 15%] and [4, 10%], respectively). 
See Supplementary Fig. S6 for predicted trajectories in 

these LTLAs. Figure  6B presents the estimated detec-
tion rate for each LTLA compared to the total observed 
incidence, grouped by region. In most regions, greater 
observed incidence coincides with poorer detection of 
total infections. However, in London and the North, the 
trend leans more into the opposite direction. Supple-
mentary Table S4 reports cumulative estimates of total 
infections nationally, by geography type and by region. By 
week, the level of under-ascertainment decreases in mag-
nitude from February to April and settles between 25 and 
30% from late-April to June (Fig. 6C).

The final predicted-P1+P2 and total infections for the 
entire time series in each LTLA are included in  Addi-
tional file 2.

Discussion
This analysis has demonstrated that it is possible to gen-
erate plausible case burden estimates from COVID-
19-related death data and, in doing so, investigate the 
impact of changes in surveillance practices over the first 
months of the epidemic.

Fig. 3  Predicted-P1+P2 cases, according to lagged and scaled-up predictions from the selected model for COVID-19-related deaths, in total (A and 
aggregated by geography type (B). 50–98% credible intervals are shown by the blue shaded areas. Observed totals of confirmed cases per week 
are indicated by black points - unfilled prior to P2-expansion and filled post-P2 expansion. Predicted-P1+P2 cases suggest the potential shape and 
magnitude of the first wave peak if community symptomatic testing (pillar 2) - in addition to hospital-based testing (pillar 1) - had been available 
from the beginning of the epidemic

Table 2  Summary of observed and predicted-P1+P2 case counts over the first wave, nationally and by geography

Observed, test- confirmed cases
(up to week starting 2020-06-17)

Predicted
(median [98% CrI])

Percentage
difference

England total 231,817 335,083 [275,482 - 418,847] 44.5 [18.8–80.7]

London Borough 33,399 43,664 [35,881 - 51,337] 30.7 [7.4–53.7]

Metropolitan District 64,007 109,717 [95,734 - 129,216] 71.4 [49.6–101.9]

Non-metropolitan District 79,441 97,786 [78,764 - 122,095] 23.1 [−0.9–53.7]

Unitary Authority 54,970 83,723 [67,673 - 110,968] 52.3 [23.1–101.9]
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The model development process highlights a clear spa-
tial structure to the incidence of covid-related deaths 
at a sub-national level, which is not explained by varia-
tion in the timing of initial exposure (epidemic week), or 
well-documented risk factors of COVID-19 death (age, 
deprivation and ethnic distribution in the local popula-
tion). Similarities in risk between neighbouring LTLAs 
can be an important factor to consider for the design of 
local mitigation strategies, particularly in response to the 
detection of new variants.

Assuming that the epidemic curve of deaths represents 
a specific subset of total symptomatic - i.e., detectable 
under Pillar 1 and 2 testing strategies - infections, this 
analysis suggests that over 100,000 additional cases may 
have been counted across the country in the absence of 
the initial constraints on testing capacity. The uncertainty 
around this estimate is relatively broad (98% CrI [44,000 - 
250,000]), predominantly as a result of uncertainty in the 
case-per-death ratio used to translate between the two 
measures. The increased heterogeneity between LTLAs 
in estimated CPDR following pillar 2 expansion may to 
some extent be attributed to much lower counts of both 
cases and deaths as the epidemic waned, and the occur-
rence of local outbreaks. Overall, we estimate around 
four post-P2 confirmed cases per covid-related death 

across all LTLAs, or equivalently a rate of 0.25 deaths per 
case. This is higher than estimates of the case-fatality rate 
i.e. the rate of deaths among confirmed cases, due to our 
broader definition of covid-related deaths as opposed 
to deaths directly attributed to COVID-19 among con-
firmed cases.

Cases ascertained, even under the expanded system, 
remain a subset of total infections. The case estimates 
obtained here were therefore combined with estimates of 
infection incidence from the ONS’s pilot survey in order 
to explore the rate of detection over time and between 
LTLAs. This investigation suggested that, following the 
roll-out of symptomatic community testing, around a 
quarter of infections in England were being detected - a 
value consistent with estimates obtained by Colman et al. 
[27] for the period of June to November 2020 - com-
pared to only around 10% during the first months of the 
pandemic.

The extent of this under-ascertainment was found 
to vary not only over time alongside the expansion of 
testing capacity, but also between LTLAs. Comparing 
the final model fit to the observed deaths suggested 
relatively little deviation of each LTLA from the fitted 
geography-specific trends, yet the reconstructed infec-
tions differ from observed test positives with much 

Fig. 4  Comparison of predicted-P1+P2 cases assuming one-, two- and three-week lags between date of swabbing and date of death. Shaded 
intervals represent 50–98% credible intervals
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more variation between LTLAs. Greater observed inci-
dence rates appeared to coincide with poorer detection 
of total infections - perhaps reflecting the impact of 
reaching testing capacity - yet this trend was found to 
be inconsistent between regions. This demonstrates the 
sporadic nature of case observation over time and space 
and highlights certain areas of the country in which 
surveillance was perhaps more strongly impacted by 
testing constraints. These differences may in part be 
attributed to local variation in the relationship between 
cases and deaths which isn’t sufficiently captured by the 
assumed case-fatality covariates. We therefore advise 
that LTLA-specific estimates should be interpreted 
with consideration of the local context.

Early projections based on critical care admissions by 
Jit et al. [28] suggested an incidence of over 8000 infec-
tions per day in the UK by mid-March 2020. Assum-
ing detection of 25% of infections under hospital and 
community symptomatic testing, from this study we 
estimate a total of around 111,000 infections during the 
two middle weeks of March, equating to an average of 
just under 8000 per day in England alone. On the other 
hand, via a mechanistic modelling approach, another 

study estimated daily total infections in the UK to have 
reached in the region of several hundred thousand by 
late-March [29]. Genomic analysis suggests that impor-
tations into the UK alone peaked mid-March with up to 
1000 per day [30].

Russell et al. [6] took a data-driven approach in esti-
mating that the peak incidence of symptomatic infec-
tions across the UK had occurred by mid-April 2020 
with a magnitude of around 100,000 per day, and con-
cluded that during March only 3–10% of such cases 
were being detected. This suggests a substantially 
higher peak than our estimate for England alone of 
just over 200,000 total infections per week - on aver-
age 28,000 per day - even accounting for the distribu-
tion of population between the constituent countries. 
Our estimates suggest that the percentage of these 
total infections reflected in confirmed case counts 
varied from around 7% at the start of March to 11% at 
the end, slightly higher than the detection rate Russell 
et al. estimated among symptomatic infections. Overall, 
estimates of infection incidence appear to be variable 
across studies, at least in part due differences in case 
definitions and aggregation over space and time.

Fig. 5  Estimated weekly incidence of infections in England (grey), inferred from predicted-P1+P2 cases  (blue) and an assumed detection rate of 
25% under expanded surveillance. Rate of detection is estimated by comparison of incidence estimates from the ONS infection survey (shown in 
red) and observed case counts (shown in black) between weeks starting 18 May to 15 June 2020. This rate is then applied to predicted-P1+P2 cases 
to obtain the estimated trajectory of total infections
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Limitations
The interpretation of these findings depends on several key 
assumptions, most importantly that variability over time in 
the ratio of confirmed cases to COVID-19-related deaths is 
predominantly the result of varying accessibility of testing. 
It is however plausible that fatality risk would have varied 
over time, potentially increasing towards the peak of the 
wave due to strain on hospitals forcing re-prioritisation of 
care or decreasing later on as treatment options improved. 
Also, it was assumed that variability in the delay from 
swabbing to death on the individual level would be diluted 
by aggregation, hence a fixed-value lag (with its influence 

explored in sensitivity analysis) would suffice. Summaris-
ing observed delays between swabbing and death within 
the available data gave no reason to suggest a difference 
between the time periods pre- and post-pillar 2 expansion, 
therefore the same fixed lag was assumed throughout the 
epidemic wave. A more exact approach, however, would 
have been to incorporate the full distribution of swab-
death delays and redistribute the observed deaths in time 
according to an imputed point of detection.

Only three broad characteristics were consid-
ered as case-fatality risk factors, which essentially 
serve as proxy measures for complex combinations 

Fig. 6  Estimated percentage of total infections represented in observed case counts, per LTLA (panels A and B) and per week (panel C), between 
2020 and 01-01 and 2020-06-17. LTLAs of Gloucester and Teignbridge stand out as having the highest percentage of detected infections, with 
estimates of over 96%. Panel B illustrates the same estimates in panel A but grouped by region, against the total observed incidence per 100,000. 
Total infections over the time period are estimated based on the predicted-P1+P2 cases and an assumed infection detection rate of 25% under 
expanded surveillance. All panels reflect median predictions over 1000 posterior samples, with panel C additionally showing 50–98% credible 
intervals
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of underlying comorbidities and health indicators 
across the population. Dichotomising self-identi-
fied ethnicity in a population into “majority” and 
“minority” groups is crude, given that risk has been 
found to differ between ethnic groups in different 
ways [31]. We implicitly assume that these estimates 
from the national census are representative of the 
population. Several studies report case-fatality risk 
as being overall higher among biological males [32–
34], yet there is also debate as to how the effect may 
interact with other key risk factors such as age and 
deprivation [35]. Here it was found that the ratio 
of males to females varied only marginally between 
LTLA populations and was uninformative for the 
observed mortality rate.

In individual level analysis, comorbidities such as car-
diovascular disease, diabetes, and cancer were shown 
to have an association with mortality after adjusting 
for both ethnicity and deprivation level [36]. The local 
prevalence of such conditions is however a compo-
nent in the calculation of the deprivation score used 
here. There are likely nuances and complex interactions 
between granular risk factors for mortality [37, 38] 
which are not yet understood in sufficient detail to be 
explicitly defined in such a model. The measures used 
here are therefore intended to capture high-level differ-
ences, and further work exploring additional covariates 
associated with mortality on both an individual and 
environmental/contextual level might improve popula-
tion-level risk estimates.

Finally, this approach does not account for the 
dynamics of transmission in and around long-term 
residential care facilities during the early months of 
the pandemic, within which many deaths during the 
first wave occurred [39]. The nature of infections in 
these settings - with respect to mortality, testing and 
management - is different to that which occurred in 
the wider community, yet both care home and com-
munity deaths were treated equally in this analysis. 
For LTLAs with a particularly large care home popula-
tion, the estimated case-per-death ratio may be higher 
than it would have been excluding these particularly 
vulnerable individuals. However, adjusting for the age 
distribution of the LTLA population in the underly-
ing deaths model should at least in part attenuate this 
source of variation. This study aimed to explore broad, 
population-level patterns in incidence of deaths and 
detection of cases, whereas characterising the con-
tribution of incidence within residential care settings 
would require a more fine-scaled, context-specific 
analysis. There was further substantial transmission 
within healthcare settings which we have not included 
separately [40].

Conclusions
Effective and efficient control of an infectious disease 
epidemic relies on appropriate quantification of risk at 
a local level from available surveillance data. However, 
there are many reasons for which such data may not be 
equally representative of disease burden across different 
regions and populations. In the case of the COVID-19 
epidemic in England, it is known that limitations in test-
ing capacity distorted the observed trajectory of cases 
during the first wave. In this analysis, by combining more 
consistently reported data on deaths and more represent-
ative case data from later in the epidemic, it was possi-
ble to reconstruct a plausible trajectory of symptomatic 
cases which could have been detected in the absence 
of the early testing constraints, and further to infer the 
total number of infections these reported cases would 
represent. This facilitated a comparison between the two 
testing policies and highlighted heterogeneity in case 
ascertainment across different regions of the country.

The burden of disease and impact of the response 
to this pandemic will be evaluated in detail for years to 
come. Considering how changes in surveillance policy 
can obscure the spread of an epidemic - using meth-
ods such as those demonstrated here - will be essential, 
in particular for understanding the consequences of the 
country’s initial level of pandemic preparedness.
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