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The poor transferability of genetic risk scores (GRSs) derived 
from European ancestry data in diverse populations is a cause 
of concern. We set out to evaluate whether GRSs derived 
from data of African American individuals and multiancestry 
data perform better in sub-Saharan Africa (SSA) compared 
to European ancestry-derived scores. Using summary sta-
tistics from the Million Veteran Program (MVP), we showed 
that GRSs derived from data of African American individuals 
enhance polygenic prediction of lipid traits in SSA compared to 
European and multiancestry scores. However, our GRS predic-
tion varied greatly within SSA between the South African Zulu 
(low-density lipoprotein cholesterol (LDL-C), R2 = 8.14%) and 
Ugandan cohorts (LDL-C, R2 = 0.026%). We postulate that 
differences in the genetic and environmental factors between 
these population groups might lead to the poor transferability 
of GRSs within SSA. More effort is required to optimize poly-
genic prediction in Africa.

Genome-wide association studies (GWASs) have successfully 
identified and characterized genetic variants associated with lipid 
traits1–3. To date, roughly 700 single-nucleotide polymorphisms 
(SNPs) are associated with various lipid traits3–9. These discoveries 
are now beginning to unravel the biology of dyslipidemia and aid 
prediction for precision medicine. To date, polygenic risk across the 
genome can be aggregated by generating genome-wide weighted 
scores to predict the risk of a disease in an independent popula-
tion10,11. However, most lipid trait discoveries have been made in 
European or Asian ancestries4–9. Genetic risk scores (GRSs) derived 
from European ancestry tend to perform poorly in genetically 
diverse populations, including Africans10, probably due to unique 

differences in linkage disequilibrium (LD) patterns, allele frequen-
cies and environmental exposures12 between different populations. 
Lack of precise GRSs in Africans hinders risk stratification and tar-
geted treatments essential for precision medicine and may exacer-
bate health disparities.

Recent studies have indicated that using multiancestry sum-
mary statistics enhance GRS performance in diverse populations13. 
Moreover, previous studies suggested that using summary statis-
tics from African Americans may improve GRS performance in 
sub-Saharan Africans14. We, therefore, undertook a study to deter-
mine the best approach for lipid traits polygenic risk prediction, 
including low-density lipoprotein cholesterol (LDL-C), high-density 
lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total 
cholesterol (TC) in sub-Saharan Africans using publicly available 
GWAS summary statistics. This study assessed the performance, 
portability and predictivity of GRSs derived from data of African 
Americans, Europeans and multiancestry (African American, 
European and Hispanic American) individuals in Ugandan and 
South African Zulu cohorts.

We computed GRSs using PRSice-2. Of the many GRSs com-
puted at various P-value thresholds that ranged from 1 to 5 × 10−8, 
the GRS that explained the highest proportion of variance (R2) in 
any trait for the African, European and multiancestry populations 
(Methods) was selected as the best-performing one (Extended 
Data Table 1 and Extended Data Fig. 1). In the South African 
Zulu cohort, the best-performing GRSs for LDL-C was African 
American (R2 = 8.14%, P-value threshold (PT) < 5 × 10−8), followed 
by the multiancestry approach (derived from individuals of African 
ancestry, European ancestry and Hispanic American) (R2 = 6.32%, 
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PT < 5 × 10−08), and the one from individuals of European ances-
try (R2 = 1.61%, PT < 5 × 10−08, Fig. 1a and Extended Data Table 2).  
Although the African American-derived GRS predicted bet-
ter in the South African Zulu cohort its prediction was lower in 
Ugandan cohort (Extended Data Table 3). Moreover, our African 
American-derived GRSs (coefficient ranging from 0.100 to 0.286) 
were better correlated with all serum lipid levels than the European 
GRSs (coefficients ranging from 0.091 to 0.123) in South African 
Zulu (Extended Data Fig. 2).

We proceeded to evaluate risk stratification based on the deciles 
of the GRSs for the lipid traits presented (Methods). We compared 
the effect sizes of serum lipid levels from the first GRS decile after 
correction for age, sex and ten principal components. In parallel, we 
observed that individuals in the top 10% of the GRSs had higher 
serum lipid levels than those in the first decile (Fig. 1b). Notably, 
multiancestry-derived GRS was the best-performing approach for 
HDL-C and TG (Fig. 1b). Individuals at the top 10% of the GRSs 
had a higher difference of 0.16 mmol liter−1 and 0.45 mmol liter−1 
for HDL-C and TG levels, respectively, compared to individuals at 
the bottom 10% GRSs. For LDL-C and TC, the best-performing 
approach was the African American GRS, with a mean differ-
ence (first versus tenth decile) of 0.70 mmol liter−1 for LDL-C and 
1.09 mmol liter−1 for TC (Fig. 1b) for those at the top 10% GRS decile.

We proceeded to evaluate the transferability of a GRS derived 
from an African American cohort in Ugandan and South African 

Zulu cohorts (Fig. 2a). Using TC as an example, we noted that the 
same African American GRS of 286 SNPs performed poorly in the 
Ugandan cohort (R2 = 0.045%) but much better in the South African 
Zulu cohort (6.345%) (Fig. 2b). The correlations of the GRS with 
lipid traits were lower among the Ugandan cohort compared to the 
South African Zulu cohort (Fig. 2c). Of all the lipid traits, predict-
ability was lowest for TGs, possibly due to the nonfasting of partici-
pants before blood collection for lipid analysis. TGs, unlike TC and 
HDL, are sensitive to dietary intake, which might have affected their 
accurate estimation and consequently its prediction15.

We then sought to evaluate the contribution of minor allele fre-
quencies to the poor transferability of the GRSs between the Ugandan 
and South African Zulu cohorts. We compared allele frequencies of 
the SNPs in the African American-derived GRSs in the Ugandan and 
South African Zulu cohorts (Fig. 2d). We noted that there were marked 
differences in age, body mass index and allele frequencies between 
these cohorts, which might have contributed to the poor transferabil-
ity of the African American GRS (Extended Data Fig. 3 and Fig. 2e). 
The South African Zulu cohort recruited participants from an urban-
ized setting compared to the Ugandan cohort. Therefore the urban 
and rural environmental differences might also be playing a part in the 
poor transferability of the African American-derived GRSs between 
the Ugandan and South African Zulu cohorts. This finding suggests 
that both genetic and environmental factors might be responsible for 
the differences in the performance of GRSs in the Ugandan cohort.
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Fig. 1 | Performance of GrSs for lipid traits in the South African Zulu cohort using the MVP GWAS summary statistic results of various ancestry 
populations, including individuals of African American, European and multiethnic ancestry populations. a, Violin plots showing GRSs that explained 
the highest proportion of variance (R2) for lipids derived from African American (AFR), European (EUR) and multiancestry (MEA) populations. b, GRSs 
in deciles compared to the first decile. The y axis shows the mean, and the x axis is the GRSs in deciles. The points show mean, and error bars represent 
standard errors of the mean. All South African Zulu cohorts (n = 2,598) were used in this analysis.
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Next, we then assessed the ability of the GRS to identify peo-
ple with high lipid levels compared to conventional risk factors. 
We computed residuals of the linear model of TC adjusted for age 
and sex in the South African Zulu cohort. We then selected indi-
viduals at the top 10% of the residual density plot as ‘cases’ and the 
remaining 90% deciles as ‘controls’ (Extended Data Fig. 4a). For 

example, the average TC level in cases was 6.51 mmol liter−1 com-
pared to 4.30 mmol liter−1 in controls, representing a difference of 
2.21 mmol liter−1. Using logistic regression models, we evaluated the 
prediction of the African American GRSs trained from the Ugandan 
cohort in the South African Zulu cohort. The areas under the curve 
were 55.5% (95% confidence interval [CI], 53.4–57.6%) for clinical  
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Fig. 2 | GrSs of individuals of African ancestry with dyslipidemia. a, Map of Africa showing sample collection points in Kyamulibwa in Kalungu district, 
Uganda and Durban, Kwazulu-natal province, South Africa. b, Bar plot showing comparative performance of polygenic prediction of TC using the same 
GRS comprising 286 SNPs, which was developed in Ugandan cohort (n = 6,407) and then replicated in the South African Zulu cohort (n = 2,598). 
The y axis is the prediction accuracy (R2), and the x axis is the number of SNPs in the GRS for TC used. c, Correlation coefficients between African 
American-derived GRSs and serum lipid levels in the Ugandan cohort. d, Scatter plot for the correlation of the same minor allele frequencies (MAF) 
between the South African Zulu and Ugandan cohorts (R = Pearson correlation, one-sided test). PC, principal component. e, Scatter plot for the principal 
component analysis of the 1000 Genomes Project reference populations with the South African Zulu and Ugandan cohorts (GBR, British; MSL, Mende; 
UGR, Uganda genome resource; Zulu, South African Zulu; YRI, Yoruba).
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factors, including type 2 diabetes, body mass index, age, sex and five 
principal components, and 63.8% (95% CI, 61.8–65.9%) for GRSs 
only (Extended Data Fig. 4b). Moreover, the net reclassification index 
for the model of the clinical factors increased by 42% after adding 
the GRSs to this model, further supporting our results that the GRS 
was better at identifying individuals with high TC compared to con-
ventional clinical factors. However, lipid profiles rather than conven-
tional risk factors are used to assess for dyslipidemia in the clinical 
setting. Lipid profiles are easier to collect and interpret than GRSs, 
thereby limiting the clinical application of the GRS. Nonetheless, 
GRSs might find use in the risk stratification of children and young 
adults long before they start to exhibit elevated lipid levels15.

Consistent with previous reports, GRSs derived from individuals 
of African ancestry performed significantly better in sub-Saharan 
Africans than GRSs derived from individuals of European ances-
try10,16–18. The performance of GRS derived from data of African 
American individuals for LDL-C (R2 = 8.14%) was much higher 
than the performances reported by Johnson et al. (ranging from 
1.99% to 4.48% in African American, Asian American, white and 
Hispanic individuals for LDL-C)18. This difference suggests that 
GRSs computed using African Ancestry discovery GWASs may lead 
to better polygenic predictions of lipids in individuals of African 
descent. However, continental Africans are characterized by high 
genetic diversity, which may affect the performance and transfer-
ability of GRSs within Africa12.

Moreover, our results suggest poor transferability of GRS between 
South African Zulu and Ugandan populations. This might be due 
to differences in environmental (Extended Data Fig. 3) and genetic 
factors (Fig. 2D) between the South African Zulu and Ugandan 
cohorts19,20. The poor performance of GRS within the same ances-
try population hinders the implementation of GRS in preventative 
healthcare. It may lead to inaccurate results when applied to differ-
ent ethnic groups within sub-Saharan Africa. This further suggests 
the need for more efforts to optimize polygenic prediction in Africa. 
A limitation of this study is the none inclusion of diet and regular 
physical activity for the prediction of dyslipidemia. Nevertheless, we 
included crucial clinical factors, including body mass index, which 
is strongly associated with diet and regular physical activity; hence, 
the overall performance of our GRSs were robust.

In conclusion, using GRSs derived from data of individuals 
of African ancestry performed better in predicting lipid traits in 
sub-Saharan African populations than GRSs derived from data of 
individuals of European ancestry. However, the GRS are likely to 
have variable performances across sub-Saharan African popula-
tions, as shown by the differences seen between South African Zulu 
and Ugandan populations.
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Methods
Study population. The target data for GRS construction were taken from  
the South African Zulu cohort, a combination of the Durban Diabetes Study  
(DDS) and the Durban Case-Control Study (DCC) KwaZulu-Natal South Africa. 
DDS is a population-based cross-sectional study of individuals aged >18 years 
residing in the urban black communities in Durban, KwaZulu-Natal, South Africa. 
DCC is a case–control study of individuals aged >40 years with diabetes  
recruited from tertiary hospitals in Durban. Data collection was conducted 
from 2009 to 2013 for the DCC and from 2013 to 2014 for the DDS. The survey 
questionnaire included socioeconomic factors, health information, lifestyle  
factors, blood pressure, anthropometric measurements (including height, 
weight, and hip and waist circumferences), biomarkers for communicable 
and noncommunicable diseases and genetic data. Of the 2,804 individuals 
surveyed, 1,204 were from the DDS and 1,600 were from the DCC; more 
detailed information on the study design and quality controls has been published 
previously21,22. Informed consent was obtained from all DDS and DCC participants. 
The DDS was approved by the University of KwaZulu-Natal Biomedical Research 
Ethics Committee (BF030/12) and the UK National Research Ethics Service  
(14/WM/); the DCC was approved by the University of KwaZulu-Natal Biomedical 
Research Ethics Committee (BF078/08) and the UK National Research Ethics 
Service (11/H0305/6).

The comparative cohort was taken from the Uganda genome resource (UGR), 
which is the genomic and phenotypic resource generated from the Uganda 
General Population Cohort (GPC). The GPC is a population-based cohort study 
founded in the late 1980s, and it has over 22,000 participants from 25 neighboring 
villages in Kyamilibwa in rural Uganda. This open-cohort study was established to 
investigate the trends of HIV infection in Uganda. However, the cohort’s focus now 
is to examine the role of host genetic variants associated with communicable and 
noncommunicable diseases in rural Ugandans22. Informed consent was obtained 
from all participants, and the Uganda GPC was approved by Uganda Virus 
Research Institute Research and Ethics Committee (UVRI-REC HS 1978) and the 
Uganda National Council for Science and Technology (UNCST SS 4283).

Measurement of lipid traits. Nonfasting serum lipid levels were measured using 
the Cobas Integra 400 Plus Chemistry analyzer (Roche Diagnostics), an automated 
analyzer that uses four different technologies: absorption photometry, fluorescence 
polarization immunoassay, immune turbidimetry and potentiometry for accurate 
analysis. HDL-C and LDL-C were measured using the homogeneous enzymatic 
colorimetric assays23,24.

Polygenic risk score. GWAS meta-analysis summary statistics results from the 
MVP were used as the discovery data sets in GRS computation for the specific 
lipids. For instance, LDL-C summary statistics from the multiancestry, African 
American and European cohorts were used for the development of the LDL-C 
GRSs. The MVP summary statistics results comprised an average of 30 million 
SNPs from more than 800,000 individuals of diverse ancestry. Of these, 61,796 
were African American, and 241,54 were European. The multiancestry summary 
statistics comprised 25,747 individuals from Hispanic American, European and 
African American populations. Methods used for genotyping and quality control of 
MVP data have been previously described25.

For GRS construction, SNPs from MVP serum lipid summary statistics  
were clumped based on their LD. We clumped SNPs at different R2 thresholds,  
and a 500-kb clumping window with R2 of 0.5 proved to be the best-fitting  
and best-performing model for all lipid traits. We also tested the best P-value 
threshold for selecting which clumped SNPs we would include in the final  
GRS for the range of 1 to 5 × 10−8. The P-value threshold, which accounted  
for the highest proportion of the variance of the trait R2, was selected as the best 
GRS for TC. The GRS was calculated by multiplying the weight of the SNPs  
with the number of risk alleles (0/1/2) carried by each individual using the 
algorithm implemented in the PRSice-2 software26. The GRS generated was 
incorporated into the generalized linear regression model to explain the serum 
lipids’ performance while adjusting for age, sex, type 2 diabetes and five principal 
components, which were calculated using unrelated individuals and on pruned 
genotyped data sets using PLINK. An incremental R2 was computed from each 
model by the PRSice algorithm and plotted against the PT. R2 is the difference 
between the R2 of the fully adjusted model (GRS, age, sex, five principal 
components and diabetes status) and the R2 of the null model (age, sex, five 
principal components and diabetes status); the best GRS achieved the highest 
proportion of R2 (Fig. 1a).

The best-performing GRS was then categorized into deciles. The bottom 
decile was used as a reference and compared to other deciles. The difference in the 
effect sizes of the lipid levels across different GRS deciles was tested using linear 
regression while adjusting for age, sex, five principal components and diabetes 
status. We then performed logistic regression with the top decile of the GRS as 
cases with the remaining 90% as controls. The output of the logistic regression 
was used to compute the receiver operating curves in R. Furthermore, we used a 
net reclassification index to assess the ability of the GRS to identify individuals 
with high TC in the South African Zulu cohort. This reclassification was done by 
comparing the improvement in reclassification of a null model that comprised 

the conventional risk factors with that of a null model plus the GRSs using the 
PredictAbel package in R. The performance of the GRS from each lipid trait 
was compared among individuals of African ancestry, European ancestry and 
multiethnic ancestry populations using the ggplot2 R statistical package27,28.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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identifying the participants in any way. The array data have been deposited at 
the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/, accession 
number EGAD00010000965). Requests for access to data may be directed to segun.
fatumo@mrcuganda.org. Applications are reviewed by a data access committee, 
and access is granted if the request is consistent with the consent provided by 
participants. The data producers may be consulted by the data access committee 
to evaluate potential ethical conflicts. Requestors also sign an agreement that 
governs the terms on which access to data is granted. The genome-wide association 
summary statistics data are currently at https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs001672.v3.p1#:~:text=MVP%20is%20an%20
ongoing%20prospective,health%20and%20disease%20among%20veterans.dbGaP 
Study Accession: phs001672.v3.p1. The data used to construct the PRS are available 
on the PGS catalog: https://www.pgscatalog.org/publication/PGP000313/ (PGS ID 
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Code availability
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available at https://www.prsice.info/. Other software programs used are listed and 
described in Methods.
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Extended Data Fig. 1 | Proportion of variance of TC explained by GrS in the South African Zulu samples using GrS derived from GWAS. (a) African 
American ancestry, (a) European ancestry and (a) multiethnic ancestry. The bars represent GRS calculated for subsets of markers at different p-value 
thresholds. The best GRS in red color was selected based on having the highest proportion of the variance (R2) for the trait in linear models adjusted for 
age, sex and principal components.
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Extended Data Fig. 2 | Correlation coefficients between GrS and serum lipid levels. (a) African American derived GRS in the South African Zulu dataset. 
(b) European derived GRS in the South African Zulu. (c) African American derived GRS in the Ugandan cohort. (d) European derived GRS in the Ugandan 
cohort. The correlation coefficients r2 are given with colors corresponding to the direction and strength of r2. The r2 on the diagonal represents the 
strength of correlation of a GRS with its target lipid trait. The off-diagonal r2 represents the strength of correlation of a GRS with other lipid traits.
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Extended Data Fig. 3 | Box plots showing the distribution of age, BMi and lipid traits among the ugandan and South African Zulu cohorts. The horizontal 
line is the median values, error bars are 25th and 75th percentiles. Extreme values are maximum and minimum for respective traits. Data analysis were 
performed in all Ugandan (n = 6,407) and South African Zulu (n = 2,598) cohorts.
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Extended Data Fig. 4 | The discriminative power of our polygenic risk score or GrS to successfully identify the individuals of African ancestry with 
dyslipidaemia. (a) Distribution of total cholesterol (TC) among South African Zulus. The top 10% deciles were named “cases,” and the lower deciles were 
designated as “controls.” (b) The area under the curve in South African Zulu.
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Extended Data Table 1 | Best-fitting models of clumping using the TC serum lipid trait
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Extended Data Table 2 | Best predictive polygenic risk scores of lipid traits in the South African Zulu cohort
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Extended Data Table 3 | Best predictive polygenic risk scores of lipid traits in the ugandan cohort
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