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Abstract 

Background: Clinical trial investigators may need to evaluate treatment effects in a specific subgroup (or subgroups) 
of participants in addition to reporting results of the entire study population. Such subgroups lack power to detect a 
treatment effect, but there may be strong justification for borrowing information from a larger patient group within 
the same trial, while allowing for differences between populations. Our aim was to develop methods for eliciting 
expert opinions about differences in treatment effect between patient populations, and to incorporate these opin‑
ions into a Bayesian analysis.

Methods: We used an interaction parameter to model the relationship between underlying treatment effects in two 
subgroups. Elicitation was used to obtain clinical opinions on the likely values of the interaction parameter, since this 
parameter is poorly informed by the data. Feedback was provided to experts to communicate how uncertainty about 
the interaction parameter corresponds with relative weights allocated to subgroups in the Bayesian analysis. The 
impact on the planned analysis was then determined.

Results: The methods were applied to an ongoing non‑inferiority trial designed to compare antiretroviral therapy 
regimens in 707 children living with HIV and weighing ≥ 14 kg, with an additional group of 85 younger children 
weighing < 14 kg in whom the treatment effect will be estimated separately. Expert clinical opinion was elicited and 
demonstrated that substantial borrowing is supported. Clinical experts chose on average to allocate a relative weight 
of 78% (reduced from 90% based on sample size) to data from children weighing ≥ 14 kg in a Bayesian analysis of the 
children weighing < 14 kg. The total effective sample size in the Bayesian analysis was 386 children, providing 84% 
predictive power to exclude a difference of more than 10% between arms, whereas the 85 younger children weigh‑
ing < 14 kg provided only 20% power in a standalone frequentist analysis.

Conclusions: Borrowing information from a larger subgroup or subgroups can facilitate estimation of treat‑
ment effects in small subgroups within a clinical trial, leading to improved power and precision. Informative prior 
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Background
Phase III clinical trials evaluate the effectiveness and 
safety of medical interventions in a chosen patient pop-
ulation. For biological or operational reasons, investiga-
tors may choose to evaluate effectiveness and safety in a 
specific subgroup (or subgroups) of patients within the 
main trial population, in addition to reporting on the 
whole population. Subgroups of interest may be defined 
by patient characteristics, disease characteristics or bio-
markers. A subgroup might represent a small population 
that merits being studied in a standalone trial, but for 
which sufficient recruitment would be difficult, for exam-
ple paediatric sub-populations or rare disease subtypes. 
Basket trials are designed specifically to study multiple 
patient subgroups: a single treatment is delivered to sub-
types of patients with the same disease, aiming to draw 
conclusions about effectiveness within rather than across 
subtypes [1, 2].

Sample sizes within subgroups are usually small and 
tend not to provide sufficient power for evaluating treat-
ment effects in a standalone analysis. However, if the 
treatment effect in a subgroup is expected to be similar 
to that in the remainder of the trial population, there is 
justification for borrowing information across patient 
subgroups using Bayesian methods. Several authors have 
recommended using a shrinkage approach to borrowing 
across multiple subgroups, in which treatment effects for 
separate subgroups are assumed exchangeable and drawn 
from a common random distribution, with or without 
stratification by subgroup characteristics [3–6]. Using 
this approach, the treatment effect for any single sub-
group is informed by the effects observed in other sub-
groups and pulled towards the overall average treatment 
effect.

In this paper, our focus is to evaluate a treatment effect 
in a pre-defined subgroup of interest, which we call the 
target subgroup, while borrowing information from a 
separate patient subgroup, using a Bayesian analysis. In 
this setting, a hierarchical shrinkage approach would 
not be appropriate since this requires estimation of the 
variability across subgroups, which is not possible with 
only two subgroups. Instead we use a simple model to 
borrow information from one patient subgroup for the 
other. In addition, we adjust the weight given to the bor-
rowed information based on clinical opinion about the 
similarity of treatment effects in the two subgroups. An 
advantage of using a simple rather than complex model is 

that uncertainty about similarity of treatment effects has 
direct correspondence to weights allocated to each sub-
group, with the interpretation of the model being easily 
communicated to clinicians.

Motivating example
The ODYSSEY (PENTA-20) trial is an open-label, ran-
domised trial evaluating the efficacy and safety of once 
daily dolutegravir-based antiretroviral therapy (ART) 
versus standard of care (SOC) in children and adoles-
cents living with HIV and starting first- or second-line 
ART (ISRCTN91737921) [7]. A non-inferiority design 
was used with the trial powered to exclude an absolute 
difference of more than 10% in combined clinical and 
virological failure rates between the dolutegravir (DTG) 
and SOC arms by 96 weeks, assuming an overall failure 
rate in both arms of 18%. Failure was defined as the first 
occurrence of any of: (1) insufficient virological response 
at week 24 with treatment switch to second-/third-line; 
(2) virological failure (two consecutive viral load meas-
ures ≥ 400 c/ml with the first at/after week 36); (3) new or 
recurrent AIDS defining event (WHO 4) or severe WHO 
3 event or (4) all-cause death. The main trial recruited 
707 children weighing ≥ 14  kg (age range 2.9–18  years; 
96% ≥ 6  years) between September 2016 and June 2018; 
85 children weighing 3 to < 14  kg (range 0.13–5.9  years; 
89% < 3  years) were subsequently recruited between 
July 2018 and August 2019. A lead-in pharmacokinetics 
(PK) sub-study in the DTG arm was conducted to pro-
vide data on dosing in young children. For convenience, 
we refer in this paper to the two groups of children as 
“older” and “younger” as well as “weighing ≥ 14 kg” and 
“weighing < 14 kg”.

The 96 week follow-up of the children recruited weigh-
ing < 14  kg will be complete approximately 12  months 
after the 96  week follow-up of the children weigh-
ing ≥ 14 kg. The ODYSSEY team opted not to delay pres-
entation of the results from the main trial participants 
weighing ≥ 14 kg. Sample size in the younger children is 
small (n = 85) and therefore a standalone analysis of their 
data will not be adequately powered to test the difference 
in failure rates. Since treatment effects between the DTG 
and SOC arms may be similar in the older and younger 
children, there is an opportunity to borrow information 
from the older children when analysing the younger chil-
dren, through a Bayesian analysis.

distributions for interaction parameters are required to inform the degree of borrowing and can be informed by 
expert opinion. We demonstrated accessible methods for obtaining opinions.
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If treatment effects in older and younger children were 
considered identical, it would be appropriate for con-
clusions about the treatment effect in younger children 
to be based on a combined analysis. The much larger 
sample of older children would dominate this analysis, 
receiving ~ 90% of the weight. If, as is more likely, treat-
ment effects were considered similar but not identical, 
it would be appropriate to borrow partial rather than 
full information from the older children to estimate the 
treatment effect in the younger children. The amount of 
information borrowed should reflect the assumed simi-
larity of the true treatment effects. Reasons for treat-
ment effects to differ might include: differences in the 
range and formulations of ART drugs available in the 
SOC arm, differing adherence to treatment (influenced 
by tolerability and acceptability of drugs and whether or 
not caregivers administer doses), differences in antiret-
roviral exposure by weight or age and differences in viral 
dynamics. The ODYSSEY team decided to use elicitation 
methods [8] to obtain clinical opinion on the similarity 
of these treatment effects, before the main trial results 
were known, to inform the weighting of data from older 
children in a planned Bayesian analysis of the younger 
children.

Methods
Model
Our aim was to estimate a treatment effect θ1 in a tar-
get subgroup of patients within a trial (e.g. the younger 
children in ODYSSEY), while borrowing information 
obtained from a larger subgroup of patients within the 
same trial. Suppose that data from the target subgroup 
provide an estimate y1 of θ1 with standard error σ1 , and 
we assume:

Suppose also that data from the larger subgroup (e.g. 
the older children in ODYSSEY) provide the following 
estimate y0 of treatment effect θ0 in the larger subgroup, 
with standard error σ0:

We introduce an interaction parameter δ to describe 
the relationship between treatment effects in the two 
subgroups: θ1 = θ0 + δ . Elicitation can be used to obtain 
opinions about likely values for δ , which represents an 
interaction between treatment and subgroup. In the 
ODYSSEY trial, the treatment effect of interest is a risk 
difference and δ is a difference in risk differences. We 

(1)y1 ∼ N
(

θ1, σ
2
1

)

(2)y0 ∼ N
(

θ0, σ
2
0

)

assume a normal distribution for δ and use elicited opin-
ion to inform choice of the standard deviation σδ:

We choose a mean of 0 for the distribution for δ , rather 
than using expert opinion to inform this assumption, 
because we wanted to use clinical opinion to inform the 
weight given to data from the larger subgroup but not to 
directly alter the location of the estimate for the smaller 
subgroup. We choose to specify a flat normal prior for 
θ0 , since we do not want to introduce any prior belief 
about the magnitude of the treatment effect:

Under a framework proposed by Hobbs et  al., the 
resulting prior for θ1 is a location commensurate prior 
with commensurability parameter σδ [9], where a com-
mensurate prior is a prior distribution describing the 
extent to which a parameter in a new study varies 
around the corresponding parameter in a previous 
study or studies. Larger values for σδ represent greater 
uncertainty about the magnitude of the interaction and 
correspond to the larger subgroup of patients contrib-
uting less information to the target subgroup analysis. 
A value σδ = 0 represents certainty that θ1 = θ0 and 
would result in the two subgroups being combined.

In a combined analysis using data sets from both sub-
groups, the treatment effect in the target subgroup is 
estimated as follows:

We note that σ 2
1

 and σ 2
0

 are assumed fixed and known, 
as estimated from the data, and no allowance is made 
for their uncertainty. The motivation for choosing a 
simple model and assuming normal distributions is that 
the variance of δ has a direct correspondence to the rel-
ative weights allocated to the two subgroups of patients 
in the analysis. This simplifies communicating to clini-
cians how uncertainty about δ affects the results of the 
Bayesian analysis. In this analysis, the relative weight 
given to the larger subgroup in estimation of the treat-
ment effect in the target subgroup is:

Derivations of formulae (5) and (6) are provided in 
supplementary material (Additional file  1), together 
with a mathematical description of the model.
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Elicitation methods
Expert opinion was sought on the interaction parameter δ 
representing the difference between the risk difference in 
the younger children weighing < 14 kg and the risk differ-
ence in the older children weighing ≥ 14 kg.

A pilot elicitation study was carried out in which 
four methods were implemented and evaluated by five 
experts with paediatric or statistical expertise (authors 
AB,DF,DMG,CLM,AT). Feedback informed us that 
experts found it helpful to be asked the same question 
in multiple ways, and then to be asked to moderate their 
answers, because this clarified their thought process. 
This approach allowed us to check and discuss the coher-
ency of the experts’ statements about their uncertainty 
[10]. We therefore decided to include three methods in 
our subsequent elicitation exercise, chosen on the basis 
of being well understood. The fourth method involved 
eliciting an estimate together with an inter-quartile range 
which was not easily communicated or understood.

In the final elicitation procedure, thirteen experts 
practising as paediatric HIV clinicians (including eleven 
ODYSSEY trial investigators and one member of the 
ODYSSEY Endpoint Review Committee) were asked 
to provide initial answers under each of two methods 
(stages 1 and 2 below) and were then asked to moder-
ate their answers by providing an answer under a third 
method (stage 3). The stages of the elicitation procedure 
were identical across experts.

Stage 1
Experts were asked to assume that data were available 
from a very large trial comparing the two arms, DTG to 
SOC regimens, in older children weighing ≥ 14  kg, in 
which the failure rate by 96 weeks in the SOC arm was 
18% and the treatment difference in failure rates was esti-
mated as 5% in favour of the DTG arm. They were asked 
to suppose that the trial was so large that sampling vari-
ability was close to zero and the observed estimate was 
very close to the true treatment effect in older children. 
This assumption was discussed to ensure that experts 
understood our focus was on uncertainty arising from 
imperfect knowledge rather than uncertainty arising 
from sampling variation [8]. We note that the assumed 
values were hypothetical.

Opinion was elicited on the risk difference in younger 
children recruited weighing < 14  kg (age under approxi-
mately 3  years but all > 4  weeks of age), rather than 
directly on the difference in risk differences. In order 
to elicit a range for the experts’ uncertainty about the 
risk difference in younger children, we asked them to 
consider what size of true difference in younger chil-
dren would surprise them, first in the direction of more 
extreme risk differences favouring DTG and then in the 

opposite direction. These values formed their uncertainty 
range. Eliciting uncertainty ranges provides a mean and 
variance for each expert’s probability distribution, under 
the assumption of normality; people have been shown to 
perform better when assessing intervals rather than vari-
ances, and it is preferable to avoid eliciting a mean value 
first to avoid anchoring effects [8, 10].

Next, experts were asked to assign a probability to their 
chosen uncertainty range, to represent how likely they 
believed it was that the true risk difference in younger 
children was included. They were asked to think about 
placing 100 counters either inside or on either side of 
the range, and were given an opportunity to use physical 
counters or draw their distribution to help visualise their 
probability beliefs, following a “bins and chips” approach 
to assigning probabilities to intervals (Figure S2) [11, 12].

Stage 2
The second stage was identical to the first stage, except 
for the risk difference assumed in older children. Here, 
experts were asked to assume that failure rates of 18% 
by 96  weeks had been observed in both arms in a very 
large trial comparing DTG to SOC in children recruited 
weighing ≥ 14 kg.

Stage 3
Experts were asked to consider the weight allocated to 
the data from older children if conclusions about the 
risk difference in younger children were based on a com-
bined analysis of both subgroups. They were informed 
that the data from older children would receive approxi-
mately 90% of the weight if weightings were based on 
sample sizes alone or 0% of the weight if these data were 
ignored. They were then asked how much weight they 
would like allocated to the data from older children. 
Experts were not required to provide a rationale for their 
beliefs, but comments on rationale were documented if 
mentioned. An Excel spreadsheet was provided (Figure 
S1 in Additional file  1) to illustrate the correspondence 
between weights allocated to the data from older chil-
dren and beliefs about the uncertainty range for the treat-
ment effect in younger children. Choices for the weight, 
assumed risk difference in older children and level of 
uncertainty could be altered within the spreadsheet. 
Experts were asked to consider their initial range choices 
and think about the correspondence between weight in 
combined analysis and uncertainty ranges, and then 
make a final choice of weight to be allocated to the older 
children’s data.

Elicitation process
Paediatricians with expertise in HIV treatment and man-
agement, nearly all of whom were researchers enrolling 
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children in ODYSSEY and/or other paediatric HIV stud-
ies, were invited to participate in the elicitations. As it 
is recommended that opinion-based prior distributions 
represent a breadth of opinions [13], we invited experts 
from several different countries. The chosen experts all 
had sufficient experience and knowledge to provide valid 
and reliable descriptions of the quantities of interest [12]. 
Conducting elicitations remotely would have been pos-
sible, but face-to-face elicitations were preferred because 
experts can find the elicitation process difficult and it is 
useful to have a facilitator on hand to answer questions 
[8, 14]. We therefore carried out the elicitation exercise 
alongside an international PENTA-ID Network meet-
ing [15] in May 2019. Recruitment was still ongoing at 
that time and elicitations assumed that the trial would 
include 700 children weighing ≥ 14  kg and 80 children 
weighing < 14 kg. The elicitations were carried out before 
results from the older children were available in order 
that opinions were not influenced by knowledge of the 
results. This avoided using the data from older children 
twice in the Bayesian analysis. Thirteen experts partici-
pated in the elicitation exercise; 12 experts were inter-
viewed face-to-face by RT in 1:1 meetings and one expert 
was interviewed by telephone (since a face-to-face meet-
ing was not possible).

Analysis of elicitation results
We mapped each expert’s chosen uncertainty range (a, b) 
and corresponding probability p to a normal distribu-
tion. The following values were calculated for the mean 
µ and standard deviation σ of the expert’s probability 
distribution:

where � is the cumulative distribution function of the 
standard normal distribution. We present means and 
inter-quartile ranges from the fitted distributions rather 
than the original ranges chosen, in order that distribu-
tions are comparable across experts who assigned differ-
ent probabilities to their ranges.

The relative weight to be allocated to evidence from 
the ≥ 14  kg children in Bayesian analysis of the < 14  kg 
children was derived from the clinical opinions elicited. 
To pool opinions across experts, we used the median of 
the weights chosen. This method of pooling was cho-
sen in order that the pooled weight represents the opin-
ion of a ‘typical’ expert and is not influenced by extreme 
opinions.

(7)µ =
a+ b

2

σ =
b− a

2�−1

(

p+1

2

)

Planned Bayesian analysis in the ODYSSEY trial
A Bayesian analysis will be reported for the children 
weighing < 14  kg, alongside frequentist analyses of the 
children weighing < 14 kg and of the whole trial popu-
lation (< 14  kg and ≥ 14  kg). The analysis is expected 
to be performed in early 2022. The Statistical Analysis 
Plan was written in advance of conducting the elicita-
tions and specifies that if at least 80% of the experts 
chose weights within a 30% absolute range, the Bayes-
ian analysis will be reported as the primary analy-
sis; alternatively, if less than 80% of the experts chose 
weights within a 30% absolute range, the Bayesian 
analysis would be reported as a secondary analysis and 
the frequentist analysis of the < 14  kg children would 
be reported as the primary analysis of these data. The 
range threshold of 30% was chosen on the basis of how 
much variation in opinion among the clinical experts 
was considered acceptable.

Results
Descriptive analysis of elicitation results
Figure 1 summarises the experts’ opinions from stage 1, 
about the difference in failure rates in children weigh-
ing < 14  kg in the DTG arm vs the SOC arm, when 
assuming the true treatment difference in children weigh-
ing ≥ 14  kg is −5% (DTG − SOC). On average, experts 
expected the treatment benefit to be slightly greater in 
children weighing < 14  kg: the median of mean values 
was −6% , with inter-quartile range −7% to −5% . The 
probabilities assigned to their chosen uncertainty ranges 
ranged from 60 to 98%, with a median value of 90%. 
Three experts commented on their rationale for expect-
ing treatment benefit to be greater in younger children; 
reasons given were that (i) adherence is higher in younger 
children than older children (carers give /supervise treat-
ment in young children, whereas adolescents are known 
to be less adherent) and (ii) the DTG comparator formu-
lations (SOC regimens) available for young children (i.e. 
mostly lopinavir/ritonavir pellets) are less well tolerated 
than SOC drugs used in older children.

Figure  2 summarises the experts’ opinions from stage 
2, when assuming no difference in failure rates between 
DTG and SOC in children weighing ≥ 14 kg. On average, 
the treatment benefit was again expected to be slightly 
greater in children weighing < 14 kg: the median of mean 
values was −2% , with inter-quartile range −4% to 0 % . 
The probabilities assigned to the experts’ chosen uncer-
tainty ranges ranged from 60% to 96%, with a median 
value of 90%. The opinions expressed when assuming no 
difference in failure rates in older children were reason-
ably consistent with those expressed when assuming a 5 
% benefit for DTG.
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Fig. 1 Experts’ opinions about the true treatment difference in 96‑week failure rates in children weighing < 14 kg, assuming a 5% treatment 
difference in favour of DTG in children weighing ≥ 14 kg (stage 1): medians and inter‑quartile ranges of fitted probability distributions

Fig. 2 Experts’ opinions about the true treatment difference in 96‑week failure rates in children weighing < 14 kg, assuming a 0% treatment 
difference in children weighing ≥ 14 kg (stage 2): medians and inter‑quartile ranges of fitted probability distributions



Page 7 of 11Turner et al. BMC Medical Research Methodology           (2022) 22:49  

After considering the correspondence between uncer-
tainty ranges chosen and the relative weight that would 
be allocated to the data from older children in a com-
bined analysis and reviewing their initial range choices, 
experts made a final choice for the relative weight (Fig. 3). 
It was explained that this weight rather than the initial 
range choices would be used in the planned Bayesian 
analysis. One expert (L) requested that their range choice 
under stage 1 be used in the analysis rather than their 
chosen weight, because they were more confident about 
their initial choice, and we therefore mapped their range 
to a weight.

The median of the relative weights chosen was 78%, 
with inter-quartile range from 75% to 84%. When assum-
ing a −5% difference in children weighing ≥ 14  kg, a 
weight of 78% corresponds to a 95% range of −12% to 2% 
for the treatment difference in children weighing < 14 kg. 
All experts chose weights within a 30% absolute range, 
meaning that the pre-specified criterion for the Bayes-
ian analysis to be reported as the primary analysis of 
the < 14 kg children was met.

Impact on analysis of ODYSSEY trial
We then explored the potential impact of incorporat-
ing evidence obtained from the older children as a 
prior distribution in analysis of the younger children 
in the ODYSSEY trial, using the final sample sizes of 

707 children weighing ≥ 14  kg and 85 children weigh-
ing < 14  kg, together with hypothesized observed treat-
ment effects. In frequentist analyses, the DTG regimen 
is judged non-inferior to SOC if the upper bound of the 
95% confidence interval for the difference in propor-
tions failing (DTG − SOC) is less than 10%. In Bayesian 
analyses, the DTG regimen is judged non-inferior to SOC 
if the upper bound of the corresponding 95% credible 
interval is less than 10%.

When applying the chosen relative weight of 78%, the 
evidence from 707 children weighing ≥ 14 kg is given an 
effective sample size equivalent to 301 children in the 
Bayesian analysis, assuming failure rates of 18% in both 
arms. The total effective sample size in the Bayesian anal-
ysis is therefore 301 + 85 = 386 children. We assume flat 
Unif(0,1) priors for the failure rates in each treatment 
arm in the older children. As a measure of the power pro-
vided by the Bayesian analysis, we calculate predictive 
power, which is the predictive probability of obtaining a 
‘significant’ result in the planned Bayesian analysis [16]. 
Under the decision criteria above, a significant Bayesian 
result is defined here as a 95% credible interval for the 
difference in proportions failing (DTG − SOC) that has 
an upper bound lower than 10%. The Bayesian analysis 
provides 84% predictive power to exclude (at two-sided 
5% significance level) a difference beyond the non-inferi-
ority margin of 10% between the two arms, allowing for 

Fig. 3 Experts’ choices for relative weight to allocate to data from children weighing ≥ 14 kg in a Bayesian analysis of the children weighing < 14 kg 
(stage 3)
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10% loss to follow-up. For comparison, the sample of 85 
children weighing < 14 kg provides 20% power in a stan-
dalone frequentist analysis.

Example 1
First, we consider a scenario in which the direction of 
the observed treatment effect differs between the older 
and younger children. Suppose the treatment difference 
in 96-week failure rates between DTG and SOC (DTG − 
SOC) was estimated empirically in each subgroup as −2% 
(95% confidence interval (CI): −8% to 4 % ) in children 
weighing ≥ 14  kg and as 7 % (95% CI: −10% to 24 % ) in 
children weighing < 14  kg. Under this data scenario, the 
DTG regimen is judged non-inferior to SOC in children 
weighing ≥ 14  kg. In a standalone analysis of the small 
sample of 85 children weighing < 14  kg, however, the 
95% confidence interval is extremely wide, with DTG not 
judged non-inferior.

In a Bayesian analysis of the children weighing < 14 kg 
(Fig. 4), the treatment difference in failure rates (DTG − 
SOC) is estimated from expression (5) as 0% (95% cred-
ible interval (CrI): −8% to 8 % ) and we conclude non-infe-
riority for the DTG regimen in children weighing < 14 kg. 
The conclusion changes when the data from older chil-
dren are incorporated and we would prefer to report the 
Bayesian analysis informed by the clinical opinions elic-
ited, in preference to the standalone analysis. A standard 
pooled data analysis of both subgroups would be appro-
priate if the treatment differences were believed to be 
identical across subgroups, and produces an estimate of 

−1% (95% CI: −6% to 4 % ). As a sensitivity analysis, we 
also performed the Bayesian analysis using each expert’s 
chosen relative weight in turn. The results ranged from 
an estimated treatment difference of -1% (95% CI: -6% to 
4%) to an estimate of 2% (95% CI: -9% to 12%).

Example 2
Next, we consider a scenario where the observed treat-
ment effect in younger children is in the same direction 
but more extreme than that in older children. Suppose 
that the treatment difference in 96-week failure rates 
(DTG − SOC) was estimated empirically as −10% (95% 
CI: −25% to 5% ) in children weighing < 14  kg, while the 
observed difference in children weighing ≥ 14 kg remains 
−2% (95% CI: −8% to 4 % ) as in Example 1. Under this 
scenario, the DTG regimen is judged non-inferior to the 
SOC regimen in the small sample of children weigh-
ing < 14  kg, although the treatment difference is very 
imprecisely estimated. In a Bayesian analysis incorpo-
rating evidence from the children weighing ≥ 14  kg, the 
treatment difference is pulled back towards the null value 
and estimated from expression (5) as −4% (95% CrI: 
−11% to 3 % ) in favour of DTG (Fig. 5). As in Example 1, 
we would prefer to report the Bayesian analysis informed 
by clinical opinion in preference to the imprecise and 
more extreme standalone analysis of the younger chil-
dren. A standard pooled analysis produces an estimate 
of −3%(95% CI: −8% to 2 % ). As a sensitivity analysis, we 
also performed the Bayesian analysis using each expert’s 
chosen relative weight in turn. The results ranged from 

Fig. 4 Treatment difference estimates and 95% intervals in Example 1, obtained from a pooled analysis of all children and a Bayesian analysis for 
children weighing < 14 kg (incorporating evidence from children weighing ≥ 14 kg as a prior distribution), together with results from separate 
subgroups
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an estimated treatment difference of -5% (95% CI: -15% 
to 4%) to an estimate of -3% (95% CI: -8% to 2%).

Discussion
We have described methods for evaluating a treatment 
effect in a small subgroup within a clinical trial, while 
borrowing information from the main trial popula-
tion. In the ODYSSEY trial, clinical experts chose on 
average to allocate a relative weight of 78% (reduced 
from ~ 90% based on sample size) to data from children 
weighing ≥ 14  kg in a Bayesian analysis of the children 
weighing < 14 kg. Borrowing information from the older 
children leads to substantial increases in the power and 
precision of the analysis, in comparison with an analy-
sis based on the younger children alone. To provide 
transparency for those concerned about incorporat-
ing borrowed information, we recommend reporting 
results from the Bayesian analysis alongside results from 
the standalone analysis and a conventional combined 
analysis.

Similar methods could be applied when borrowing 
information across multiple subgroups in a basket trial, 
to inform estimation of treatment effects in baskets insuf-
ficiently powered for a standalone analysis. In paediatric 
trials, there could be rationale for estimating treatment 
effects within multiple narrower age groups, where one 
or more of these include low numbers of children. In 
cancer trials, if a basket trial studying biologically related 
cancers includes some common and some rare cancers, 
information could be borrowed from the large baskets to 

inform estimation of treatment effect in the small bas-
kets. If baskets are adequately powered, however, there 
is no need to borrow information. For example, the main 
ODYSSEY trial population of older children included two 
baskets (children starting first-line or second-line ART) 
that were adequately powered for standalone analysis. 
Similar methods can be used to incorporate information 
from adult trials when analysing paediatric trials [17, 18].

Clinical opinion was used to inform the weight given 
to the data from older children in analysis of the younger 
children, but we chose to assume a zero mean for the 
interaction parameter rather than using expert opinion to 
inform this. This means that if the set of opinions were 
shifted to the left or right in Fig. 1, the Bayesian analysis 
would be unchanged. Independent priors were assumed 
for the interaction parameter and the treatment effect 
θ0 in older children; this is supported by the similarity of 
opinions presented in Figs. 1 and 2, and because experts 
are expected to be much more certain about the inter-
action parameter than about θ0 a priori. When eliciting 
clinical opinion, we chose to use an individual elicitation 
rather than group elicitation approach, in order to obtain 
a variety of opinions and to avoid the potential problem 
that one or two individuals could be overly influential in 
the choice of a consensus distribution [8]. Carrying out 
individual face-to-face elicitations is time-consuming 
and logistically challenging when the chosen experts are 
from multiple countries. Using an online remote elicita-
tion process would allow opinions to be collected from 
a larger number of experts [19, 20], but ensuring that 

Fig. 5 Treatment difference estimates and 95% intervals in Example 2, obtained from a pooled analysis of all children and a Bayesian analysis for 
children weighing < 14 kg (incorporating evidence from children weighing ≥ 14 kg as a prior distribution), together with results from separate 
subgroups



Page 10 of 11Turner et al. BMC Medical Research Methodology           (2022) 22:49 

experts are fully engaged with the process and resolving 
any misunderstandings could be more difficult.

Adaptive methods of borrowing provide an alterna-
tive approach, in which the extent that borrowed data are 
down-weighted is influenced by disparity between the 
borrowed data and the observed data in the target sub-
group. These methods were proposed for adaptive bor-
rowing of external historical control data [21], and have 
also been discussed for borrowing information across 
strata or subgroups within trials [22, 23]. For example, a 
mixture prior with two components could be declared for 
the interaction term δ in the ODYSSEY trial, comprising 
one informative component based on expert opinion and 
one vague component. Weights chosen for the two com-
ponents would control how quickly the data from older 
children were down-weighted in response to conflict 
between the borrowed and observed data. In the ODYS-
SEY trial, we assumed no conflict between borrowed 
and observed data, on the basis that the borrowed data 
were obtained within the same trial rather than from an 
external source. In addition, the interaction parameter is 
imprecisely estimated from the data so we would be very 
unlikely to observe conflict here. In a setting where the 
interaction parameter is better estimated from the data 
and conflict is observed between borrowed and observed 
information, it would be preferable to report results from 
the target subgroup data alone.

Feedback from the experts who provided opin-
ions showed that they found stage 2 of the elicitation 
more difficult than the other two stages, because they 
found it hard to imagine failure rates not differing at all 
between DTG and SOC. A few experts commented that 
they would have liked additional information to inform 
their opinions, such as pharmacokinetic (PK) evidence 
or information about co-morbidities in the older and 
younger children. Preliminary PK data in ODYSSEY chil-
dren weighing 6 to < 14 kg (n = 16) were presented to the 
8 ODYSSEY investigators prior to the PENTA-ID meet-
ing and ODYSSEY investigators were familiar with PK 
data in children weighing ≥ 14 kg. This evidence was not 
published at the time our elicitations were conducted, 
but in retrospect it would have been preferable to pro-
vide the preliminary results to all experts. We used a 
simple model and assumed normality for risk differences, 
in order to facilitate communication with clinicians. 
If normality were not considered appropriate, a more 
complicated model could be assumed; however, the cor-
respondence between uncertainty about the interaction 
and the relative weights allocated to subgroups in the 
Bayesian analysis would then be lost. We considered it 
reasonable to assume normality for each expert’s proba-
bility distribution. Alternative nonparametric approaches 
to elicitation are available and would allow flexibility for 

the shape of the expert’s distribution [24]; these require 
additional quantities to be elicited and there is no par-
ticular rationale for their use in this setting.

Conclusions
Borrowing information from a larger subgroup or sub-
groups can facilitate estimation of treatment effects in 
small patient groups within a clinical trial and lead to 
improved power and precision, as shown for the ODYS-
SEY trial. This approach can be beneficial in subgroups 
for which sufficient recruitment is difficult, and could 
potentially reduce the cost and duration of a trial and 
the risks and inconvenience to vulnerable participants. 
Informative prior distributions for interaction param-
eters are required to inform the degree of borrowing and 
can be informed by expert opinion, and we have demon-
strated accessible methods for obtaining opinions.
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