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Key messages

What is already known on this topic
 ► A handful of studies examine the effect of heat 
exposure on chronic obstructive pulmonary 
disease (COPD) hospitalisations, and the results 
are suggestive of a positive effect.

What this study adds
 ► We examine the effect of heat exposure on 
COPD hospitalisation using 12 years’ worth 
of individual nationwide data in England. For 
every 1°C increase in summer temperatures 
higher than 23.2°C, the risk of COPD 
hospitalisation increases by 1.47%. We found 
weak evidence of an effect modification by age 
and sex, but strong in space, with populations 
in the North and in the South East of England 
being more vulnerable.

How this study might affect research, practice and/
or policy

 ► Not only considering the rising temperatures 
but also future COPD prevalence and 
population ageing trends, the burden of heat 
exposure- related COPD hospitalisation is 
expected to increase. Our findings can be used 
as a guidance to policymakers, so resources 
are allocated to support the preparedness and 
resilience of public health systems.

AbsTrACT
background There is emerging evidence suggesting 
a link between ambient heat exposure and chronic 
obstructive pulmonary disease (COPD) hospitalisations. 
Individual and contextual characteristics can affect 
population vulnerabilities to COPD hospitalisation due to 
heat exposure. This study quantifies the effect of ambient 
heat on COPD hospitalisations and examines population 
vulnerabilities by age, sex and contextual characteristics.
Methods Individual data on COPD hospitalisation 
at high geographical resolution (postcodes) during 
2007–2018 in England was retrieved from the small 
area health statistics unit. Maximum temperature at 
1 km ×1 km resolution was available from the UK Met 
Office. We employed a case- crossover study design and 
fitted Bayesian conditional Poisson regression models. 
We adjusted for relative humidity and national holidays, 
and examined effect modification by age, sex, green 
space, average temperature, deprivation and urbanicity.
results After accounting for confounding, we found 
1.47% (95% Credible Interval (CrI) 1.19% to 1.73%) 
increase in the hospitalisation risk for every 1°C increase 
in temperatures above 23.2°C (lags 0–2 days). We 
reported weak evidence of an effect modification by 
sex and age. We found a strong spatial determinant 
of the COPD hospitalisation risk due to heat exposure, 
which was alleviated when we accounted for contextual 
characteristics. 1851 (95% CrI 1 576 to 2 079) COPD 
hospitalisations were associated with temperatures 
above 23.2°C annually.
Conclusion Our study suggests that resources should 
be allocated to support the public health systems, for 
instance, through developing or expanding heat- health 
alerts, to challenge the increasing future heat- related 
COPD hospitalisation burden.

InTroduCTIon
Chronic obstructive pulmonary disease (COPD) 
is the most prevalent chronic respiratory disease 
worldwide, with point prevalence varying from 
1.56% in Sub- Saharan Africa to 6.09% in Central 
Europe, Eastern Europe and central Asia in 2007.1 
In England, COPD is a significant cause of morbidity 
and mortality, leading to 115 000 emergency 
admissions and 24 000 deaths per year.2 The causes 
of acute exacerbation of COPD are established and 
include factors such as sex, age, COPD severity and 
comorbidities.3 Environmental triggers of COPD 
hospitalisations such as air- pollution exposure have 

also been discussed extensively.4 There is emerging 
evidence suggesting a link between heat expo-
sure and COPD hospitalisation, either directly or 
through exacerbating the effects of factors such as 
ozone concentration that are associated with these 
events.5

Several previous studies have examined the effect 
of high temperatures on COPD hospitalisations, 
reporting higher rates with heat exposure6–8 and 
heat waves.9 10 The majority of these studies are 
based on aggregated data (at the city or regional 
level),6 9–11 whereas only a few considered indi-
vidual data.7 8 Use of individual data allows investi-
gation of possible effect modification by individual 
factors such as age and sex, and it avoids ecolog-
ical bias arising when group- level associations do 
not reflect associations at the individual level.12 
Although previous studies have assessed the vulner-
ability related to individual factors, such as age 
and sex;6 8 contextual characteristics, such as green 
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Environmental exposure

space, average temperature, deprivation and urbanicity are still 
poorly characterised. Two of the previous studies have examined 
the spatial variation of the temperature effect on COPD hospi-
talisation, using, however, very coarse geographical resolution.6 8

In this nationwide study in England during 2007–2018, we 
investigated the effect of heat exposure on COPD hospital 
admissions using a semiecological framework. We took advan-
tage of the individual data availability of the outcome and 
adopted a case- crossover study design that naturally accounts 
for time- constant variables at the individual patient level. Thus, 
we were able to account for factors like age, sex, comorbidities, 
deprivation as well as lifestyle characteristics such as physical 
activity through the study design. We also adjusted for time- 
varying confounders, such as air- pollution exposure and rela-
tive humidity and examined how the effect of temperature is 
modified by age, sex and in space. Last, we assessed the extent 
to which contextual characteristics, such as green space, depri-
vation, urbanicity and average temperature, contribute to the 
observed spatial variation of the effect of temperature.

METhods
study population
We included inpatient hospital admissions from COPD in 
England during 2007–2018 as retrieved from Hospital Episode 
Statistics data held by the UK Small Area Health Statistics Unit, 
provided by the Health and Social Care Information Centre. 
Age, postcode of residence at time of the hospitalisation and date 
of hospitalisation were available for each record. We focused 
only on admissions with acute exacerbation of COPD as primary 
diagnosis. We investigated the following diagnostic groups: 
J40–44 according to the International Classification of Disease 
V.10.13 The analysis is restricted to June, July and August.

Exposure
Daily minimum and maximum temperatures were available at 
1 km×1 km resolution from the UK Met Office with methods 
described elsewhere.14 In brief, the daily temperature in each 
grid cell was estimated based on inverse- distance- weighted inter-
polation of monitoring data, also accounting for latitude and 
longitude, elevation, coastal influence and proportion of urban 
land use. To assign daily temperature to health records, the 
postcode centroids of each patient were spatially linked to the 
1 km×1 km grid cell, applying a 100 m fuzziness to the postcode 
location to fulfil governance requirements. We focused on daily 
maximum temperature, as we are interested in heat exposure, 
averaged over the day of hospitalisation and the preceding 2 days 
(lags 0–2 days) to estimate the cumulative health effects.15–17

Covariates
We used hourly concentration of Ozone (O3) and atmospheric 
particulate matter that has a diameter of less than 2.5 µm (PM2.5), 
as retrieved from the unified model produced by the Met Office 
measured in µg/m3.18 The model outcome is then postprocessed 
to correct for bias using observational data.18 For O3, we calcu-
lated the daily mean of the 8 hours of maximum O3, whereas 
for PM2.5, the daily mean concentration. The geographical 
resolution of the air pollutants is 12 km×12 km for the years 
2007–2011 and 2 km×2 km during 2012–2019. We adjusted for 
relative humidity (daily and at a 10 km×10 km grid) through 
a model that integrates Met Office data on daily observations 
from the meteorological stations and monthly nationwide data 
as retrieved from HadUK,14 see online supplemental text S1.1. 
All covariates were included at lags 0–2 days, to match the 

exposure lags. O3, PM2.5 and relative humidity were included 
as linear terms in the model. We also accounted for the effect of 
national holidays through a dummy variable.

spatial effect modifiers
We selected these spatial effect modifiers based on consistency 
with the literature,19 data availability in England and a priori 
hypotheses, see online supplemental text S1.3. As a measure of 
green space, we used the proportion of a region that is covered 
by green land such as woodland, agricultural land, grassland and 
other natural vegetated land as classified in the Land Cover Map 
2015 (LCM V.15).20Deprivation is measured using the Index 
of Multiple Deprivation (IMD) 2015, as retrieved from the 
Ministry of Housing, Communities and Local Government.21 
We used the quintiles of IMD in our analysis. For these two 
modifiers, we selected the year 2015 as the most representative 
data point, among the ones available, for our study period. Urba-
nicity (predominantly rural, urban with significant rural and 
predominantly urban) is based on the Office for National Statis-
tics classification in 2011 (the most recent year for which data 
was available at the time of analysis).22 We also incorporated 
the average temperature during 2007–2018, as a measure of 
adaptation on higher temperatures.23 Green space and average 
temperature were included as linear terms in the model. Due to 
power and computational considerations, all spatial effect modi-
fiers were included at the lower tier local authority level (LTLA; 
online supplemental figure 1).

statistical methods
We used a time- stratified case- crossover design, commonly used 
for analysing the effect of transient exposures.24 25 The tempera-
ture on the day of COPD hospitalisation (event day) is compared 
with the temperature on non- event days. In the case- crossover 
design, a case serves as its own control, thus, this design auto-
matically controls for factors that do not vary or vary slowly 
over time, such as sex or deprivation. We selected non- event 
days on the same day of week and calendar month as the event 
day to avoid the overlap bias.26 Thus, we could have maximum 
4 non- event days per event day.

We modelled the effect of temperature on event compared 
with non- event days by specifying Bayesian hierarchical condi-
tional Poisson models, with a fixed effect on the event/non- event 
day grouping.19 27 We accounted for recurrent hospitalisations 
by adding a random effect on each patient. For the main anal-
ysis, we treated relative humidity and national holidays as 
confounders and, thus, adjusted for them, but we did not adjust 
for air pollutants because they were treated as mediators, see 
directed acyclic graph on online supplemental text S1.3.28 As 
the effect of temperature on health is typically non- linear,19 we 
used piecewise linear threshold models, to allow more flexible 
fits, but retain ease of interpretation. We considered nationwide 
thresholds, specified as the 50th, 55th …, 95th percentile of 
the daily temperatures. We selected the threshold based on the 
WAIC, a fully Bayesian estimate of predictive accuracy defined 
as the log pointwise posterior predictive density adjusted for 
overfitting by correcting for effective number of parameters, 
with smaller values indicating better fits.29 We then ran addi-
tional models allowing the effect of heat exposure (temperatures 
above the threshold) to vary by sex (male and female), age (0–64, 
65–74, 75+) and space (LTLA). We additionally included the air 
pollutants in these models to examine the sensitivity of the effect 
if the air pollutants were confounders. For the spatial effect 
modification, we used the Besag- York- Mollie prior that assumes 
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Figure 1 Flowchart of COPD hospitalisations. COPD, chronic 
obstructive pulmonary disease.

local dependency among adjacent LTLAs.30 We fitted this model 
with and without the spatial effect modifiers, while adjusting 
for confounders. The model is described in detail in the online 
supplemental text S1.2. Results are reported as medians and 
95% CrI (CrI; 95% probability that the true values lie within 
this interval) of % increase in the hospitalisation risk for every 
1°C increase in temperatures above the threshold31; additionally, 
we report posterior probabilities of a positive % increase. For 
the spatially varying risk, we also reported posterior probabili-
ties that the % hospitalisation risk is larger than the average % 
hospitalisation risk.

Population attributable fraction
To calculate the population attributable fraction, we extended32 
to incorporate the spatial dimension of the effect of heat expo-
sure. We first calculated the cumulative heat exposure—COPD 
hospitalisation relative risk (RRs) for the sth LTLA. We could 
then calculate the attributable fraction: AFs = (RRs− 1)/RRs. Let 
ns be the number of hospitalisations at days above 23.2°C and 
Ns the total number of hospitalisations, then AFs(ns/Ns) is the 
population attributable fraction, that is, the number of COPD 
hospitalisations attributable to summer heat exposure. In our 
Bayesian formulation, we were able to propagate all the random 
variable- specific uncertainty in our estimates.

sensitivity analyses
We repeated the main analysis for the lags 0, 1 and 2 inde-
pendently. We also used b- splines to model the temperature effect 
and examined the linearity assumption above the threshold.

All analyses are run in Numerical Inference for Hierarchical 
Models Using Bayesian and Likelihood Estimation.33 The code 
for running the analysis is online available at https://github.com/ 
gkonstantinoudis/COPDTempSVC.

rEsulTs
Population
We retrieved 1 570 288 COPD hospital records during 2007–
2018 in England. After removing the duplicated records, the 
ones with place of residence outside England, the ones not 
occurred in summer months and the ones for which we could 
not sample non- event days, we had 320 411 records available 
for the analysis (figure 1).

Exposure, covariates and effect modifiers
The median maximum temperature across England has increased 
from 19.42°C in 2007 to 22.20°C in 2018 (online supplemental 
table S1). The median maximum temperature exposure is 
20.91°C at lag 0 for event and 20.39°C non- event days, 20.97°C 
for event and 20.94°C for non- event days at lag 1, 20.92°C for 
event and 20.90°C for non- event days at lag 2°C and 20.93°C for 
event and 20.92°C for non- event days at lag 0–2 (online supple-
mental table S2). The distribution of the covariates across event 
and non- event days and the spatial distribution of the effect 
modifiers at the LTLA level is found in online supplemental table 
S2- 5, and figure S2- 5.

WAIC analysis
In the model adjusted for relative humidity and national holi-
days, the 80th percentile of the temperature (23.2°C) was the 
threshold minimising the WAIC (online supplemental table S6). 
We found a 0.37% (95% CrI 0.09% to 0.65%) increase in the 
COPD hospitalisation risk for every 1°C increase in tempera-
tures below 23.2°C (online supplemental table S6). In contrast, 

the effect above 23.2°C was higher, namely, 1.46% (95% CrI 
1.19% to 1.71%) (online supplemental table S6). All subse-
quent analyses were conducted using the 80th percentile of the 
temperature as the threshold.

Age and sex effect modification
In the unadjusted models, the percentage of risk increase in 
hospitalisations for every 1°C increase above the threshold 
varies from 0.92% (95% CrI 0.25% to 1.63%) in women 64 
years old or younger to 1.56% (95% CrI 0.94% to 2.20%) in 
women aged 65–74 (figure 2 and online supplemental table S6). 
After adjusting for relative humidity and national holidays, the 
effects are slightly higher varying from 1.14% (95% CrI 0.39% 
to 1.84%) in women 64 years old or younger to 1.75% (95% CrI 
1.13% to 2.41%) in men 65–74 years old (Figure 2 and online 
supplemental table S7). Additionally adjusting for air pollution 
substantially reduces the observed effect (figure 2 and online 
supplemental table S7).

spatial effect modification
The spatial variation of the effect of heat exposure on COPD 
hospitalisations is shown in figure 3. The risk of COPD hospital-
isation is less than 1.31% for every 1°C increase in heat exposure 
in South West, top left panel, figure 3. In contrast, populations 
in the South East are more vulnerable: the probability that the 
effect of heat exposure is larger than the national average esti-
mate ranges between 0.6 and 1, top right panel (figure 3). After 
incorporating green space, deprivation, urbanicity and average 
temperature, the observed variation of the effect of temperature 
is slightly alleviated, bottom panels (figure 3).

We found weak evidence that populations in areas with higher 
proportions of green space, larger average temperature and 
higher level of urbanicity are more resilient to COPD hospital-
isations due to heat exposure, table 1. If we increase an LTLA’s 
proportion of green space by 1%, the spatial effect of the heat 
exposure changes by −1.46% (95% CrI −6.99% to 4.39%), 
table 1. For every 1°C increase in the average temperature per 
LTLA, the spatial effect of the heat exposure changes by −0.41% 
(95% CrI −1.49% to 0.71%), table 1. The spatial effect of heat 
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Figure 2 Percentage risk of chronic obstructive pulmonary disease (COPD) hospitalisation for every 1°C increase in the temperatures above 23.2°C 
during the summer months between 2007 and 2018, for the unadjusted (left panel), the model adjusted for relative humidity (RH) and national 
holidays (NL) (mid panel) and the model additional adjusted for air pollution (POL) (right panel). Results are stratified by age (0–64, 65–74, 75+, 
total) and sex (male, female, total).

Figure 3 Median spatial chronic obstructive pulmonary disease (COPD) hospitalisation risk for every 1°C increase in the temperatures above 23.2°C 
and posterior probability that the risk is larger than the overall risk in England during the summer months between 2007 and 2018. The top panels 
refer to the model without incorporating contextual characteristics, whereas the panels below otherwise. All models were fully adjusted.

exposure in urban LTLAs with significant rural and predomi-
nantly urban LTLAs changes by −0.79% (95% CrI −3.10% to 
1.51%) and −1.57% (95% CrI −4.16% to 0.96%), respectively, 
compared with predominantly rural LTLAs, table 1.

Population attributable burden
We found that 1 851 (95% CrI 1 576 to 2 079) COPD hospital-
isations were associated with temperatures above 23.2°C annu-
ally. This accounts for 7.8% (95% CrI 6.7% to 8.8%) of the total 

COPD hospitalisations during the summer months from 2007 
to 2019. The proportion of COPD hospitalisations attributable 
to temperatures above the threshold has a clear spatial structure 
and is more than 8% in East Midlands, East of England, London 
and South East, while it is below 5% in the South West (figure 4).

sensitivity analysis
The lag with the highest influence was lag 1 with the risk of 
COPD hospitalisation being 1.37% (95% CrI 1.14% to 1.58%) 
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Table 1 Median, 95% credible intervals of the percentage change 
of the heat exposure- related spatial hospitalisation risk due to 
green space, average temperature, index of multiple deprivation and 
urbanicity and probability that this percentage change is higher than 0

Effect modifier Percentage change Pr (% change >0)*

Green space† −1.46 (−6.99 to 4.39) 0.30

Average temperature‡ −0.41 (−1.49 to 0.71) 0.22

IMD§

  Q1 *

  Q2 0.81 (−1.16 to 3.08) 0.78

  Q3 1.57 (−0.76 to 4.06) 0.91

  Q4 0.75 (−1.68 to 3.36) 0.71

  Q5 1.62 (−1.31 to 4.49) 0.85

Predominantly rural *

Urban with significant rural −0.79 (−3.10 to 1.51) 0.25

Predominantly urban −1.57 (−4.16 to 0.96) 0.12

*Posterior probability that the percentage change is larger than zero.
†Green space is the proportion of a region covered by green land such as 
woodland, agricultural land, grassland and other natural vegetated land.
‡The average temperature is the mean summer temperature per LTLA during 
2007–2018oC.
§Index of multiple deprivation. IMD is calculated based on the following domains: 
(a) income, (b) employment, (c) education, skills and training, (d) health and 
disability, (e) crime, (f) barriers to housing and services and (g) living environment 
deprivation. Q1 denotes the most deprived areas, whereas Q5 the least deprived.
IMD, Index of Multiple Deprivation; LTLA, lower tier local authority.

Figure 4 The percentage of chronic obstructive pulmonary disease 
(COPD) hospitalisations by lower tier local authorities attributed to 
exposure to summer temperatures above 23.2°C during 2007–2018 
in England. This effect assumes a causal relationship between heat 
exposure and COPD hospitalisation risk. The island on the left is a 
zoomed version of London.

for every 1°C increase in heat exposure. For lag 0 and lag 2, 
the point estimate was still positive, but lower in magnitude, 
0.71% (95% CrI 0.50% to 0.93%) and 1.01% (95% CrI 0.78% 
to 1.24%), respectively, likely due to the correlation with 
temperatures at lag 1. The linearity assumption above the 23.2°C 
threshold looks reasonable (online supplemental figure S6).

dIsCussIon
This is the first nationwide case- crossover study in England 
investigating the short- term effects of heat exposure on COPD 
hospitalisation. After accounting for confounding, the results 
indicate that for every 1°C increase in heat exposure the COPD 
hospitalisation risk increases by 1.47% (95% CrI 1.19% to 
1.73%), with evidence that PM2.5 and O3 mediate this relation-
ship. We found weak evidence of an effect modification by sex 
and age. The attributable burden of heat exposure has a clear 
spatial structure, with areas in East Midlands, East of England, 
London and South East affected the most. Assuming a causal 
relationship, 7.8% (95% CrI 6.7% to 8.8%) of COPD hospital-
isations could be attributed to heat exposure during the summer 
months between 2007 and 2018.

The main strength of our study is the availability of postal 
codes, exploiting the highest spatial resolution available for 
linkage with the exposure and confounding factors. Such 
geographical resolution is expected to minimise misclassification, 
resulting from any spatial misalignment between the outcome 
and exposure/confounder. The availability of individual data 
for the outcome also minimises ecological bias,12 while guaran-
teeing high statistical power due to the population- based nature 
of the study. We ascertained hospital records from NHS digital 
covering almost all hospitalisation occurred in the public sector 
in England during 2007–2018.

Our study has some limitations. First, residential temperature 
does not reflect the actual temperature exposure of an individual, 
as individuals are exposed to different temperatures in the course 
of the day. In addition to this, the outdoor temperature, as 
provided by Met Office, does not reflect the actual temperature 
exposure inside the house. Nevertheless, in line with most of the 
studies in this field and given the lack of more precise individual 
exposure data, we used residential temperature outdoors as a 
proxy for the individual exposure. To allow for flexible fits, we 
used a linear threshold model. More complex relationships may 
need multiple thresholds; however, the WAIC analysis suggested 
that the linearity assumption suffices. Although we adjusted for 
the main COPD hospitalisation environmental contributors, we 
could not evaluate other potential confounders (eg, seasonal 
allergies and pollen counts) due to the lack of available data. 
Additionally, exposure to other air pollutants, such as NO2, SO2, 
might also confound the observed relationship; we decided to 
adjust for PM2.5 and O3 as they seem to have a larger impact on 
COPD hospitalisation and to avoid potential collinearity with 
other pollutants.

Our results can be compared with studies examining COPD 
hospital admissions and ambient temperatures during the hottest 
months.6 11 34 35 Our study is in line with a US study including 
12.5 million participants that found a 4.7% (95% CrI 3.9% to 
5.5%) increase in the COPD hospitalisation rate at lag 0 for 
every 5.6°C increase in the average daily temperature during 
May–September.6 Our study is also in line with a case- crossover 
study in Brazil that reported a 5% (95% CrI 4% to 6%) increase 
in the hospitalisation odds for every 5°C increase in the average 
temperature (0–3 lags) during the 4 hottest months.11 In contrast, 
a study in New York reported a 7.64% increase in the risk of 
COPD admissions for each 1°C increase in daily mean apparent 
temperature above 32°C.35 A study in 12 European cities, 
reported a 4.5% (95% CrI 1.9 to 7.3) and 3.1% (95% CrI 0.8 to 
5.5) increase in total respiratory admissions (the majority being 
COPD) in Mediterranean and North- Continental cities, respec-
tively, for every for each 1°C increase in the maximum apparent 
temperature (lag 0–3 days) above the 90th percentile.36 A study 
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in Taiwan reported negative correlation between the average 
daily temperature and emergency admissions with COPD, but 
a 14% increase in the emergency COPD admissions when the 
diurnal temperature range is larger than 9.6°C.34

We found weak evidence of an effect modification by age 
and sex, but discrepancies in vulnerability in space. A previous 
study in Brazil reported higher COPD hospitalisation odds for 
women and the older people.11 In the models adjusted for rela-
tive humidity and national holidays, in line with a previous study 
in the USA,6 the age group 65–74 was the most vulnerable. Some 
spatial variability by regions or counties was also observed in 
previous studies in Brazil and the USA, potentially due to socio-
economic characteristics or exposure to higher average summer 
temperatures.6 11 In our study, green space, average temperature, 
deprivation and urbanicity explained some of the observed vari-
ation in the observed spatial vulnerabilities, the evidence of an 
effect was, however, inconclusive.

Some discrepancies of our results compared with previous 
studies can have multiple explanations. Previous studies reporting 
higher effect estimates had available coarser geographical reso-
lution (city or county level), leading to inadequate adjustment 
for confounding, as confounders, can vary in high geographical 
resolution.11 34 36 37 Differences in the definition of the outcome 
can also lead to the discrepancies as previous studies have used 
the apparent temperature,35 36 or diurnal temperature range,34 
while others, more in line with our approach, the daily mean.6 11 
Decisions regarding the selection of the temperature threshold, 
the warm- season months and the lags can also partly explain the 
observed difference in the effect estimates. Most previous studies 
adjusted for air pollution,6 35 36 while we did not, as we assumed 
that air pollution is a mediator28; when we added air pollution to 
model the effect of heat exposure was much reduced.

Acute COPD episodes are associated not only with airways 
and systemic inflammation but also with cardiovascular comor-
bidity and may be triggered by exposures to heat.36 Exposure to 
ambient heat can lead to heat dissipation through hyperventila-
tion and may trigger dynamic hyperinflation and dyspnoea in 
patients with pre- existing COPD.6 11 The higher risk of COPD 
hospitalisation in the 65–74 age group observed in our study 
could be explained by the inability of this frail population to 
dissipate excess heat through circulatory adjustment, and expo-
sure to extreme temperatures increases their risk of developing 
pulmonary vascular resistance secondary to peripheral pooling 
of blood or hypovolemia.36 In addition, older populations are 
of higher risk to have cardiovascular comorbidities, which are 
hypothesised to increase the risk of COPD hospitalisations 
associated with heat exposure. Nevertheless, such evidence 
is inconclusive.36 We also reported a weak protective effect of 
higher average temperatures, arguing towards protective adap-
tation to heat, possibly related to differences in housing stock 
or behaviour during hot weather.11 We observed weak evidence 
of increased resilience in populations in more deprived areas 
and in areas with higher degrees of urbanicity. Although this 
evidence is inconclusive, potential factors that could confound 
the observed effect include differences in demographics, for 
instance, ethnicity.

Previous studies examining future trends in COPD, popula-
tion demographics and temperature changes have predicted a 
higher COPD prevalence, a raise in the average age of the popu-
lation and increased global temperatures.38–40 Resources should 
be allocated to support the preparedness and resilience of public 
health systems, for instance, through developing or expanding 
heat- health alerts, to challenge the increasing heat exposure- 
related COPD hospitalisation burden.
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