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Abstract

Background: Dynamic modeling is commonly used to evaluate direct and indirect effects of interventions on
infectious disease incidence. The risk of secondary outcomes (e.g., death) attributable to infection may depend on
the underlying disease incidence targeted by the intervention. Consequently, the impact of interventions (e.g., the
difference in vaccination and no-vaccination scenarios) on secondary outcomes may not be proportional to the
reduction in disease incidence. Here, we illustrate the estimation of the impact of vaccination on measles mortality,
where case fatality ratios (CFRs) are a function of dynamically changing measles incidence.

Methods: We used a previously published model of measles CFR that depends on incidence and vaccine coverage
to illustrate the effects of (1) assuming higher CFR in “no-vaccination” scenarios, (2) time-varying CFRs over the past,
and (3) time-varying CFRs in future projections on measles impact estimation. We used modeled CFRs in alternative
scenarios to estimate measles deaths from 2000 to 2030 in 112 low- and middle-income countries using two
models of measles transmission: Pennsylvania State University (PSU) and DynaMICE. We evaluated how different
assumptions on future vaccine coverage, measles incidence, and CFR levels in “no-vaccination” scenarios affect the
estimation of future deaths averted by measles vaccination.

Results: Across 2000–2030, when CFRs are separately estimated for the “no-vaccination” scenario, the measles
deaths averted estimated by PSU increased from 85.8% with constant CFRs to 86.8% with CFRs varying 2000–2018
and then held constant or 85.9% with CFRs varying across the entire time period and by DynaMICE changed from
92.0 to 92.4% or 91.9% in the same scenarios, respectively. By aligning both the “vaccination” and “no-vaccination”
scenarios with time-variant measles CFR estimates, as opposed to assuming constant CFRs, the number of deaths
averted in the vaccination scenarios was larger in historical years and lower in future years.

Conclusions: To assess the consequences of health interventions, impact estimates should consider the effect of
“no-intervention” scenario assumptions on model parameters, such as measles CFR, in order to project estimated
impact for alternative scenarios according to intervention strategies and investment decisions.
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Background
Model-based estimation has been widely used to evaluate
the impact of infectious disease intervention programs
outside of empirical observations [1]. There are myriad
policy interests in both retrospective program evaluation
to estimate the effect of a previously implemented pro-
gram and prospective program evaluation to project the
impact of different intervention options in the future. In
both types of program evaluation, the program impact is
often quantified by comparing the estimated effects in the
scenario with the intervention against those in a scenario
without the intervention (e.g., with and without vaccin-
ation). Under this framework, detailed methodological
considerations defining both the “intervention” and “no-
intervention” scenarios are a necessary condition to
minimize bias in program effect estimates.
The most common approach in developing the “no-

intervention” scenario is to “switch off” the program in
the model. In regression models, this “switch off” can be
incorporated by including an indicator variable for pro-
gram implementation. In mechanistic simulation models,
it can be modeled by setting the uptake of the interven-
tion to zero in scenarios without program implementa-
tion while keeping all other parameters consistent with
scenario(s) where the program is implemented. For both
types of models, we can evaluate the intervention impact
as the difference in the outcome of interest, such as the
number of deaths under the intervention and no-
intervention scenarios. Many health impact models as-
sume risks of infectious disease health outcomes condi-
tional on infection, such as case fatality ratios (CFRs),
are independent of disease incidence and health system
characteristics. However, there is evidence that the out-
come of infection and consequences of infection can de-
pend on the health system burden [2–8].
An example of such an intervention is measles vaccin-

ation. Due to limited primary data of measles CFR, for
many years, the impact of measles vaccine has been esti-
mated by simulation models that assume constant measles
CFR over time [9, 10]. However, a recently updated meta-
analysis [5] showed a decreasing trend in measles CFR in
low- and middle-income countries (LMICs) and found
that this is associated with trends in measles vaccination
coverage [11], measles incidence [5], and under-five mor-
tality [12]. In most settings, these factors have varied over
time and may continue to change in the future, either
continuing their past trends or potentially reversing direc-
tion following the COVID-19 pandemic [13, 14].
Consequently, in modeling studies that aim to evaluate

the impact of a measles vaccination program, changes in
the health system are an important aspect to consider as
it is related to the risk of disease outcome. As disease
management and health system capacity improve over
time, we would expect risks of disease outcome to

improve over time. Likewise, changes to the population-
level risks of disease outcome could be negatively
impacted by changes to preventive measures such as
vaccination coverage. These observations motivate the
design of this study to evaluate the consequences of
more realistic assumptions that affect model predictions
in the “vaccination” and “no-vaccination” scenarios, ac-
counting for time-dependent elements.
Using measles as a case study, we propose a methodo-

logical innovation to model CFR dynamically, which ad-
dresses both: (1) dependence of CFR on incidence and
other health system characteristics and (2) calculating
impact with due consideration for the “no-vaccination”
scenario. This paper is organized into two parts. In part
I, we used a log-linear regression model to evaluate three
different sets of scenarios where covariates used to esti-
mate measles CFR can be time-variant or time-invariant.
As a baseline, we used the current practice of assuming
time- and strategy-invariant CFRs as described in Wolf-
son et al. [10]. We also considered two other scenarios
in which CFRs depend on covariates that change over
time, as informed by our previous study where we
showed that CFRs have changed over time from 1980 to
2014 [5]. First, we only allowed for CFRs to change over
past time according to the log-linear model, but hold
CFRs constant at 2018 levels between 2019 and 2030.
This reflects our uncertainty in whether past changes in
CFRs will continue into the future. Second, we allowed
CFRs to change according to the log-linear model be-
tween 2000 and 2030. In part II of this paper, we estab-
lished an array of “no-vaccination” scenarios of measles
vaccination programs in low- and middle-income coun-
tries (LMICs), with different assumptions about the
trend of CFR estimates obtained from part I.

Results
The scenario 0 CFRs were stratified by age (</≥ 5 years)
for each country; on average across all LMICs, these CFRs
were 2.1% for children less than 5 years of age and 1.0%
for children 5 years of age and older (scenarios defined in
Table 1). In comparison, the estimated time-varying CFRs
ranged from 3.7% (2.3–6.3%) in the year 2000 to 1.0%
(0.4–3.1%) in the year 2030 for children under five on
average across all LMICs, and 1.2% (0.4–3.7%) in 2000 to
0.3% (0.1–1.4%) in 2030 for children 5 years of age and
older. In the year 2018, these estimates were 1.6% (0.7–
3.7%) for children under five and 0.5% (0.1–1.9%) for chil-
dren five and older. The estimated CFRs from 2000 to
2030 by under-five mortality rate and region are listed in
Appendix 1.

Impact of constant CFRs in “no-vaccination” scenario
Scenario 1 and scenario 2, which assumed time-varying
CFRs in the vaccination scenario and constant CFRs in
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the no-vaccination scenario, resulted in fewer deaths
averted than scenario 0, which assumed constant CFRs
in both the vaccination and no-vaccination scenarios, for
112 LMICs; this pattern is consistent for projections
from both the PSU and DynaMICE models (Table 2).
The percent reductions in measles deaths due to vaccin-
ation between years 2000 and 2030 under scenario 1
(83.3%; 95% uncertainty range: 70.8–89.9%) and scenario
2 (83.5%; 71.1–90.1%) were both less than the percent
reduction in measles deaths under scenario 0 (85.8%) in
the PSU model, and correspondingly estimates for sce-
nario 1 (91.6%; 84.4–95.1%) and scenario 2 (91.7%;
84.6–95.2%) were less than scenario 0 (92.0%) in the
DynaMICE model. Figure 1 displays these results graph-
ically: the top line of each shaded area shows estimated
measles deaths in the “no-vaccination” scenario and the
bottom line shows estimated measles deaths in the “vac-
cination” scenario. The shaded region represents the
amount of measles deaths averted by vaccination. In
these plots, the “no-vaccination” upper bound of esti-
mated measles deaths for each model remains the same
across each analytic scenario.

Impact of matching CFR estimation approach in “no-
vaccination” scenario
Scenario 0 assumed constant CFRs under both the
“vaccination” scenario and the “no-vaccination” sce-
nario. Scenario 1 and scenario 2 assumed estimated
CFRs according to the time-varying, incidence-based
methodology for both the “vaccination” scenario and
the “no-vaccination” scenario. The percent reduction
in measles deaths between 2000 and 2030 under sce-
nario 1 (86.8%; 79.2–91.2%) and scenario 2 (85.9%;
77.4–90.9%) was both greater than the percent re-
duction in measles deaths under scenario 0 (85.8%)
in the PSU model, and estimates for scenario 1
(92.4%; 89.5–94.4%) were more than scenario 0
(92.0%) which is more than scenario 2 (91.9%; 88.7–
94.3%) in the DynaMICE model (Table 3). Figure 2
displays these results graphically. In these plots, the
bottom line representing the “vaccination” scenario
remains the same as in Fig. 1, but the top line
representing the “no-vaccination” scenario has now
changed to reflect time-varying measles CFR
estimation.

Table 1 Analytic scenarios

Scenario Model Time-varying period Constant period No-vaccination scenario

Scenario 0 Constant CFRs [9, 10] NA 2000–2030 (a) Constant CFRs

Scenario 1 Time-varying CFRs [5] 2000–2018 2019–2030 (a) Constant CFRs

(b) Time-varying CFRs

Scenario 2 Time-varying CFRs [5] 2000–2030 NA (a) Constant CFRs

(b) Time-varying CFRs

Note: CFR case fatality ratio, NA not applicable

Table 2 Measles deaths averted due to vaccination for 112 countries across 2000 to 2030, assuming a constant case fatality ratio
(CFR) in “no-vaccination” scenario and percent reduction compared to no vaccination

Model Scenario Time-varying period Deaths averted (millions)
2000–2018

Deaths averted (millions)
2019–2030

Deaths averted (millions)
2000–2030

PSU Scenario 0 NA 29.3 26.8 56.1

77.7% 96.8% 85.8%

Scenario 1 2000–2018 27.3 (19.9–31.4) 27.1 (26.4–27.4) 54.4 (46.3–58.8)

72.5% (52.8–83.2%) 98.0% (95.3–99.1%) 83.3% (70.8–89.9%)

Scenario 2 2000–2030 27.3 (19.9–31.4) 27.3 (26.6–27.5) 54.6 (46.5–58.9)

72.5% (52.8–83.2%) 98.5% (95.9–99.4%) 83.5% (71.1–90.1%)

DynaMICE Scenario 0 NA 33.3 27.2 60.5

88.3% 96.9% 92.0%

Scenario 1 2000–2018 32.5 (28.5–34.6) 27.7 (27.1–27.9) 60.2 (55.5–62.6)

86.3% (75.5–91.9%) 98.7% (96.4–99.5%) 91.6% (84.4–95.1%)

Scenario 2 2000–2030 32.5 (28.5–34.6) 27.8 (27.2–28.0) 60.3 (55.7–62.6)

86.3% (75.5–91.9%) 99.0% (97.0–99.7%) 91.7% (84.6–95.2%)

Note: The first line for each scenario presents measles deaths averted due to measles vaccination compared to no vaccination for 112 countries aggregated across
2000 to 2030 in millions. The second line for each scenario presents the associated percent reduction in measles deaths compared to no vaccination. The 95%
uncertainty intervals across 1000 draws of CFR model parameters are included in parentheses for both measles deaths averted and percent reductions. PSU
Pennsylvania State University model, DynaMICE DynaMICE model developed at the London School of Hygiene & Tropical Medicine
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Discussion
In this study, we illustrated the effect of important con-
siderations for estimating measles CFRs in the evaluation
of measles vaccination impact through alternative “vac-
cination” and “no-vaccination” scenarios. Our aim was
to provide evidence that when measles CFR is dependent
on factors such as the incidence of measles and the pres-
ence of vaccination, the impact of the vaccine program
on mortality risk would depend on these contexts as
well. In order to reflect this context dependence, esti-
mates of measles CFR should be dynamic in time and
reactive to differences in scenarios with a transparent
methodology that can produce reproducible estimates.

Assuming constant measles CFRs produces impact
(number of measles cases averted) that grows over time
(due to the growth in cases as population grows), but
may overestimate the number of deaths that can be
averted by measles vaccination in prospective program
evaluation and underestimate deaths averted by measles
vaccination historically and devalue past gains in retro-
spective program evaluation. On the other hand, assum-
ing CFRs that decline in the future, in a way that is
consistent with empirical observation [5], leads to an im-
pact that is decreasing in the future (because CFRs de-
cline faster than population growth). Recognizing this
trend may provide an opportunity to capitalize on these
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Fig. 1 Measles deaths by analytic scenario for 112 countries across 2000 to 2030, assuming a constant case fatality ratio in “no-vaccination”
scenario for Pennsylvania State University (PSU) model and DynaMICE model. Note: The top line of each shaded area shows estimated measles
deaths in the “no-vaccination” scenario, and the bottom line shows estimated measles deaths in the “vaccination” scenario. The shaded region
represents the amount of measles deaths averted by vaccination
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improvements in order to accelerate that decline and
create a world in which no (or very few) children die of
measles.
The underlying model for measles CFR estimation as-

sumes a declining CFR trend over time, consistent with
previous studies [5]. This likely captures the effects of
covariates such as nutrition and health care access that
are not explicitly included in the CFR model. However,
it is unclear whether measles CFRs will continue to de-
crease into the future, particularly given disruptions to
vaccination coverage and access to routine health ser-
vices due to the COVID-19 pandemic. However, the
time-variant, context-dependent approach to estimating
measles CFRs can take new covariate data into consider-
ation in subsequent analyses. In this study, we included
a scenario to fix future projections of measles CFRs at
2018 levels as an alternative scenario assuming no add-
itional changes to measles CFR from the current con-
text. Specifically, by estimating measles mortality with
time-variant CFRs from 2000 to 2018 rather than con-
stant CFRs for the vaccination scenario, the percent re-
duction in measles deaths due to vaccination decreased
from 77.7 to 72.5% (52.8–83.2%) and 88.3 to 86.3%
(75.5–91.9%) in the PSU and DynaMICE models, re-
spectively. This reflects higher vaccine coverage in the
later part of this time period. However, by aligning both
the “vaccination” and “no-vaccination” scenarios with
time-variant measles CFR estimates from 2000 to 2018,
the percent reduction in measles deaths increased from
72.5 to 81.4% (72.8–86.6%) and 86.3 to 89.2% (85.3–
91.8%) in the PSU and DynaMICE models, respectively.

Despite different approaches, the PSU and DynaMICE
models produced similar results, as shown in Figs. 1 and
2 displaying total measles deaths over time with the
same overall magnitude and trend in both models. There
are larger differences (in relative terms) in countries with
high reported coverage (either high routine coverage or
frequent high-coverage supplementary immunization ac-
tivities) but high measles burden, as the DynaMICE
model is more optimistic in these settings than the PSU
model due to differences in the way the two models con-
vert population immunity levels to estimated measles in-
cidence [15–18]. However, these differences do not
affect the estimates aggregated across 112 LMICs, as
these countries contribute much less to the overall glo-
bal burden. The visualizations presented in Figs. 1 and 2
highlight that the differences in mortality by year with
the dynamic process showed much greater mortality in
historical years and lower mortality in future years com-
pared to constant CFRs. In addition, these reductions re-
flect measles vaccination impact across 112 LMICs,
representing a difference of 10–18 million deaths
averted. When matching the CFR estimation approach
between the “no-vaccination” and “vaccination” scenar-
ios in Fig. 2, the rebound effect in estimated measles
deaths seen in scenario 1 holding CFRs constant beyond
2018 is due to increasing population growth, despite the
constant CFRs. Additionally, the tighter bounds seen in
Table 3 are due to estimating CFRs separately for the
“vaccination” and “no-vaccination” scenarios, compared
to assuming constant CFRs for the “no-vaccination” sce-
nario in Table 2.

Table 3 Measles deaths averted due to vaccination for 112 countries across 2000 to 2030, assuming a time-varying case fatality ratio
(CFR) in “no-vaccination” scenario and percent reduction compared to no vaccination

Model Scenario Time-varying period Deaths averted (millions)
2000–2018

Deaths averted (millions)
2019–2030

Deaths averted (millions)
2000–2030

PSU Scenario 0 NA 29.3 26.8 56.1

77.7% 96.8% 85.8%

Scenario 1 2000–2018 45.4 (16.9–114.9) 26.5 (8.1–81.8) 71.9 (25.1–196.8)

81.4% (72.8–86.6%) 97.9% (97.1–98.4%) 86.8% (79.2–91.2%)

Scenario 2 2000–2030 45.4 (16.9–114.9) 20.5 (5.3–71.4) 65.9 (22.2–189.1)

81.4% (72.8–86.6%) 98.0% (96.9–98.5%) 85.9% (77.4–90.9%)

DynaMICE Scenario 0 NA 33.3 27.2 60.5

88.3% 96.9% 92.0%

Scenario 1 2000–2018 42.6 (17.7–103.8) 24.5 (9.5–70.0) 67.1 (27.3–173.9)

89.2% (85.3–91.8%) 98.5% (98.5–98.6%) 92.4% (89.5–94.4%)

Scenario 2 2000–2030 42.6 (17.7–103.8) 19.4 (7.1–63.0) 62.0 (24.8–166.9)

89.2% (85.3–91.8%) 98.6% (98.6–98.7%) 91.9% (88.7–94.3%)

Note: The first line for each scenario presents measles deaths averted due to measles vaccination compared to no vaccination for 112 countries aggregated across
2000 to 2030 in millions. The second line for each scenario presents the associated percent reduction in measles deaths compared to no vaccination. The 95%
uncertainty intervals across 1000 draws of CFR model parameters are included in parentheses for both measles deaths averted and percent reductions. PSU
Pennsylvania State University model, DynaMICE DynaMICE model developed at the London School of Hygiene & Tropical Medicine
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There are several common approaches in the literature
that account for the uncertainty in CFRs in vaccination
program evaluation. To name a few, in a prospective
program evaluation study where Nonvignon et al.
assessed the impact of rotavirus vaccination in Ghana
from 2012 to 2031, the authors used a one-way sensitiv-
ity analysis to account for their uncertainty in CFR on
their model estimate [19]. In another prospective pro-
gram evaluation study of pneumococcal conjugate vac-
cine (PCV13) in India, Krishnamoorthy et al. conducted
scenario analyses in which they varied parameter values

of mortality, disease event rates, vaccine efficacy, cover-
age projections, and costs by 10% to evaluate the impact
of the program in the most and least favorable scenarios
[20]. In a study evaluating the impact of past influenza
vaccination in the Netherlands, Backer et al. conducted
a probabilistic sensitivity analysis to assess how the un-
certainty of their model parameters affected their effect
estimates, where CFR was modeled as a normal distribu-
tion [21]. Methodological approaches such as these cap-
ture the uncertainty in the parameter values of CFR in
the model, but they do not automatically account for the
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Fig. 2 Measles deaths by analytic scenario for 112 countries across 2000 to 2030, assuming a time-varying case fatality ratio in “no-vaccination”
scenario for Pennsylvania State University (PSU) model and DynaMICE model. Note: The top line of each shaded area shows estimated measles
deaths in the “no-vaccination” scenario, and the bottom line shows estimated measles deaths in the “vaccination” scenario. The shaded region
represents the amount of measles deaths averted by vaccination
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potential time dependence of CFR. To account for the
time trend in CFRs, health impact models can rely on
global burden estimates of disease-specific deaths to de-
rive proportional mortality [22] and statistical models
like autoregressive integrated moving average models
(ARIMA) have also been used in the vaccine literature
[23]. However, in methods that make one-step-ahead
forecasts such as ARIMA models, long-term forecasting
may not be reliable.
In contrast, our study demonstrated a recursive ap-

proach where we leveraged a regression model and
transmission dynamic models to account for the time
dependence of CFRs in the estimation of vaccine impact
on mortality. Additionally, by using the incidence esti-
mates obtained from a transmission dynamic model as a
covariate in our regression model as well as scenario-
specific estimates of CFR values in this transmission dy-
namic model to forecast the impact of vaccination, we
were able to capture the long-term dynamic between
CFRs, vaccine coverage, and measles incidence in our es-
timation of vaccine impact on mortality. Furthermore,
by explicitly considering the time trend in CFRs in “vac-
cination” and “no-vaccination” scenarios, we demon-
strated that the assumptions made in “no-vaccination”
scenarios can affect the estimation of the public health
impact of vaccines and other prevention policies on
mortality.
There are several limitations to this analysis. First, the

functional form for the relationship between the ana-
lyzed covariates and measles CFRs was informed by a
limited data set of varying quality, as described previ-
ously [5]. The Immunization and Vaccine-related Imple-
mentation Research Advisory Committee (IVIR-AC) of
the WHO in its recent recommendations noted the need
for ongoing primary data collection, including “invest-
ments in strengthening outbreak investigation and evalu-
ation activities to generate additional primary data” and
the “creation of a standard CFR study protocol and a
structured data collection tool to improve comparability
of studies” [24]. Second, the log-linear model to pre-
dict measles CFR does not necessarily represent
causal relationships between the covariates of interest
and the outcome. Additional factors that are import-
ant considerations for mortality risk, such as malnu-
trition and treatment status of the individual cases,
would require future data collection efforts to supple-
ment currently available data on measles CFRs [5].
We addressed these limitations by estimating two dif-
ferent versions of the “no-vaccination” scenario. While
the causal effect of variables not included in the
model might be captured in the variables we in-
cluded, it is unclear which variables should apply to
the “no-vaccination” case. Third, there may be add-
itional uncertainty in the impact estimates according

to the assumptions of each measles transmission
model, described previously [9, 15, 25, 26].

Conclusions
In order to better estimate the impact of public health
interventions, this study can shed light on the effects of
alternative assumptions to project future scenarios
evaluating intervention impact and provide guidance for
developing appropriate “no-vaccination” scenarios. We
would expect to see similar relationships between dis-
ease management and health system capacity with the
risks of disease outcome over time. For example,
hospital-fatality risks for COVID-19 tend to increase as
the availability of hospital beds and ventilators decreases;
on the other hand, there are temporal changes in fatality
risk due to improvements in treatment. To assess the
consequences of public health interventions, impact esti-
mates should consider the effect of “no-intervention”
scenario assumptions on health impact model parame-
ters such as measles CFR, in order to serve the goals of
both: estimating the historical and current impact of in-
terventions and projecting estimated impact for alterna-
tive scenarios according to intervention strategies and
investment decisions. As additional and improved em-
pirical evidence of program implementation becomes
available to inform predictive models, we can continue
to improve predictions and uncertainty of the effect of
public health interventions, such as measles vaccination.

Methods
Model overview
We used a previously published log-linear projection
model relating CFR to measles incidence, time, and
other factors [5], as shown in the following equation:

ln CFRð Þ ¼ β0 þ β1�Year þ β2�MCV1 coverage
þ β3�Community indicator
þ β4�Under 5 indicator
þ β5�Attack rateþ β6� ln U5MRð Þ
þ β7� ln Population densityð Þ
þ β8� ln TFRð Þ þ β9�Percentage urban;

where MCV1 coverage = estimated coverage of the rou-
tine first dose of measles-containing vaccine (MCV1)
[11], Community indicator = an indicator for
community-based rather than hospital-based measles,
Under 5 indicator = an indicator for children under 5
years old, Attack rate = an approximation of measles at-
tack rate (estimated measles incidence divided by annual
birth cohort) [12, 27], U5MR = all-cause under-five mor-
tality rate per 1000 live births [12], Population density =
population density per square kilometer of land area
[12], TFR = total fertility rate [12], and Percentage urban
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= percentage of the population living in urban areas
[12].
We stratified the population in 112 LMICs by (i)

under-five mortality rate (</≥ 50 per 1000 live births)
and (ii) world region (Global Burden of Disease re-
gions [28]) and presented all stratifications by age
(</≥ 5 years). The full list of countries by these strati-
fications is included in Appendix 2. For each of these
strata, we estimated the measles CFRs across 2000–
2030.
The log-linear model was fit to a set of measles

CFRs from studies published between 1980 and 2016
[5]. To address uncertainty in our CFR estimations,
we quantified the asymptotic variance of the esti-
mated CFRs for each stratum by drawing from a
multivariate normal distribution (n = 1000), with the
means equal to the maximum likelihood estimates
(MLE) of the coefficients and the variance–covari-
ance matrix being the variance–covariance of the
MLE estimates, all extracted from the regression
outputs. The covariates included 2019 World Bank
development indicators [12] and estimates of MCV1
coverage between 2000 and 2018 [11], which allowed
us to extend the capability of the model to estimate
CFRs up to 2018. The measles incidence estimates
required for the model formula were generated from
two separate, published measles transmission models
used by the Vaccine Impact Modelling Consortium
(VIMC) to generate global measles vaccine impact
estimates for 2000–2018: the Pennsylvania State Uni-
versity (PSU) model and the DynaMICE model de-
veloped at the London School of Hygiene & Tropical
Medicine (described in Appendices 3 and 4) [29].
The two measles models estimated measles incidence
in the case of both “vaccination” and “no-vaccin-
ation” scenarios.
The log-linear model was subsequently used to esti-

mate future CFRs from 2019 to 2030 in “vaccination”
and “no-vaccination” scenarios in the second part of
our analyses. We used projected data for covariates,
including under-five mortality rate, total fertility rate,
percentage of population in urban areas, and popula-
tion density [30]. Population density was available
with annual projections, whereas under-five mortality,
total fertility rate, and urban percentage were avail-
able by 5-year increments [30]. Future MCV1 cover-
age was projected by the authors from 2018 World
Health Organization (WHO) and UNICEF estimates
of national immunization coverage (WUENIC) [11],
assuming a 1% coverage increase per year in line with
prior analyses [31]. Future MCV1 coverage was
capped at 95%, unless a country had a higher pro-
jected coverage as of 2018 in which case the coverage
was capped at the maximum coverage reached. In the

“no-vaccination” scenario, MCV1 coverage was as-
sumed to be zero.

Part I: CFR scenarios assuming vaccination
We estimated measles CFRs in three scenarios (Table
1). In scenario 0, we relied on previous estimates of
measles CFRs [9], based on a descriptive analysis [10],
assumed to be constant across 2000 to 2030. In sce-
nario 1, we estimated CFRs from 2000 to 2018 using
the log-linear model described above with covariates
from 2000 to 2018. This allowed us to examine how
these time-variant covariates would affect CFR esti-
mates over time, under the assumption that there is a
correlation between CFR, vaccination coverage, mea-
sles incidence, and under-five mortality as outlined in
the previous analysis [5], which resulted in a declining
trend of measles CFR. In this scenario, the 2018 CFR
estimate was assumed to be constant from 2018 to
2030 (held at 2018 levels predicted by the log-linear
model), given the uncertainty in the trend of covari-
ates due to unknown future data.
In scenario 2, we extended the CFR projection end

year from 2018 to 2030, using projected data for covari-
ates, described above. The incidence estimates from
2019 to 2030 were generated from the same measles
transmission models used in scenario 1.
Subsequently, we used the CFR estimates to quan-

tify the impact of estimated CFRs by analytic scenario
on estimates of measles deaths from 2000 to 2030,
described in part II, using the PSU and DynaMICE
models of measles transmission [9, 25]. Measles
deaths averted by vaccination were calculated in com-
parison with a strategy of no measles vaccination in
112 LMICs. We used R statistical software, version
3.6.1, for all analyses [32].

Part II: CFR scenarios assuming “no-vaccination”
In order to calculate the impact of vaccination, we
need to project the burden of disease in the absence
of vaccination. Because we had no empirical support
for what CFR would be in the absence of vaccination,
we tested two alternative approaches. Specifically, we
compared the analytic scenarios 1 and 2 in Table 1
to two alternative “no-vaccination” scenarios that as-
sumed (a) CFRs remain constant and (b) time-varying
CFRs according to the approach used in the compara-
tor “vaccination” scenario. We evaluated how the dif-
ferent assumptions in the “no-vaccination” scenarios
affected our estimation on future deaths averted by
measles vaccination. These impact estimates were
compared to impact estimates where age-specific
CFRs in the “no-vaccination scenario” were assumed
to be the same as in the corresponding “vaccination”
scenario.
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Under-five CFRs under vaccination (PSU)

1. U5MR < 50

Appendix 1: Estimated measles case fatality ratios (CFRs) from 2000 to 2030 by model, vaccination scenario,
age, under-five mortality rate (U5MR), and region
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2. U5MR ≥ 50
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Over-five CFRs under vaccination (PSU)

1. U5MR < 50
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2. U5MR ≥ 50
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Under-five CFRs under no vaccination (PSU)

1. U5MR < 50
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2. U5MR ≥ 50

Portnoy et al. BMC Medicine          (2022) 20:113 Page 14 of 29



Over-five CFRs under no vaccination (PSU)

1. U5MR < 50
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2. U5MR ≥ 50
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Under-five CFRs under vaccination (DynaMICE)

1. U5MR < 50
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2. U5MR ≥ 50

Note: The LAC region at ≥50 U5MR only includes the
country of Haiti, which experienced a significant shock to
covariates due to the 2010 earthquake.
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Over-five CFRs under vaccination (DynaMICE)

1. U5MR < 50
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2. U5MR ≥ 50

Note: The LAC region at ≥ 50 U5MR only includes
the country of Haiti, which experienced a significant
shock to covariates due to the 2010 earthquake.
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Under-five CFRs under no vaccination (DynaMICE)

1. U5MR < 50
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2. U5MR ≥ 50

Note: The LAC region at ≥ 50 U5MR only includes
the country of Haiti, which experienced a significant
shock to covariates due to the 2010 earthquake.
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Over-five CFRs under no vaccination (DynaMICE)

1. U5MR < 50
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2. U5MR ≥ 50

Note: The LAC region at ≥ 50 U5MR only includes
the country of Haiti, which experienced a significant
shock to covariates due to the 2010 earthquake.
Note: EURA, Central Europe, Eastern Europe, and

Central Asia; LAC, Latin America and the Caribbean;

MENA, North Africa and Middle East; SA, South Asia;
SEAO, South-East Asia, East Asia, and Oceania; SSA,
sub-Saharan Africa; < 50, less than 50 deaths per 1000
live births; ≥ 50, greater than or equal to 50 deaths per
1000 live births.
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Appendix 2: Country list by under-five mortality
rate (U5MR) and region

Country Region U5MR

Afghanistan MENA ≥ 50

Albania EURA < 50

Algeria MENA < 50

Angola SSA ≥ 50

Argentina LAC < 50

Armenia EURA < 50

Azerbaijan EURA < 50

Bangladesh SA < 50

Belarus EURA < 50

Belize LAC < 50

Benin SSA ≥ 50

Bhutan SA < 50

Bolivia LAC < 50

Bosnia and Herzegovina EURA < 50

Botswana SSA < 50

Brazil LAC < 50

Bulgaria EURA < 50

Burkina Faso SSA ≥ 50

Burundi SSA ≥ 50

Cabo Verde SSA < 50

Cambodia SEAO < 50

Cameroon SSA ≥50

Central African Republic SSA ≥ 50

Chad SSA ≥50

China SEAO < 50

Colombia LAC < 50

Comoros SSA ≥50

Congo DR SSA ≥50

Congo SSA < 50

Costa Rica LAC < 50

Côte d'Ivoire SSA ≥ 50

Cuba LAC < 50

Djibouti SSA ≥ 50

Dominica LAC < 50

Dominican Republic LAC < 50

Ecuador LAC < 50

Egypt MENA < 50

El Salvador LAC < 50

Equatorial Guinea SSA ≥ 50

Eritrea SSA < 50

Ethiopia SSA ≥50

Fiji SEAO < 50

Appendix 2: Country list by under-five mortality rate
(U5MR) and region (Continued)

Country Region U5MR

Gabon SSA ≥ 50

Gambia SSA ≥ 50

Georgia EURA < 50

Ghana SSA ≥50

Grenada LAC < 50

Guatemala LAC < 50

Guinea SSA ≥50

Guinea-Bissau SSA ≥50

Guyana LAC < 50

Haiti LAC ≥ 50

Honduras LAC < 50

India SA < 50

Indonesia SEAO < 50

Iran MENA < 50

Iraq MENA < 50

Jamaica LAC < 50

Jordan MENA < 50

Kazakhstan EURA < 50

Kenya SSA < 50

Kiribati SEAO ≥50

Korea DPR SEAO < 50

Kyrgyz Republic EURA < 50

Lao PDR SEAO ≥ 50

Lebanon MENA < 50

Lesotho SSA ≥ 50

Liberia SSA ≥ 50

Libya MENA < 50

Macedonia EURA < 50

Madagascar SSA < 50

Malawi SSA ≥50

Malaysia SEAO < 50

Maldives SEAO < 50

Mali SSA ≥ 50

Marshall Islands SEAO < 50

Mauritania SSA ≥ 50

Mauritius SEAO < 50

Mexico LAC < 50

Micronesia SEAO < 50

Moldova EURA < 50

Mongolia EURA < 50

Montenegro EURA < 50

Morocco MENA < 50

Mozambique SSA ≥ 50
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Appendix 2: Country list by under-five mortality rate
(U5MR) and region (Continued)

Country Region U5MR

Myanmar SEAO ≥ 50

Namibia SSA < 50

Nepal SA < 50

Nicaragua LAC < 50

Niger SSA ≥ 50

Nigeria SSA ≥ 50

Pakistan SA ≥ 50

Palau SEAO < 50

Panama LAC < 50

Papua New Guinea SEAO ≥ 50

Paraguay LAC < 50

Peru LAC < 50

Philippines SEAO < 50

Romania EURA < 50

Russian Federation EURA < 50

Rwanda SSA < 50

Samoa SEAO < 50

São Tomé and Principe SSA < 50

Senegal SSA < 50

Serbia EURA < 50

Sierra Leone SSA ≥ 50

Solomon Islands SEAO < 50

Somalia SSA ≥ 50

South Africa SSA < 50

South Sudan SSA ≥ 50

Sri Lanka SEAO < 50

St Lucia LAC < 50

St Vincent and the Grenadines LAC < 50

Sudan MENA ≥ 50

Suriname LAC < 50

Swaziland SSA ≥ 50

Syrian Arab Republic MENA < 50

Tajikistan EURA < 50

Tanzania SSA < 50

Thailand SEAO < 50

Timor-Leste SEAO ≥ 50

Togo SSA ≥ 50

Tonga SEAO < 50

Tunisia MENA < 50

Turkey MENA < 50

Turkmenistan EURA ≥ 50

Tuvalu SEAO < 50

Uganda SSA ≥ 50

Appendix 2: Country list by under-five mortality rate
(U5MR) and region (Continued)

Country Region U5MR

Ukraine EURA < 50

Uzbekistan EURA < 50

Vanuatu SEAO < 50

Venezuela LAC < 50

Vietnam SEAO < 50

Yemen MENA < 50

Zambia SSA ≥ 50

Zimbabwe SSA ≥ 50

Note: EURA Central Europe, Eastern Europe, and Central Asia, LAC Latin
America and the Caribbean, MENA North Africa and Middle East, SA South
Asia, SEAO South-East Asia, East Asia, and Oceania, SSA sub-Saharan Africa, <
50 less than 50 deaths per 1000 live births, ≥ 50 greater than or equal to 50
deaths per 1000 live births

Appendix 3: DynaMICE model overview1

The Dynamic Measles Immunization Calculation Engine
(DynaMICE) is a dynamic age-stratified population
model of measles transmission dynamics to estimate the
public health impact and cost-effectiveness of routine
vaccination programs and supplementary immunization
activities (SIAs) in low- and middle-income countries.2

It was originally developed for work with the World
Health Organization and received inputs from investiga-
tors at Harvard University and Montreal University as
well as LSHTM. It was subsequently used to inform vac-
cine impact projections for Gavi, the Vaccine Alliance,
and the Bill & Melinda Gates Foundation. The model
provides a flexible framework that can be adapted to dif-
ferent countries with the aim to study several vaccin-
ation scenarios based on available data sources. For
example, the model has been adapted to characterize
measles transmission and dynamics in India, based on
measles data from the Million Deaths Study,3 as well as
to quantify the impact of adding interventions to mea-
sles SIAs in India by interfacing with the Lives Saved
Tool (LiST).4

1From Li et al. (2021), supplementary appendix 2, with
slight adaptations.
2Verguet S, Johri M, Morris SK, Gauvreau CL, Jha P, Jit M.
Controlling measles using supplemental immunization
activities: a mathematical model to inform optimal policy.
Vaccine 2015; 33:1291-6.
3Verguet S, Jones EO, Johri M, et al. Characterizing
measles transmission in India: a dynamic modeling
study using verbal autopsy data. BMC Med 2017; 15.
4Johri M, Verguet S, Morris SK, et al. Adding
interventions to mass measles vaccinations in India. B
World Health Organ 2016; 94:718-27.
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As measles is a highly transmissible childhood
infection, disease dynamics are inextricably linked to
population structure and demographic parameters. To
enable precision in the estimation of disease burden and
the contact processes that drive transmission, the model
is age-stratified to include weekly age groups from birth
to 3 years of age, and yearly age groups from 3 to 100
years of age. The underlying epidemic model is a com-
partmental SIR model, where individuals can either be
susceptible (S) to measles, infected (I), or recovered (R)
with life-long immunity. After a certain duration of ma-
ternal immunity, births replenish the pool of susceptibles
that in the absence of vaccination fuel periodic out-
breaks of measles driven by the magnitude of the birth
rate and the strength of seasonality in transmission pa-
rameters. Susceptibles get infected through contact with
infected individuals, with mixing determined by age-
dependent contact patterns. The contact matrix used for
this exercise is the POLYMOD contact matrix for Great
Britain5 as it was best able to reproduce transmission dy-
namics across a range of countries, but this can be up-
dated to represent local population age structure.
Following infection, individuals either recover and gain
life-long immunity or die as described by country-
specific age-dependent case fatality ratios (CFRs).
Routine vaccination is modeled through first- and

second-dose measles-containing vaccine (MCV1 and
MCV2) schedules (corrected for the right cohorts) with
the additional option of including SIAs. Vaccines are as-
sumed to be “all or nothing” with effectiveness equal to
84% for the first dose among children under the age of
one year, 93% for the first dose among children over the
age of 1 year, and 99% for both doses,6 with life-long
vaccine-induced immunity.

Appendix 4: PSU model overview7

The PSU measles model is a semi-mechanistic, age-
structured, discrete time-step, annual SIR model. Unlike
conventional SIR models, which describe dynamics at
the scale of an infectious generation (TSIR REF)8 or
finer (basic REF)9, it models the aggregate number of
cases over 1-year time steps. While this is coarse relative

to the time scale of measles transmission, it matches the
annual reporting of measles cases available for all coun-
tries since approximately 1980 for all countries through
the WHO Joint Reporting Form (JRF). To account for
the fine-scale dynamics that are being summed over a
full year, the model describes the number of infections
(Ii,t) in country i and year t, and age class a as an in-
creasing function of the fraction, pi,t , of the population
susceptible in age class a at the start of year t, Si,t:

E Ia;i;t
� � ¼ pi;t�Sa;i;t ;

where E[∙] indicates the expectation and pi, t is a
country- and year-specific annualized attack rate mod-
eled as:

pi;t ¼ invlogit −β0;i þ β1;i�
P

aSi;t
Ni;t

þ et

� �
;

where invlogit() indicates the inverse logit function, Ni,t

is the total population size in country i and year t over
all age classes, and et is a Gaussian random variable with
mean 0 and variance σ2. The parameters β0, i , β1, i, and
σ2 are fit to each country independently using a state-
space model fitted to observed annual cases reported
through the JRF from 1980 to 2016 as described by
Eilertson et al.10 Historical population and vaccination
coverage values are provided by WHO as described by
Simons et al.11

The number of susceptible individuals in each single-
year age class a (a = 2,…, 25) is equal to the number not
infected in the previous year, nor immunized through
supplemental immunization activities (SIAs). The num-
ber susceptible is further deprecated by the crude death
rate. The efficacy of doses administered through SIAs is
assumed to be 99%. The number of susceptible individ-
uals in age class a = 1 is assumed to be 50% of the an-
nual live birth cohort; this assumes that all children have
protective maternal immunity until 6 months of age. Age
class a = 2 and a = m is assumed to receive a first and
second dose (respectively) of routine measles vaccination
before the start of the time step; thus, the number sus-
ceptible is further reduced by the product of the cover-
age and the efficacy. Efficacy is assumed to be 85% and

5Mossong J, Hens N, Jit M, et al. Social contacts and
mixing patterns relevant to the spread of infectious
diseases. Plos Med 2008; 5:381-91.
6Uzicanin A, Zimmerman L. Field effectiveness of live
attenuated measles-containing vaccines: a review of pub-
lished literature. J Infect Dis 2011; 204:S133-S48.
7From Li et al. (2021), supplementary appendix 2, with
slight adaptations.
8Finkenstadt BF, Grenfell BT. Time series modelling of
childhood diseases. Applied Statistics 2000; 49:187-205.
9Anderson RM, May RM. Infectious disease of humans:
dynamics and control. Oxford University Press, 1991.

10Eilertson KE, Fricks J, Ferrari MJ. Estimation and
prediction for a mechanistic model of measles
transmission using particle filtering and maximum
likelihood estimation. Statistics in Medicine 2019; 38:
4146-58.
11Simons E, Ferrari M, Fricks J, et al. Assessment of the
2010 global measles mortality reduction goal: results
from a model of surveillance data. Lancet 2012; 379:
2173-8.
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93% for the first dose in countries delivering at 9 months
and 12 months of age, respectively, and assumed to be
99% for the second dose.
Deaths are calculated by applying an age- and

country-specific case fatality ratio (CFR) to each country.
CFRs for cases below 59months of age for all countries
were taken from Wolfson et al.12; CFR for cases above
59months of age are assumed to be 50% lower than
those applying to under-5 s.
Forward simulations of this model assume random

variation in the annual attack rate according to the
parameter σ2. Furthermore, each forward simulation
draws β0, i , β1, i at random from the joint 95%
interval estimate of each parameter. Future
vaccination coverage values, for routine and SIAs, are
assumed known and future birth and death rates are
assumed known.
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