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Abstract
Programmatic monitoring of insecticide resistance in diseaseBackground: 

vectors is mostly done on a large scale, often focusing on differences between
districts, regions or countries. However, local heterogeneities in residual
malaria transmission imply the need for finer-scale data. This study reports
small-scale variations of insecticide susceptibility in Anopheles arabiensis
between three neighbouring villages across two seasons in Tanzania, where
insecticidal bed nets are extensively used, but malaria transmission persists.

WHO insecticide susceptibility assays were conducted on femaleMethods: 
and male   from three proximal villages, Minepa, Lupiro, andAn. arabiensis
Mavimba, during dry (June-December 2015) and wet (January-May 2016)
seasons. Adults emerging from wild-collected larvae were exposed to 0.05%
lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4%
dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5%
malathion. A hydrolysis probe assay was used to screen for L1014F ( )kdr-w
and L1014S ( ) mutations in specimens resistant to DDT or pyrethroids.kdr-e
Synergist assays using piperonly butoxide (PBO) and triphenol phosphate
(TPP) were done to assess pyrethroid and bendiocarb resistance phenotypes.

There were clear seasonal and spatial fluctuations in phenotypicResults: 
resistance status in   to pyrethroids, DDT and bendiocarb.An. arabiensis
Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher
mortalities against pyrethroids and bendiocarb, compared to tests without the
synergists. Neither L1014F nor L1014S mutations were detected.

This study confirmed the presence of pyrethroid resistance in Conclusions: 
 and showed small-scale differences in resistance levelsAn. arabiensis

between the villages, and between seasons. Substantial, though incomplete,

reversal of pyrethroid and bendiocarb resistance following pre-exposure to
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reversal of pyrethroid and bendiocarb resistance following pre-exposure to
PBO and TPP, and absence of  alleles suggest involvement of P450kdr 
monooxygenases and esterases in the resistant phenotypes. We recommend,
for effective resistance management, further bioassays to quantify the strength
of resistance, and both biochemical and molecular analysis to elucidate
specific enzymes responsible in resistance.
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Introduction
In sub-Saharan Africa, malaria vector control relies predominantly  
on insecticide-based, methods, namely long-lasting insecticide 
treated bed nets (LLINs) and indoor residual spraying (IRS) of 
households. In Tanzania, LLINs are widely distributed and used 
as the primary and most affordable protective measure against 
diseases vectors1–3. The country has also recently implemented 
IRS, as a complementary vector control intervention in the north-
western regions, with 11.6% – 14% of households currently cov-
ered by IRS4,5. Globally, implementation of LLINs and IRS, 
coupled with improved case diagnosis and treatment, as well as 
urbanization, improved living standards, and overall improve-
ments in health systems, have contributed to 37% and 60%  
reduction of malaria morbidity and mortality respectively, between 
2000 and 20156. In Tanzania, high malaria transmission remains, 
with an average prevalence of 14.8% in children under 5 years7.  
Nevertheless, the National Malaria Control Program currently has  
a strategic goal of reducing malaria prevalence to 1% by 20208.

Despite the recent successes, efficacy of current malaria inter-
ventions is hampered by numerous challenges, particularly 
insecticide resistance in malaria vectors9–11. This has necessi-
tated continuous insecticide resistance monitoring and periodic  
changes of insecticides used12–15. Some countries have put in 
place mechanisms to monitor susceptibility of malaria vectors to  
insecticides using guidelines provided by the World Health  
Organization (WHO) Global Plan for Insecticide Resistance  
Monitoring (GPIRM)16. However, due to limited resources, 
insecticide resistance monitoring is mainly carried out only at 
large scale, often focusing on differences between districts or 
regions9,14. In Tanzania, insecticide susceptibility monitoring in 
mosquito populations is conducted at district level, relying on des-
ignated sentinel sites in regions, considered to be representative 
of the whole country14,15. Such a generalized approach to insec-
ticide resistance monitoring is not very effective to capture local  
variations, where there might be pockets of high and low malaria 
transmission areas17,18. The variations may be due to, among  
other factors, impacts of interventions or genetic differences in 
mosquito populations, in turn resulting in physiological differences 
in response to insecticidal pressures17,18.

Different mosquito populations respond differently to insecticide 
pressure, depending on presence or absence, and type of resistance  
genes prevalent in the population19–21. This results in occurrence 
of geographically distinct populations, which might result in  
transmission variability over space and time. It is likely that these 
fine scale-variabilities are associated with the occurrence of resid-
ual mosquito biting “hotspots”, contributing to persistent residual 
malaria transmission in areas where LLINs and IRS are already 
widely used18. Despite this, most vector surveillance programs still 
use global approaches without taking population variability into 
consideration. Furthermore, insecticide resistance studies have 
mainly focused on adult female mosquitoes, with limited studies 
on male populations.

The present study aimed at evaluating insecticide susceptibility of 
the dominant malaria vector, An. arabiensis, at a fine-scale between 

nearby villages in south-eastern Tanzania, where insecticides have 
been widely used for public health and agriculture, but where 
malaria transmission still persists.

Methods
Study villages
Sampling of mosquito larvae was carried out in three proximal 
villages of Minepa (-8.2665°S, 36.6775°E), Lupiro (- 8.3857°S, 
36.6791°E), and Mavimba (- 8.3163°S, 36.6810°E), located in 
Ulanga district, south-eastern Tanzania (Figure 1). The minimum 
distance between villages was ~4km from Minepa to Mavimba, 
while the maximum distance was 9km from Minepa to Lupiro. All 
the villages lie between 120 and 350 meters above sea level, and 
are located in the flood plains of the Kilombero river, between the 
Udzungwa mountain ranges to the north, and Mahenge hills to the 
south1–3. The main economic activity of the area is irrigated rice 
farming. The irrigation leaves rice paddies continuously flooded, 
creating permanent water bodies favourable for mosquito breed-
ing habitats. It is also a perennially meso-endemic malaria area, 
where transmission is predominantly by An. funestus s.s and  
An. arabiensis22–25. Recent multiple assessments conducted in the 
same area have revealed that 100% of the An. gambiae s.l mosqui-
toes in this study area were An. arabiensis sibling species25,26. As 
such, all field-collected An. gambiae s.l mosquitoes are henceforth 
referred to as An. arabiensis. The main malaria vector control inter-
vention in the area is LLINs1–3.

Mosquito sampling and rearing
Larval collections were carried out in the dry season between June 
and December 2015, and in the wet season between January and 
May 2016. For each village, between seven and nine breeding sites 
were identified, geo-referenced, and permanently established as 
larval sampling points for resistance monitoring during this study. 
Immediately after sampling, larvae were separated into anophelines 
and culicines to prevent cannibalism, and for easier adult mor-
phological identifications. After morphological identification, lar-
vae were pooled by village and reared into adults under standard 
insectary conditions (temperature of 27 ± 3°C and relative humidity  
70–90%) in a semi-field screen house27. During rearing, larvae were 
fed on mud, and algae collected from the respective breeding sites, 
and supplemented with Tetramin® fish food (Tetra, Melle, Ger-
many). Each morning, pupae were transferred into a plastic cup and 
placed in a net-covered cage for adult emergence. After emergence, 
adults were separated by sex, transferred into individual small cages 
with provision of 10% glucose solution and maintained at 27–28°C 
and relative humidity of 70–90% for subsequent bioassays.

Insecticide susceptibility tests
Phenotypic resistance tests on adults were conducted follow-
ing WHO guidelines28. Prior to susceptibility tests, efficacy of 
insecticide impregnated papers was verified against a known 
laboratory-reared susceptible An. gambiae s.s. strain (Ifakara  
strain)29,30. A group of 20 – 25 non-blood fed wild female and 
male mosquitoes aged three to five days were exposed for an hour  
to the diagnostic concentrations of 0.05% lambda-cyhalothrin, 
0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 
0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl, 
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Figure 1. Geographic positions of the three study villages in south-eastern Tanzania. Embedded charts represent the fine-scale spatial 
and temporal variations of insecticide resistance profiles in both male and female malaria mosquitoes between the study villages.
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and 5% malathion. Controls consisted of mosquitoes exposed to  
oil-impregnated papers. During the one hour exposure to insecti-
cides, knockdown rates were recorded at 10, 15, 20, 30, 40, 50, 
and 60 minute intervals. After the exposure period, mosquitoes 
were transferred to holding tubes and maintained on 10% glucose  
solution. The final mortalities were recorded 24 hours post- 
exposure. Dead and surviving mosquitoes were kept separately, 
under preservation using silica in 1.5 ml Eppendorf tubes, for  
further molecular examination of resistance genes.

Synergist bioassays
Synergist bioassays using piperonyl butoxide (PBO), an inhibitor 
of monooxygenase, and triphenyl phosphate (TPP), an inhibitor 
of esterases, were performed on the adult mosquitoes, to assess 
whether the pyrethroid resistance phenotypes observed during 
WHO susceptibility assays could be reversed by synergistic  
activity of these insecticides, which would indicate a biochemical  
basis for the resistance28,31. Prior to the synergist assays, the  
bio-efficacy and quality of PBO and TPP synergist papers was 
validated against a reference laboratory colony, whose pyrethroid 
resistance and DDT resistance is mediated by high monooxyge-
nases (FUMOZ-R)32 and elevation of esterases (MBN-DDT)33, 
respectively.

Due to limited number of mosquito sample, the PBO and TPP 
assays were performed only on female An. arabiensis collected 
from Minepa village, and PBO test only in female An. arabiensis 
sampled from Mavimba village between the months of  
September and December 2016. Non-blood fed, 2–3 day old wild 
female An. arabiensis mosquitoes were used, each test consisting  
of 20 to 25 mosquitoes per tube with two controls. Five repli-
cates were performed for each exposure set. Mosquitoes were  
pre-exposed to (either 4% PBO or 20% TPP) for 60 minutes,  
followed by exposure to WHO test papers impregnated with  
discriminatory doses of candidate insecticides (0.75% permethrin,  
0.05% deltamethrin, 0.05% lambda-cyhalothrin, or 4% DDT) 
for another 60 minutes. To assess the effect of insecticides alone, 
another group of mosquitoes without pre-exposure to the syner-
gists were concurrently exposed to each candidate insecticide only. 
At the same time, the same number of mosquitoes was exposed 
to either 4% PBO or 20% TPP only. Another group of mosqui-
toes was also exposed to control filter papers treated with a mix-
ture of olive oil and acetone, and to plain filter papers with no 
chemicals that were used as environmental controls. During the 
one hour exposure to synergist and to insecticides, the knock- 
down rates were recorded at 5,10,15,20,25,30,40,50 and  
60 minute intervals. Mosquitoes were fed on 10% glucose solution, 
and mortalities from assays conducted with and without exposure 
to synergist were scored 24 hours post-exposure31.

Knockdown resistance (kdr) detection using hydrolysis 
probe analysis
A hydrolysis probe assay was used to screen for L1014F (kdr-w) 
and L1014S (kdr-e) mutations in 220 randomly selected dead and 
alive female specimens, which had shown resistance to both DDT 
or pyrethroids, using procedures previously described33. DNA 
was extracted from the legs of each specimen using the ZyGEm  
prepGEM insect DNA extraction kit (Cat: PIN141106, ZyGEM 
NZ Ltd, Ruakura, New Zealand), following the manufacturer’s  

guidelines, except that the reaction volume was quartered. DNA 
extracted (10–50ng) from each individual mosquito was then 
used to detect the presence of kdr-w and kdr-e in two PCR master  
mixtures in a CFX 96 real-time PCR machine (Biorad,  
Hercules, CA, USA). In each instance, positive controls comprised 
of a DNA template from mosquitoes with known West African  
(kdr-w) genotype sampled from Sudan (SENN-DDT, homozygous 
for the L1014F mutation)34, and DNA from Burundi mosquitoes, 
which had been previously genotyped as homozygous for the East  
African (kdr-e) mutation, L1014S (unpublished study, Vector  
Control Reference Laboratory, Johannesburg, South Africa). 
Other positive controls were DNA templates from a homozygous  
susceptible colony originating from Kanyemba, Zimbabwe 
(KGB). The heterozygous controls were made up by mixing equal  
aliquots of susceptible and resistant DNA templates. A final control 
consisted of a master mix containing of PCR components, except 
the DNA template that was set up to monitor any contamination 
during reaction preparation.

Data analysis
Data analysis was done using R version 3.035. Susceptibility  
bioassay data was first summarised as mean percentage (%)  
mortality per insecticide per village and per season. Population  
susceptibility was classified according to the WHO criteria28.  
Data for the synergist tests were summarized as mean % mortal-
ity of the four replicates, and the 95% confidence intervals were 
calculated to estimate probability that population means lie within 
the given ranges. Following an average of four replicates of each 
synergist test, final mortality observed 24 hours post-exposure 
was compared between samples with and without pre-exposure 
to synergists, using paired sample t-test. The time at which 50% 
of the experimental populations were knocked down (KDT

50
) 

was determined using log-probit analysis36. Resistance reduction 
was obtained by dividing the KDT

50
 obtained from insecticide  

exposure with no synergist by the KDT
50

 obtained from insecti-
cide plus the synergist (KDT

50 Insecticide alone
/KDT

50 Insecticide plus Synergist
). 

The differences in mortality was considered statistically significant 
when P< 0.05. For kdr detection assays, the fluorescent signals  
detected in the experimental reactions were compared to those  
of the controls, and genotyping of each mosquito was done using 
the CFX manager software version 2.1 (Bio-Rad, Hercules, CA, 
USA).

Ethical statement
Permission to conduct larva sampling was obtained from the  
owners of the farms, after the researchers provided a descrip-
tion of the study aims and procedures. A brief description of the  
study was delivered in local language, Kiswahili. Upon agree-
ment, participants were asked to sign written informed forms.  
The proposed study went through an ethical review and obtained 
approval from the institutional review board of Ifakara Health  
Institute (Ref: IHI/IRB/NO: 34-2014) and the Medical Research 
Coordinating Committee at the National Institute for Medical  
Research in Tanzania (Ref: NIMR/HQ/R.8a/Vol.IX/1903).  
Permission to publish this manuscript was obtained from the 
National Institute for Medical Research in Tanzania (NIMR;  
Ref: NIMR/HQ/P.12 VOL. XXII/27). Printed copies and 
online links to the manuscript will be provided to NIMR upon  
publication.
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Results
Spatial and seasonal variability in phenotypic resistance in 
male and female An. arabiensis mosquitoes
The reference insectary-reared An. gambiae ss were fully suscep-
tible (100% mortality) to all the insecticides tested, confirming 
the quality and bio-efficacy of the insecticide-impregnated papers  
used. The observed mortality in control groups was consistently  
below 5%, so no statistical correction was required. The WHO 
susceptibility test findings are summarized in Figure 1 and  
Table 1. There was marked seasonal and spatial variations in 
phenotypic resistance in both female and male An. arabiensis to  
three pyrethroids, permethrin, deltamethrin, lambda-cyhalothrin, 
but also to bendiocarb and DDT in the study villages.

For example, in Minepa village, the female mosquitoes were fully 
susceptible to bendiocarb in the wet season (mean mortality of 
100%), yet highly resistant in the dry season (24.6%). Bendiocarb 
resistance also varied across different locations. While females 
collected from Minepa village in the dry season were resistant to 
bendiocarb, samples of the same species collected from the nearby 
villages of Mavimba and Lupiro during the same season were fully 
susceptible to the same chemical (100%). It was also observed 
that female An. arabiensis mosquitoes collected from Minepa  
village were fully susceptible to DDT (100%) in both seasons, while 
those collected from the nearby Mavimba village during dry season 
showed reduced susceptibility to DDT (96.5%), and resistance to 
the same insecticide in Lupiro village in the wet season (83.5%). 
Wild female mosquito populations from Minepa, Mavimba and 
Lupiro villages displayed variable levels of deltamethrin resistance 
across both seasons, but reduced susceptibility to this insecticide 
(90.3%) in dry season in Lupiro. Throughout the study, female  
An. arabiensis were resistant to permethrin and lambda-cyhalothrin 
(mortality rates between 21.6% and 87.4%) in both seasons across 
the study villages.

As shown in Table 1, insecticide resistance variation in the male 
An. arabiensis was greater both by season and by locality, and was 
observed for pyrethroids, DDT and bendiocarb. Males collected 
from Minepa were fully susceptible to permethrin in the dry season  
(100% mortality), but resistant to the same chemical in the wet sea-
son (80.5% mortality); those collected from Mavimba village on 
the other hand were susceptible to permethrin in the wet season 
(97.5%), but resistant in dry season (77.4%). In Lupiro village, the 
males were fully susceptible to permethrin in wet seasons (98.8%), 
though there were also signs of weakening susceptibility among 
mosquitoes collected in dry season (97.2%). Deltamethrin resist-
ance in male An. arabiensis was observed in wet season in Minepa 
(87.5%) and in dry season in Mavimba (60.8%). There was also 
reduced susceptibility to deltamethrin in the male mosquito pop-
ulation sampled from Mavimba (91.3%) and Lupiro (90.6%) in 
wet season, but complete susceptibility was observed in Minepa 
(98.5%) and Lupiro in dry season (100%).

During the study, male mosquito samples from the three villages 
across both seasons displayed various levels of resistance to lambda-
cyhalothrin (mortality rates between 28.1% and 89.4%). For both 

DDT and bendiocarb, male mosquitoes from Minepa were resist-
ant in dry season 78.4% and 75.3% respectively, but susceptible in 
wet season (mortalities between 99.1% and 100%), while the males 
from both Mavimba and Lupiro were consistently susceptible to 
these two insecticides in both seasons (100%). A minor exception 
was specimens collected in wet season from Lupiro, where reduced 
susceptibility was observed against DDT (95.3%).

As illustrated in Figure 1, both male and female mosquito popula-
tions across the study villages and during both seasons remained 
fully susceptible to propoxur, dieldrin and all organophosphates 
tested (mortality rates between 98.8% and 100%).

Results of the synergist bioassays conducted with samples 
from Minepa village
Tests with PBO. There was a reduction in time to 50% knockdown 
(KDT

50
) in mosquito cohorts pre-exposed to PBO followed by  

deltamethrin, permethrin, lambda cyhalothrin and bendiocarb), 
compared to cohorts directly exposed to each of the candidate 
insecticides without PBO pre-exposure (Table 2). Resistance  
reduction levels of 1.4, 3.1, 1.9 and 1.5 fold were recorded in  
tests of deltamethrin, permethrin, lambda-cyhalothrin and  
bendiocarb, respectively. The resistance reduction ratios for all 
tested insecticides are shown in Table 2.

There was also a significant difference in 24-hr post-exposure mor-
tality between mosquito cohorts (Table 3). Our tests revealed signif-
icant increases in mortalities when the mosquito populations were 
pre-exposed to PBO followed by deltamethrin compared to when 
the same populations were exposed to deltamethrin alone (paired  
t-test, df = 3, t = 18.4, and P < 0.001). Pre-exposure to PBO followed 
by permethrin also resulted in a significant increase in mortality rel-
ative to exposure to permethrin alone (paired t-test, df = 3, t = 9.80, 
and P = 0.002). Similarly, pre-exposure to PBO followed by lambda 
cyhalothrin yield a significant increase in mortality compared to 
cohorts exposed to lambda cyhalothrin alone (paired t-test, df = 3, 
t = 10.3, and P = 0.002). In tests for bendiocarb resistance, it was 
observed that pre-exposure to PBO created substantial synergism, 
resulting in higher mortality compared to exposure to bendiocarb 
with no synergist (paired t-test, df =3, t = 22.46, and P < 0.001).

Tests with TPP. There was a slight decrease in KDT
50

 when  
mosquitos were pre-exposed to TPP followed by either deltameth-
rin, permethrin or bendiocarb, compared to when the same popu-
lation of mosquitoes was exposed to the candidate insecticides 
alone (Table 2). Resistance to deltamethrin, permethrin, and ben-
diocarb were reduced by 0.9, 1.4, and 1.3 fold, respectively, with 
TPP (Table 2). However, there was no difference in mortalities in  
mosquitoes exposed to deltamethrin with or without pre-exposure 
to TPP (paired t-test, df = 3, t = 0.73, and P = 0.520). Also, there was 
no statistical difference in mean mortalities of mosquitoes exposed 
to TPP plus permethrin compared to when they were exposed to 
permethrin alone (paired t-test, df = 3, t = 0.88, and P = 0.444). 
On the other hand, there were differences in the mean mortality 
between bendiocarb and TPP + bendiocarb (paired t-test, df = 3,  
t = 19.12, and P = 0.006).
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Table 2. Knockdown rates (KDT50) and degree of resistance reduction of Anopheles arabiensis from 
two study villages after being exposed to various insecticides with and without pre-exposure to 
synergists.

Study sites Insecticide KDT50 (min) (95% CI) Resistance 
reduction¥

Minepa village 0.05% Deltamethrin 50.24 35.71 – 64.77 -

4% PBO + 0.05% Deltamethrin 35.90 27.56 – 44.24 1.40

0.75% Permethrin 70.20 34.42 – 105.98 -

4% PBO +0.75% Permethrin 22.72 17.82 – 27.61 3.09

0.05% Lambda cyhalothrin 54.88 34.62– 75.13 -

4% PBO + 0.05% Lambda cyhalothrin 29.61 22.55 - 36.66 1.85

0.05% Deltamethrin 60.87 38.84 – 82.89 -

20% TPP + 0.05% Deltamethrin 65.23 35.46 – 94.99 0.93

0.75% Permethrin 38.69 30.60 – 46.77 -

20% TPP +0.75% Permethrin 27.65 20.59 – 34.70 1.40

0.1% Bendiocarb 53.14 37.00 – 69.28 -

4% PBO + 0.1% Bendiocarb 35.25 27.51 – 42.99 1.51

0.1% Bendiocarb 56.14 40.04 – 72.24 -

20% TPP +0.1% Bendiocarb 43.71 33.44 – 53.98 1.28

Mavimba village 0.05% Deltamethrin 46.35 32.64 – 60.06 -

4% PBO + 0.05% Deltamethrin 23.33 17.98 – 28.68 1.99

0.75% Permethrin 39.78 29.16 – 50.39 -

4% PBO + 0.75% Permethrin 21.09 15.60 – 26.59 1.89

0.05% Lambda cyhalothrin 68.65 35.10 – 102.20 -

4% PBO +0.05% Lambda cyhalothrin 34.87 26.82 – 42.93 1.97

¥ Resistance reduction = KDT50 insecticide alone/ KDT50 insecticide plus synergist

Results of the synergist bioassays conducted with samples 
from Mavimba village
Prior exposure to PBO partially restored susceptibility to  
deltamethrin by 2.0 fold and decreased the KDT

50
 from 46.35min 

for deltamethrin alone to 23.33 min for deltamethrin and PBO  
(Table 2). The time required for 50% of the mosquitoes to be  
knocked down was also reduced from 39.78min for permethrin  
alone to 21.09 min after being exposed for permethrin and 
PBO. Resistance reduction level for permethrin following PBO  
pre-exposure was 1.9 fold (Table 2). Similarly, the resistance to 
lambda-cyhalothrin was reduced by 2.0 fold with PBO, with a 
shift in KDT

50
 from 68.65min to 34.87min (Table 2). There was a  

significant increase in mortality in mosquito populations pre-
exposed to PBO followed by deltamethrin compared to when the 

same populations were exposed to deltamethrin alone (paired  
t-test, t = 18.4, df =3, p < 0.001) (Table 4). Similarly, when the  
mosquito populations were pre-exposed to PBO followed by 
lambda-cyhalothrin this resulted in a significant increase in mean 
mortality compared to when the same population was exposed 
to lambda cyhalothrin alone (paired t-test, t = 17.9, df = 3,  
p < 0.001) (Table 4).

Results of the molecular assays to detect knockdown 
resistance (kdr) alleles
A total of 74 adult female An. arabiensis mosquitoes from  
Minepa, 66 from Mavimba and 80 from Lupiro were assayed  
for kdr allele mutations L1014F (kdr-west) and the L1014S  
(kdr-east). All specimens were negative for both mutations.
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Table 3. Mortality Anopheles arabiensis from Minepa village exposed to insecticides and the synergists, PBO or TPP.

 
Treatment

 
 
No. replicates 
done

 
 
Sample 
size *

% mean mortality (95% CI)

Minepa village

0.05% 
Deltamethrin

0.05% Lambda 
cyhalothrin

0.75% 
Permethrin

0.1% 
Bendiocarb

Environmental 
control

4 375 0 NA 0 0

Solvent control 4 375 0 NA 0 0

20% TPP only 4 375 0 NA 0 0

20% TPP & Test 
insecticide

4 375 27.0 (18.3 – 35.7)b NA 29.5 (20.3 – 38.7)b 72.0 (62.9 – 81.0)a

Test insecticide only 4 374 24.0 (13.4 – 34.6)b NA 26.5 (21.1 – 31.9)b 55.5 (46.4 – 64.6)a

Environmental 
control 4 370 0.2 (-0.2 – 0.6) 0 0 0

Solvent control 4 370 0.2 (-0.2 – 0.6) 0 0 0

4% PBO only 4 370 0 0 0 0

4% PBO & Test 
Insecticide

4 370 73.0 (63.5 – 82.5)b 97.5 (94.7 – 100)a 56.8 (46.9 – 66.6)a 76.0 (60.4 – 91.6)a

Test Insecticide only 4 370 45.0 (35.5 – 54.5)b 20.0 (5.6 – 34.4)a 08.8 (03.0 – 14.1)a 33.0 (23.5 – 42.5)a

NA=No assay was performed on this insecticide.
a There are significant differences in mean mortalities between exposure to insecticides with and without synergists.
b No significant difference in mean mortalities between exposure to insecticides with and without synergists.

Table 4. Mortality Anopheles arabiensis from Mavimba village exposed to insecticides and the synergists, PBO.

 
Treatment

 
 
No. replicates 
done

 
 
Sample 
size*

% mean mortality (95% CI)

Mavimba village

0.05% Deltamethrin 0.05% Lambda 
cyhalothrin

0.75% 
Permethrin

Environmental control 4 260 0.4 (-0.4 – 1.2) 0.4 (-0.4 – 1.2) 0

Solvent control 4 262 0.3 (-0.3 – 0.9) 0 0

4% PBO only 4 262 0 0 0

4% PBO & Test 
Insecticide

4 241 92.5 (86.2 – 98.8)a 85.2 (74.6 – 95.8)a 91.3 (82.9 – 99.6)a

Test Insecticide only 4 240 27.5 (24.7 – 30.3)a 20.0 (03.5 – 36.5)a 67.5 (54.5 – 80.5)a

a There are significant differences in mean mortalities between exposure to insecticides with and without synergists.

b No significant difference in mean mortalities between exposure to insecticides with and without synergists

Discussion
The increasing spread of insecticide resistance in malaria vectors 
jeopardizes control and elimination efforts9–14, thus necessitating  
regular resistance monitoring to design setting-specific and  
successful resistance management programmes16,28,37. Overall, 
this study detected widespread resistance against pyrethroids,  
bendiocarb, and DDT; but not against propoxur, dieldrin, and 
the two organophosphates, pirimiphos-methyl and malathion, 
for which there was full susceptibility across all the villages and 

seasons. This study also found marked temporal and fine-scale  
fluctuations of insecticide resistance profiles in both male and 
female An. arabiensis against three insecticides in the pyre-
throid class, DDT, and bendiocarb. In all the three villages,  
deltamethrin, permethrin, lambda-cyhalothrin, DDT and bendiocarb  
resistance of male An. arabiensis mosquitoes fluctuated between 
seasons and villages. Resistance of female An. arabiensis  
mosquitoes against DDT and bendiocarb also fluctuated between 
seasons and villages. The most resistant populations were  
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observed in Minepa for bendiocarb, lambda-cyhalothrin and 
DDT and in Lupiro for lambda-cyhalothrin and permethrin. In  
Minepa, bendiocarb resistance was detected in the dry season,  
but completely diminished in wet seasons for both male and  
female populations, and DDT resistance followed a similar trend  
in the male population. However, in Lupiro village, DDT resist-
ance was observed during the wet season only.

The seasonal and spatial variation in insecticide resistance  
detected in this study is not unique. Variations in both pheno-
typic and genotypic insecticide resistance in both Anopheles and  
Aedes mosquitoes over small spaces and time have been reported 
previously22,38–40. A recent report in Chad found a significant  
spatial changes in insecticide resistance in an An. arabiensis  
population38. Similarly, there was significant difference in phe-
notypic and genotypic resistance at a fine geographical scale in  
Ae. aegypti populations to chlorpyrifos-ethyl and deltamethrin 
sampled from nearby study sites in Mexico39. The seasonal and 
spatial fluctuations in insecticide resistance might be attributed to 
differences in the biology and genetics of the vector populations 
in particular ecological settings, as reported in a previous study by 
Verhaeghen et al.40.

Perhaps the presence of chemical contaminants in a particular 
environment, possibly due to leached agricultural chemicals and 
other pollutants at a particular time might cause selection pres-
sure in mosquitoes, and subsequent resistance to insecticides.  
Also, the existence of phenotypic resistance in the study areas 
to lambda-cyhalothrin, bendiocarb and DDT that are not used 
for LLINs or IRS, suggest cross-resistance between classes or  
alternative sources of insecticide resistance pressure, most likely 
from agriculture. The impact of agricultural pesticides in the 
selection of resistant mosquitoes has already been reported  
extensively19,41–48. This hypothesis is also supported by our  
preliminary observations that the majority of farmers in the study 
villages reported applying more pesticides in dry seasons than in 
wet seasons (Matowo N, Munhenga G, Tanner M, Koekemoer 
L, Coetzee M and Okumu F, unpublished study, Ifakara Health  
Institute). The differences in insecticide resistance between  
adjacent study villages suggests that other than variations that  
have been reported between districts and regions10,14,15, there 
might also be fine-scale differences even within the villages that  
require further investigations. All these variations signify an  
important challenge to the vector control programs that might 
require proper consideration in the timing/season and choosing  
different insecticides for application even in a particular small 
area.

Male mosquitoes are considered to be more delicate and suscep-
tible to insecticides as they have a shorter life expectancy than  
their females counterparts28. In this study, males were found to 
be resistant to the same insecticides as the females, but at a lower 
level. These observations are consistent with previous studies 
that have reported that adults male An. arabiensis, with previous  
exposure to insecticides, could also experience resistance similar to  
females49. For example, a high level of glutathione-S-transferase 
(GSTs) activity was found in both male and female An. arabiensis 

selected for resistance to DDT, but only elevated esterases was 
found in the male-DDT selected strain49. Resistance in male  
mosquitoes was reported previously to adversely affect their  
mating competiveness, as shown in Culex pipiens and  
An. gambiae50–52. This suggests the need for regular monitoring of  
susceptibility status of male mosquitoes, particularly in interven-
tions targeting male mating behaviour, such as the sterile insect 
technique, which involves mass-rearing, sterilization, and release 
of sterile male mosquitoes into the wild population to prevent 
females from reproducing53,54. Other interventions that have been  
proposed for mosquito-borne disease elimination includes target-
ing male swarming behaviour55, sugar-seeking behaviour through 
the use of attractive toxic sugar baits56,57 and larval control58. In 
summary, our findings and the current evidence suggest the need 
for regular monitoring of susceptibility status of both males and 
females, especially for end-game scenarios where LLINs and IRS 
have already been widely used, but malaria transmission still per-
sists.

As revealed in the synergist assays, the reduction in knockdown 
rates and increase in mortalities was due to synergistic action of 
piperonal butoxide (PBO), as an inhibitor of P450 monooxygen-
ases, and triphenol phosphate (TPP), as an inhibitor of the esterases 
activity. Synergists have an effect by augmenting the penetration 
of the insecticides into the mosquito body and counteracting the 
metabolic pathways that would otherwise metabolize the insec-
ticides, thus restoring susceptibility to varying degrees31,59–61.  
The observed effects in the present study suggest involvement  
to a significant degree of one or both of the two enzyme classes 
in conferring pyrethroid and bendiocarb resistance within the  
mosquito populations sampled from the study sites. However, 
esterases seem not to be involved in deltamethrin and permethrin  
resistance in the mosquito population sampled from Minepa  
village. Susceptibility to lambda-cyhalothrin was completely 
restored by 4% PBO in the mosquito population sampled from 
Minepa village, indicating that the resistance is metabolic medi-
ated by monooxygenases. However, the inability of PBO and 
TPP to completely reverse the deltamethrin, permethrin and ben-
diocarb resistance across the study sites indicates that either other  
enzymes might be playing a role in the metabolic resistance, or  
there is presence of other mutations that require further investi-
gation. These questions will need to be further explored through  
biochemical and genetic analyses. Our findings agree with previ-
ous studies that have consistently reported the combining effect of 
synergists and insecticides against resistant disease-transmitting 
mosquitoes and incomplete suppressions of pyrethroids resistance 
due to the synergists action17,31,59,62–64.

The absence of L1014F and L1014S resistance alleles in the  
field-collected adult female mosquito populations suggests that 
the phenotypic resistance to pyrethroid and DDT was not asso-
ciated with target site insensitivity of the voltage-gate sodium 
channel. The findings supports an earlier study by Okumu et al., 
who also showed absence of kdr mutations in wild population of  
An. arabiensis from Lupiro village, five years before this  
current study65. Similarly, a recent multi-region study in Tanzania 
by Kabula et al.66 reported absence of both L1014F and L1014S 
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mutations in An. arabiensis populations from Kilombero district, 
which neighbours Ulanga district where our study was con-
ducted. However, these gene mutations were detected in both  
An. arabiensis and An. gambiae s.s. from other sentinel districts of 
Tanzania where studies were carried out66.

Conclusions
This study revealed multiple spatial and temporal fluctuations of 
insecticide resistance profiles in the An. arabiensis populations 
from the three neighbouring villages in south-eastern Tanzania, 
and confirmed the presence of pyrethroid, DDT and bendiocarb  
resistance in each of these three villages. The substantial, though 
not absolute reversal of pyrethroid and carbamate resistance when  
mosquitoes were pre-exposed to PBO or TPP, coupled with the 
absence of kdr resistance alleles, suggests involvement of P450 
monooxygenases and esterases as key determinants confer-
ring the resistance phenotypes. We recommend further intensity  
bioassays to determine the strength of phenotypic resistance, as 
well as biochemical and molecular analysis to elucidate various 
enzymes involved in the resistance. Such additional tests are essen-
tial for an effective resistance management programmes in this or 
similar areas. Overall, these results highlight the importance of  
periodic and continuous insecticide susceptibility surveillance  
and emphasize the need to consider fine-scale variations in  
insecticide resistance levels, even in small geographical locations, 
when implementing insecticidal-based interventions.
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