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Abstract 
 
Respiratory viruses cause substantial health and economic burdens. These viruses circulate 

concurrently, and changes in host susceptibility brought about by infection by one virus has the 

potential to change the transmission dynamics of another. Understanding the effects of such cross-

protection between viruses at a population level can inform public health policies. Current evidence 

for cross-protection between these viruses mainly comes from population level shifts in dynamics, 

which cannot assess causation, and from small-scale biological experiments. I use mathematical 

modelling to research cross-protection between respiratory viruses, as these methods allow for 

testing of the mechanism. 

 
Initially, I develop a two-pathogen interaction model parameterised to simulate influenza and RSV 

epidemiology in the UK. Using a surveillance-like stochastic observation process I generate a range 

of possible trajectories, and then back-infer the parameters using Markov Chain Monte Carlo. I 

found that the strength and duration of influenza and RSV interaction could be estimated well; 

however, the robustness of inference does decline towards the extremes of the plausible parameter 

ranges, with misleading results.  

 
Next, I use parallel tempering to fit an adapted two-pathogen model to a unique dataset from 

Vietnam. I show that the population level-dynamics of influenza and RSV circulation support either 

moderate or no cross-protection. However, I add evidence that co-infection increases the rate of 

reporting. The benefits of limiting severe co-infection by vaccination in this setting may therefore 

outweigh the increased transmission that occurs due to cross-protection between the viruses. 

 
Finally, I use coronavirus surveillance data from England and Wales to estimate key seasonal 

coronavirus (HCoV) parameters, and I use these estimates to investigate age-specific susceptibility to 

SARS-CoV-2, varying the interaction assumption. I show that while cross-protection between HCoV 

and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the observed 

reduced susceptibility of children.  

 

Collectively, the research in this thesis demonstrates that surveillance data and mathematical 

models can be used to study respiratory viral interactions. It implies that while models can be used 

to study this phenomenon, stochasticity can obscure results. The research also alleviates concerns 

that vaccination against influenza or RSV may have a detrimental impact on the other virus, due to 

interaction, although this must be investigated further to understand the generalisability of the 

results to other settings. Finally, the research implies that other factors must influence susceptibility 
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to coronaviruses, and the observed shifting of epidemic peaks that has been hypothesised to be a 

result of respiratory viral interaction.  
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1 Introduction 
 

1.1 Background 
 
1.1.1 Motivation for study 
 
Respiratory viruses are a global burden  

 

Respiratory viruses result in a large global burden; the World Health Organisation (WHO) estimates 

that in 2015 respiratory infections resulted in 3,199,000 deaths worldwide, totalling 5.7% of all-

cause mortality that year1. In addition to the symptoms and deaths they cause, they also exacerbate 

chronic pulmonary conditions such as asthma and chronic obtrusive pulmonary disease2,3. The 

health and economic burden of respiratory illness and of days of work lost is therefore substantial. 

Even small changes in the circulation of these viruses can have large impacts.  

 

They exist within a complex ecosystem  

 

There are many factors that influence viral transmission, ranging from environmental factors, such 

as temperature and rainfall4, to viral adaption to host immunity5, host behaviour changes6 and host 

susceptibility7. Previous scientific evidence has suggested that viruses may interact, resulting in a 

reduction in host susceptibility to secondary infection. As respiratory viruses do not exist in isolation, 

but instead circulate concurrently, any changes in host susceptibility brought about by infection with 

one virus has the potential to change the transmission dynamics of another. This may be either 

through temporary non-specific cross-protection to a distinct virus or specific and longer-term cross-

protection with related viruses. 

 

There is evidence suggesting interaction 

 

Current evidence for interaction comes from a few main sources: shifts in viral incidence epidemics8–

12, experimental studies both in vivo and in vitro13–17 and sampling of human sera18–22. While these 

studies give indications of interaction, they are unable to test the links between biological 

mechanisms and population level impacts. However, mathematical modelling can address this gap 

as specific mechanisms can be included.  
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Motivation 

 

Understanding the extent of interaction among these viruses and the effects interaction can have on 

transmission dynamics can help prepare for outbreaks, make informed policy decisions, and 

evaluate different public health interventions. This is particularly relevant for viruses where multiple 

vaccines are available, e.g. influenza23, and new vaccines are being developed, e.g. Respiratory 

Syncytial Virus (RSV)24 because vaccinating against one virus may change the dynamics of the other, 

potentially causing higher morbidity. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) pandemic has shown the devastating impact a virus can have in terms of loss of life, 

livelihoods and freedoms. Developing mathematical models to increase our understanding of the 

dynamics of susceptibility to interacting viral infections can help inform public policy decisions, and 

potentially save many lives. 

 

What is in the thesis? 

 

In this thesis I use case studies to investigate the interactions between respiratory viruses and the 

extent to which mathematical modelling can help us understand these interactions. I use RSV and 

Influenza as case studies for short term, non-specific interaction, and coronaviruses as a case study 

for specific, long-term interaction. These viruses were chosen due to their large healthcare burdens, 

availability of protective interventions and time relevance. This introduction covers the background 

on these viruses, why they were chosen as case studies, current evidence for interactions, and how 

mathematical models can be used in this context.  

 

1.1.2 Case study viruses 
 

 Influenza  
 

Influenza transmission is associated with a large health and economic burden which cause 870’000 

hospitalisations in under five-year-olds globally per year25. In the UK there are 8 vaccines marketed 

for the 2020/21 influenza season: 1 Live Attenuated Influenza Vaccine (LAIV), 4 split virion 

inactivated vaccines, 3 surface antigen vaccines, and 1 recombinant vaccine23. Public Health policies 

vary by country, for example in England LAIV is recommended for children aged 2 to 16 and 

inactivated vaccines are recommend for those 18 or over26. Children have been included in the 

vaccination programme in England and Wales because of both the considerable health burden 

imposed on them by influenza and their role as primary drivers of transmission27 — even though the 
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majority of severe illness and death occurs in older adults28,29. In other countries, such as Vietnam, 

there is little to no seasonal influenza vaccination30. As well as preventative vaccination, antivirals 

such as oseltamivir and zanamivir are available for post-exposure prophylaxis in high risk individuals 

and treatment31.  

 

Influenza is a segmented single-stranded RNA virus that evolves through the accumulation of 

mutations (antigenic drift) and reassortment of the segments between strains (antigenic shift)32. 

There are three human influenza subtypes: A, B and C, and strains are identified by the 

Hemagglutinin (H) and Neuraminidase (N) proteins on the surface of the influenza virus particle. Two 

major strains of each of A and B have circulated in recent years: A (H1N1) and A (H3N2) and B 

Yamagata and B Victoria. Influenza C causes only mild disease and does not result in epidemics33.  

 

Symptoms caused by influenza are not specific as other circulating respiratory viruses cause similar 

symptoms. This set of symptoms is known as Influenza-like-illness (ILI), defined by the WHO as an 

Acute Respiratory Infection (ARI) with a measured fever of over 38 degrees Celsius and cough, with 

onset within the last 10 days34. Because of this lack of specificity of symptoms, syndromic 

surveillance is often followed up by laboratory confirmation of the virus35. Influenza can, however, 

also be detected in the nasopharynx of individuals who are not suffering from respiratory disease36. 

 

Influenza is highly seasonal in temperate climates, but is present for longer and less likely to show 

seasonal peaks in the tropics37. In the UK, the influenza season begins between October and 

November38,39, with incidence usually peaking between December and March (Figure 1-1). There is 

substantial annual variation in peak timing and size, and there is evidence for the impact of climatic 

factors on influenza transmission, particularly ambient temperature and absolute humidity40–42.  

Novel variants can result in pandemic influenza, such as Influenza A(H1N1) ‘swine flu’ in 2009 and 

Influenza A(H1N1) ‘Spanish flu’ in 1918/1919. 
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Figure 1-1: Reports of coronavirus (excluding SARS-CoV-2), influenza and Respiratory Syncytial Virus (RSV) reported by 

Public Health England (PHE) from mid 2014 to early 2020. Data extracted from PHE laboratory reports43. 

 

Briefly, the innate immune system is activated upon influenza infection through the detection of 

Pathogen Associated Molecular Patterns (PAMPS) by Pattern Recognition Receptors (PRRs), such as 

the double-stranded and tri-phosphorylated RNA. These are detected by a range of receptors, such 

as retinoic acid-inducible gene I (RIG-I) and Toll-like Receptor 3 (TLR3)44. Upon activation of the 

receptors, signalling pathways are initiated, leading to expression of interferons (INFs) and other 

cytokines. The downstream effects of these signalling pathways result in the activation of an 

antiviral innate immune response, and the development of a subsequent adaptive response. 

Influenza is unusual for RNA viruses, in that it replicates within the nucleus of the host cell45, so 

activates slightly different PRRs than other RNA viruses. 

 

There is evidence of cross-immunity between influenza strains due to cross-reactive antibodies and 

T-cells. Cross-reactive antibodies in ferrets, as a result of sequential infection with H1N1, protected 

against novel pandemic influenza (H1N1pnd09)46,47, as well as resulting in a boost of pre-existing 

antibody levels.46 However, one influenza infection may not be sufficient to induce cross-

protection48. Cross-reactive antibodies targeted the Hemagglutinin stalk proteins, and have also 

been shown to induce antibodies that have broad reactivity and neutralising properties in mice and 

humans49. Other studies have found T-cells to be a correlate of cross-protection against 

symptomatic pandemic influenza; for example, the presence of A(H3N2)  Nucleoprotein reactive T-

cells resulted in reduced symptomatic and PCR-confirmed pandemic influenza (odds ratio 0.27) 50. 

Another study showed that higher pre-existing frequencies of T-cells as compared to conserved 

epitopes resulted in less severe illness (r = -0.39 overall symptom score compared with pre-existing 

cytokine secreting T-cells), and correlated with cross-protection against symptomatic pandemic 
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influenza51. Such cross-protection has also been observed between seasonal strains52–54, and not just 

with pandemic influenza, but the extent of cross-protection from each strain does appear to vary55. 

Future immune responses may also be determined by the first influenza virus encountered, a 

phenomenon known as original antigenic sin56.  

 

 RSV 
 

RSV infections results in 3.2 million hospital admissions in under 5-year-olds globally per year57. 

There are currently no treatments or vaccines, and only limited preventative therapy: a monoclonal 

antibody, Palivizumab, which is recommended for high-risk infants in England58 and elsewhere59,60. In 

addition, Nirsevimab, also a monoclonal antibody, is close to licensure61. The antibody is given to at-

risk infants to prevent severe lower respiratory tract disease through passive immunity62.  As of 

February 2020, there were 19 vaccine candidates being evaluated in clinical trials across phases 1-

324.  RSV vaccines may therefore be introduced soon, affecting RSV transmission and thus potentially 

the transmission of other viruses.  

 

In the UK, RSV has a consistent December annual peak in incidence, falling in the last few weeks of 

the year63. However, some countries experience longer transmission seasons (e.g. Malaysia and 

Mozambique up to 10 months)64, and others such as Finland observe more complicated dynamics, 

such as 2-year cycles65. RSV circulation could be impacted by climatic factors, such as rainfall and 

temperature, and research from different regions shows different relationships: a positive 

relationship to maximum temperature in Mexico (correlation coefficient 0.25)66, a negative 

relationship with mean temperature in Thailand67 and China68 (correlation coefficient -0.27 and -0.77 

respectively), and a bimodal relationship with mean temperature in various locations69. While 

differing results are expected in different climates, due to, for example, different temperature 

ranges, the combined evidence available does not indicate an important role of such climatic factors. 

Differences between regions may also occur due to differing population immunity, demography, and 

behaviour. 

 

In high income, temperate countries the majority of children (80% in the UK) become infected with 

RSV before their second birthday 12,63. The disease incidence is twice as high in developing countries 

for children under 570. Maternal antibodies are present in infants for up to 7 months71. After 

infection, the average duration of immunity to RSV is estimated to be 200 days72 before return to a 

susceptible state. However, as infection in very young children is much more severe than 

subsequent infections63 some longer-lasting protection against disease may be gained. Despite this, 
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older adults can experience severe RSV infection; there are a similar number of deaths in the over 

65s attributed to RSV as to influenza (13900 RSV deaths compared to 15500 influenza deaths during 

an 8 year study in the Netherlands) 73.  

 

RSV is a paramyxovirus containing single-stranded RNA.  There are two subtypes (A and B), which 

circulate at the same time, one of which often predominates each year 8,74. The subtypes are 

clinically indistinguishable, and rarely tested for during routine surveillance. Studies on differing 

severity between the subtypes have had mixed results, with some concluding A is more severe75–77, 

others finding no difference78,79, and one concluding that B is more severe80. 

 

While the activation in immune response against RSV infection is very similar to that of influenza 

infection, there are some differences. RSV is detected by many of the same PRRs, however some of 

the TLRs are different, and there are other differences such as potential lower importance of RIG-I44. 

In addition, while both viruses result in the innate IFN expression in epithelial cells, RSV’s primary 

source of IFN is alveolar macrophages, whereas influenza’s derive from plasmacytoid dendritic cells 
44.  

 

 Coronaviruses 
 

SARS-CoV-2 emerged in 2019, and, as of February 2021, over 100 million cases have been reported 

globally, resulting in over 2.3 million reported deaths81. Combined with the health, economic and 

educational impacts of Non-Pharmaceutical Interventions (NPIs), the worldwide impact of SARS-

CoV-2 is colossal.  The novel coronavirus emerged against a backdrop of circulating seasonal 

coronaviruses, and is the third emergent coronavirus in the 21st century82, following Severe Acute 

Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) and Middle Eastern Respiratory Syndrome 

Coronavirus (MERS-CoV)83.  Due to pandemic preparedness activities and intensive research in the 

area, there are now multiple vaccines available as well as proven effective NPIs.  

 

There are four seasonal human coronaviruses (HCoVs): two alpha coronaviruses (HCoV-229E, HCoV-

NL63) and two beta coronaviruses (HCoV-HKU1, HCoV-OC43). Whilst all four of these viruses result 

in respiratory infection, cases are often mild or asymptomatic84, and frequently co-detected with 

other respiratory viral infections85. These viruses are seasonal in temperate sites (excluding China), 

but less seasonal in tropical sites (and China), and associated with lower temperatures and higher 

humidity86. In the UK, cases peak in February, and have consistent seasonal patterns (Figure 1-1). 

First infection with all four seasonal coronaviruses occurs in childhood87. There is evidence from 
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observational studies suggesting that reinfection with homologous seasonal coronaviruses can occur 

within a year88,89. Experimental infections with HCoV-229E have also shown that reinfection (albeit 

symptomless) can occur within a year, despite the presence of specific antibody to a homologous 

virus90. There are indications, however, that the average duration of immunity is longer, with few 

reinfections in a 3-year cohort study91, sterilising immunity to HCoV-229E following challenge one 

year after experimental infection and an average reinfection time ranging from 30-55 months in a 

study of 10 individuals 92 93. It has also been shown that T-cells can neutralise new strains up to 8-17 

years after infection94.  

 

As well as SARS-CoV-2, other coronaviruses have recently emerged: SARS-CoV-1 (discovered 

February 200395) and MERS-CoV (discovered September 201296). These may also stimulate lasting 

immunity; SARS-CoV-1 reactive T-cells are detectable up to 11 years post-infection97. Current 

evidence for the duration of immunity to SARS-CoV-2 suggests it lasts 6 to 8 months, with one study 

showing a protective immune response for 5 to 7 months98, and other studies  observing an immune 

duration of around 8 months99,100, as well as relatively few re-infections101,102.   

 

During the SARS-CoV-2 pandemic, lower infection rates were observed in children103–107, and it has 

been hypothesised that this could be due to cross-reaction between seasonal coronaviruses and 

SARS-CoV-2. This is because children have higher contact rates108 and therefore higher rates of 

infection, which could translate to protection against SARS-CoV-2. 

 

As coronaviruses are also RNA viruses, host detection thereof acts similarly to the host detection of 

influenza and RSV viruses, activating a selection of PRRs such as TLR-3 and TLR-7. This leads to 

downstream responses via the interferon pathway. For seasonal coronaviruses, such as HCoV-229E, 

robust interferon responses have been recorded109; however, SARS-CoV-2 and the other pandemic 

coronaviruses have been shown to impede this pathway109. In a simplistic view, to activate the 

adaptative pathway, immune cells such as dendritic cells phagocytose the virus and present antigens 

to T-cells in the lymph nodes. These differentiate and use feedback from the antigen presenting 

cells: T-cells specific for the viral antigens are selected for. These then evolve down two major 

pathways: effector CD4+ T-cells that stimulate B-cells to make antibodies, and cytotoxic CD8 cells 

that kill infected host cells110. After infection, immune memory cells persist, making the response 

following subsequent infection much quicker, as specific T-cells and antibodies are already present.  
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1.1.3 Viral Interaction  
 

Pathogen interaction can be competitive or synergistic. Opatowski et al. (2017) reviewed evidence of 

influenza interaction with other pathogens. They defined interaction as “any process by which 

infection caused by one pathogen affects the probability, timing, or natural history of infection by 

another”, and they concluded that influenza interaction with other viruses is most likely 

competitive111. This interaction could be within-host or at population level and could be during co-

infection, or for a period after infection.  

 

It should be noted however, that the respiratory tract is full of microorganisms, collectively known 

as the microbiome112. This microbiome is constantly evolving, and collectively shapes our response 

to incoming infections.113 However, some parts of the microbiome are more important that others, 

and I therefore focus specifically on interaction between respiratory viruses in this thesis, despite 

the further complexities in reality.  

 

In the upcoming sections I discuss the two types of interaction: short-term, non-specific interaction 

and long-term, specific interaction. Each section discusses the relevant mechanisms of interaction. 

For short-term interaction these are: behavioural responses, competition for resources, changes in 

severity, innate immune system activation and short-term immune memory. For long-term 

interaction the mechanisms are antibody-derived immune responses and T-cell derived immune 

responses. 

 

1.1.4 Short term, non-specific interaction 
 

Short-term immunity involves non-specific immunity between the different respiratory viruses, 

where infection from one virus reduces the likelihood of being infected with a second virus during or 

for a period after the primary infection. The reduction in susceptibility to the second virus may come 

about through changes in human behaviour, or through activation of the human immune system. 

This is more likely to occur between similar viruses, as they use similar transmission pathways and 

activate a similar immune response. While this could occur between any respiratory viruses, I focus 

on influenza and RSV as most of the evidence for such short-term, non-specific interactions comes 

from these two viruses.  

 

Observations of time series data have provided indications of interaction between RSV and 

Influenza. Insights are especially noticeable after the 2009 influenza pandemic; 4 studies have shown 
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a delay in the RSV epidemic following the influenza pandemic (Israel8,9, Germany114 and France10) and 

in Hong Kong the annual RSV epidemic appeared to be completely absent after the influenza 

pandemic11. 

 

Observation in other years has shown that the peaks of influenza and RSV rarely coincide (USA, 

Norway)115,116. In a study from the Netherlands, data from 9 years concluded that on the three 

occasions when the influenza A season began earlier, the RSV peak was decreased once and shifted 

later twice117. This was done by visually categorising influenza epidemics as early or late and 

generating correlation coefficients. In Japan, a study between 1999 and 2002 observed possible 

interference in the second two years, with the number of patients with RSV decreasing after the 

start of the influenza epidemic, but recovering to some extent after the influenza peak118.  

 

Assessing the rate of observed co-infections compared to the expected rate has also given 

indications of cross-protection, with one study showing 6-7 fold fewer RSV and influenza 

coinfections than expected119, taking into account their circulation at the time.  

 

While such observational studies give indications that interaction between influenza and RSV may 

occur, they are unable to determine the mechanisms behind the hypothesised interaction, and are 

therefore limited in their ability to determine whether interaction is the causal factor behind the 

observations. Multiple mechnisms by which interaction may occur have been hypothesised (Figure 

1-2) which I describe in turn. These mechanisms are incorporated to varying extents in the different 

chapters, with Chapters 2 and 3 incorporating concurrent and both types of subsequent infection. As 

the model does not have the ability to distinguish between these types a “duration of cross-

protection” parameter is fit, which gives indications of the likely mechanism. In Chapter four the 

model incorporates longer term interaction, although it cannot specify whether it is antibody or T 

cell derived. In addition, beahvioural changes before infection are incorporated into the model in 

Chapter 4, by modelling changes in contact patterns. 
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Figure 1-2: Simplified schema depicting different potential mechanisms of interaction between viruses. 

 

 

Mechanism - Behavioural responses 

 

Viral interaction may occur because of behavioural changes by the host in response to an infection. 

If an individual becomes symptomatic, they may be more likely to remain at home or implement 

other preventative measures, such as face masks, reducing the chance of them acquiring other 

viruses. Fear of becoming infected during an epidemic can also result in individuals reducing their 

daily contacts, which will equally effect the transmission of other respiratory pathogens with the 

same transmission routes6.  Pathogens with similar transmission routes may also be impacted by the 

same public health interventions, such as school closures and lockdowns120,121. 

 

Mechanism - Competition for resources 

 

During infection, viruses may compete directly for host cell resources. Pinky et al. (2016) developed 

a model to look at within-host competition between respiratory viruses, which concluded that, for 

viruses with the same preference of host cells, the virus with the highest growth rate would 

dominate. However timing of infection had an impact, with earlier virus infection allowing the 

otherwise weaker virus to dominate 122. There are also in vitro experiments that look at viral growth. 

One experiment found that, when infecting cells 12 hours apart, influenza followed by RSV did not 

alter the growth of RSV in cell culture, whereas initial infection with RSV reduced the growth of 

influenza123. While these studies are good indications of interaction, they don’t allow for the 

complexity seen within a human host. 
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Mechanism - Changes in severity 

 

Damage to host cells from viral infection may also change the rate of colonisation of other 

pathogens, which could have impacts on severity of infections. Yoshida et al. (2013)124 ran a 

prospective surveillance and case-control study looking at severity of respiratory virus mono- and 

co-infections in humans. Although presence of two viruses in the samples resulted in increased 

severity for some viruses, this was not observed for influenza and RSV. These dual infections were 

no more severe than infection with RSV alone124. It was postulated that this may be due to the 

viruses activating different immune pathways, resulting in neutralisation of their respective 

immunopathology. Other studies have shown varied results: one Brazilian study, for instance, found 

no difference in co-infection severity of hospitalised infants in Brazil125. A separate Brazilian study 

showed a longer hospital stay (14.3 ± 7.7 days compared to 7.4 ± 4.3 days) for RSV coinfections with 

other respiratory viruses, compared to RSV mono-infections in preterm infants followed for a 

year126. A Japanese hospital based paediatric study showed shedding of RSV was 65% (95% CrI 49% – 

77%) longer when co-infected with coronaviruses, rhinoviruses or adenoviruses127. In addition, 

studies on other respiratory pathogens have shown that co-infection can increase severity, such as 

influenza infection increasing the risk of invasive pneumococcal disease in adults128. It seems that  

pneumococcus may also affect RSV severity, with the introduction of pneumococcus vaccination 

reducing RSV-associated hospitalisations129.  Evidence is therefore unclear as to what effects RSV 

and influenza co-infections may have, as coinfections between these two viruses were not 

specifically analysed in most of the above studies, often due to a lack of co-infection numbers.  

 

Mechanism - Innate immune system activation 

 

The innate immune system is activated after viral infection in the respiratory tract through PRRs. 

Among these are TLRs, of which TLR-3 detects double-stranded RNA from viral replication, and TLR-7 

recognises single-stranded RNA, which are both activated upon influenza and RSV infection44,130. 

Along with other PRRs (Nod-like receptors, RIG-I-like receptors), this releases cytokines and 

chemokines that activate a signalling pathway which results in the initial innate antiviral 

response44,130. Once activated, the following immune response may impair infection by a second, 

different virus. Cross-protection by this mechanism would be relatively short-lived, lasting as long as 

the downstream responses after viral clearance. An example is the upregulation of RNA-binding 

proteins after infection with influenza A, which inhibits subsequent growth of RSV, which was shown 
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in vivo and in vitro13. In this study mice were infected with RSV following influenza infection, and 

then the presence of the virus in the lungs was surveyed 4 days later. When RSV infection occurred 1 

or 2 days after influenza infection, no RSV was observed. As the time between infections increased 

so did the amount of RSV, reaching just under 60% of RSV compared to the control group with a 12-

day gap13. Further evidence for this comes from mouse studies, in which prior vaccination with cold-

adapted, LAIV reduced the replication of subsequent RSV infection, if the challenge was within 6 

days of vaccination. This effect was not observed in Knockout mice missing the TLR-3/7 receptors14.  

Another mouse study showed that previous influenza infection of mice protects against weight loss, 

illness and lung eosinophilia, attenuates recruitment of inflammatory cells, and reduces cytokine 

secretion caused by RSV attachment proteins 2 to 3 weeks later131. It did not affect RSV clearance. 

This study also showed that splenocytes from previously influenza infected mice could confer this 

immunity to naïve mice, if transferred. Experimental infection of ferrets suggested that complete 

protection lasted less than 2 weeks, although virus challenges after this period were cleared faster15. 

Overall, this combines to compelling evidence that activation of the innate immune system following 

infection from influenza does impact the response upon infection with RSV in mice. However, the 

extent and impacts of this cross-protection is unclear, as is its applicability to human hosts. 

 

Mechanism - Short term immune memory 

 

Others have suggested mechanisms of extended interaction; for example, Hamilton et al. (2016) 

showed that cells forming the respiratory epithelium in mice can survive influenza A infection and 

will remain in a state of heightened antiviral activation for 3 to 12 weeks, with waning of the 

conferred protection against influenza observable at 6 weeks16. This extended duration agrees with 

Kelly et al. (2010) who stipulate that the conferred protection could be a mean of 3 months17. For 

this study they looked at potential interactions between seasonal and pandemic influenza, and 

assumed that vaccination against seasonal influenza did not bestow the immunity conferred by 

natural infection of seasonal influenza. 

 

Evidence for short-term non-specific cross-protection also comes from studying the evolution of the 

influenza genome. Ferguson et al. (2003) suggest that, after a viral infection is cleared, there is a 

continued period of time where the individual is less susceptible to new viral infections from any 

influenza strain, due to the heightened state of the immune system132. This was determined by 

modelling the evolution of influenza strains to generate ladder-like phylogenetic trees. It was 
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determined that “short-lived strain-transcending immunity is essential to restrict viral diversity in 

the host population”. 

 

The evidence for this extended non-specific immunity comes from a range of disciplines: wet lab, 

population dynamics, and phylogenetic analysis. While this gives credibility to the hypothesis, all of 

the above-mentioned studies focus on non-specific cross-protection between different types of 

influenza, so they may not be as applicable to cross-protection against RSV. 

 

1.1.5 Long term, specific interaction 
 

Long-term immunity involves identifying specific pathogen features, and storing a memory of the 

response against pathogens with these features. However, these features may have similarities with 

related pathogens (e.g., different coronavirus species), resulting in activation of the immune 

response to the similar pathogen. This can lead to partial immunity towards similar, yet previously 

unseen, pathogens. While the adaptive immune system is extremely complicated, two main features 

have been studied when looking at cross-reactive and/or cross-protective immune responses: 

Antibodies and T-cells.  

 

Antibody-derived immune responses 

 

Cross-protective responses have been noted both between and within seasonal and pandemic 

coronaviruses. A study following the SARS-CoV-1 pandemic showed that 12 out of 20 SARS patients 

displayed an increase in antibody titre against HCoV-OC43 and/or HCoV-229E seasonal 

coronaviruses following SARS infection19, and similar results were found in an in vitro study133.  While 

an increase in antibody titre does not necessarily result in an effective immune response, SARS-CoV-

1 patients have also shown substantial neutralising antibody titres against MERS-CoV134. 

 

Similar cross-protection has also been observed in relation to SARS-CoV-2; uninfected individuals’ 

serum were seen to neutralise SARS-CoV-2, although less well than serum from SARS-CoV-2 

patients135. There was a strong indication that these cross-reactive antibodies were targeting a much 

smaller range of viral targets than those from COVID-19 patients135. Another study looking at beta-

coronaviruses (HCoV-OC43, HCoV-HKU1, SARS-CoV-1, MERS-CoV and SARS-CoV-2) detected 

potential cross-reactive antibodies to SARS-CoV-2 from all four other viruses. The strongest cross-

recognition was that of SARS/MERS-CoV and SARS-CoV-2 — hypothesised to be due to their closer 

homology136. Cross-reactive responses, however, do not necessarily translate into cross-protection;  
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there are indications that seasonal coronavirus antibodies may be boosted by SARS-CoV-2 infection, 

but they do not correlate with protection against infection or hospitalisation137. 

 

Cross-reactive antibodies have also been identified in influenza infection: between 13% and 68% of 

individuals (children and adults) had cross-reactive antibodies to strains that they had not been 

exposed to in one Israeli study18. Some responses have been shown to be cross-protective as well as 

cross-reactive, such as between H1N1 and H3N2 subtypes in mice138.  

 

Coronavirus antibody responses, including those against SARS-CoV-2, are, however, complicated by 

the varied and rapid decrease in antibody titres after infection139. Yet, T-cells can also have cross-

reactive and potentially cross-protective responses across pathogens140.   

 

T-cell-derived immune responses 

 

There is evidence of this phenomenon in coronaviruses, for example, a mouse study showed very 

strong cross-reactive T-cell responses between MERS-CoV and HCoV-HKU1 (targeted at N-

protein)141. Evidence is emerging that this could be the case for SARS-CoV-2 as well. In one study, 

50% of healthy pre-pandemic donor samples (collected for unrelated studies) had reactive T-cells 

(non-spike) to SARS-CoV-220. These were all also seropositive for HCoV-OC43, suggesting that 

immune responses to some seasonal coronaviruses are cross-protective. Another study looking at 

healthy donors from unrelated studies prior to the pandemic also found that half of the unexposed 

donors possessed T-cells targeting SARS-CoV-2142. Interestingly, they found that whilst SARS-CoV-2 

patients had T-cell responses that reacted to both ends of the S-protein, in the SARS-CoV-2 non-

exposed individuals the target was almost exclusively just one end of the S-protein. This end does 

not contain the receptor binding region, but does have higher homology with seasonal 

coronaviruses. Further studies found cross-reactive T-cells in 20%143, 24%21 and 35%22 of SARS-CoV-2 

unexposed individuals. There is evidence that these cross-reactive T-cells are present at a higher 

frequency in younger adults144, and that these responses can be protective. For example, SARS-CoV-

1 and MERS-CoV T-cell epitopes were protective in mice against other human and bat 

coronaviruses141.   

 

Cross-reactive T-cell responses have been more widely studied in the context of influenza, and 

human T-cells have been shown to be reactive to different influenza variants145, and across influenza 
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A, B and C viruses146. Cross-protection has also been shown, with a correlation between pre-exiting 

influenza T-cells and reduced symptoms during the 2009 influenza pandemic50,51. 

 

Overall, there is strong evidence for cross-reactive immune responses between coronaviruses, in 

terms of both antibodies and T-cells, backed up by evidence of this phenomenon in other respiratory 

virus species. However, despite isolated studies, the extent to which this cross-reaction results in 

cross-protection is unclear, especially when considering a reduction in susceptibility to infection, 

rather than to symptomatic disease.  

 

1.1.6 Mathematical Modelling approaches 
 

By creating models, one simplifies complex systems. Modelling transmission dynamics can be 

particularly useful in epidemics because mechanistic models can be used to test alternative 

hypotheses. Mathematical models have been used to test drivers of seasonality147,148 and 

vaccination strategies149,150, among other things. They offer an ideal opportunity to investigate 

pathogen interaction because features that influence the dynamics of interaction, such as 

susceptibility over time and age assortative mixing, can be included. This allows the researcher to 

test the influence of mechanisms, including pathogen interaction, which cannot be achieved using 

non-dynamic approaches. 

 

Compartmental Models 

 

Compartmental models split the population into different categories based on different 

characteristics or infectious states. These were first developed by Ross151, Ross and Hudson152,153 and 

Kermack and McKenzie154 in the 19th century. One of the most basic versions is the ‘Susceptible – 

Infectious – Recovered’ (SIR) model (Figure 1-3), in which the population is split into compartments 

based on their infectious state. These models are often deterministic: flow between the 

compartments is defined by differential equations, shown below for the simple SIR model. The 

modelled population can be further divided into more compartments, such as by age, susceptibility 

level, vaccine status, etc., allowing the development of detailed pathogen-specific models. In 

addition, external factors such as seasonal forcing can be included, for example, by adding a cosine 

function to the Force of Infection (FOI).  
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Figure 1-3: Susceptible (S) – Infectious (I) – Recovered (R) compartmental model. Parameters are the transmission rate (β) 

and the infectious period (1/g) 
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Where the states are Susceptible (S), Infectious (I) and Recovered (R). Parameters are the transmission 

rate (𝛽) and the infectious period (1/𝛾).  

 

To model interactions between viruses, the characteristics of each relevant virus must be incorporated 

into the model, as must a mechanism of interaction. I will, therefore, discuss the important 

characteristics of each virus that must be included in each of their individual models, before 

summarising methods for modelling interaction between pathogens. 

 

Influenza 

 

There is vast variety in influenza modelling approaches, which is largely because of the complex 

nature of influenza immunity. Types of compartmental models can be split in to two groups: those 

that take account of strain dynamics and those that do not. Kucharski et al. (2016) grouped the 

methods used as history-based (i.e. previous exposure) and status-based (i.e. current immune 

status)155. These models can become very complex and are used when specifically focusing on strain 

dynamics.  

 

Other influenza models assume that the strain dynamics can be encompassed in an annual waning 

rate, which takes antigenic drift and cross-immunity between subtypes into account. These can 

either model circulating subtypes 150,156 or allow one generic influenza virus148,157,158. They often 

include seasonal forcing to simulate seasonal climatic and behavioural factors that impact disease 

transmission, without having to specify each individual factor. In some models, specific parameters 

are also allowed to vary each year to further take into account annual differences in strains148,158. 
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Another commonly used method for modelling influenza dynamics is to simulate each influenza 

season separately. Waning immunity and cross-immunity do not therefore need to be explicitly 

included in the model; instead, susceptibility at the beginning of the season is inputted, for example, 

as in Baguelin et al. (2013)27.  This is a convenient method that accounts for differing immunity 

between different strains, without explicitly modelling them, and it also incorporates immunity by 

vaccination.  

 

RSV 

 

Despite there being two subtypes, most RSV transmission models usually simulate only one 

circulating virus, as they are clinically indistinguishable and not routinely tested for. An exception to 

this is a model by White et al. (2005) that looks at cross protection between subtypes159, in which 

they found low levels of cross-protection. Many models separate primary infection with RSV from 

secondary infections, the primary being the more severe147,160–162, or allow for a build-up of partial 

immunity following infections163,164. Unlike differentiating between subtypes, modelling the build-up 

of immunity is crucial for understanding the interaction dynamics of RSV, either with infection 

number, or with age (as in the absence of interventions these are correlated). Including age 

assortative mixing in models is crucial because of this variance in immunity by age. As with influenza, 

many models that look at the transmission of RSV over multiple years use seasonal forcing to 

simulate climatic and behavioural factors148,150,157,158. While this can be useful to get repeated 

dynamics, seasonal forcing does not describe specific biological mechanisms, and therefore should 

be interpreted with caution.  

 

Coronavirus 

 

Models on coronaviruses have been developed quite irregularly: very few models have looked at 

seasonal coronaviruses, but large flurries of models have been published after coronavirus 

pandemics (e.g. 14 models on SARS-CoV-1 in the first 18 months since its emergence165, 100’s since 

the emergence of SARS-CoV-2). In general, models of pandemic viruses tend to be focused on 

estimating the impact of control measures166–170, or on estimating key parameter values171,172, such 

as the basic reproduction number (R0). Many of these models include an “Exposed” (E) 

compartment, as the duration of this can have large impacts on the effectiveness of control 

measures, and it is biologically plausible. As contact dynamics are very important during the early 
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stages of a pandemic, network models have also been used, which place a greater emphasis on 

contact networks173,174. However, many of these models make different assumptions about the 

immune dynamics, for example, they might have multiple susceptibility levels175, or multiple strains 

of the virus176. Super-spreading events have also been modelled168,177,178, as these can be important 

factors in the initial phase of an epidemic. Further models have also been developed that look at the 

impacts the SARS-CoV-2 pandemic, and the associated social restrictions, have had on other 

pathogens, such as Tuberculosis co-infections179. They also vary in looking at specific, enclosed 

populations, such as cruise ships180 , or a wider geographic spread. As with influenza and RSV, to 

understand coronavirus interactions it is important to model the level of immunity against 

coronaviruses in the population. In addition, as public health interventions often affect different age 

groups to a different extent (such as school closures), it is important to include age assortative 

mixing when dynamically modelling these. 

 

Interaction models 

 

Most infection interaction models simulate different strains rather than different pathogens. 

Frequently modelled pathogens with multiple strains are Influenza, Streptococcus pneumoniae and 

Dengue. These models can be individual-based, history-based or status-based as discussed by 

Kucharski et al. (2016)155. Individual-based models track each individual separately, rather than 

combining them into groups based on infection status, history or other characteristics. While 

individual-based181 models therefore allow the capturing of both previous infections and immunity 

profiles for individuals, they are extremely computationally intensive and hard to parameterise. 

Compartmental models reduce this complexity, such as history-based ones182, which contain 

compartments for each combination of prior infections. Although this works well when there are 

only 2 interacting pathogens, it can become increasingly complex with more strains. These can 

however be reduced through symmetry of strain space183 or age structure155. Status based 

models184,185, on the other hand, keep track of current immune status but not the combination of 

past infections that generated this immunity. This allows for easy incorporation of partial immunity, 

where, upon infection with a pathogen, individuals immunity levels against it and other pathogens 

differ. Such models do not, however, allow tracking of the strains which have resulted in the current 

immune status, which may be a substantial disadvantage for many questions regarding pathogens 

with many strains.  
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There are few models that simulate multiple respiratory pathologies. Influenza and pneumonia 

models are one example186, but here it is important to note that it is the disease, and not the 

prevalence of bacteria, that is of interest for pneumonia. In these models, influenza is often included 

as a covariate of the model, where the prevalence of influenza over time is an input value that 

influences the propensity for progression to disease upon infection.  

 

In terms of RSV and influenza models, there is one published within-host model, and one at the 

population level. Pinky et al. (2016)122 developed a model to look at within-host competition 

between respiratory viruses, which concluded that for viruses with the same preference of host 

cells, the virus with the highest growth rate would dominate. However, timing of infection had an 

impact, with earlier virus infection allowing the otherwise weaker virus to dominate.  This is a 

relatively simple model, with no inclusion of immune responses to the virus, and with strong 

assumptions about host cell preference and a lack of superinfection. It does however provide 

evidence for the specific mechanism of interaction that the authors were looking at. 

 

There is also a dynamic transmission model looking at co-infection between influenza and RSV on 

the population level. This model by Velasco-Hernandez et al. (2015)187 allowed superinfection, I.e., 

once infected by one virus, individuals were less susceptible to a second. They assumed that RSV 

was the dominant virus, due to its higher mortality and its all-year presence in Mexico City. The 

model incorporated reduced susceptibility during infection, with no allowance for an increase in 

transmissibility. In the paper they did not discuss the sensitivity of the results to some major 

assumptions; for example, that RSV superinfects influenza, and not the other way around. Nor did 

they fit the model to data, so while it replicates the rough transmission patterns, the accuracy of the 

fit is not defined.     

 

In terms of coronaviruses, Pinky et al. (2020)188 looked at the growth rate of respiratory viruses and 

modelled the impact of these growth rates dependent on when infections occurred. They concluded 

that as SARS-CoV-2 has a lower growth rate, it will be outcompeted by respiratory viruses that had 

been infected at the same time or earlier188. Kissler et al. (2020) developed an interaction model 

looking at the cross-protection between beta-coronaviruses (HCoV-HKU1 and HCoV-OC43), and at 

the impact cross-protection could have on the future dynamics of SARS-CoV-2189. Using data from 

the USA they estimated relatively strong cross-protection between HCoV-HKU1 and HCoV-OC43, 

using a compartmental model with seasonal forcing. Whilst the model assumed no interaction with 

alpha-coronaviruses, and explored a relatively narrow parameter range, they used Bayesian 
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Methods to fit to 5 seasons of data, obtaining values for the extent of interaction, and were 

therefore able to test the impact of any cross-protection on SARS-CoV-2 transmission. They 

estimated that the average duration of immunity was 45 weeks, and that there was strong but 

unequal cross-protection between subtypes (0.51 and 0.78). 

 

1.1.7  Fitting models 
 

Most pathogen interaction modelling papers do not include fitting the model to data. There were 

four categories of methods used to evaluate the models: 

 

A. Simulation to investigate behaviour – no data used. 

 

There are many theoretical papers that look at how interacting pathogens/strains can be modelled, 

without comparing the simulation results to data. One example of this is a paper by Gog and 

Swinton (2012)190, in which they develop a status-based approach to multiple strain dynamics, 

allowing for the incorporation of different forms of partial immunity. Instead of comparing their 

results to data, they compare the behaviour of their model to other models in the literature. This 

allows the investigation of impacts from different assumptions, but does not evaluate to what 

extent these assumptions apply in different settings.  

 

B. Simulations that are compared to data visually. 

 

The Influenza-RSV model by Velasco-Hernandez et al. (2015)187 is an example of a model that 

compares simulations with data, but does not quantitatively fit them to it. This allows the authors to 

evaluate their hypothesis, but does not provide quantitative assessment as it is based on a visual 

comparison. While such visual comparison may be a reasonable method for looking at overall 

patterns, it is less good at identifying smaller differences, such as those that might be seen due to 

pathogen interaction. This may also be true when different sets of parameters fit equally well, and it 

is therefore less robust. 

 

C. Inference validation through simulated data. 

 

Shrestha et al. (2011)191 developed a model of pathogen interaction that was not restricted to a 

specific pathogen. They aimed to investigate whether it was possible to determine the level of 

interaction from surveillance data. To do this, they generated simulated data of monthly cases over 



 36 

40 years for each parameter set, and the parameters approximated dengue transmission with 

different levels of interaction between strains. Subsequently, they fitted the model to this simulated 

data to investigate what accuracy of parameter values related to interaction could be determined by 

using Sequential Monte Carlo (SMC). They determined that in most cases it was possible to back-

infer the parameters relating to interaction, and that it was easier when the interaction was stronger 

or longer in duration. In addition, when the initial conditions for the model were unknown (as 

opposed to their tested scenarios where they knew the initial conditions of the population) the 

precision of the parameter estimates was reduced despite still being identifiable. Analysis of the 

capabilities of a model done in this way gives confidence to subsequent analysis of observational 

data using the same model; however, such validation is also time consuming. It can also be used to 

determine the quality and quantity of data required to be able to fit to real time series data, which 

can be useful for planning study designs.  

 

 

D. Fit the model to data. 

 

Fitting to data provides empirical evidence for parameter estimates, and should therefore be used 

wherever possible. An example of fitting of an interaction model to data is assessing pneumococcal 

incidence in the presence of influenza. Shrestha et al. (2015)186 used an SIRS model of pneumonia, 

where influenza was included as a covariate rather than as part of the transmission model. In this 

case, the authors used a partially observed Markov process.  There are also papers that model both 

pathogens (or strains) dynamically. Pneumococcal strain models are one example of this; strains are 

often modelled as vaccine-type or non-vaccine-type192. Studies here have shown that transmission 

dynamics are sensitive to the competition between serotypes, and that introducing an intervention 

(in this case vaccination), allowed for the estimation of the competition parameter193,194. In addition, 

information on which strains an individual is infected with (i.e. coinfections) resulted in more 

detailed estimates for competition between the strains195. 

 

Bayesian fitting methods 

 

In this thesis I use Bayesian Methods to fit models to data. This includes fitting methods such as 

Markov Chain Monte Carlo (MCMC) and parallel tempering. The basis of these methods is to sample 

from an unknown posterior distribution. To sample the posterior distribution, 𝑝(𝜃|𝑑𝑎𝑡𝑎),  of 

parameters, 𝜃 = {𝛼, 𝛽, … }, the likelihood, 𝑝(𝑑𝑎𝑡𝑎|𝜃), and the prior on the parameters, 𝑝(𝜃), must 
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be calculated. Using Bayes theorem (Equation 4) a distribution that is proportional to the posterior 

can be estimated. This framework allows the inclusion of prior information, and gives a distribution 

that is proportional to the posterior parameters. 

 

 𝑝(𝜃|𝑑𝑎𝑡𝑎) 	∝ 𝑝(𝑑𝑎𝑡𝑎|𝜃)𝑝(𝜃) (4) 

 

MCMC is a standard tool within the field to efficiently sample the posterior distribution, generating 

estimates of the parameter distributions. This typically involves proposing parameter values, and 

accepting or rejecting these proposed parameters based on the Metropolis-Hastings (MH) ratio. 

Pseudocode for an MH algorithm with symmetrical proposal distributions is shown in Figure 1-4. The 

Monte Carlo chains must reach convergence at the stationary distribution, thereby describing the 

posterior distribution. While various diagnostics can be used to show a lack of convergence196, it is 

not possible to prove convergence, and this is a major limitation of many related methods, including 

MCMC. This is because one can never be sure that 100% of the parameter space has been explored. 

This is particularly true for more complicated posterior distributions, as chains can get stuck in local 

areas of high density.  MCMC can, therefore, be further expanded to include more complex sampling 

and acceptance regimes, such as parallel tempering.  

 

  
Figure 1-4: Pseudocode for an MCMC sampler with a symmetrical proposal distribution 

For parallel tempering, multiple chains are run at different temperatures, where higher 

temperatures accept lower likelihoods. After a given number of iterations, swaps between 

neighbouring chains are proposed. These swaps are accepted dependent on the likelihood and 

temperature difference between the chains, as shown in equation 5.  
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Where Ai,j is the acceptance probability between chains i and j, 𝜏&  is the inverse of temperature of 

chain i, and LL(i) is the log likelihood of chain i. This method allows the higher temperature chains 

explore a boarder range of the parameter spaces, while the lower temperature chains allow 

precision within the local minima. It is however a more computationally expensive fitting algorithm, 

as only the samples from the chain at temperature = 1 can be used as the posterior, despite multiple 

chains being run. 

 

1.1.8 Summary Motivation 
 

There are many gaps in our understanding of pathogen interactions. For influenza and RSV 

interactions it is still unclear whether biological indications of interaction, influence population level 

dynamics. In other words, the causal link between interaction within an individual host and the shifts 

in observed peaks is as yet untested. Regarding coronaviruses, there are many gaps in the 

knowledge of seasonal coronavirus circulation, including uncertainty in the duration of immunity, 

the R0, and the interactions with other coronaviruses. Specifically, after the initial waves of the SARS-

CoV-2, it was hypothesised that cross-protection could have resulted in the reduced susceptibility of 

children to SARS-CoV-2; however, this could also have resulted from age-assortative mixing patterns 

or innate susceptibility differences between age groups. In this thesis I aim to address these gaps in 

what is known.  

 

The key features of the pathogens that govern these interactions are manifold, including the basic 

viral dynamics, the complicated build-up of immunity within a population due to prior infections and 

vaccination, and the age assortative mixing patterns and interventions. These elements are all 

crucial to modelling interactions as they strongly influence pathogen dynamics.  

 

Mathematical modelling is therefore a key tool in the study of pathogen interactions as it allows for 

the inclusion of such complexities. This is because the researcher can include these attributes of 

transmission into the mechanisms of the model. Combined with Bayesian fitting methods to match 

the model to the data, and to include prior information, this set of tools creates a unique 

opportunity with which to approach the questions of pathogen interactions.  

 
1.2  Aims 
 
The overall aim of this thesis is to infer the strength and duration of cross-protection between 

respiratory viruses by rigorously fitting mathematical models to surveillance data.  
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This aim will be met by the following objectives:  

 

A) Understand whether one can in principle recover interaction parameters from simulated 

RSV and influenza surveillance data in a modelling framework.  

B) Infer the extent of cross-protection between RSV and influenza using data from 11 years of 

enhanced surveillance in a Vietnamese hospital, and assess the potential impact of 

vaccination. 

C) Assess whether cross-protection between seasonal coronaviruses and SARS-CoV-2 can 

explain the observed age susceptibility profile to SARS-CoV-2 during the first wave of the 

epidemic in England and Wales, and evaluate the impacts this cross-protection could have 

on future circulation of SARS-CoV-2. 

 

1.3 Thesis Structure 
 

This thesis is written in a research paper style, where each analysis chapter takes the form of a 

scientific paper that has been / will be published or submitted to a journal, preceded by a bridging 

section. This introductory chapter provides background on the relevant respiratory viruses, evidence 

of interaction between them, and mathematical models used to evaluate them. The thesis then 

contains three analysis chapters, followed by a discussion. The analysis chapters are as follows:  

 

- Chapter 2: Competition between RSV and influenza: Limits of modelling inference from 

surveillance data. This chapter was published in the journal Epidemics in 2021. It includes 

the development of an interaction model between influenza and RSV, and evaluates the 

accuracy and precision of parameter estimates that can be inferred using data simulated 

based on the UK surveillance system. This chapter covers the thesis objective A. 

 

- Chapter 3:  Evidence for Influenza and RSV interaction from 10 years of enhanced 

surveillance in Nha Trang, Vietnam, a modelling study. This paper is currently being 

prepared for submission, and infers the strength and duration of cross-protection between 

RSV and influenza by fitting to positive viral samples from a hospital study in under 5-year-

olds in Nha Trang, Vietnam. This covers the thesis objective B. 

 

- Chapter 4: How immunity from and interaction with seasonal coronaviruses can shape 

SARS-CoV-2 epidemiology. This paper was published on medrxiv in 2021, and is currently 
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undergoing review following revision at the Proceedings of the National Academy of Sciences 

of the United States of America (PNAS). It infers estimates for key seasonal coronavirus 

parameters, such as the duration of immunity and the basic reproduction number. Using 

these, it assesses the feasibility of existence of cross-protection from seasonal coronaviruses 

to SARS-CoV-2, and evaluates whether this cross-protection can explain the reduced 

susceptibility of children that was observed in the first wave of the pandemic. It also projects 

the long-term dynamics of both SARS-CoV-2 and seasonal coronaviruses at different levels of 

cross-protection. This chapter uses England and Wales as a case study, and covers thesis 

objective C.  
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2.2 Bridging section  
 
This paper was published in Epidemics in Volume 35, June 20211. It presents a transmission model 

that allows for interaction between RSV and influenza and tests its robustness on simulated data 

based on the UK surveillance system. 

 

Cross-protection of RSV and influenza can be mechanistically included in dynamic models, allowing 

the estimation of the extent of cross-protection. However, it is unclear if the impacts of this are 

significant enough to be detectable at the population level, which is of particularly concern if there is 

weak cross-protection, or if the duration is very short. Shrestha et al. (2011)2 developed a pathogen 

non-specific model to investigate the identifiability of cross-protection, simulating monthly 

infections for 40 years and looking at three different scenarios with different types of interaction. 

However, this wealth of data is rarely available, and the peculiarities of each pathogen and setting 

will have an impact on the identifiability of the parameters. In this paper I set up a model that is 

specific for RSV and influenza, mimicking surveillance data collected in the UK3. I chose the UK as it 

has a consistent and reliable surveillance system for respiratory pathogens. In addition, I had 

permission to use the data and fitting the model to this was the original plan for Chapter 3. 

Unfortunately, this did not end up being possible due to accessibility issues because of the SARS-

CoV-2 pandemic. 

 

This Chapter validates the model used and sets the scene for fitting to real surveillance data. It 

demonstrates areas of parameter space where results are less trust-worthy, as well as showing the 

importance of fitting to multiple seasons. I take these lessons learned forward into the following 

chapters. As mentioned, I planned but was unable to use data from Public Health England in the next 

chapter. Instead, I adapt this model to fit data from Vietnam in Chapter 4. This model is also the 

base from which the model in Chapter 5 was developed from.  

 

 I developed the model, wrote all the code, and performed the fitting analysis. I also wrote the paper 

and made the figures. Throughout the process I received input/suggestions/edits from both my 

supervisors. After comments from review at a journal from which it was rejected, I made significant 

edits based on the reviewer comments, and a colleague (Dr. Amanda Minter, an author on the 

paper) also provided guidance at this stage. The version shown in this chapter is the final accepted 

version by the journal. 
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The Supplementary material of the original paper covers extra details on the methods and additional 

simulation results. This is included as Appendix A in this thesis, so any references to supplementary 

material can be found there.  
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2.3  Abstract and Author Summary  
 
Competition between RSV and influenza: limits of modelling inference from 
surveillance data 
 

Naomi R Waterlow1*, Stefan Flasche1, Amanda Minter1, Rosalind M Eggo1 

1Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, UK 

 

Abstract 

Respiratory Syncytial Virus (RSV) and Influenza cause a large burden of disease. Evidence of their 

interaction via temporary cross-protection implies that prevention of one could inadvertently lead to 

an increase in the burden of the other. However, evidence for the public health impact of such 

interaction is sparse and largely derives from ecological analyses of peak shifts in surveillance data. 

To test the robustness of estimates of interaction parameters between RSV and Influenza from 

surveillance data we conducted a simulation and back-inference study. We developed a two-

pathogen interaction model, parameterised to simulate RSV and Influenza epidemiology in the UK. 

Using the infection model in combination with a surveillance-like stochastic observation process we 

generated a range of possible RSV and Influenza trajectories and then used Markov Chain Monte 

Carlo (MCMC) methods to back-infer parameters including those describing competition. We find 

that in most scenarios both the strength and duration of RSV and Influenza interaction could be 

estimated from the simulated surveillance data reasonably well. However, the robustness of 

inference declined towards the extremes of the plausible parameter ranges, with misleading results. 

It was for instance not possible to tell the difference between low/moderate interaction and no 

interaction. In conclusion, our results illustrate that in a plausible parameter range, the strength of 

RSV and Influenza interaction can be estimated from a single season of high-quality surveillance data 

but also highlights the importance to test parameter identifiability a priori in such situations. 

 

Author Summary  

Influenza and Respiratory Syncytial Virus (RSV) cause a large disease burden. Rather than acting 

independently these viruses may interact, meaning that infection with one decreases the likelihood 

of infection with the other. While this could have important implications for control strategies, the 

evidence for the strength of the interaction and its importance for public health is largely based on 

ecological studies, and it is not clear that surveillance data are sufficient to determine if interaction 

exists, and if so, how long the effect last. To test this assumption we used a mathematical model to 

simulate RSV and Influenza surveillance data and back-infer the strength and duration of interaction 
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used to generate the data. We found that in the majority of cases it was possible to determine the 

strength and duration of interaction from even a single season of high-quality surveillance. However, 

we also showed that for extreme parameter values, model estimates may be unreliable despite a 

seemingly good fit to the data and hence highlight the importance of a priori model validation for 

similar analyses.  

 

2.4 Introduction 
 
Respiratory Syncytial Viruses (RSV) and seasonal influenza viruses cause large burdens of respiratory 

disease, including in young children4,5. RSV was recently identified as the primary cause of 

hospitalisation for severe paediatric pneumonia6, particularly in the neonatal period. In the northern 

hemisphere both viruses cause pronounced annual winter epidemics peaking between October and 

March7.  

 

Evidence from epidemiological and biological studies implies there is competitive interaction 

between influenza and RSV8–13. The biological mechanism for competition is activation of the innate 

“antiviral response” by infection that can inhibit further or subsequent infection13–15, resulting in a 

period of cross-protection during and after infection. Mouse studies have shown this effect, where 

following influenza infection or live attenuated influenza vaccination (LAIV), RSV replication/severity 

was decreased13,15. Within-host animal studies, both in vitro and modelling, have shown that the 

growth rates of the viruses can be affected by other viruses present16,17. The duration of this cross-

reactive response is debated, varying from “short-term”18, less than two weeks19 or up to 3 

months20. Influenza epidemics caused by different strains are thought to exhibit competitive 

exclusion8,21,22, and for RSV and influenza syndromic surveillance has shown shifts in the seasonal 

incidence peaks of RSV following abnormal (pandemic or early) influenza seasons 10,23–27, which 

suggest this mechanism may not only occur but can substantially alter the epidemiology of influenza 

and RSV. There is, however, little evidence that links the strength of competition between RSV and 

influenza within a host to observed population dynamics. Understanding the dynamics is critical for 

predicting the effects of alteration of their ecological balance, for example through vaccination 

programs, and is the motivation for this study.  

 

Influenza vaccination rates, especially in key transmission groups could disrupt transmission, 

potentially leading to effects on interacting viruses. In the UK, the RSV epidemic usually precedes the 

influenza epidemic by one or two months, so reduced influenza transmission as a result of childhood 

influenza vaccination may not affect RSV transmission dynamics. However, the competitive pressure 
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exhibited by RSV on influenza may become highly relevant soon. The only RSV vaccine candidate yet 

that completed Phase 3 trials, the maternal vaccine, Novavax, demonstrated only partial efficacy 

that the Advisory Committee for Immunization Practices in the US deemed insufficient to warrant 

licensure 28. However, the RSV vaccine pipeline contains a number of Phase 1 and 2 candidates that 

aim to protect children in part by limiting RSV circulation. As such, these future RSV vaccines have 

the potential to decrease the competitive pressure on influenza and thereby increase influenza as an 

unintended consequence, both in children and other age groups, as children are a key driver of 

transmission. These impacts will need to be considered as part of their cost benefit proposition 

preceding routine use.  

 

Mathematical modelling is an important tool for testing mechanisms and hypotheses of 

epidemiologically significant RSV and influenza competition, such as the hypothesis that they 

competitively interact. Models offer an opportunity to mechanistically combine observations from 

surveillance data and extrapolate beyond the observed. However, in the case of RSV and influenza 

competition the identifiability of model parameters from viral surveillance data is uncertain. Hence, 

we conducted a simulation study to test whether parameters can be back-inferred from a range of 

realistic model-generated scenarios that include only partial observation of the infection dynamics 

from surveillance-like data.  

 

2.5 Methods 
 
2.5.1 Model Structure 
 
We developed an age-stratified deterministic compartmental transmission model for RSV and 

Influenza with interactions (Figure 2-1 and Supplement Section 2). The population could be 

Susceptible (S), Infectious (I), Protected (P) or Recovered (R) for each of RSV and influenza viruses. 

We simulated one season so we did not consider potential loss of immunity, and current estimates 

for RSV immunity lasts less than a year29, and we take influenza immunity into account by fitting the 

percentage susceptible at the start of the season (see below).  There were separate transmission 

and recovery rates for each virus (subscripts RSV and INF), and i and j denote age groups. Susceptible 

individuals were infected at rates 𝜆$34,& 	and 𝜆%"5,&  and enter the I compartment. They recovered at 

rates 𝛾$34  and 𝛾%"5, and entered the P compartment where they were no longer infectious. In P, 

individuals were fully protected against homologous re-infection and also had some cross protection 

against the second virus. Loss of cross-protection occurred at rate ρ. Infection with a second virus 

was less likely in the I and P classes and occurred at a rate reduced by 𝜎 .The key parameters 
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determining interaction are therefore the strength of competition (𝜎) and the rate of loss of cross-

protection (𝜌). Compartments IRSV,iPINF,i and IRSV,iRINF,I, as well as PRSV,iIINF,I and RRSV,iIINF,I were combined 

as they were effectively identical when modelling only one season. 

 

 
Figure 2-1. Model diagram for RSV and Influenza (INF). Individuals could be either Susceptible (S), Infected, 

(I), Protected (P) or Recovered (R) to either virus. Following infection, (which occurred at rate 𝜆!"#,% and 

𝜆&'(,%), recovery occurred at a constant rate (𝛾!"#	and 𝛾&'(), and the population entered the P state. Here 

they are immune to the virus they were infected by and protected to a varying extent (𝜎) against infection 

from the second virus. This protection waned at rate ρ, and the population entered the R compartment. In 

the R compartment the population was immune to the virus it was infected by, but not the other virus. We 

ran the model for one season and compartments IRSV,iPINF,i and IRSV,iRINF,I, were combined, and  PRSV,iIINF,I and 

RRSV,iIINF,I were combined, because they are effectively identical. Parameters were: age susceptibility to RSV 

infection (𝜏%), For clarity, age structure is given only by the subscript (i), for further details see supplement 

section 2.  

 

The model was stratified into 5 age categories: infants: 0-1 years, pre-school-aged children: 2-4 

years, school-aged children: 5-15 years, adults: 16-64 years, and older adults: aged 65+. Age-

dependent contact patterns relevant to the transmission of infections are highly age heterogenous30, 

and we used social contact patterns (including both physical and verbal contacts) in England from 

POLYMOD30, a European wide contact study in 2005/6, and in the socialmixr R package31. We 

calculated forces of Infection,	𝜆%"5,&  and 𝜆$34,&, from the baseline transmission rates 𝛽$34  and 𝛽%"5  

and the mixing parameters as:   
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𝜆%"5,& = 	F𝛽%"5

6

(78

𝛼&(𝐼%"5,( (1) 

λ$34,& = 	F𝛽$34

6

(78

𝛼&(𝐼$34,( (2) 

 

where 𝛼&(  is the contact rate between groups i and j and 𝐼$34,(  and 𝐼%"5,(  are the proportion infected 

with Influenza and RSV in age group j. See Supplement Section 1 for model equations.  

 

We modelled one year from the start of the respiratory virus season, and initiated the model with a 

proportion of each age group susceptible to influenza set from serological data32 (Table 2-2) and the 

rest in SRSVRINF. RSV immunity to re-infection may last less than a year29, therefore we considered the 

population to be susceptible to RSV at the start of the season. However, RSV susceptibility differs 

with age33, and therefore we reduced the susceptibility to the same range as in other models34 by 

decreasing the infection rate by a susceptibility parameter, 𝜏&  (Table 2-2).  

 

RSV was seeded at time 𝜂%"5 	when one individual from the fully Susceptible class (SRSVSINF) becomes 

infected (IRSVSINF). Influenza infections are introduced at a rate of 0.1 cases per day from SRSVSINF to 

SRSVIINF, starting on day 𝜂$34. Influenza introduction assumptions differ from those of RSV as with a 

single introduction the influenza epidemic was supressed for the whole season at certain parameter 

values, which is not seen in UK surveillance. See Supplementary section 6 for further details. 

 

An observation process layer converted infections to detected cases using a binomial distribution. 

The number of detected cases is assumed to follow a binomial distribution as follows:  

𝑃K𝑥9&:;<,&,# = 𝑋N = 	 O
𝑛9&:;<,&
𝑋9&:;<,&P Δ9&:;<,&

=(1 − Δ9&:;<,&)*>#"$%&,".=#"$%&,"0	 (3) 

 

where 𝑋	is the number of detected cases in 𝑛 infections and 𝑥9&:;<,&,# is the cases detected for each 

virus, age group, and timestep. The proportion detected was different for each age group and virus 

(Table 2-2).  

 

We implemented the model in R35 and C++ using the Rcpp36 and deSolve37 packages.  

 

2.5.2 Simulated data 
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We generated simulations to resemble data collected through surveillance systems in the UK38, such 

as the Respiratory Datamart System in England and Wales3 and other Public Health England 

surveillance systems39,40. This provides laboratory test results from routinely tested clinical 

respiratory samples from a range of respiratory viruses. The proportion detected varies by age-

group for RSV (Table 2-1), as younger infants are more likely to present with severe symptoms41. 

Output from the model is weekly number of positive tests in the under-five population for RSV and 

influenza.  

Table 2-1: Parameter values used for generating simulations. 

Parameter  Symbol Value used in 
simulations 

Source Status in 
inference 

Duration of 
infectiousness for 
RSV 

1/𝛾()* 9 days Weber et al (2001)29 
Range from published papers: 6.7-12 
days29,34,42 

Fixed 

Transmission 
parameter for RSV 

𝛽()* 
 

0.043 Calibrated to observed values. Equates to 
an R0 and Reffective of 2.5 . See 
Supplementary section 3 for details 

Estimated 
Log scale 

Time of first 
infection for RSV 

𝜂()* Day 1 Calibrated to observed pattern. See 
Supplementary section 6 for details. 

Estimated 

Age susceptibility to 
RSV infection (0-1, 
2-4, 5-15, 16-64, 
65+) 

𝜏+ 
 

1,  
0.75,  
0.65,  
0.65, 
0.65 

Henderson et al. (1979)33 see supplement 
section 4. 

Fixed 

Proportion of RSV 
infections in ages 0-
1 detected 

Δ()*, 0.004 Calibrated to observed values. See 
Supplementary section 5 for details. 

Estimated 
Log odds scale 

Proportion of RSV 
infections in ages 2-
4 detected 

Δ()*- 0.001 
 

Calibrated to observed values. See 
Supplementary section 5 for details 

Estimated 
Log odds scale 

Duration of 
infectiousness for 
influenza 

1/𝛾./0 3.8 days 
 

Cauchemez et al (2004)43 
Range from published papers: 1-4.5 days43–

46 

Fixed 

Transmission 
parameter for 
Influenza 

𝛽./0 
 

0.063 Calibrated to observed values. Equates to 
an R0 of 2.91, Reffective of 1.55. See 
Supplementary section 3 for details.  

Estimated 
Log scale 

Time of first 
infection for 
Influenza 

𝜂./0 Day 10 Calibrated to observed pattern. See 
Supplementary section 6 for details. 

Estimated 

Proportion 
susceptible to 
influenza (<2, 2-4, 
5+) 

𝜔+ 1, 0.688, 0.525 Assuming born susceptible47, then values 
from Baguelin et al from serology data 
from 2003/4 48 

Fixed 

Proportion of 
Influenza infections 
in ages 0-4 detected 

Δ./0 0.002 Calibrated to observed values. See 
Supplementary section 5. 

Estimated 
Log odds scale 

Strength of 
interaction  

𝜎 0.01, 0.1, 0.2, 
0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 
0.9, 0.99 

Range of values tested Estimated 

Rate of loss of 
protection 

𝜌 0.025, 0.05, 0.1, 
0.2, 0.5 per day 

Range of values tested Estimated 
Log scale 

Table 2-2: Demography and susceptibility input used for model simulations 

Demography Value used References/Comments 



 66 

Population size 56 758 452 UK. Demography from POLYMOD30 

Population 2-4 years 2070936 UK. Demography from POLYMOD30 

Population <2 years 1380624 UK. Demography from POLYMOD30 

 

We generated simulations with parameter values from the literature and if unavailable we 

calibrated the values to realistic ranges (Table 2-1). Across simulations we varied 𝜎	(strength of 

interaction), for which we used 11 different values, and 𝜌 (the rate of loss of cross-protection), for 

which we used 5 different values. This resulted in 55 combinations of σ and ρ and we simulated 5 

replicates of each.  

 

2.5.3 Parameter estimation 
 
We assumed that the observed cases followed a Poisson distribution with likelihood:  

𝐿K𝜃T𝑥8,… , 𝑥>N = 	F𝑒.?
>

(78

1
𝑥(!
	𝜃@! 	 (4) 

where	𝜃 is the modelled detected cases of RSV and influenza in the two youngest age groups,  𝑥(  is 

the observation and 𝑛 is the total number of observations. We fitted only to the lowest 2 age groups 

to represent where the majority of samples for RSV are taken from and detected. We fitted the 

model to simulated data using Metropolis Hastings Markov Chain Monte Carlo (MCMC) sampling. 

Estimated parameters were transmission rates (𝛽%"5, 𝛽$34)	detection probabilities ( Δ%ABC, 𝛥$34) 

interaction parameters (𝜌, σ) and season start times (𝜂%"5, 𝜂$34). For each scenario, we ran two 

chains with 450 000 iterations as burn in followed by a further 250 000 iterations. For chains that did 

not converge, we extended the chains for a further 250 000 iterations iteratively until convergence 

was reached or a total of 1 200 000 iterations were run. We used weak priors, and the priors for 

𝛽%"5  and 𝛽$34  were calculated from R0 values, assuming no interaction (see Supplement Section 3). 

We adapted the shape of the proposal distribution during burn in, from 5000 accepted proposals to 

a further 300000 proposals, to take correlation between parameters into account by allowing the 

covariance matrix for proposal distributions to change. Parameter limits are defined in Supplement 

Section 7 and 𝛽%"5, 𝛽$34 , Δ%"B8, Δ%ABC, 𝛥$34  and 𝜌 were sampled on a log scale to improve mixing 

where the parameter values were very low.   

 

We assessed MCMC convergence via the Gelman-Rubin statistic, which compares the within-chain 

variance to the between-chain variance for each parameter. Scenarios with a statistic greater than 

1.1 we deemed as practically unidentifiable from simulated data. We also calculated the Pearson 

correlation coefficient between each two estimated parameters and assessed how these changed 
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with the values of the interaction parameters (𝜎 and 𝜌), in order to further understand difficulties 

with parameter estimation.   

 

We compared the inferred parameter estimates to the simulated parameter values to determine 

inaccuracy and imprecision of the fit, where inaccuracy is defined as the difference between the 

median value of the posterior distribution and the true value, and imprecision is the range between 

the 95% credible intervals (95% CI). We present results from  one replicate set of simulations in 

Results and others are given in the supplement. 

 

2.6 Results 
 
2.6.1 Epidemic profiles 
 
Altering the strength or duration of cross-protection did not notably affect the timing or shape of 

the RSV epidemic (Figure 2-2), due to the higher transmission rate and earlier start of RSV in our 

scenarios. However, increasing the strength or duration of interaction delayed the influenza peak. 

The total number of influenza infections in the youngest two age groups did not change (percentage 

difference <1% between 𝜎 = 1 and 𝜎 = 0) with the strength of interaction (Supplement Section 8). 

Increasing the duration of cross-protection resulted in an 11% lower total number of infections from 

the shortest (2 days) to longest (40 days) duration of cross-protection (Supplement Section 8). Plots 

showing the epidemic curves for each infectious compartment are shown in in Supplement Section 

9. 

 
Figure 2-2:  Mean weekly incidence of observed cases in under 5s (sum of age groups 0-1 and 2-4) from 

simulations with A) varying 𝜎	values and a fixed protection duration of 10 days (ρ=0.1), and B) varying 𝜌	values, 
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and a fixed 𝜎 of 0.5. Simulations were run and sampled 1000 times for each parameter set and the shaded 

windows are the 95% quantiles for each week. In both A and B the top panel shows the observed cases for RSV, 

and the lower panel the cases for Influenza.  

 
2.6.2 Correlation Analysis 
 
The most strongly correlated parameters were consistently the transmission rate for RSV (𝛽%"5) 

with the RSV season start time (𝜂%"5) and the transmission rate for influenza (𝛽$34) with the 

detection rate for influenza (Δ$34)  and the start of the influenza season (𝜂$34) (Figure 2-3A). The 

correlation between parameters changed dependent on the values of the interaction parameters, an 

example of which is shown in Figure 2-3B, where the correlation coefficient between the strength of 

interaction (𝜎) and the proportion of influenza cases detected (Δ$34) varies depending on the values 

of 𝜎 and 𝜌. As the strength of interaction decreases (as 𝜎 → 0), the correlation between the 

strength of interaction and the proportion of influenza cases detected becomes more positive. The 

correlation changes across the interaction parameters for other parameter combinations are shown 

in in the Supplement Section 10, and matrices for individual simulations are in supplement section 

12.  

 

 

Figure 2-3. A) Mean Pearson correlation coefficient between parameters. B) Correlation coefficient between 

𝜎	(strength of cross-protection) and 𝛥&'( (start day of influenza). This is shown for 1 simulation, but the 

patterns were similar for all (Supplementary Section 12) 
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2.6.3 Inferring the strength of cross-protection (𝜎) 
 
Across simulations, the imprecision and inaccuracy of the estimated strength of cross-protection (𝜎) 

varied (Figure 2-4), with the imprecision ranging from 0.15 to 0.66 (where 1 is poor precision) and 

average imprecision decreasing as the duration of protection (ρ) increased. We did not observe a 

trend in the inaccuracy of the parameter estimates and they ranged from 0 to 0.24. However, the 

lowest value tested (𝜎 = 0.01) was overestimated in each simulation and the highest value tested (𝜎 

= 0.99) was underestimated, showing that the extreme values are less well estimated. This may be 

due to the true value being very close to the parameter limit. 

 
Figure 2-4. A) Estimated 𝜎 values for simulations with different 𝜎 and 𝜌 values. Median value and 95% CI are 

shown. The black line is the simulated (true) value of 𝜎 in each case. B) Imprecision of 𝜎	estimates calculated as 

the 95% quantile range. C) Inaccuracy of the 𝜎 estimates, calculated as the difference between the posterior 

median and the true value.  

 
2.6.4 Inferring the duration of cross-protection (1/𝜌) 
 
The imprecision of the estimated duration of cross protection ranged from 7 to 87 days (Figure 2-5). 

Estimates were generally less precise when the period of cross-protection is longer (Figure 2-5). In 

70% of our simulations where	𝜎 interaction reduced the transmission rate by no more than 10% (i.e. 
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𝜎  = 0.1 or 0.01) the duration of protection estimates exceeded an imprecision of 50 days. For 

scenarios assuming stronger competition estimates were much more precise. Indeed, one would 

expect that once the strength of competition is negligibly small the duration of such protection 

would be largely irrelevant. 𝜌 estimates increased for simulations generated with longer duration of 

protection (smaller ρ).  

 

 
Figure 2-5. A) Estimated 1/𝜌 values for simulations with different 𝜎 and 𝜌. Lines represent 95% quantiles of the 

posterior sample and the circle represents the median value. The black line shows the true 1/𝜌 value in each 

case. B) Imprecision of 𝜌	estimates calculated as the 95% quantile range. C) Inaccuracy of the 𝜌 estimates, 

calculated as the difference between the posterior median and the true value. 
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included in the 95% CI in the majority of replicates (Figure 2-6). The true value of 𝜌 was not included 
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simulations (11%). These simulations were more concentrated in areas with extreme interaction 

strengths (0.99 and 0.01) and very short duration of protection. We conclude from this that the 

stochastic variation in the simulation of the observation can occasionally result in difficulty 

estimating the true value of the parameter.  

 
Figure 2-6: Proportion of simulations where the true value of 𝜎(A) and 𝜌 (B) was included in the 95% CI of the 

posterior estimate. 

 

2.7 Discussion 
 
We tested whether a transmission model including competitive interaction between RSV and 

influenza is identifiable from a single season of simulated high-quality surveillance data. We 

determined that it is possible to re-estimate strength and duration of interaction in most tested 

scenarios, although often imprecise due to large credible intervals, but that there are some areas of 

parameter space where posterior estimates are potentially misleading, particularly when the 

strength of interaction is assumed to be low or the duration of interaction short. However, we only 

estimated the parameters from information from one season at a time, and without strong priors. 
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its shape. When increasing the duration of interaction, total influenza case numbers dropped, 

therefore resulting in a lower, as well as later, influenza epidemic peak. 

 

We based our simulations on data collected through the UK surveillance system. This involved 

qualitatively emulating peak incidence and duration for both viruses, as well as comparative 

incidence and timings between viruses and age groups, based on published reports. As the 

simulations were generated from our model with stochastic noise, we assume that the underlying 

model adequately captures the transmission process in sufficient detail. In reality, surveillance data 

may be nosier, impacted by changes in contact patterns for example due to school holidays, varying 

reporting rates over the year and climatic factors. These are difficult to capture in our model without 

considerably increasing complexity and therefore the assumption that our model generates 

sufficient detail to mimic surveillance data is a limitation of this study. 

 

While we are the first to test robustness of RSV and influenza competition inference, other 

identifiability studies, e.g. on Rift Valley Fever, have previously highlighted the importance of 

robustness testing to avoid misleading conclusions stemming largely from insufficient power of the 

data to inform the model parameters of interest49,50. Structural and practical identifiability analysis 

have also been used to select appropriate models, given the data available51,52, for example a study 

that evaluated six different Zika models, and the identifiability of parameters within each51.  

 

Our analysis shows that there are potentially misleading results at extreme competition values, and 

it is almost impossible to get a “null estimate” for the strength of competition from this study. 

Evidence from mouse models suggest that the duration of RSV cross protection following influenza 

infection may last more than two weeks13,53 which, under the assumption that the duration of cross-

protection is non-differential to the initiating virus, may suggest that the imprecision of our 

estimates at short durations of cross protection is unlikely to be a key risk for inference. However it 

may not be possible to distinguish such competition from no competition in our model, if the 

strength of the competition is low. We deliberately used uninformative priors for this parameter in 

order to be able to fully explore its identifiability, however, subsequent work may further improve 

precision of estimates by including prior estimates based on published evidence. This may also 

reduce the correlation of estimated parameters, which has challenged convergence in our 

simulations. Similarly, mouse models have suggested strong modulation of the RSV immune 

response if preceded by an influenza infection13, which may suggest that difficulties in our inference 

in scenarios that assume very small amounts of competition may not be the most relevant.  
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For parameter combinations where the simulated parameter value could not be re-estimated, we 

found that despite the relatively high assumed sample size stochastic noise from the observation 

model can occasionally result in incorrect estimates. This implies that inference based on a single 

season may be misleading purely because of the observational process associated with surveillance, 

however, including multiple seasons of observation should limit problems stemming from the 

observation process alone and further increase accuracy of estimates.  

 

We assumed that the RSV–influenza interaction was bidirectional; particularly we assume that the 

strength and duration of interaction that influenza exhibits on RSV is the same as vice versa. Given 

that the proposed mechanisms for interaction are not virus specific this seems reasonable, and is 

supported by studies looking at the shift in RSV epidemics following the early 2009 influenza 

pandemic10,23,25,26. However, the RSV epidemic in the UK typically precedes influenza and similarly we 

only investigate such scenario. Therefore, in this work we can only estimate the competition of RSV 

on influenza dynamics and do not have power to estimate the other direction. Hence our results are 

applicable for considerations around RSV vaccine introduction but should be treated cautiously for 

any studies interested in the impact of Influenza on the transmission dynamics of RSV.  

 

This model did not include multiple strains of either RSV or influenza, which could have an impact on 

the interaction dynamics, as the interaction may differ between strains. Including strains would 

significantly increase the complexity of the model (see review on strain interaction models54), which 

we think would have rendered it unidentifiable. In addition, the aim was to assess the practical 

identifiability of the model parameters that govern viral interaction from routine surveillance data, 

and in many scenarios the surveillance data does not record strain type. The biological mechanism 

underpinning the period of cross-immunity is that of viral infection-induced protection, which is 

potentially induced by many viruses so may not be specific to RSV and influenza, and may not differ 

between influenza subtypes/strains. 

 

We ran the model for one season at a time in order to reduce the complexity, as in other influenza 

models32. We captured influenza immunity from previous seasons in the proportion of individuals 

susceptible for influenza at the start of the season, and RSV immunity is considered to last less than 

a year 29, so we simplified to a single season but included the major multi-season effects. A further 

sensitivity analysis could be to vary the susceptibility of individuals to influenza at the start of the 

year, in order to simulate different dominant influenza strains. We have however not included this, 
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as our aim here was to look at the identifiability of parameters, and these differences would be 

taken into account when fitting to surveillance data from different seasons. Ideally, we would fit to 

multiple seasons of surveillance data, in order to account for variations by year.   In the model we 

assumed a constant, age-dependent observation rate, as in other influenza models55. Time varying 

reporting rates would substantially hinger inference, in fact a previous study comparing model fit of 

age-dependent vs time and age-dependent reporting rates concluded it was not possible to prefer 

one model terms of fit alone56, so we assume age-dependent only reporting rates for simplicity. We 

did not include additional seasonal effects in the model. While no or small effects have been 

reported for RSV and seasonal factors 57,58, there is stronger evidence for the impact of climatic 

factors on influenza transmission, particularly ambient temperature and absolute humidity59–61. 

While this does not affect our results on identifying parameters from simulated data, it should be 

noted as a potential confounder when estimating these parameters using surveillance data.  

 

Further data may help to identify parameters in the model where it currently has difficulties. Data 

on the frequency of co-infections would allow us to use stronger priors for the strength of 

interaction, as well as providing an informative data source to fit the model to. Further information 

on the circulation of RSV, as opposed to only clinical cases, is also important due to the current 

uncertainty in infection numbers. In addition, surveillance systems would ideally provide daily data 

on RSV and influenza cases, giving us more granularity and potentially allowing us to identify all 

areas of parameter space.  

 

Behavioural changes may also impact respiratory viral circulation, after infection with a virus (staying 

inside while recovering), or large-scale behavioural change due to restrictions (social distancing 

measures in response to the SARS-CoV-2 pandemic). Whilst we do not investigate these mechanisms 

in this paper, such changes can have drastic impacts, such as the largely absent 2020 influenza 

season in Australia62.  

 

Overall, this study shows that in principle interaction parameters can be estimated from high quality 

surveillance-like data using mathematical models, although the precision and accuracy of the 

estimates varies depending on the scenario and stochasticity in the surveillance data. More power to 

reliably infer parameters may be available if fitting multiple seasons. It also highlights the 

importance of validating complex models, especially in light of the rapid development of models in 

emergency situations, which can have large impacts on public policy63.  
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3.2 Bridging Section 

 
This paper is being prepared for journal submission. It estimates the strength and duration of cross-

protection between influenza and RSV, in Nha Trang Vietnam, the impact co-infection has on the 

reporting rate and the impacts of vaccinating against either virus. 

 

This chapter builds on the model developed and tested in Chapter 2, adapted to the setting of Nha 

Trang, Vietnam. I use a unique dataset, consisting of 11 years of enhanced surveillance of under 5-

year-old children who attend hospital in Nha Trang Vietnam, with acute respiratory infection. I use 

parallel tempering to fit the model to the data, thereby estimating interaction parameters. I show 

that the population level circulation of influenza and RSV can be explained either by moderate or no 

cross-protection. In addition, I conclude that co-infection of the two viruses increases the chance of 

reporting, presumably due to an increase in severity. I also evaluate the impacts of vaccination in 

this setting.  

 

While this is not the first study to look at interaction between influenza and RSV1, it is the first that 

uses likelihood-based methods to fit to data, and quantitively estimate the interaction parameters. 

In addition, while many papers that look at the severity of co-infections between respiratory viruses, 

the majority do not focus on influenza and RSV specifically2–4. This paper is therefore a valuable 

addition to the literature on interaction between these two respiratory viruses. 

 

I developed the model, wrote all the code and performed the fitting analysis. I also wrote all the 

draft paper and made the figures. Throughout the process I received input/suggestions/edits from 

both my supervisors. In addition, we collaborated with the team led by Dr Lay-Myint Yoshida, who 

collected the data. Dr Edwin Van Leeuwen also provided advice on appropriate likelihoods to be 

used.  

 

The supplementary material of the paper covers extra details on the methods and results. This is 

included as Appendix B in this thesis, so any references to the supplementary material can be found 

there.  
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Abstract 

Influenza and Respiratory Syncytial Virus (RSV) interact within their host posing the concern for 

heterologous ecological changes following vaccination. We aimed to estimate the likely population 

level impact of their interaction.  
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We developed a two-pathogen mathematical model, and used parallel tempering to fit it’s 

parameters governing enhanced severity of co-infections and reduced acquisition following 

heterologous infection to 11 years of enhanced hospital-based surveillance for acute respiratory 

illnesses (ARI) in children under 5 years old in Nha Trang, Vietnam. We used this parameterization to 

explore the dependence of the case burden on the heterologous pathogen.  

 

A total of 788 influenza, 1687 RSV and 78 dual infections were reported among children hospitalised 

with ARI between 5th February 2007 and 4th December 2017. The data supported either a 41% 

(95% Credible Interval (C: 36 - 54) reduction in heterologous acquisition during infection and for 10.0 

days (95% CrI 7.1 -12.8) thereafter, or no cross protection. We estimate that co-infection increased 

the probability for an infection in <2y old children to be reported 7.2 fold (95% CrI 5.0 - 11.4); or 16.6 

fold (95% CrI 14.5 - 18.4) in the no cross-protection and the reduced acquisition scenarios 

respectively. Absence of either pathogen was not to the detriment to the other. 

 

We find stronger evidence for severity enhancing than for acquisition limiting interaction. In this 

setting vaccination against either pathogen is unlikely to have a major detrimental effect on the 

burden of disease caused by the other. 

 

3.4 Introduction 
 

Influenza and Respiratory Syncytial Virus (RSV) have large health and economic impacts globally, 

particularly in young children where they cause 870 0005 and 3.2 million6 hospitalisations in <5 year 

olds per year respectively. While paediatric influenza vaccines are licensed for use in some countries, 

global uptake is poor and efficacy depending on the match to the circulating strains. RSV vaccines 

are in development, with close to 20 vaccine candidates being evaluated in pre-licensure trials7. 

 

The impact of vaccination may be enhanced if co-infections increase the propensity of severe 

disease beyond that of either pathogen8. However, the impact of vaccination may be lessened if 

vaccination reduces competitive pressure between influenza and RSV and thus leads to increased 

circulation of the other pathogen. Such competitive pressure has been observed in the form of cross 

protection in mouse studies that showed e.g. a protective effect of live attenuated influenza vaccine 

administration on RSV replication9 and influenza infection on RSV severity10, mediated by the innate 

immune system. Population level evidence for the effect of cross-protection on influenza and RSV 

epidemiology, however, is largely of observational nature: a lack of coincidence in peak timings11,12, 
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changes in RSV peak timing following unusual influenza seasons13–18 and alternating infection 

patterns19.  

 

Cross-protection could occur through a variety of mechanisms including viral competition for 

resources in the host20, the activation of the innate immune system such as through toll-like 

receptors (TLRs) 3 and 721,22 or short term immune memory through surviving cells in an antiviral 

state (e.g. epithelial cells following influenza infection23). Estimates of the duration of cross-

protection and its biological pathway vary. Experimental infection of ferrets estimated less than 2 

weeks protection between influenza A and B viruses24, yet cells forming the respiratory epithelium 

can survive in a state of heightened antiviral activation for 3 to 12 weeks after influenza A infection, 

with waning of the conferred protection observable at 6 weeks23. 

 

In Nha Trang, Vietnam, for more than 10 years children admitted to the single public hospital with 

acute respiratory illness have been tested for presence of influenza and RSV infection as part of an 

enhanced surveillance. RSV circulation is highly seasonal, and influenza circulation varies year on 

year, thus giving a unique opportunity to systematically investigate evidence for their competition at 

population level. We use this data in combination with a dynamic transmission model to estimate 

the strength of influenza and RSV competition and its effects on respiratory viral circulation. 

 

3.5 Methods  
 
3.5.1 Study population 
 
We used data from a hospital-based enhanced surveillance study of children with respiratory 

disease, as previously described25,26. In brief, children younger than 5 years old who resided in 16 

out of the 27 communes of Nha Trang and attended the paediatric ward in Khanh Hoa General 

Hospital (KHGH) in Nha Trang, central Vietnam, with Acute Respiratory Infection (ARI) were enrolled 

and offered a suite of additional diagnostics. ARI was defined as cough and / or difficulty breathing. 

Khanh Hoa hospital is a tertiary care facility and is the only public hospital for the catchment area of 

the study. More than 95% of all paediatric ARI admissions are typically enrolled. Upon admission, 

Nasopharyngeal (NP) samples were taken from patients, nucleic acid was extracted and multiplex-

PCR assays were performed in order to detect infection with up to 13 respiratory viruses, including 

influenza A and RSV. Positive samples underwent a second, confirmatory PCR test and only 

individuals who tested positive in both PCRs were included. We use aggregate weekly data, from 5th 

February 2007 until 4th December 2017.  We assumed that an ARI episode, for which Influenza or 
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RSV were detected from the nasopharynx on admission, was caused by the respective pathogen. The 

dataset excludes neonatal cases under 28 days old. 

 

To inform transmission pathways in the population we used age specific contact-patterns, based on 

a contact study in the same area, conducted in 201027. In total 2002 Nha Trang residents of all ages 

participated in the study. A contact was defined as either skin-to-skin contact or a two-way 

conversation. 

 

3.5.2 Data analysis 
 

We calculated the correlation between all reported influenza and RSV cases each week using a 

Pearson's Correlation test.  

 

Assuming no interaction (in susceptibility to or severity of dual infections), we calculated the 

required annual RSV infection attack rate in order to observe the reported number of dual infections 

(equations 1-3). We estimate the RSV attack rate rather than the influenza attack rate, as RSV is 

more consistent year on year (see supplement section 1 for influenza equivalent). Using a negative 

binomial likelihood with Brent optimization we estimated the RSV reporting rate that would 

correspond to the maximum likelihood of observing the reported weekly number of dual infections. 

We then used this estimate of the reporting rate to calculate the annual RSV population attack rate 

required in order to observe this many coinfected ARI admissions. The credible intervals for the 

attack rate were calculated using the Hessian matrix from the optimisation. If the estimated attack 

rate is high, this may suggest that influenza and RSV co-infection increase severity (and hence 

reporting). If the estimated attack rate is low, this could suggest that co-infection is less likely that at 

random due to competition between the viruses.  

 

𝐼D;EF 	≃ 𝐼$>GF;H>IE ∗ 	𝑃%"5    (1) 

 

𝑃%"5 ≃ 𝐼%"5 ∗ 	1/𝛾%"5	/	𝜐%"5    (2) 

 

𝐴𝑅%"5 ≃ 𝐼%"5/	𝜐%"5     (3) 

 

With parameters: Incidence of reported cases (I), Prevalence of Infection (P), Duration of Infection 

(	1/𝛾, 9 days - Table 3-1), attack rate (AR) and estimated reporting rate (𝜐). 
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3.5.3 Model 
 
We created an age-structured deterministic transmission model for influenza and RSV, allowing for 

short-term cross-protection (See Supplement for model figure). Individuals are either Susceptible 

(S), Infectious (I), cross-Protected (P) and Recovered (R) for influenza (INF) and (RSV).  

 

Susceptibles become infected at force of infections 𝜆$34  and 𝜆%"5, and move into the I states. They 

then remain infectious for 1/𝛾$34  and 1/𝛾%"5  days and during the infectious period and 1/𝜌 days 

thereafter they are cross-protected and thus their propensity for heterologous infection is reduced 

by factor 𝜎, the strength of cross-protection. All age groups are equally susceptible to influenza, but 

there is reduced susceptibility to RSV in older age groups, determined by parameter 𝜏&. 

 

The force of infection includes age-specific contact rates derived from a local contact survey27. 

Modelled age-groups are: 0-1 years (infants), 2 - 4 years (pre-school), 5 - 15 years (school), 16 - 64 

years (adults) and 65 + (older adults). Infection reporting rates vary by age-group and virus, and for 

RSV reporting rates are increased by a multiplier from 2012 onwards, due to the circulation of a new 

genotype that has increased the average severity of infection and thus the proportion of reported 

infections (ON-1)28. There is also a multiplier on the RSV reporting rates for dual infections, allowing 

them to be reported more frequently, for example because of increased propensity for respiratory 

disease that would require healthcare seeking (as observed in adults8). Model equations are shown 

in supplement section 3.  

 

We model each season individually, with an initial proportion infected with each virus (𝜈$34  and 

𝜈%"5). For RSV we assume the only immunity at the beginning of the season is the age-specific 

reduction in susceptibility (leaky immunity), as immunity to reinfection typically lasts less than a 

year29. Due to infections in previous influenza seasons and potential vaccination, susceptibility to 

influenza is assumed to decline exponentially at rate 𝜂 with age (see supplement section 6). This is 

modelled as non-leaky cross-protection, due to the combination of different exposures. Due to the 

short-time period modelled (max 66 weeks), we do not include births, deaths or ageing, but instead 

hold the age-group specific population sizes constant at the levels of 2010.  Parameter definitions 

and values are shown in Table 3-1.  
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Table 3-1: Parameter definitions, values and priors 

Parameter Symbol Value Prior Source 

Transmission rate INF 𝛽&'( Fitted Based on R0,INF See supplement section 4 for 
calculations 

Basic Reproduction Rate 
Influenza 

R0,INF Fitted Between 1 and 8 30 

Transmission rate RSV  𝛽!"# Fitted Based on R0,RSV See supplement section 4 for 
calculations 

Basic Reproduction Rate 
RSV for strain y 

R0,RSV,y Fitted Between 1 and 8 30 

RSV age group 
susceptibility (0-1, 2-4, 5-
15, 16-64,65+  

𝜏% Fixed 1, 0.75, 0.65, 
0.65, 0.65 

Based on Henderson et al 
(1979)31, see supplement 
section 5 

Infectious period 
Influenza 

1/𝛾&'( 3.8 days - Cauchemez et al (2004)32 
Range from published papers: 
1 - 4.5 days32–35  

Infectious period RSV 1/𝛾!"# 9 days - Weber et al (2001)29 
Range from published papers 
6.7-12 days29,36,37 

Strength of cross-
protection 

𝜎 Fitted 0 - 1 Assuming competitive38 

Duration of cross-
protection 

1/𝜌 Fitted 0 - Inf days  

Proportion of each age 
group infected with 
Influenza, at the start of 
the season 

𝛿&'(,) Fitted 0 - 1  

Proportion of each  age 
group infected with RSV, 
at the start of the season 

𝛿!"#,) Fitted 0 - 1  

Proportion susceptible to 
influenza at the start of 
the season 

𝜂) Fitted 0 - 1 Exponential function, see 
supplement section 6 for 
details 

Influenza proportion 
reported in ages 0-1 

𝜅&'( Fitted 0 - 0.4  

Influenza multiplier for 
proportion reported ages 
2-5 vs 0-1 

𝜅&'(,* Fitted 0-5  

RSV  proportion reported 
in age group i 

𝜅!"#,% Fitted 0-0.4 No additional severity from 
dual infection39 
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RSV ON-1 reporting 
multiplier 

𝜅!"#,+,-+ Fitted 1-5 ON-1 clinically more severe28 

Dual infection multiplier 
on RSV proportion 
reporting 

𝜅./01 Fitted 1 - Inf Based on analysis of expected 
RSV Attack Rate above. 

Overdispersion 
parameter 

k Fitted 0-Inf  

 

To capture the annual influenza and RSV epidemics despite regular changes, particularly in the 

timing of influenza circulation, we defined the annual start of the season as the minimum number of 

combined RSV and Influenza cases (on a 4-week rolling mean) between the 1st of November and the 

1st of May each season. If one or more weeks had the same rolling average, we took the first 

occurrence within the time window (Figure 3-1A). 

 

3.5.4 Likelihood 
 
We fitted the model to the age-stratified weekly number of ARI cases with nasopharyngeal carriage 

of either influenza or RSV using a negative binomial likelihood (see Appendix C Figure S2C for data 

dispersion). To fit the allocation of those cases into influenza, RSV or dual infections we added a 

multinomial component to the likelihood: 

 

𝐿(𝑥|𝜃	) 	= 	∑ ∑ (	𝑁𝐵(	𝜇&,( , 𝑘) 	+ 𝑀𝑁K	𝑝𝑅𝑆𝑉&,( , 𝑝𝐹𝑙𝑢&,( , 𝑝𝐷𝑢𝑎𝑙&,(N	)		>
&	7	8 	37C

(78 												(4)   

 

Where	𝑥	are the reported infections, 𝜃 are the parameters, j are the two age groups 0-1 and 2-4, 

and i are the weeks, with n being the total number of weeks. NB is the likelihood of the observed 

number of cases being a random draw from a negative binomial distribution with the total number 

of modelled infections as the mean, 𝜇, and the fitted overdispersion parameter, k. MN is the 

multinomial likelihood, with pRSV, pFlu and pDual being the respective probabilities of the infection 

with influenza, RSV or both, calculated from the ratio of model reported cases.  

 

3.5.5 Inference 
 
We used parallel tempering to fit the model. This method involves running multiple Markov chains 

simultaneously, with different ‘temperatures’ that place a weighting on the likelihood. Swaps 

between the chains are then proposed every x (in this case 5) iterations, and accepted with 

acceptance ratio:  

𝑅	 = 𝑒(	(44(%)	6	44(7))	∗	(9!	6	9")) 
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Where 

𝜏% 	= 	
1
𝑇%

 

Where 𝑇&  are the temperatures. For full details of the method see Vousden et al (2016)40 We ran the 

parallel tempering algorithm with 12 chains and 450,000 iterations. The initial 250,000 iterations 

were discarded as burn-in. Accepted samples from the first chain were then thinned to 1 in 10 for 

analysis.  

 

3.5.6 Vaccination 

 
To assess the maximal indirect heterologous effect vaccination could have in this environment we 

assumed that vaccination completely stopped the circulation of the targeted virus. We then 

calculated the relative change in the number of cases in the pathogen not targeted by vaccination 

compared to a scenario without vaccination or competition. Estimates are based on simulations 

from 1000 posterior samples of the estimated parameters. 

 

3.5.7 Sensitivity analyses 

 
We assessed the sensitivity of our estimates of the strength of interaction of influenza and RSV to 

the prior on the interaction parameter and to the reporting rates of dual infections. We reran the 

model with a prior on the interaction parameter for strong interaction, using a normal distribution 

with mean 0.8 and standard deviation of 0.15. In addition, we ran a version of the model where the 

reporting rate for dual infections and RSV was the same, as it has been reported that in this setting 

there is no increased severity of dual infections among hospitalised children39.  

 

3.5.8 Ethics 

 
This study was approved by the Institutional Review Boards of the London School of Hygiene & 

Tropical Medicine (16166 /RR/12988) and the National Institute of Hygiene and Epidemiology in 

Vietnam (15IRB) 

 

3.6 Results 
 
3.6.1 Descriptive Analysis 
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A total of 788 influenza and 1687 RSV hospitalised paediatric ARI cases were reported between 5th 

February 2007 and 4th December 2017; 78 (9% of influenza cases and 4% of RSV cases) of these 

were dual infections (Figure 3-1A&B). The mean age of at admission was 22 months and 16 months 

for influenza and RSV cases respectively. RSV notifications showed strong consistent seasonality 

across years, peaking usually in the 34th week of the year, whereas influenza showed less 

seasonality, but typically occurs after Tết Nguyên Đán holidays and before the RSV epidemic (Figure 

3-1C). 

 

There was a small, not statistically significant, negative correlation between weekly influenza and 

RSV cases, with the Pearson correlation coefficient -0.074 (95% CI 0.160 to 0.009). (Figure S1) 

 

We estimated that in order to observe the weekly reported number of dual infections when 

assuming independence of influenza and RSV infection, the annual RSV attack rate needed to be 

720% (95% CI: 560 -1000) in ages 0-1y and 430% (95% CI: 270 - 980) in ages 2-4y. The high attack 

rate suggests that in fact influenza and RSV infections are not independent, but that co-infection is 

likely to enhance the propensity for ARI hospitalisation in this setting. 

 

 
Figure 3-1:Data. A) Weekly reported infections of children under 5 years old infected with influenza and RSV 

over the study period. B) Total number of cases reported over the entire study period by age group and virus. C) 

Percentage of reported cases by week of the year for RSV and Influenza. The numerator is the weekly number 
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of either influenza or RSV cases reported and the denominator the total number of influenza or RSV cases 

reported over the relevant year. The thick lines show the combined total reported across all years, the semi-

transparent lines show the 4-week moving average per year.  

3.6.2 Model inference 
 

The model was able to fit the case data for influenza and RSV well (Figure 3-2, see supplement 

section 7 for further fitting and convergence details). The posterior estimates for the relative 

reduction in heterologous acquisition rates during and following Influenza or RSV infection was 

bimodal, with one mode at 0.004 (95% CrI 0.000 - 0.046), indicating no interaction, and one mode at 

0.41 (95% CrI 0.36 - 0.54), indicating moderate interaction, assuming a cut-off between modes at 0.2 

(Figure 3-3A). The posterior for the duration of interaction also had multiple modes, with the mode 

corresponding to moderate interaction at 10.0 days (95% CrI 7.1 -12.8 days).  

 
Figure 3-2: Model Fit: Black lines are the data, coloured lines are the 95% CrI posterior predictive interval. 

Panels show the fit by age group and Virus.  



 94 

 
Figure 3-3 A) Posterior estimates for parameters sigma and rho, and the corresponding likelihood values. Colour 

is split by sigma value of 0.2. B) Goodness of Fit: Observed cases by season against Modelled cases by season 

by virus and age group. The black line indicates the same value 

The main differences between modes for other parameters were in the detection rate of influenza, 

which ranged from 13 to 21% of infections reported (supplement section 8) and the increased 

reporting for dual infections. We estimate that in the moderate interaction mode the observation of 

influenza and RSV coinfection among ARI cases was 8.2 (95% CrI 6.9 - 9.9) times more likely than 

would have been expected by chance in ages 2-4 and 16.6 (95% CrI 14.5 - 18.4) in ages 0-1. This 

compares to the no interaction scenario where the observation of influenza and RSV coinfection 

among ARI cases was 3.6 (95% CrI 2.5 - 5.8) and 7.2 (95% CrI 5.0 - 11.4) times more than would have 

been expected by chance in ages 2-4 and 0-1 respectively.  

 

The posterior estimates led to R0’s of 1.07 (95% CrI 1.06-1.1) and 1.24 (95% CrI 1.23 - 1.26) for 

influenza and RSV respectively. See supplement section 7 for the posteriors of other parameters. 

 

To assess the relevance of RSV and influenza interaction on population level in this setting we 

simulated single pathogen versions of the parameterised model. In the case of no competition, 

absence of influenza (e.g. through widespread vaccination) reduced RSV hospitalisations by 4.1% 

(95%CrI 3.3 - 7.1%) due to a lack of co-infections with higher propensity for severe disease and 

absence of RSV reduced influenza hospitalisations by 7.2% (95%CrI 4.4-7.2%) in the study period. In 
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the moderate competition mode, absence of influenza reduced RSV hospitalisations by 5.7% (95%CrI 

4.9 - 6.5%) . In the absence of RSV 1.8% (95%CrI -0.7 - 7.2%) more hospitalised cases for influenza 

occurred 

 
Figure 3-4: Vaccination scenarios: Number of cases modelled over all seasons, with different vaccination 

assumptions. Dots represent the median and lines the 95% CrI. 

 

We estimated a seasonal attack rate ranging from 24% to 41% for RSV and 1% to 15% for Influenza 

(supplement section 8). For RSV, the attack rate was lowest in the oldest age group of 65+, whereas 

for influenza the lowest attack rates were in the youngest age group of 0-1 years old. Susceptibility 

to influenza at the start of the season was high, with all age groups in all years being over 87% 

susceptible to infection with the circulating strain (See supplement section 6). 

 

3.6.3 Sensitivity 
 

As a sensitivity analysis, we removed the multiplying factor for increased severity/reporting of dual 

infections (supplement section 9), which pushed the posterior to the no interaction mode. Further, 

we reran the model with a prior for strong cross-protection, which pushed the posterior to the 

moderate interaction mode (supplement section 10).  

 

3.7 Discussion 
 

We use data from more than 10 years of enhanced surveillance in Nha Trang, Vietnam to estimate 

the interaction of influenza and RSV epidemiology. We find that the observed data is consistent with 

infection reducing heterologous acquisition either by 41% (95% CrI 36% - 54%) for 10.0 days (95% CrI 

7.1 -12.8 days) after infection or not at all. We estimate that influenza-RSV co-infection increases the 
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propensity of an infection to be reported through the ARI hospital surveillance by between 2.5 and 

18.4 times. We go on to show that influenza vaccination in this setting may have little impact on the 

circulation of RSV but can have an added benefit in reducing hospitalisations with co-infections.  

 

A key strength of this dataset is the inclusion of cases infected with both influenza and RSV. 

Surprisingly though, many dual infections are reported when the two viruses are individually at low 

levels of circulation which may be a result of stochastic effect owing to the low number of observed 

dual infections and has limited the strength of inference from them. While many papers reporting 

co-infections do not include timings of the co-infections41–43, these off-peak co-infections were not 

observed in Texas44. In addition, in Nha Trang influenza circulates continuously at low prevalence 

with small epidemics, which would result in constant low-level cross-protection, rather than a short-

term more concentrated interaction after a large epidemic, such as in the UK45. This low-level cross-

protection could have been absorbed into the transmission rate of RSV, explaining the low estimate 

of the RSV R0 (1.27 compared to a range of 1.2 - 9.1 in published papers30). These location-specific 

features will need to be considered when generalising the findings. In addition, the data used only 

included children that attended the hospital, therefore presenting with relatively severe symptoms. 

The generalisability of this dataset to other settings, and therefore the model, should be considered 

when interpreting the results. 

 

Much of the evidence for cross-protection is on an individual, biological level9,10,24. However, this 

individual level cross-protection may not have an impact on population circulation, due to small 

numbers of infections at any point in time (in this study the seasonal attack rate for influenza varied 

from 0.011 - 0.15), meaning very few influenza cases at any one time, and thus a low propensity for 

co-infection with RSV. This sparsity may be exaggerated by clustering factors such as household 

transmission, reducing the opportunity for cross-infection. As an example in Kilifi, Kenya, household 

transmission of RSV contributes up to 52% of all RSV transmission46.  Our model assumes a well-

mixed population, so does not account for any population clustering beyond the age-specific contact 

matrices. This assumption may impact the model more due to the relatively small population size 

and case reports, than a larger modelled population, due to the larger impact of stochastisity. In 

addition, we assume that risk of infection is age-dependent, but otherwise homogeneous. However, 

increased risk of influenza infection may be correlated with increased risk of RSV infection, due to 

demographic factors such as poor hygiene and household clustering. This may overestimate the 

effect of dual infections on reporting.  
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Evidence of cross-protection between influenza and RSV also comes from shifts in epidemic peaks, 

particularly after the 2009 influenza pandemic14–17. However, these studies are observational, and 

cannot test mechanisms. As the SARS-CoV-2 pandemic has demonstrated, behavioural responses 

can have huge impacts on viral circulation, with many geographies seeing shifts in epidemic peaks 

for usually consistent viruses, such as RSV47,48, due to limitations on social contacts. Fear generated 

from high infection rates can also drastically alter individuals behaviour49, even without wide-spread 

implementations of restrictions.  

 

Our model does not take into account different subtypes of influenza or RSV, due to the added 

complexity, additional parameters required and the lack of subtype specific data. We therefore 

assume that any cross-protection between influenza and RSV does not vary by subtype. We account 

for different immunity levels to circulating influenza subtypes by fitting a susceptibility parameter at 

the start of each season. This is necessary because we fit to each season, rather than including 

immunity waning and fitting over the time period combined. While the start weeks of our season are 

fixed manually, we account for any impacts of this by fitting the proportion infected at the start of 

each season for each virus. While most of the posterior estimates are reasonable, the reporting rate 

for influenza infections is high (between 13 and 21%). However, many milder cases (including 

outpatients) are included in the reports as they may seek healthcare at the hospital, thereby 

increasing the expected reporting rate in this context. Overall therefore, our model estimates fit the 

data well, as well as known aspects of influenza and RSV transmission, such as high influenza attack 

rates in children50,51, and higher RSV severity in the youngest children52.  

 

In summary, we use a novel modelling framework to interrogate a unique case time-series for single 

and dual infection from Nha Trang, Vietnam. We find that influenza and RSV co-infection 

substantially increases hospitalisation rates in children. In addition, we show that the data supports 

either no or moderate individual-level cross protection against infection but either way with 

relatively little population level impact. This alleviates some concerns of heterologous effects of RSV 

or influenza vaccination, however, particularly in settings with more pronounced and overlapping 

RSV and influenza seasons the impact of vaccination on the other pathogen’s epidemiology may be 

more noticeable.  
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interaction and evaluates the implications of such interaction.  

 

During the coronavirus pandemic in England and Wales, it has been observed that children are less 

susceptible to SARS-CoV-22–5. It is hypothesised that this is due to interaction with seasonal human 

coronaviruses (HCoVs), which circulate annually. In this paper I use 5 years of coronavirus 

surveillance data from Public Health England to estimate key transmission parameters for seasonal 

HCoVs, using an age-structured dynamic model. I then simulate the introduction of SARS-CoV-2 with 

varying strengths of cross-protection between the seasonal HCoVs and SARS-CoV-2, to understand 

the impacts of cross-protection. While other models looking at interaction between coronaviruses 

exist6 – this is the first to model the assess the impact of cross-protection between seasonal HCoVs 
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PHE. I also received some advice on how to model the UK SARS-CoV-2 pandemic from Dr Nicholas G 

Davies and the paper went through the Centre of Mathematical Modelling of Infectious Disease’s 

Covid-19 working group internal review.  

 

The supplementary material of the original paper covers extra details on the methods and further 
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Abstract 

We hypothesised that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) 

could have affected SARS-CoV-2 transmission, including generating reduced susceptibility in 

children. To determine what the pre-pandemic distribution of immunity to HCoVs was, we fitted a 

mathematical model to 6 years of seasonal coronavirus surveillance data from England and Wales. 

We estimated a duration of immunity to seasonal HCoVs of 7.8 years (95% CrI 6.3 - 8.1) and show 

that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, 

it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic 

in England and Wales. Projections from our model illustrate how different strengths of cross-

protection between circulating coronaviruses could determine the frequency and magnitude of 

SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection 

on future seasonal coronavirus transmission. 

 

Significance Statement 

Cross-protection from seasonal epidemics of human coronaviruses (HCoVs) has been hypothesised 

to contribute to the relative sparing of children during the early phase of the pandemic. Testing this 

relies on understanding the pre-pandemic age-distribution of recent HCoV infections, but little is 

known about their dynamics. Using England and Wales as a case study, we use a transmission model 

to estimate the duration of immunity to seasonal coronaviruses, and show how cross-protection 

could have affected the age distribution of susceptibility during the first wave, and alter SARS-CoV-2 

transmission patterns over the coming decade.  

 

4.4 Introduction  
 
Due to the relatively short time since SARS-CoV-2 emerged, little is yet known about the duration of 

infection-induced immunity. While instances of confirmed reinfection of SARS-CoV-2 have been 

identified7, these are rare,8 indicating protection lasts for at least 6-8 months, which concurs with 

estimates from prospective studies9,10. Cross-protection from seasonal human coronaviruses 

(HCoVs) could have impacted the transmission dynamics of SARS-CoV-2, and explain the relatively 

low SARS-CoV-2 infection rate in children3–5,11,12. Since children likely have a higher annual attack 

rate of endemic HCoVs due to their higher contact rates13, they may be less susceptible to SARS-

CoV-2 due to cross-protection.   
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In order to evaluate the impacts of cross-immunity, we first need to quantify the immune protection 

from seasonal coronaviruses. Four coronaviruses strains from two different genera are endemic in 

humans: two are alpha-coronaviruses (HCoV-229E, HCoV-NL63) and two are beta-coronaviruses 

(HCoV-HKU1, HCoV-OC43); SARS-CoV-2 is a member of the latter genera as are SARS-CoV-1 and 

MERS-CoV. In the UK, seasonal human coronavirus (HCoV) case incidence peaks January-February 

each year. The first infection with seasonal HCoVs typically occurs in childhood14 and reinfection 

with the same strain has been observed within a year15,16. However, there are also indications that 

immunity lasts longer, with few reinfections in a 3-year cohort study17 and sterilising immunity to 

homologous strains of HCoV-229E after one year in a challenge study18.  

 

There may also be cross-protective immunity between seasonal HCoVs and SARS-family 

coronaviruses following infection. Human sera collected before the SARS-CoV-2 pandemic showed 

high IgG reactivity to seasonal HCoVs, but also low reactivity to SARS-CoV-219, and SARS-CoV-1 

infection induced antibody production against seasonal HCoVs20,21. Cross-reactive T-cells to SARS-

CoV-2 have been found in 20%22 to 51%23 of unexposed individuals, with evidence that these 

responses stem from seasonal coronavirus infection24. It has also been noted that these are more 

prevalent in children and adolescents25.  

 

Cross-protection from seasonal HCoVs may have, therefore, partially shaped the observed 

epidemiology of SARS-CoV-2. Using England and Wales as a case study, we use dynamic models to 

estimate: 1) the duration of infection-induced immunity to seasonal HCoVs, 2) the ability of potential 

cross-protection from seasonal HCoVs to explain the age patterns in the first wave of the SARS-CoV-

2 pandemic, and 3) the implications of the duration of immunity and potential cross-protection on 

future dynamics of SARS-CoV-2. 

 

4.5 Results 
 
4.5.1 Seasonal HCoV and SARS-CoV-2 epidemic data 
 

We extracted monthly, age group-stratified numbers of HCoV positive tests in England and Wales 

from the June 9, 2014 to February 17, 202026 and daily number of COVID-19 deaths in England and 

Wales during the first wave of the pandemic (March 02, 2020 to June 01, 2020)27 (supplement 

section 1). The timeframe for the HCoV data is from the first available date until February 2020 to 

avoid interference from SARS-CoV-2 transmission and reporting. Annual numbers of coronavirus 

cases reported per year ranged from 965 to 2470, with the highest proportions of cases in ages 0 to 
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4 years olds (32%) and ages 65 years plus (30.0%) (Appendix C Figure S2B). The seasonal coronavirus 

reports showed high seasonality, with the annual peak of reporting in the first quarter of the year 

(Appendix C Figure S2A) 

 

We fitted a dynamic transmission model using England and Wales as a case study (Supplement 

Figure S1C) using only the seasonal coronavirus model. Following infection, individuals are protected 

against infection with any seasonal HCoVs, with reinfection possible after a period of temporary but 

complete immunity. This period is determined by an artificial parameter governing the time to 

reinfection, due to decaying protection against homotypic viruses, and/or longer-lasting immunity 

against homotypic viruses but evolutionary change leading to immune escape 28. We do not track 

individual seasonal HCoV strains as available data are not sub-typed. We therefore assume that 

individual seasonal HCoV strains have the same parameter values, including R0,HCoV. Transmission is 

seasonally forced using a cosine function. 

 

4.5.2 Seasonal HCoVs have an R0 of 5.9 
 
We fitted the model to the age group-specific seasonal HCoV data from June 09, 2014 until February 

17, 2020, and estimated key seasonal HCoV parameters using parallel tempering29 (Figure 4-1). We 

fitted the artificial immunity parameter, the transmissibility, age-specific reporting proportions and 

two seasonal forcing parameters (Supplement Table S1). We estimated that the average duration 

between infection and return to susceptibility for seasonal HCoVs was 7.8 years (95% Credible 

Interval (CrI): 6.3 - 8.2) and that the basic reproduction number was 5.9 (95% CrI 5.5 - 6.2) (Figure 

4-1B). As a sensitivity analysis, we excluded the first year of surveillance (up until July 2015), due to 

it’s different pattern, and here we estimated that the average duration between infection and return 

to susceptibility for seasonal HCoVs was 4.4 years (95% CrI 4.3 - 4.7) and that the basic reproduction 

number was 3.7 (95% CrI 3.6 - 3.8).  Further details are given in the Supplement sections 2 and 3. 

 

 



 110 

 
Figure 4-1: Seasonal HCoV Fit. A) Model fit for seasonal HCoV by age. Black dots show reported HCoV cases, 

blue are 100 random samples from the posterior. B) Posterior distributions for the duration of waning and the 

R0 of seasonal HCoV. C) Mean annual attack rate for each age group from 100 samples of the posterior and the 

last 5 years of the fit. 

 

4.5.3 Cross-protection from seasonal HCoVs is not sufficient to explain age-specific patterns 
of SARS-CoV-2 infection 

 

We included SARS-CoV-2 into the model, where each compartment has the state for the combined 

seasonal HCoVs as well as the state for SARS-CoV-2 (Supplement section 2). We included cross-

protection that decreases susceptibility to infection by SARS-CoV-2 by an amount, σ, for individuals 

in the IHCoV,i or RHCoV,i states (σ = 0 is no cross-protection and 1 is full cross-protection). We assume 

any interaction in the opposite direction would be negligible, due to the low proportion of the 

population that were infected in the first SARS-CoV-2 epidemic wave.  

 

Using the posterior estimates of the seasonal HCoV parameters and the simulated output as initial 

states, we continued a simulation of epidemic seasonal HCoVs from the January 01, 2020 until June 

01, 2020, including the introduction of SARS-CoV-2. Cross-protection from seasonal HCoVs and 

different mixing patterns (matching observed lockdown patterns, including school closures, see 
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Methods) were the only mechanisms we included that affected infection by SARS-CoV-2, so that we 

could evaluate the impact of cross-protection on the observed age distribution of cases.  

 

For values of the cross-protection parameter between σ=0 and σ=1, we estimated R0,C19 and the 

number of introductions of SARS-CoV-2 by fitting the extended model to daily reported COVID-19 

deaths We captured the national lockdown by decreasing contact rates following trends in Google 

mobility data30. Our model fits were able to closely match the reported mortality incidence for each 

value of the cross-protection parameter (Supplement Figure S7). However, the resulting R0,C19 varied 

widely, reaching over 25 for the strongest cross-protection (Figure 4-2A). The corresponding Reff,C19 

before the intervention on March 23 ranged between 2.25 and 3.75 (see Supplement section 3).  

 

 
Figure 4-2: SARS-CoV-2 simulations A) Estimated R0 values for SARS-CoV-2 with different strengths of cross-

protection. Points display the R0, C19 and lines show the range of Reff, C19 during the simulation. B) Simulated age-

specific serology rates for SARS-CoV-2 by the end of May 2020. Sources are Blood and Transplant donors (BT)31 

and the ‘What’s the STORY’ study (STORY)32. 

We then evaluated the age distribution of infections that would be detected by serology by the end 

of May in our model, across the range of values of the cross-protection parameter (Figure 4-2C). In 

simulations with no or low cross-protection the model predicted larger proportions of children to 

have been infected than in older age groups, differing from observed data11,32. As the strength of 

interaction increased, the age-distribution flattened and a smaller proportion of children became 
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infected. With complete protection, there was a higher rate in the youngest age groups, which has 

not been observed4,5,12,32. 

 

4.5.4 Future SARS-CoV2 epidemiology could be shaped by coronavirus interactions 
 

To determine possible long-term dynamics of interacting coronaviruses, we ran 30-year projections 

of our model including both HCoVs and SARS-CoV-2, with different assumptions on the strength of 

cross-protection and whether it acted from HCoV to SARS-CoV-2, or in both directions (Figure 4-3). 

In all scenarios we assumed no interventions, and used parameters estimated previously. For single-

direction cross-protection, annual SARS-CoV-2 epidemics were projected to occur in scenarios with 

stronger cross-protection, whereas weaker / no cross-protection projected less frequent epidemics. 

However, strong cross-protection scenarios relied on very high and potentially unrealistic R0. In 

weaker cross-protection scenarios, interepidemic periods lasted multiple years following a 

pandemic. In scenarios with bi-directional cross-protection, SARS-CoV-2 infections also projected 

frequent epidemics, but led to the seasonal HCoV being disrupted. With low levels of cross-

protection, SARS-CoV-2 and seasonal HCoV epidemics alternated, but as the cross-protection 

increased, SARS-CoV-2 epidemics became more frequent and outcompeted seasonal HCoV: while a 

cross-protection of 0.6 resulted in irregular dynamics of the viruses. At higher levels of cross-

protection, no seasonal HCoV transmission occurred.  
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Figure 4-3: 10-year forward projections of seasonal HCoV and SARS-CoV-2 epidemics. Red indicates SARS-CoV-

2, blue indicates Seasonal HCoVs. The dashed vertical line indicates a change in axis scale due to the much 

larger SARS-CoV-2 pandemic wave, with that to the left of the dashed line marked by the left axis and that to 

the right by the right axis. Cross-protection strength and estimated SARS-CoV-2 R0 for the scenario are shown 

to the left of the figure. A has cross-protection from seasonal HCoV to SARS-CoV-2, and B has bidirectional 

cross-protection. No control measures were included. Different linetypes show different samples from the 

posterior of the seasonal HCoV fit. 

4.6 Discussion 
 
While it was possible to match the COVID-19 mortality data with the full range of cross-protection 

strengths between seasonal HCoV and SARS-CoV-2, the estimated R0,C19 s were outside of a realistic 

range for very high values of cross protection. For example, a recent multi-setting study estimated 

the R0,C19 to be between 3.6 and 7.333. Cross-protection from seasonal HCoVs to SARS-CoV-2 did not 

fully explain the apparent reduced susceptibility of children to SARS-CoV-2 observed during the first 

wave in the UK3,5,11,12,32. We estimated that the R0  for seasonal HCoVs is 5.7 (95% CrI: 5.4 - 6.0) and 

that time between infection and return to susceptibility 7.8 years (95% CrI 6.3 - 8.1). We found 

12.8% (95% CrI: 11.9 - 13.7%) reinfection within one year for seasonal HCoVs, and the median 

reinfection time was 5.1 years (95% CIr: 4.7 - 5.5 years). Future projections varied in the frequency 

of SARS-CoV-2 epidemics, with SARS-CoV-2 epidemics every two years at low levels of cross-

protection, changing to annual epidemics with increased cross-protection. In scenarios with bi-

directional cross-protection, epidemics were less predictable and SARS-CoV-2 out competed 
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seasonal HCoVs. Further elucidating possible cross-protection and potential duration of protection is 

therefore critical for medium-to-long-term projections of SARS-CoV-2 epidemics. 

 

Our estimates for the duration of homotypic protection following HCoV infection are comparable 

with other estimates, such as a cohort study where 8/216 (3%) confirmed infected individuals were 

reinfected over 5 years, and the median re-infection time in a study of 10 individuals34 varied 

between 30 and 55 months, depending on strain. However, estimates vary, with a larger study in 

Michigan estimating mean strain-specific reinfection to be between 19 and 33 months35, 19.9% of 

first infections being reinfected within 6 months in Kenya36, and a historical study, of just one 

seasonal HCoV strain (229E), estimating the time until T cells could no longer neutralise new strains 

at 8-17 years28. Other coronaviruses can also give indications on the duration of immunity, with T 

cells to SARS-CoV-1 detectable up to 11 years post-infection37. Other modelling studies without age 

structure have estimated a substantially shorter duration of immunity, at less than a year6. However, 

these estimates imply very high annual attack rates, which are not observed in surveillance data, 

despite coronaviruses often being tested as part of a multiplex respiratory virus PCR panel. Despite 

differences in the model, such as the focus on between seasonal HCoV competition and the 

exclusion of alpha-coronavirus and age-structure, our model suggests that a longer period of cross-

protection may be more appropriate, and should be included in the proposed range of parameters 

for fitting such models. 

 

Our model estimates a longer duration of homotypic protection following HCoV infection (7.8 years) 

than the duration of data used to fit (~ 6 years). While this may seem counterintuitive, the estimate 

is based on the susceptibility of the population, which is generated by initially running the model to 

equilibrium. Therefore, the number of seasons used should not impact the estimate of the duration 

of homotypic protection, providing additional seasons does not have large differences that impact 

the susceptibility of the population. In our sensitivity analysis, we exclude the 1st season of data in 

which fewer cases are reported (roughly half the peak incidence compared to other years). Here we 

estimate a shorter duration of homotypic seasonal HCoV protection, yet still lasting multiple years: 

4.4 years (95% CrI 4.3 - 4.7). This difference is likely due to testing differences, as it is the first year of 

surveillance. We would expect the estimate to not change as much when excluding other years, as 

these are much more conserved.  

 

In our model, stronger cross-protection decreased the relative susceptibility to infection of children. 

This is in line with an American study showing that 50% of pre-pandemic donors had reactive T-cells 
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to SARS-CoV-238 and serological markers for a recent seasonal HCoV infection, suggesting that 

immune responses to seasonal HCoV could elicit cross-protection. Moreover, 48% of uninfected 

individuals in a cohort from Australia had cross-reactive T-cells to SARS-CoV-2 which was strongly 

correlated with memory T cells against seasonal coronavirus strains24.  Other studies among healthy 

individuals without SARS-CoV-2 exposure found cross-reactive T-cells targeting SARS-CoV-2 in 51%39, 

35%23 24%40, and 20%22 of participants, suggesting a moderate amount of cross-immunity that likely 

stems from seasonal coronaviruses. There are indications that these cross-reactive T cells are 

present at higher frequency in younger vs older adults41,42, correlating with our hypothesis that this 

could be due to increased infection from seasonal HCoVs. These cross-reactive T-cells target the 

conserved spike protein antigens41.  Antibodies have also been shown to be cross-reactive43 and 

back-boosting of anitbodies against conserved HKU1 and OC43 spike antibodies has been observed 

in COVD-19 infection, with evidence for immunological imprinting44. The persistence of antibody in 

the body is more varied and often shorter in duration than T-cells45. Cross-reactive responses have 

also been identified in other pandemic coronaviruses19–21,46, with some also showing cross-

protection: SARS-CoV-1 and MERS-CoV T-cell epitopes were protective in mice against other human 

and bat coronaviruses47 and a lack of HCoV-OC43 antibodies can increase SARS-CoV-2 severity in 

humans (adjusted odds ratio of 2.68)48. Cross-neutralising antibodies across the clade have also 

been identified49. However a longitudinal study showed that whilst cross-reactive HCoV antibodies 

are boosted following SARS-CoV-2 infection, this does not correlate with protection against infection 

or hospitalisation50 and a lack of antibody-mediated neutralising cross-protection has been noted 

between sera from SARS-CoV-1 patients and SARS-CoV-251. In addition, it has been postulated that 

the small variety in circulating human coronaviruses may have resulted due to competition between 

coronaviruses filtering out potential emergent coronaviruses52. Therefore, whilst there is significant 

amounts of corroborating evidence that some degree of cross-protection exists, the literature is not 

conclusive. 

 

Our results indicate that cross-protection from seasonal coronaviruses alone cannot explain reduced 

susceptibility to infection of children. Other factors are needed to counteract the children’s higher 

than average exposure probability driven by their contact behavior13, in order for the model to fit 

the serological data. One mechanism for this could be due to differences in children’s immune 

system53: children can produce broadly reactive antibodies that have not been influenced by 

commonly circulating pathogens and have different proportions of blood cell types, such as specific 

subtypes of memory B cells, and larger populations of IgM-producing cells. Genetic analysis also 

suggests that cross-reactivity to SARS-CoV-2 antigens cannot fully be explained by seasonal 
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coronaviruses, implying that other unknown viruses/factors may induce cross-immunity54.  An 

additional factor that could have been included in the model that would have impacts on the 

susceptibility of children is maternal immunity, which would have reduced the susceptibility of the 

youngest age group, thereby improving the model fit to the data. We also modelled cross-protection 

as only reducing susceptibility to infection, whereas there could also be a reduction in transmission 

and/or disease severity55–58, which may have resulted in a further reduction of susceptibility of 

children, thereby explaining the observed data that we were unable to replicate. Boosting of 

immunity by multiple infections has also been suggested to influence cross-protection56, where 

boosting by repeat infections was hypothesised to reduce the cross-protection to SARS-CoV-2. We 

did not include boosting in our model due to the added complexity.  

 

The strength and implications of cross-protection between HCoVs and SARS-CoV-2 will become 

increasingly evident over the coming months and years. Our projections show that, depending on 

the extent of cross-protection, SARS-CoV-2 could eventually cause annual epidemics (strong cross-

protection) or epidemics every 2 years (little cross-protection). If bi-directional cross-protection 

occurs, SARS-CoV-2 also has the ability to substantially disrupt seasonal HCoV transmission. This is 

based on our fit of the duration of immunity and the seasonal forcing parameters of seasonal HCoVs, 

which are likely to differ to some extent in the case of SARS-CoV-2. These scenarios are in line with 

others6,59–61, which suggest that ongoing SARS-CoV-2 transmission is likely. Alternatively, the 

introduction of SARS-CoV-2 could have different impacts on seasonal HCoVs, for instance 

outcompeting beta-coronaviruses without affecting the circulation of alpha-coronaviruses. A similar 

dynamic occurred following the 2009 influenza pandemic, where the previous H1N1 strains were 

replaced by the 2009 H1N1 strain, but H3N2 circulation continued62,63.  Our modelled projections 

assumed that no interventions were implemented. However, HCoV circulation was disrupted in 

winter 2020–202164 likely due to social restrictions designed to curb the transmission of SARS-CoV-2. 

It is important to understand the longer-term dynamics of SARS-CoV-2, in order to minimise deaths 

and plan vaccination strategies. From an evolutionary perspective, cross-protection may be a strong 

driver for selection, so in the long run a less transmissible type with greater cross-protection against 

competing viruses may dominate.  

 

We modelled all seasonal HCoVs as one virus, thereby assuming complete cross-protection between 

them. There is evidence for cross-protection between seasonal HCoVs and especially within the 

alpha and beta subtypes, such as the presence of cross-reactive antibodies65 and evidence from 

modelling studies6. While in some geographies such as the US and Denmark6,66 differing patterns by 
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subtype are observed, this is not the case in the United Kingdom67. Yet cross-protection may not be 

complete, or may be subtpye specific (alpha- vs beta-coronaviruses), and hence our assumption 

could lead to an underestimation of the true duration of protection. Because the duration between 

homotypic infections would be longer than between infections of any subtype. We expect the single-

subtype assumption used here to have a relatively small impact on the results of the cross-

protection in the first wave of SARS-CoV-2, which uses the average cross-immunity profile at the end 

of the seasonal HCoV epidemic. However, the assumption may have a larger impact on the longer 

term dynamics. We also assumed that the strength of immunity to seasonal HCoVs is constant over 

repeated infections. An alternative mechanism would be that repeat infections strengthen 

immunity, as is hypothesised for some respiratory infections, such as Respiratory Syncytial Virus68 

which could have led to a different estimate of reinfection time for seasonal HCoVs. This could 

therefore result in higher immunity in adults and lower in children and thereby reduce the ability of 

cross-protection to explain the lower susceptibility to SARS-CoV-2 in children, strengthening our 

conclusions. Seasonal HCoV cases may have a time-varying reporting rate due to the circulation and 

testing of other viruses that cause respiratory illness, which could increase reporting or testing 

during the UK winter respiratory virus season, and reduce reporting or testing in the off season. This 

could affect the amplitude of the epidemics and therefore could inflate the estimate of the seasonal 

forcing amplitude parameter. 

 

The emergence of SARS-CoV-2 has highlighted our lack of knowledge on coronavirus immunity and 

long term dynamics. In our study, we estimate that immunity against seasonal HCoVs can last years, 

however by necessity we made strong assumptions about the cross-immunity between seasonal 

HCoV strain. Further studies exploring cross-protection between strains for seasonal coronaviruses 

as well as routinely subtyped surveillance data would help inform future models. Nonetheless, based 

on the available data our study indicates that seasonal coronavirus immunity may last multiple 

years, which should be considered in the planning of subsequent studies. We also conclude that 

cross-protection from seasonal coronaviruses is not enough to explain the age susceptibility pattern 

of SARS-CoV-2, indicating other mechanisms must be involved. Whilst serological data could be 

useful to further evaluate the extent of cross-protection, the reduction in social contacts due to 

government interventions against SARS-CoV-2 complicates their use. Our models rely heavily on 

social contact matrices, and getting an accurate understanding of social contacts in the last year 

comes with many challenges, such as multiple changes in public health interventions with uncertain 

adherence. Our study highlights the importance of understanding the background environment of 

coronaviruses for insights into SARS-CoV-2 pandemic progression. 
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4.7 Materials and Methods 
 

We created a dynamic transmission model that includes cross-protection between seasonal HCoVs 

and SARS-CoV-2, using England and Wales as a case study. Initially, we fit the model without SARS-

CoV-2 and estimated key seasonal HCoV parameters. Next, we simulated SARS-CoV-2 introduction 

with varying strengths of cross-protection, to investigate the effect on age-specific susceptibility. The 

model was written in R69 and the code is available at  

https://github.com/cmmid/coronavirus_immunity 

 

4.7.1 Data 
 
We extracted the monthly, age group-stratified number of HCoV positive tests in England and Wales 

between June 09, 2014 and February 17, 2020, reported to Public Health England (PHE) from 

National Health Service (NHS) and (PHE) laboratories21. The sources of these cases are: Respiratory 

viral detections by any method (culture, direct immunofluorescence, PCR, 4-fold rise in paired sera, 

single high serology titre, genomic, electron microscopy, other method and method unknown”.  

Numbers are reported in age groups: 0-4, 5-14, 15-44, 45-64 and 65+. We did not use data beyond 

February 2020, as we wanted to estimate seasonal HCoV parameters in the absence of SARS-CoV-2. 

Whilst we do not have subtype information for the PHE data collected in England and Wales, we 

know from studies in Scotland, where subtyping is performed, that there is reasonable consistency 

in circulating subtypes each year (Nickbahksh et al. (2020)67).   

 

For SARS-CoV-2, we used the daily number of deaths with a confirmed SARS-CoV-2 positive test in 

the preceding 28 days from March 02, 2020 until May 31, 2020 reported by the Office for National 

Statistics (ONS)27.  

 

To compare SARS-CoV-2 we used serology from two sources. Firstly, we used data from a study in 

April and May 2020 of children and young people aged up to 20-24 in England called “What’s the 

STORY”32. This data assesses serology using the ABBOT assay, which used the Abbott assay, testing 

for IgG to the SARS-CoV-2 nucleocapsid protein, adjusted for sensitivity and specificity. Secondly, for 

adults, we used data collected through the UK NHS Blood and Transplant services31 between March 

and May 2020 which tested approximately 1000 samples per region in England using the Euroimmun 

assay and adjusted for the accuracy of the assay and weighted by population. 
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4.7.2 Cross-protection Model 
 
We created a deterministic compartmental transmission model for coronavirus infections and their 

interactions. The population are either Susceptible (S), Exposed (E), Infectious (I) and Recovered (R) 

for both seasonal HCoVs and SARS-CoV-2. The subscripts used are “HCoV” for seasonal HCoVs and 

“C19” for SARS-CoV-2, with no differentiation between HCoV strains as the data are not sub-typed. 

Following infection, individuals enter the exposed category and become infected at rates 𝜆JKL5,& 	and  

𝜆K8M,&  respectively, and individuals enter the infectious category at rates νHCoV and νC19. They then 

recover and become fully susceptible again at rate 𝜔. The force of infection for each virus is shown 

in equations 1 and 2.  Each compartment in the model records the state for SARS-CoV-2 and 

seasonal HCoVs, with one for each combination of states and all durations are exponentially 

distributed. At any point individuals can be infected by the other virus, although this is less likely to 

occur in the I and R categories, determined by the cross-protection parameter, 𝜎. This takes into 

account both short term cross-protection from the activation of the immune system, and longer-

term adaptive immunity. Both modelled viruses (HCoVs and SARS-CoV-2) are seasonally forced with 

a cosine function, which captures changes in seasonal human behaviour and climatic factors.  
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𝜆  = Force of infection, i and j = age groups, N = total number of age groups, Α = seasonal 

amplitude, β  = transmissibility, α = contact rates, I = number Infected, 𝜙 = timing of seasonal 

forcing. R0 is the basic reproduction number. 

As the seroprevalence for SARS-CoV-2 stayed below 5% during the modelled period, we assumed 

that the level of cross-protection conferred by SARS-CoV-2 on HCoV is negligible during the first 

epidemic wave. Cross-protection was the only mechanism we included for differing susceptibility to 

SARS-CoV-2 infection by age group, so that we could test whether it explained the observed 

infection pattern.  

  

The modelled population was stratified into 5-year bands to 75+, with constant birth rates, matching 

death rates and ageing in line with the population of England and Wales (Table 4-1). Age-assortative 

mixing was modelled proportionately to patterns of conversational and physical contacts in the 

POLYMOD study13,70.  
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We ran a HCoV-only model for 15 years to reach equilibrium, and a further 5 years to generate 

simulations to match the data on seasonal HCoV cases from June 09, 2014 to February 17, 2020.  

 

Table 4-1: Model Parameters 

Parameter 
type 

Parameter Symbol Value Reference 

Seasonal 
HCoV 
 

Basic Reproduction number R0,HCoV Fitted. Limits: 1-8.5 Wide range 

Transmission rate βHCoV Fitted Based on R0 calculation 
(supplement) 

Latent period 1/νHCoV 2.5 days 6,71 

Duration of infectiousness 1/γHCoV 5 days 6 

Incubation period (time to 
symptoms) 

1/δ1HCoV 2 days 72 

Reporting delay (symptom to 
report) 

1/δ2HCoV 3 days Based on influenza model73 

Age-specific reporting 
proportion 

μHCoV,i Fitted. Limits 0-1. 
Proposed on log odds 
scale. 

 

Seasonal forcing amplitude Α Fitted. Limits: 0 - 2  

Seasonal forcing timing ϕ Fitted. Limits: -
(52*7)- (52*7) 

 

Immunity duration 1/𝜔  Fitted. Limits: 100 – 
3000 years 

Covers range of 100 days to over 
8 years 

SARS-CoV-2 
 

Basic Reproduction number R0,C19 Fitted  Based on R0 calculations (see 
supplement).  

Transmission rate βC19 Fitted   

Effective Reproduction Number Reff,C19 Fitted R0 * proportion susceptible (see 
supplement) 

Latent period 1/νC19 3 days 6  

Duration of infectiousness 1/γC19 5 days 74 

Time between infectiousness 
(entering I compartment) and 
death 

1/δC19 22 days (split over 
two compartments, 
Erlang distributed) 

75 
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Age-specific infection fatality 
proportions (age groups 0-4, 5-
14, 15-44, 45-64, 65+) 

μC19,i 0.00004, 0.00004, 
0.00024, 0.00441, 
0.06720 

As in Levin76, weighted by model 
population sizes 

Adult (15-64 years) introduction 
rate 

1/η Fitted  

Duration of immunity 1/ω Fitted Assumed equal to HCoV waning 
rate 

Demographic Birth rate 𝜇1 640 370 per year  ONS statistical bulletin 201977 

Death rate 𝜇2 640 370 per year  Equal to birth rate to maintain 
constant population 

Population size  N 59 439 840 ONS 2019 population estimates 
for England and Wales, 5-year 
age bands78 

 

 

4.7.3 Inferring seasonal HCoV parameters 
  

We used reported seasonal HCoV cases from June 09, 2014 until February 17, 2020 to avoid overlap 

with SARS-CoV-2, where potential cross-protection could have occurred. We defined a binomial 

likelihood, where modelled infection incidence maps to reported cases via an age-dependent 

reporting proportion, 𝑝&. We assume equal reporting rates in age groups 5-15 and 45-65 to reduce 

the dimensions of the model, as initial fitting suggested these were very similar. The likelihood is 

therefore: 

  

𝑙𝑜𝑔(𝐿) 	≈ 		∑ ∑ 𝑘E,%𝑙𝑜𝑔(𝑝%) 	+	(𝑛E,% − 𝑘E,%)𝑙𝑜𝑔(1 − 𝑝%)F
EC-

%C'
%C-    (3) 

 

where 𝐿 is the likelihood, 𝑖 is the age group to a total of N age groups, 𝑥 are the reported monthly 

time points, 𝑘@,&are the reported HCoV cases by age group, 𝑛@,&		are the model estimated infections 

per age group and 𝑝&is the age-specific reporting rate. 

  

We fit the model to the data using parallel tempering, adapted from Vousden et al.22 which is based 

on Monte Carlo Markov Chain (MCMC) inference. Unlike MCMC, multiple chains at different 

temperatures are run in parallel and swaps of parameter positions between chains are proposed. 

This allows more comprehensive exploration of the parameter space and allows the chains to move 

out of local maxima. We ran two sets of 16 chains and confirmed their convergence with the 

Gelman-Rubin statistic79, which was <1.1. We then combined the sample from both chains, 
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excluding the burn-in, in order to increase sample size, resulting in 93900 samples. See supplement 

for more details. 

 

The percentage infected within one year and the median duration to reinfection were calculated 

using distribution and quantile functions from the stats R package69.  

 

We ran two sensitivity analyses. In the first, we excluded all data before August 2015, as the 

2014/2015 year looked abnormal, and could have resulted in a different testing rate as it was the 

first year of data collection. In the second, we assumed that 54% of the reported data was beta-

coronaviruses, as per the Nickbakshk et al. (2020) study from Scotland, and therefore fit to 54% of 

the original data (rounded to the nearest whole number). 

 

 

4.7.4 Simulating SARS-CoV-2 with a range of strengths of cross-protection 
  

We drew 100 random samples from the joint posterior distribution and simulated daily deaths 

reported in the first wave of the SARS-CoV-2 epidemic in England and Wales, between March 02, 

2020 and May 31, 2020. We explored the full range of possible cross-protection strengths, in each 

case fitting the transmission and introduction rates to the death data using maximum likelihood 

estimation with a Poisson likelihood. We therefore created 100 simulations of HCoV and SARS-CoV-2 

circulation for each strength of cross-protection. 

 

Due to the non-pharmaceutical interventions implemented in this period (“lockdown”), we adjust 

the contact matrices, which are split into three categories: school contacts, household contacts and 

all other contacts. From February 21, 2020, when Google mobility data becomes available, we adjust 

our “other” contacts in line with google mobility data. From February 23, 2020, we eliminate school 

contacts and assume that all remaining contacts are reduced to 33% of their transmission potential, 

due to social distancing and behavioural changes (“micro-distancing”)80. SARS-CoV-2 importations 

occur from February 15, 2020 until lockdown. See supplement for more details on the 

implementation of public health interventions. 

 

To look at the proportion infected during the first wave we assumed that antibodies would take 3 

weeks to rise to detectable levels after infection and not wane below the detection threshold during 

the study period81. 
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4.7.5 Projecting future dynamics of SARS-CoV-2 and Seasonal HCoVs 
 

We ran the model for 30 years, from January 01, 2020 without any changes in contacts, in order to 

project the future dynamics of SARS-CoV-2. As inputs, we used the estimated parameters from the 

seasonal HCoV fits, as well as the estimated transmission and introduction rates fitted for each of 

the samples.  

  



 124 

4.8 References 
 
 

1. Waterlow, N. R. et al. How immunity from and interaction with seasonal coronaviruses 

can shape SARS-CoV-2 epidemiology. medRxiv 2021.05.27.21257032 (2021) 

doi:10.1101/2021.05.27.21257032. 

2. Viner RM, Ward JL, Hudson LD, et al. Systematic review of reviews of symptoms and 

signs of COVID-19 in children and adolescents. Archives of Disease in Childhood 

2021;106:802-807.  

3. Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 

epidemics. Nature medicine 1–7 (2020) doi:10.1038/s41591-020-0962-9. 

4. Gaskell, K. M. et al. Extremely high SARS-CoV-2 seroprevalence in a strictly-Orthodox 

Jewish community in the UK. medRxiv 2021.02.01.21250839 (2021) 

doi:10.1101/2021.02.01.21250839. 

5. Lai, C.-C., Wang, J.-H. & Hsueh, P.-R. Population-based seroprevalence surveys of anti-

SARS-CoV-2 antibody: An up-to-date review. Int J Infect Dis 101, 314–322 (2020). 

6. Kissler, S. M. Projecting the transmission dynamics of SARS-CoV-2 through the 

postpandemic period | Science. https://science.sciencemag.org/content/368/6493/860. 

7. Tillett, R. L. et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. The 

Lancet Infectious Diseases 0, (2020). 

8. Stokel-Walker, C. What we know about covid-19 reinfection so far. BMJ 372, n99 (2021). 

9. Engl, P. H. Past COVID-19 infection provides some immunity but people may still carry 

and transmit virus. GOV.UK https://www.gov.uk/government/news/past-covid-19-

infection-provides-some-immunity-but-people-may-still-carry-and-transmit-virus. 

10. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after 

infection. Science eabf4063–eabf4063 (2021) doi:10.1126/science.abf4063. 

11. Viner, R. M. et al. Susceptibility to SARS-CoV-2 Infection Among Children and 

Adolescents Compared With Adults. JAMA Pediatrics (2020) 

doi:10.1001/jamapediatrics.2020.4573. 

12. Li, X. et al. The role of children in transmission of SARS-CoV-2: A rapid review. J Glob 

Health 10, 011101 (2020). 

13. Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of 

infectious diseases. PLoS Medicine 5, 0381–0391 (2008). 



 125 

14. Huang, A. T. et al. A systematic review of antibody mediated immunity to coronaviruses: 

kinetics, correlates of protection, and association with severity. Nature Communications 

11, 4704–4704 (2020). 

15. Edridge, A. W. et al. Coronavirus protective immunity is short-lasting. medRxiv 

2020.05.11.20086439-2020.05.11.20086439 (2020) doi:10.1101/2020.05.11.20086439. 

16. Galanti, M. & Shaman, J. Direct observation of repeated infections with endemic 

coronaviruses. 2020.04.27.20082032 (Oxford University Press (OUP), 2020). 

17. Aldridge, R. W. et al. Seasonality and immunity to laboratory-confirmed seasonal 

coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the Flu Watch 

cohort study. Wellcome Open Res 5, 52 (2020). 

18. Reed, S. E. The behaviour of recent isolates of human respiratory coronavirus in vitro 

and in volunteers: evidence of heterogeneity among 229E-related strains. J Med Virol 

13, 179–192 (1984). 

19. Khan, S. et al. Analysis of Serologic Cross-Reactivity Between Common Human 

Coronaviruses and SARS-CoV-2 Using Coronavirus Antigen Microarray. bioRxiv : the 

preprint server for biology (2020) doi:10.1101/2020.03.24.006544. 

20. Chan, K. H. et al. Serological responses in patients with severe acute respiratory 

syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, 

OC43, and NL63. Clinical and Diagnostic Laboratory Immunology 12, 1317–1321 (2005). 

21. Che, X. et al. Antigenic Cross-Reactivity between Severe Acute Respiratory Syndrome–

Associated Coronavirus and Human Coronaviruses 229E and OC43. The Journal of 

Infectious Diseases 191, 2033–2037 (2005). 

22. Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 

patients with acute respiratory distress syndrome. Science Immunology 5, (2020). 

23. Braun, J. et al. Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy 

donors. medRxiv 2020.04.17.20061440-2020.04.17.20061440 (2020) 

doi:10.1101/2020.04.17.20061440. 

24. Tan, H.-X. et al. Adaptive immunity to human coronaviruses is widespread but low in 

magnitude. medRxiv 2021.01.24.21250074 (2021) doi:10.1101/2021.01.24.21250074. 

25. Ng, K. et al. Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans. 

bioRxiv 2020.05.14.095414-2020.05.14.095414 (2020) doi:10.1101/2020.05.14.095414. 

26. Respiratory infections: laboratory reports 2019 - GOV.UK. 

27. Deaths registered weekly in England and Wales, provisional - Office for National 

Statistics. 



 126 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/d

eaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending7aug

ust2020. 

28. Eguia, R. et al. A human coronavirus evolves antigenically to escape antibody immunity. 

bioRxiv 2020.12.17.423313-2020.12.17.423313 (2020) doi:10.1101/2020.12.17.423313. 

29. Vousden, W. D., Farr, W. M. & Mandel, I. Dynamic temperature selection for parallel 

tempering in Markov chain Monte Carlo simulations. Monthly Notices of the Royal 

Astronomical Society 455, 1919–1937 (2016). 

30. COVID-19 Community Mobility Report. COVID-19 Community Mobility Report 

https://www.google.com/covid19/mobility?hl=en. 

31. National COVID-19 surveillance reports - GOV.UK. 

https://www.gov.uk/government/publications/national-covid-19-surveillance-reports. 

32. Home | What’s the STORY? https://whatsthestory.web.ox.ac.uk/. 

33. Ke, R., Romero-Severson, E., Sanche, S. & Hengartner, N. Estimating the reproductive 

number R0 of SARS-CoV-2 in the United States and eight European countries and 

implications for vaccination. Journal of Theoretical Biology 517, (2021). 

34. Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nature 

Medicine 26, 1691–1693 (2020). 

35. Petrie, J. G. et al. Coronavirus Occurrence in the HIVE Cohort of Michigan Households: 

Reinfection frequency and serologic responses to seasonal and SARS coronaviruses. The 

Journal of Infectious Diseases (2021) doi:10.1093/infdis/jiab161. 

36. Nyaguthii, D. M. et al. Infection patterns of endemic human coronaviruses in rural 

households in coastal Kenya. Wellcome Open Res 6, 27 (2021). 

37. Ng, O.-W. et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 

years post-infection. Vaccine 34, 2008–2014 (2016). 

38. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with 

COVID-19 Disease and Unexposed Individuals. Cell. 2020 Jun 25;181(7):1489-1501.e15. 

39. Bert, N. L. et al. Different pattern of pre-existing SARS-COV-2 specific T cell immunity in 

SARS-recovered and uninfected individuals. bioRxiv 2020.05.26.115832-

2020.05.26.115832 (2020) doi:10.1101/2020.05.26.115832. 

40. Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed 

humans. Science eabd3871–eabd3871 (2020) doi:10.1126/science.abd3871. 

41. Loyal, L. et al. Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon 

infection and vaccination. Science [Internet]. 2021 Aug 31 



 127 

42. Saletti, G. et al. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to 

human coronaviruses OC43 and NL63. Scientific Reports 10, 21447 (2020). 

43. Hicks, J. et al. Serologic Cross-Reactivity of SARS-CoV-2 with Endemic and Seasonal 

Betacoronaviruses. J Clin Immunol (2021) doi:10.1007/s10875-021-00997-6. 

44. Aydillo, T. et al. Immunological imprinting of the antibody response in COVID-19 

patients. Nat Commun 12, 3781 (2021). 

45. Chia, W. N. et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration 

of immunity: a longitudinal study. Lancet Microbe. 2021 Jun 1;2(6):e240–9. 

46. Chan, K. H. et al. Cross-reactive antibodies in convalescent SARS patients’ sera against 

the emerging novel human coronavirus EMC (2012) by both immunofluorescent and 

neutralizing antibody tests. Journal of Infection 67, 130–140 (2013). 

47. Zhao, J. et al. Airway Memory CD4+ T Cells Mediate Protective Immunity against 

Emerging Respiratory Coronaviruses. Immunity 44, 1379–1391 (2016). 

48. Dugas, M. et al. Lack of antibodies against seasonal coronavirus OC43 nucleocapsid 

protein identifies patients at risk of critical COVID-19. Journal of Clinical Virology 139, 

104847 (2021). 

49. Tan, C.-W. et al. Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized 

SARS-CoV-1 Survivors. New England Journal of Medicine (2021) 

doi:10.1056/NEJMoa2108453. 

50. Anderson, E. M. et al. Seasonal human coronavirus antibodies are boosted upon SARS-

CoV-2 infection but not associated with protection. medRxiv 2020.11.06.20227215-

2020.11.06.20227215 (2020) doi:10.1101/2020.11.06.20227215. 

51. Yang, R. et al. Lack of antibody-mediated cross-protection between SARS-CoV-2 and 

SARS-CoV infections. EBioMedicine 58, 102890 (2020). 

52. Rice, B. L., Douek, D. C., McDermott, A. B., Grenfell, B. T. & Metcalf, C. J. E. Why are 

there so few (or so many) circulating coronaviruses? Trends in Immunology 42, 751–763 

(2021). 

53. Carsetti, R. et al. The immune system of children: the key to understanding SARS-CoV-2 

susceptibility? The Lancet Child & Adolescent Health 4, 414–416 (2020). 

54. Tan CSS. et al. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely 

be explained by prior exposure to endemic human coronaviruses . Infect Genet Evol. 

2021 Nov 1;95:105075 

55. Yaqinuddin, A. Cross-immunity between respiratory coronaviruses may limit COVID-19 

fatalities. Med Hypotheses 144, 110049 (2020). 



 128 

56. Pinotti, F. et al. Potential impact of individual exposure histories to endemic human 

coronaviruses on age-dependent severity of COVID-19. BMC Medicine 19, 19 (2021). 

57. Callow, K. A., Parry, H. F., Sergeant, M. & Tyrrell, D. A. J. The time course of the immune 

response to experimental coronavirus infection of man. Epidemiology and Infection 105, 

435–446 (1990). 

58. Dugas, M. et al. Less severe course of COVID-19 is associated with elevated levels of 

antibodies against seasonal human coronaviruses OC43 and HKU1 (HCoV OC43, HCoV 

HKU1). International Journal of Infectious Diseases 105, 304–306 (2021). 

59. Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B. & Albert, J. Potential impact of 

seasonal forcing on a SARS-CoV-2 pandemic. Swiss medical weekly 150, w20224–

w20224 (2020). 

60. Oberemok, V. V., Laikova, K. V., Yurchenko, K. A., Fomochkina, I. I. & Kubyshkin, A. V. 

SARS-CoV-2 will continue to circulate in the human population: an opinion from the 

point of view of the virus-host relationship. Inflammation Research 69, 635–640 (2020). 

61. Lavine, J. S., Bjornstad, O. N. & Antia, R. Immunological characteristics govern the 

transition of COVID-19 to endemicity. Science 371, 741–745 (2021). 

62. Summary of the 2010-2011 Influenza Season | CDC. 

https://www.cdc.gov/flu/pastseasons/1011season.htm (2019). 

63. Update: Influenza Activity --- United States, 2010--11 Season, and Composition of the 

2011--12 Influenza Vaccine. 

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6021a5.htm. 

64. Public Health England, Respiratory infections: Laboratory reports 2020. 

GOV.UK, 26 February 2020. 

https://www.gov.uk/government/publications/respiratory-infections-laboratory-

reports-2020. Accessed 3 March 2021. 

65. Meyer, B., Drosten, C. & Müller, M. A. Serological assays for emerging coronaviruses: 

Challenges and pitfalls. Virus Res 194, 175–183 (2014). 

66. Dyrdak, R., Hodcroft, E. B., Wahlund, M., Neher, R. A. & Albert, J. Interactions between 

seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A 

retrospective study in Stockholm, Sweden, 2009–2020. medRxiv 2020.10.01.20205096 

(2020) doi:10.1101/2020.10.01.20205096. 

67. Nickbakhsh, S. et al. Epidemiology of Seasonal Coronaviruses: Establishing the Context 

for the Emergence of Coronavirus Disease 2019. The Journal of Infectious Diseases 222, 

17–25 (2020). 



 129 

68. Henderson, F. W., Collier, A. M., Clyde, W. A. & Denny, F. W. Respiratory-Syncytial-Virus 

Infections, Reinfections and Immunity. New England Journal of Medicine 300, 530–534 

(1979). 

69. R Core Team. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. (2018). 

70. S. Funk, socialmixr: Social Mixing Matrices for Infectious Disease Modelling. 

(2018). Version 0.1.8, published on CRAN. https://cran.r-

project.org/web/packages/socialmixr/index.html. Accessed 30 November 2021 

71. Liu, Z., Chu, R., Gong, L., Su, B. & Wu, J. The assessment of transmission efficiency and 

latent infection period in asymptomatic carriers of SARS-CoV-2 infection. Int J Infect Dis 

99, 325–327 (2020). 

72. Tyrrell, D. A., Cohen, S. & Schlarb, J. E. Signs and symptoms in common colds. Epidemiol 

Infect 111, 143–156 (1993). 

73. Birrell, P. J. et al. Forecasting the 2017/2018 seasonal influenza epidemic in England 

using multiple dynamic transmission models: a case study. BMC Public Health 20, (2020). 

74. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in 

England. Science (2021) doi:10.1126/science.abg3055. 

75. Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping 

review and analysis of available evidence for asymptomatic and symptomatic COVID-19 

cases. BMJ Open 10, e039856 (2020). 

76. Levin, A. T., Cochran, K. B. & Walsh, S. P. Assessing the Age Specificity of Infection 

Fatality Rates for COVID-19: Meta-Analysis & Public Policy Implications. medRxiv 

2020.07.23.20160895-2020.07.23.20160895 (2020) doi:10.1101/2020.07.23.20160895. 

77. Office for National Statistics, Deaths registered weekly in England and Wales, 

provisional. 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriage

s/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekendi

ng7august2020. Accessed 23 February 2021 

78. Estimates of the population for the UK, England and Wales, Scotland and Northern 

Ireland - Office for National Statistics. 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/pop

ulationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorth

ernireland. 



 130 

79. D. Vats, C. Knudson, Revisiting the Gelman-Rubin diagnostic. arXiv [Preprint] 

(2018). https://arxiv.org/abx/1812.09384. Accessed 22 February 2021 

80. Health, A. G. D. of. Australian Health Protection Principal Committee (AHPPC) statement 

on the review of physical distancing and person density restrictions. Australian 

Government Department of Health https://www.health.gov.au/news/australian-health-

protection-principal-committee-ahppc-statement-on-the-review-of-physical-distancing-

and-person-density-restrictions (2020). 

81. Centers for Disease Control and Prevention, Interim guidelines for CoVID-19 

antibody testing. https://www.cdc.gov/coronavirus/2019-

ncov/lab/resources/antibody-tests-guidelines.html. Accessed 27 February 2021 

 

 

  



 131 

5 Discussion 
 
5.1  Summary of Findings 

 
Respiratory pathogens, due to both their annual circulation and their pandemic potential, have an 

enormous public health and economic burden around the world1–4. They exist within an ecosystem5, 

and interactions between them could have wide-ranging implications for disease control. These 

interactions could occur on a non-specific, short-term basis, or through a cross-reactive immune 

reaction, resulting in specific, long-term interactions. Evidence for this phenomenon comes from a 

wide range of sources including relative timings of epidemics6, biological experiments in model 

animals7–9 and the detection of cross-reactive immune molecules in people10–13. However, 

quantifying the strength of these interactions, as well as testing their impact at a population level, 

requires tools to test mechanisms— for which mathematical models are ideally suited. Where 

models have been used, they often only model one pathogen dynamically, meaning that only one-

way interaction can be investigated14, and further they do not fit to data so are unable to provide 

estimates of the strength and duration of cross-protection15 nor limit the parameter range of key 

parameters16.  

 

In this thesis I have investigated how mathematical models can be applied to identify cross-

protection between respiratory viruses, and used these models to detect cross-protection that is 

epidemiologically important at a population level. I have approached this from various angles, 

researching different types of interaction and evaluating the implications that cross-protection can 

have on viral dynamics. I have developed a dynamic two-pathogen mathematical model to test 

interaction between respiratory viruses, explored the model, and used it to examine three different 

epidemiological situations of importance for public health. 

 

I will give a summary of each chapter, before discussing the strengths, limitations, and future of this 

work.  

 

5.1.1  Competition between RSV and influenza: Limits of modelling inference from 

surveillance data 

 

In chapter 2 I develop a model allowing for temporary cross-protection between influenza and RSV. I 

use the model to create simulations that qualitatively emulate a respiratory virus season in the UK, 

using different strengths and durations of cross-protection and including stochasticity. I then fit the 
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model to each simulation in order to back-infer the parameters used. I do this for each season 

individually, without strong priors, to assess the validity of using such an approach on UK or similar 

surveillance data. While the estimates were often imprecise, it was possible to quantify the strength 

and duration of interaction from a single season with some amount of overlap between the 

influenza and RSV seasons. This analysis highlighted areas of parameter space that resulted in 

misleading results, particularly at the extreme ends of the strength of cross-protection, and showed 

that stochastic noise can result in incorrect estimates. I therefore conclude that this is a valid 

approach, but hypothesise the need to include multiple seasons of data to reduce the impact of 

stochasticity. While other identifiability studies exist (such as Rift Valley fever17 and Zika18), this 

paper was the first to test the robustness of RSV and influenza competition inferences using dynamic 

models. 

 

5.1.2 How cross-protection between Influenza and Respiratory Syncytial virus shapes 

paediatric hospital admissions in Nha Trang, Vietnam 

 

In chapter 3 I extend the model developed in chapter 2 to be applicable to influenza and RSV data 

from a hospital-based study in Nha Trang, Vietnam. This is a unique data set containing 11 years of 

paediatric surveillance for influenza and RSV with PCR confirmed infections, including cases infected 

with both viruses. I use parallel tempering to fit the model and estimate the strength and duration of 

interaction between influenza and RSV in this setting. The results show two possible interaction 

scenarios: one where moderate cross-protection between the viruses is involved in shaping their 

population level dynamics; and one where the transmission dynamics of the two viruses are 

independent. In addition, interaction resulting in increased reporting rates plays a key role in 

observed case reports. However, it is also important to consider the generalisability of this study to 

other settings, where different epidemic patterns may result in different opportunities for 

competition between RSV and Influenza. In addition the data consists of small numbers, presenting 

challenges with the inference. The results here indicate that introduction of vaccination against 

either influenza or RSV has a strong effect on reducing hospitalisations due to the increased severity 

of dual infections, while at the same time potentially impacting transmission dynamics, resulting in 

increased hospitalisations due to higher levels of circulation, especially following influenza 

vaccination.  
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5.1.3 How immunity from and interaction with seasonal coronaviruses can shape SARS-

CoV-2 epidemiology 

 

Chapter 4 considers specific, longer-term interaction, rather than the temporary interaction that is 

investigated in Chapters 2 and 3. Using a model which includes seasonal forcing, I fit to 5 years of 

PHE coronavirus reports detected through any method. The inferred parameters — R0 5.9 (95% CrI: 

5.5 - 6.2) and duration between recovery and return to susceptibility of 7.8 years (95% CrI: 6.3 – 8.2) 

— are considerably higher than other estimates in the field16 due to differences in the limits of 

parameters. I highlight the importance of including a full range of estimates in the parameter range, 

as well as discussing why my estimates align with biological evidence. I use these estimates to 

answer a key question that emerged during the SARS-CoV-2 pandemic: is the reduced susceptibility 

of children to SARS-CoV-2 that was observed at the start of the pandemic due to cross-protection 

from seasonal coronavirus infection? I show that while cross-protection can help explain some 

reduced susceptibility, it is not sufficient to explain the observed pattern. The paper also includes a 

forward projection, looking at how cross-protection could influence the future dynamics of these 

viruses. This is a novel insight into the dynamics of coronaviruses, and cross-protection in general.  

 

5.2 Strengths and Limitations 
 
 
A specific discussion on each project is given in the relevant chapters, therefore here I will focus on 

the overall strengths and limitations of the thesis.  

 

5.2.1 Strengths 
 

Testing biological mechanisms 

 

Existing evidence on cross-protection between respiratory viruses comes from three main sources:  

ecological studies looking at relative timings of epidemics6, biological experiments in model 

animals7–9 and the detection of cross-reactive immune molecules in humans10–13. However, such 

evidence alone is unable to test the causal link between these biological phenomena and the 

epidemic patterns at population level. Mathematical models allow testing of mechanisms and I have 

therefore been able to contribute evidence on three hypotheses. I first tested the hypothesis of 

short-term cross-protection between influenza and RSV, where I showed that there were two 

possible scenarios: one with no interaction and one with moderate interaction. Secondly, in the 



 134 

same study, I tested the mechanism of increased reporting due to co-infections, where I showed a 

strong effect. The third hypothesis was that cross-protection between seasonal coronaviruses and 

SARS-CoV-2 caused the observed reduced susceptibility of children during the pandemic. Here I 

showed that cross-protection could not explain this reduced susceptibility. This linking of a biological 

mechanism to a population level occurrence is a key strength of this project. In terms of influenza 

and RSV, the only published model that has a similar aim15 has not been fit to data, and therefore 

may not be able to detect the subtle consequences of interaction. The model I present in this thesis, 

on the other hand, is the first that has rigorously tested the link between cross-protection of 

influenza and RSV and the population level circulation of these respiratory viruses. For 

coronaviruses, while there is a model evaluating cross-protection between alpha- and beta-seasonal 

coronaviruses16, it does not consider a full range of parameters, include any population age-

distribution or compare the SARS-CoV-2 model to data, and can therefore not test the hypothesis of 

cross-protection between seasonal coronaviruses and SARS-CoV-2.  

 

Data availability 

 

The second key strength of this thesis is the quantity and quality of data that the models were fit to. 

In the exploration of interaction models in Chapter 2 there were indications that multiple seasons of 

data are required to get accurate results. In Chapter 3 I used 11 seasons of paediatric hospital cases 

with PCR-confirmed infections19. This is a rich data set, especially as it includes dual infections, which 

give extra power to detect cross-protection between influenza and RSV. In Chapter 4, while the 

seasonal coronavirus case data was not subtyped, I used multiple seasons from across England and 

Wales. I also tested the sensitivity of excluding one year of data when there were indications that 

there may have been differences in testing. Regarding SARS-CoV-2, deaths are highly skewed to 

older ages20, but I therefore included serological data as the main output of interest.  

 

However, SARS-CoV-2 antibodies responses are varied, with 5 distinct patterns being observed: 

negative, rapid waning (seroconversion within 180 days), slow waning (seroconversion above 180 

days), persistent (relative little antibody decay) and delayed response (increase in antibodies in late 

convalescence)21. In addition, positivity of samples is dependent on the serological assay used22. 

Because of the variation of antibody longevity within the body, and specifically the potential rapid 

waning of antibodies23, I only modelled the first wave of the UK epidemic, so as to reduce the bias on 

the results. In terms of ‘input’ data, in the UK, public health interventions were implemented at the 

same time, irrespective of geographic region, thereby providing an ideal setting to model the 
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pandemic, especially with google mobility data24 available to track this. In all three of the projects, I 

was additionally able to include location-specific age assortative contact matrices as data inputs, 

which have been shown to be vital in predicting age-specific pathogen spread25,26.  

 

Inference techniques 

 

In this thesis I used Bayesian methods to fit my models to data, specifically MCMC and parallel 

tempering. In chapter 2 I used MCMC, to assess the potential for detecting interaction when using 

standard modelling methods and surveillance data. However, in the following two chapters I 

developed this further, implementing parallel tempering. This method was developed in 1986 by 

Swendson and Wang27 in the field of physics. Multiple chains are run at different temperatures, 

where higher temperatures accept lower likelihoods. Swaps between the temperatures are then 

proposed, which are accepted dependent on the temperature and likelihood differences between 

the two chains. Although computationally intensive compared to more standard Monte Carlo 

approaches, this method provides a better exploration of parameter space28. This is because the 

higher temperature chains explore a broader range of the parameter space, while the lower 

temperature chains enable precision within local minima. Swapping between the chains enables the 

cool, precise chains to swap between areas of high likelihood that the warmer chains have 

identified.  This would not be possible in MCMC, as to generate precision in the posterior sample 

you strongly reduce the chances of leaving local minimums and exploring the broader parameter 

space. Therefore, the trade-off between getting a well-mixed, precise result and exploring the whole 

parameter space, as is the case for MCMC, is relaxed.  Using this method for complicated models is a 

key strength of this thesis and builds trust in the results. This method is also a likelihood-based 

inferential technique, allowing representation of the observation processes. 

 

Transparency and Reproducibility 

 

The philosopher Karl Popper noted that “non-reproducible single occurrences are of no significance 

to science”29. However, the recent academic landscape is rife with non-reproducible research, with 

70% of surveyed researchers unable to replicate the work of others, and a startling 50% unable to 

replicate their own research30.  I have made all my research transparent and reproducible: code for 

all the projects is available on GitHub, as is the data I extracted from the PHE website for Chapter 4. 

In addition, in Chapter 2 I specifically tested the reproducibility of the results based on the 

stochasticity in the system. Having shown that stochasticity could sometimes result in inaccurate 
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results from one season alone, I then ensured in Chapter32 that I used multiple seasons of data. I 

have therefore made my research reproducible, which adds to its value in the scientific field.  

 

5.2.2 Limitations 
 

The often-used quote “All models are wrong, but some are useful”, attributed to George Box31, 

exemplifies many of the limitations of this thesis, and modelling in general. We cannot aim to exactly 

replicate, down to every strain, geographic region, and stochastic element of disease dynamics, as 

the complexity and detail required would be immense. Instead, we must make simplifying 

assumptions in our models based on our understanding of the mechanisms involved and on the 

questions that we want to answer, allowing us to generate believable and useful conclusions.  

 

Simplification of the viral ecosystem  

 

The models in this thesis all simulate two pathogens. However, this is a vast simplification of the 

respiratory pathogen landscape, which may therefore introduce bias. Firstly, I did not include 

multiple subtypes or strains for any of the modelled viruses, instead modelled them as one virus 

(excepting coronaviruses and SARS-CoV-2). This has different implications for each virus.  

 

There is evidence that for influenza viruses an individual’s immunity is dependent on which previous 

strains they have previously been infected by, often called their “infection history”32–34. In chapters 2 

and 3 I accounted for potentially varied immunity levels by fitting a susceptibility parameter at the 

beginning of each season, however this will not have captured the full variation. For RSV, despite the 

presence of two subtypes (A and B) there is less evidence of differences between these subtypes in 

terms of severity or long-term immunity (see introduction), so the assumption here is less likely to 

cause a bias in the model.  

 

The lack of strain-specific modelling may have the biggest impact on the coronavirus model in 

chapter 4. There are indications form other studies / settings that more complicated dynamics exist, 

for example alternating annual patterns16. However, this is not observed in the UK, where subtype 

circulation is very consistent year on year35, or in Japan when over a 3 year study no subtype 

dynamic patterns emerged36. Due to the potential different dynamics between strains the duration 

of immunity for seasonal coronaviruses in this study is considered as an artificial parameter. Here it 

measures time between recovery from the infection and return to the susceptible class rather than a 

strain-specific duration of cross-protection. It is this overall level of immunity that will influence the 
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age-specific susceptibility of SARS-CoV-2 through cross-protection. Therefore, the results regarding 

cross-protection are unlikely to differ if this assumption was relaxed, however differing subtype 

dynamics may be an explanation for the high estimate of the duration of homologous protection.  

 

Ideally, in future work I would be able to increase the complexity of the models in this thesis, to 

include the multiple coronavirus and influenza strains. This would require sub-typed data, which 

while available for influenza in the UK37, is not available for coronaviruses. Instead, a different 

location, such as the United States of America (USA)38, would have to be used. A more complex 

model would also increase the difficulty of fitting.  

 

I also do not include the impacts of other external factors that may have influenced immune 

dynamics. This includes interactions with other pathogens39, such as influenza B, rhinovirus or 

pneumococcus, and external climatic factors that could have influenced the transmission dynamics. 

However, in both cases, the modelled viruses are the ones for which existing evidence suggested the 

strongest interaction is likely. Yet, it may still have confounded the results, potentially explaining the 

reduction in SARS-CoV-2 infections that we could not replicate in the model. When modelling 

coronavirus in chapter 3, where I simulated multiple consecutive seasons, I accounted for some of 

these external factors using a seasonal forcing mechanism. While this created realistic dynamics, it is 

not necessarily clear what drives this seasonality and is a limitation of this study. Using climatic data 

and prevalence of other infections as static inputs into the model could explain the impact of this 

limitation.  

 

Unavailability of data on infection incidence 

 

The second area of limitation across the models in this thesis is that I only had information on the 

disease incidence instead of infection incidence. In order to make inferences from this, I assumed a 

constant rate of reporting over time, and therefore also a constant rate of testing over time. This is 

because I did not have data on the number of tests conducted in the dataset. Respiratory viruses 

often cause similar symptoms, which result in individuals being tested for viruses. In high income 

countries this is often done using a multiplex PCR-based assay40, resulting in infections being 

detected based on the circulation of other viruses that cause ILI. Therefore, it is likely that the 

testing rate changes seasonally, to match the incidence of ILI. I have not included time-varying 

testing volume in the models, as the number of negative test results were not available.  
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For the Nha Trang study, previous seasons did not show marked seasonality in hospitalisations19, so 

not including a time-dependent testing rate is likely to have negligible impacts. In the UK, where 

there is marked winter seasonality in ILI, the assumption on rate of testing is more likely to impact 

the number of reported cases.  

 

This is especially a concern for coronaviruses as it has a higher proportion of 

asymptomatic/subclinical infections compared to other respiratory viruses such as influenza41, which 

will result in testing being strongly dependent on other, more severe, respiratory viruses. Likely, this 

would change the magnitude of the seasonal coronavirus report peaks. While this may bias the 

results, it is likely that it would mostly be absorbed into the amplitude of seasonal forcing, thereby 

not impacting the model’s conclusions. In the ideal scenario I would have been able to use infection 

incidence data, collected through regular community swabbing. This would remove any bias from 

time-varying reporting, and reduce the number of parameters required, as reporting rates would not 

need to be included.  Relatedly, information on infection incidence for SARS-CoV-2 was not 

available, and instead I used deaths and serological data. The death data will be highly skewed to at 

risk groups, hence the requirement for also using serology. However, due to complications of 

serology such as antibody waning and the impact of changing social restrictions on contact patterns, 

I only modelled the first wave of the epidemic in England and Wales. This limited my analysis to the 

initial circulation period of SARS-CoV-2, which may bias the results, as the most at risk population 

groups may have been infected first.  

 

Susceptibility reduction as the mechanism of cross-protection 

 

The third major assumption that I made across models is that cross-protection acts to reduce 

susceptibility rather than to reduce transmissibility. This is based on the mechanism of interaction 

being the innate immune system, activation of which reduces the susceptibility of individuals to a 

variety of pathogens42–44. While transmission-blocking immunity has been noted for a few 

pathogens, this is often observed as a result of vaccination, not natural infection45,46.  In addition, 

only in the Nha Trang setting did I allow an increased clinical severity with dual infections, by 

allowing a varied reporting rate.   

 

In the case of coronaviruses, while there is some evidence that cross-protection influences clinical 

severity47, the main output of the model in this thesis is the proportion of the population who would 

have generated specific antibodies, which is unlikely to be impacted by differences in severity.  
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However, it is a limitation of this thesis that it only explores cross-protection mediated through 

reduced susceptibility. To test this further, a model could be developed to test different mechanisms 

of interaction: reduced susceptibility, reduced transmissibility and altered severity. However, it is 

unclear whether such nuances in interaction would be identifiable during model inference. A 

reduction in transmissibility as well as susceptibility of SARS-CoV-2 due to cross-protection from 

seasonal HCoV could explain the reduced susceptibility in children that I was unable to fully describe 

with my coronavirus model in Chapter 4. 

 

Generalisability 

 

Lastly, a limitation of the work in this thesis is the generalisability of the conclusions to other 

settings. In all three scenarios I used location specific parameterisations, and for both influenza and 

RSV and the coronavirus model I fitted to data from specific regions.  

 

The dataset used to fit the influenza/RSV model consisted of hospital patients, therefore only 

including relatively severe cases, which will not be representative of the community. In order to 

counteract this, I estimated virus and age specific reporting rates in the model. However, these may 

alter by geographic region and surveillance system, and therefore the model may not be 

generalisable beyond the currently implemented setting. In addition, many dual infections were 

reported at points when the two viruses were individually at low levels of circulation. It is unclear to 

what extent this is true in other geographic regions, but is definitely not always the case (e.g. 

Texas48). Influenza circulated constantly at very low levels in Nha Trang, which is not observed in 

other geographies such as the UK37, where there is a much more pronounced annual epidemic peak. 

Such seasonal differences in circulation may have a large impact on the results, as for example large 

shifts in peaks cannot be observed in the Nha Trang data, and there is potential for cross-protection 

to be absorbed into the transmission rate with year-round circulation. Therefore, the generalisability 

of this results to other settings is unclear, as different dynamics may be at play.  

 

In Chapter 2 I used simulated data to test the inference tools, which is a powerful technique for 

determining the data needed to fit models such as those in this thesis. I intended to base the 

Chapter 3 on this analysis with data from England and Wales but was unable to do so due to SARS-

CoV-2 related restrictions.  
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In the case of coronaviruses, the background level of immunity to seasonal coronaviruses will differ 

across geographies, due to different contact patterns and climatic features, and the extent of this 

will impact the extent of cross-protection and therefore the study conclusions. To further assess the 

generalisability of the results, fitting the same model parameterised to a different location, with 

local data for inference would be crucial.  

 

5.3 Implications and future work 

 
The research I have presented in this thesis has several implications for further study of respiratory 

interactions and mathematical models:  

 

1. I have shown that my mathematical model framework can be used to investigate interaction 

from disease incidence as typically captured by surveillance data. Chapter 2 indicated that 

multiple seasons of data should be included, and models should ideally be validated, as 

stochasticity can affect the results. 

2. Chapter 3 indicates that the introduction of RSV or influenza vaccination has the potential to 

affect the epidemiology of the other virus in Nha Trang, Vietnam. Further study on the wider 

consequences of vaccination is therefore required before such public health measures are 

implemented. This is a timely discussion in this setting due to the recent interest in 

vaccinating against influenza in Vietnam49, and the development of in-country 

vaccinations50.  

3. Comparing the results of Chapter 3 to previous literature on shifts in epidemic peaks6 

suggests that other mechanisms, such as behavioural responses, may play a greater role 

than currently thought in shifting epidemics. The dramatic effects of behaviour changes 

have recently been demonstrated on a wide scale due to the SARS-CoV-2 pandemic51. Due 

to this large impact, tracking contact patterns over time is of vital importance for the study 

of infectious disease transmission, as is being done for example in CoMix study in the UK52.  

4. The results in Chapter 4, investigating susceptibility to coronaviruses, implies that there are 

more mechanisms involved in the reduction of childhood susceptibility than just interaction 

with seasonal coronaviruses and contact patterns. This could be due to innate differences in 

susceptibility between age groups53.  

5. In addition, Chapter 4 demonstrates the importance of collecting serological data during 

disease outbreaks that models can be fitted to. To understand the dynamics, serological 

data collection should be started as soon as possible at the start of the epidemic. This is 

important both to understand the early dynamics of infection, but also due to the variation 
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in speed of antibody waning21–23,54. In addition, the representativeness of individuals 

enrolled in a serological study is of key importance, as many of the available studies for 

coronavirus are strongly biased, often by health statues. This includes for example the blood 

donor study where individuals must be healthy to be included and the PHE 

SeroEpidemiological Unit (SEU) where individuals must have sought healthcare facilities. 

 

While this thesis addresses some key questions in the field of respiratory interactions, it also 

identifies further gaps in knowledge. 

 

The results from the influenza and RSV model based in Nha Trang, Vietnam, show that the data 

support two cross-protection scenarios: moderate or no cross-protection. In order to further narrow 

down and distinguish between these two modes, the model could be re-fitted with extra data. This 

could be for example respiratory viral samples from the community, rather than just the hospital, in 

order to inform the reporting rates, and hence the model fit. The findings from Vietnam may 

however not be generalisable to other settings, particularly those in temperate climates with more 

pronounced influenza epidemics. Therefore, fitting the model to a different setting such as the UK, 

would result in a much broader understanding of the impacts of interaction between influenza and 

RSV. This was the original plan for this thesis, however this project had to be postponed due to 

restrictions in response to the SARS-CoV-2 pandemic. In addition, it would be very interesting to fit 

this model framework to a dataset where a previous shift in epidemic peaks has been observed, and 

it was hypothesised to be due to interaction between the viruses. 

 

In terms of coronaviruses, subtype information is not available for the PHE data, however other 

locations may provide the opportunity for studying these interactions. One potential data source is 

the National Respiratory and Enteric Virus Surveillance System (NREVSS) in the USA38. This data is 

subtyped and covers a large geographic area, with different dynamic patterns present in the 

different regions. It would therefore be interesting to create a mathematical model looking at the 

interaction between coronavirus subtypes with a spatial element. This would be needed to capture 

these different dynamics across regions. Such a model may further elucidate the extent of cross-

protection between coronavirus strains and demystify the importance of subtypes (alpha vs beta 

coronaviruses). Furthermore, this model could investigate the impacts of including an RSV-like build-

up of immunity to seasonal coronaviruses, which reduces susceptibility following repeat infections.   
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The SARS-CoV-2 pandemic, while being completely devastating, has resulted in unique opportunities 

to understand respiratory viral dynamics. It is, in essence, a natural global epidemiological 

experiment. With different climates and different public health measures implemented in different 

geographical regions, there is a lot of potential to research topics that have previously been elusive. 

In the UK, apart from rhinovirus, the usual respiratory virus patterns were disrupted (see Figure 5-1). 

Of relevance to this thesis is the causes of respiratory viral epidemic timings: what is the impact of 

climate on respiratory viral epidemic timings as opposed to human behaviour in response to 

climate? What is ‘seasonal forcing’? To what extent are epidemics based on availability of 

susceptible individuals (potentially due to cross-protective responses) as opposed to virus or 

behaviour intrinsic factors? This is a key area of research where models like those used in this thesis 

could be effectively utilised.  

 

 
Figure 5-1: Six major respiratory viruses (positive numbers) reported from PHE and NHS laboratories (SGSS) in 

England and Wales between week 1, 2011 and week 29, 2021 (3-week moving average). Extracted from 

www.gov.uk55  

A final area of future development would be to extend the models developed in this thesis to three 

or more pathogens, to gain a greater understanding of the interactions within the microbiome. This 

would be particularly relevant to other respiratory pathogens that cause global impacts, for example 

pneumococcus. This is especially the case as there are already strong indications that influenza and 

RSV can impact the progression of pneumococcal carriage to disease56, and vaccination against these 

two viruses may impact the incidence of pneumococcal disease.  
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5.4 Concluding Remarks 

 
This PhD thesis aimed to improve our understanding of respiratory viral interaction that is clinically 

relevant on the population level. It demonstrates that surveillance data and mathematical models 

can be used to study these interactions, as they are able to test the underlying causal mechanisms.  
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 Model equations 
 

 

λ%"5"! = 	F𝛽%"5 𝛼&(𝐼%"5! (1) 

 

λ$34"! = 	F𝛽$34 𝛼&(𝐼$34! (2) 

 

 

 

𝑑𝑆𝑆&
𝑑𝑡

= −	𝜏&λ%"5"𝑆𝑆& 		−	λ$34"𝑆𝑆& 		 

 

𝑑𝐼𝑆&
𝑑𝑡

= 	 𝜏&λ%"5"𝑆𝑆& 	−	(1 − 𝜎)𝜆$34"𝐼𝑆& − 𝛾%"5𝐼𝑆&  

 

𝑑𝑃𝑆&
𝑑𝑡

= 		 𝛾%"5𝐼𝑆& − 𝜌𝑃𝑆& − (1 − 𝜎)λNOP&𝑃𝑆&  

 

𝑑𝑅𝑆&
𝑑𝑡

= 	𝜌𝑃𝑆& − λNOP&𝑅𝑆&  

 

𝑑𝑆𝐼&
𝑑𝑡

= 		 λ$34"𝑆𝑆& −	(1 − 𝜎)𝜏&λ%"5"𝑆𝐼& − 𝛾$34𝑆𝐼&  

    	
𝑑𝐼𝐼&
𝑑𝑡

= 		 (1 − σ)λ$34"𝐼𝑆& + (1 − σ)𝜏&λ%"5"𝑆𝐼& − 𝛾$34𝐼𝐼& −	𝛾%"5𝐼𝐼& 		 

	
𝑑𝑃𝐼&
𝑑𝑡

= 		λ𝑃𝑆& − 𝛾$34𝑃𝐼& + 𝛾%"5𝐼𝐼& + λ$34"𝑅𝑆&  

    	
𝑑𝑆𝑃&
𝑑𝑡

= 		 𝛾$34𝑆𝐼& − 𝜌𝑆𝑃& − (1 − 𝜎)𝜏&λQAB&𝑆𝑃&  

 

𝑑𝐼𝑃&
𝑑𝑡

= 		 (1 − σ)𝜏&λ%"5𝑆𝑃& − 𝛾%"5𝐼𝑃& + 𝛾$34𝐼𝐼& + 𝜏&λ%"5"𝑆𝑅&  

 

𝑑𝑆𝑅&
𝑑𝑡

= 	𝜌𝑆𝑃& − 𝜏&λQAB&𝑆𝑅&  
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𝑑𝑅𝑅&
𝑑𝑡

= 		 𝛾%"5𝐼𝑃& + 𝛾$34𝑃𝐼&  

         

 

States 

The first letter of the state indicates the state for RSV, the second letter indicates the state for 

Influenza.  

E.g. 𝑆𝑆& 	is shorthand for 𝑆%"5,&𝑆$34,&  

 

S - Susceptible 

I - Infected 

P – Partially cross protected 

R – Recovered 

 

Subscripts 

𝐼𝑁𝐹 -  Influenza 

𝑅SV – Respiratory Syncytial Virus 

 

Parameters 

λ&,(  – transmission rate between age groups I and J 

𝛽 – transmission rate 

𝛼&(  – contact rate between group I and j 

𝜏&  - age group susceptibility to RSV 

𝜎 – level of cross-protection 

𝛾 – rate of recovery 

𝜌 – rate of loss of cross-protection 
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 Full model Diagram 
 

 
Appendix A Figure S1: Model diagram for RSV and Influenza (INF) demonstrating all age groups. Population can 

be Susceptible (S), Infected, (I), Protected (P) or Recovered (R) to each virus. For each virus, following infection, 

infectiousness wanes at a constant rate, and the population enters the P state. Here they are immune to the 

virus they were infected by and protected to a varying extent against infection from the second virus.  This 

protection wanes at a rate which we change, and the population enters the R compartment. In the R 

compartment the population is immune to the virus it was infected by, but not the other virus. Parameters are: 

recovery rate for RSV and Influenza (𝛾!"#	and 𝛾&'(), age susceptibility to infection (𝜏%), the transmission 

parameters for RSV and Influenza (𝛽!"#,% and 𝛽&'(,%), strength of cross-protection (𝜎) and rate of protection loss 

(𝜌). Values are given in Table 1. The age is denoted by the subscript (i). 

 
 R0 calculation 

 

The R0 for each virus was calculated using the method described in Diekmann et al (2009)1, assuming 

no interaction between the viruses. The R0 is the dominant eigenvalue of the matrix  

−𝑇Σ.8 

where 𝑇 is the transmission part of the Jacobean matrix, describing the production of new 

infections, and Σ is the transition part, describing changes in state1. See reference for further details.   
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𝑇$34 =	k
𝛽	$34 ∗ 𝛼&,(	 ⋯ 𝛽$34 ∗ 𝛼&,(	

⋮ ⋱ ⋮
𝛽$34 ∗ 𝛼&,(	 ⋯ 𝛽$34 ∗ 𝛼&,(	

o	𝑇%"5 =	 k
𝜏( ∗ 𝛽%"5 ∗ 𝛼&,(	 ⋯ 𝜏& ∗ 𝛽%"5 ∗ 𝛼&,(	

⋮ ⋱ ⋮
𝜏( ∗ 𝛽	%"5 ∗ 𝛼&,(	 ⋯ 𝜏( ∗ 𝛽%"5 ∗ 𝛼&,(	

o	 

 

Σ$34 =	 p
p

𝛾$34 0 0 0 0
0 𝛾$34 0 0 0
0 0 𝛾$34 0 0
0 0 0 𝛾$34 0
0 0 0 0 𝛾$34

p
p	ΣQAB =	 p

p

𝛾%"5 0 0 0 0
0 𝛾%"5 0 0 0
0 0 𝛾%"5 0 0
0 0 0 𝛾%"5 0
0 0 0 0 𝛾%"5

p
p	 

 

Subscripts 

𝐼𝑁𝐹 -  Influenza 

𝑅𝑆𝑉 – Respiratory Syncytial Virus 

 

Parameters 

𝛽	–transmission rate 

𝛼&(  – contact rate between group I and j 

𝜏&  - age group susceptibility to RSV 

𝛾 – rate of recovery 

 

 Susceptibility to RSV 
 

RSV susceptibility differs with age, as indicated by a longitudinal study by Henderson et al. (1979) in 

which they determined that at 1st exposure 98.4% of children became infected, at second exposure 

74.5% of children became infected and at 3rd exposure 65.4% of children became infected2. As it is 

estimated that almost all children are infected by 24 months of age3 , we used these figures as the 

reduced susceptibility of age groups (ages 0-1 = 100% susceptible, ages 2-4 = 75% susceptible, ages 5 

and over = 65% susceptible). 

 

 Generating simulations 
 

We generated simulations using our model with different parameter combinations, using a binomial 

sampling process to model observed cases (see main methods section for more details). We 

calibrated the detection and transmission rates for the viruses in the under-five population to 

observed values in the UK, by visually matching simulation output to epidemic peak incidence and 

duration4. In addition, we set the rates for RSV to different values in each age group, as younger 
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infants have been shown to be more likely to present with severe symptoms5 . Overall, our 

simulations emulated UK data, with higher RSV incidence in infants compared to young children, 

fewer influenza as compared to RSV cases. RSV incidence peaked in the same week each simulation, 

whereas the influenza incidence peak varied over a time span of 6 months, with the majority of 

simulations over a 4-month time span (Appendix A Figure S2). Across simulations, the median number 

of RSV cases observed was 5143 (95% quantiles (95%Q) 5107 – 5146) in 0-1 year olds and 1891 

(95%Q 1867 – 1986) in 2-4 year olds. This compares to 1077 (95%Q 919 – 1150) and 1457 (95%Q 

1269 – 1518) for influenza in the respective age groups. The mean annual attack rates across all age 

groups were 31% (95%Q 27-34%) for influenza and 90% (95%Q 90-90%) for RSV.  

 
Appendix A Figure S2: A) Simulations from one replicate of the parameter combinations, showing the spread of 

timings of the epidemics. B) Annual Attack rates for the different viruses and age groups. Bars show the median 

value and the error bars the 95% quantiles. C) Median number of cases reported across simulations for each 

age group and virus combination. Error bars show the 95% quantiles.  

Appendix A Table S1: parameters used in the model for the proportion of infections detected by age group and 
virus. 

Parameter Symbol Value 

Proportion of RSV infections 
in ages 0-1 hospitalised 

Δ	(, 0.004 

Proportion of RSV infections 
in ages 2-4 hospitalised 

Δ	(- 0.001 
 

Proportion of Influenza 
infections in ages 0-4 
hospitalised 

Δ	. 0.002 

 



 155 

 Sensitivity of introductions 
 

Introduction of influenza as a one-off infection at season start time (𝜂$)  was also tested to look at 

the sensitivity of the assumption. With a single introduction the influenza epidemic was supressed 

for the whole season at certain parameter values. This occurred when there was strong interaction 

between the two viruses and the introduction of influenza occurred during the peak of the RSV 

epidemic. As such behaviour is not seen in England, we judged the assumption of low-level constant 

introduction to be more valid.   

 

Parameter limits were kept constant, except for the limit on 𝜎, which either ranged from 0 to 1 

(competitive interaction only) or from 1 to -1 (allowing for synergistic as well as competitive 

interaction). Although we do not think a synergistic relationship between influenza and RSV is likely, 

we thought including it may allow the chain to more effectively explore the parameter space. 

However, for values between 0.2 and 0 no MCMC chains converged when allowing for synergistic 

interaction, so in all subsequent runs 𝜎 was limited between 0 and 1. 

 

We ran a sensitivity analysis on the start times of the viruses, running / fitting extra simulations with 

influenza and RSV starting on the same day and 20 days apart. These simulations were run as in the 

main paper, however limited to 250000 iterations after burn in. When the viruses were seeded on 

the same day (and there was greater overlap of epidemics), the estimates for both interaction 

parameters were more precise (Figure S2) than the standard simulations. Conversely, when 

influenza was seeded later than standard, the estimates were less precise.  
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Appendix A Figure S3: Estimated ρ values from MCMC inference for simulations with different σ and ρ values. 

Median value and 95% CrI are shown. The black line is the simulated (true) value of ρ in each case. The 

different plots show simulations with different intervals between influenza and RSV start times. 
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Appendix A Figure S4: Estimated σ values from MCMC inference for simulations with different σ and ρ values. 

Median value and 95% CrI are shown. The black line is the simulated (true) value of σ in each case. The 

different plots show simulations with different intervals between influenza and RSV start times. 

 

 Priors and parameter limits  
 

Appendix A Table S2: Prior distributions and limits for the parameters used in the model during the Markov 

Chain Monte Carlo (MCMC) fitting process. sd = standard deviation. 

Parameter Symbol Prior distribution Lower Limit Upper Limit 
R0 for RSV  
used to calculate basic 
transmission rate  

𝛽3,()* Normal distribution, 
mean=3, sd=0.6 

0 Infinity 

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99
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re
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 o
f i

nt
er

ac
tio

n 
(�

) Duration of protection
1 � = 2 days
1 � = 5 days

1 � = 10 days
1 � = 20 days
1 � = 40 days

Simulated value

Estimated strength of interaction: 20days apart
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Estimated strength of interaction: 9days apart

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

St
re

ng
th

 o
f i

nt
er

ac
tio

n 
(�

) Duration of protection
1 � = 2 days
1 � = 5 days

1 � = 10 days
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R0  for Influenza  
used to calculate basic 
transmission rate 

𝛽3,./0 Lognormal distribution, 
mean=0.3, sd=0.6, 
shifted by 1 

0 Infinity 

Time of first RSV 
infection  

𝜂()* Uniform between day 0 
and day 60 

0 60 

Time of first influenza 
infection  

𝜂./0 Uniform between day 0 
and day 60 

0 60 

Proportion of RSV 
infections in ages 0-1 
hospitalised 

Δ()*,, Uniform  0 Infinity 

Proportion of RSV 
infections in ages 2-4 
hospitalised 

Δ()*,- Uniform  0 Infinity 

Proportion of Influenza 
infections in ages 0-4 
hospitalised 

Δ./0 Uniform  0 Infinity 

Strength of interaction  𝜎 Uniform between 0 and 
1 

0 1 (or -1 for 
sensitivity check – 
see supplementary 
section 6) 
 

Rate of loss of cross-
protection  

𝜌 Uniform between 0.01 
and 1 

0 1 

 

 Simulated data total case numbers 
 

Appendix A Table S3: shows the total number of infections with different duration of cross-protection. The level 

of cross-protection is fixed at σ = 0.5. 

1/duration of cross-

protection (𝜌) 

Number of RSV cases Number of Influenza cases 

2 3182023 1294980 

5 3181955 1292596 

10 3182035 1283034 

20 3182200 1245207 

40 3182284 1152700 

 

Appendix A Table S4: shows the total number of infections with different duration of cross-protection. The 

duration of cross-protection is fixed at 1/𝜌 = 10. 

Strength of cross-

protection (𝜎) 

Number of RSV cases Number of Influenza cases 

1 3182422 1303752 

0.8 3182341 1297009 

0.6 3182152 1287792 

0.4 3181936 1279325 

0.2 3182025 1281968 

0 3183181 1314065 
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 Individuals within infectious compartments 
 

 
Appendix A Figure S5: Individuals within each infectious compartment for the age group 0-1. Horizontal facets 

show the ρ  value, colours the σ value. Vertical facets show the different infectious compartments 

 

Appendix A Figure S6: Individuals within each infectious compartment for the age group 2-4. See Figure S2 

legend for more details. 
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Appendix A Figure S7:  Individuals within each infectious compartment for the age group 5-15. See Figure S2 

legend for more details. 
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Appendix A Figure S8: Individuals within each infectious compartment for the age group 16-64. See Figure S2 

legend for more details.

 

Appendix A Figure S9: Individuals within each infectious compartment for the age group 65+. See Figure S2 

legend for more details. 
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 Parameter correlations 

 

 
Appendix A Figure S10: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S11: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S12: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S13: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S14: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S15: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S16: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S17: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 

-0.04

-0.02

-0.02

-0.05

0.02

-0.03

-0.04

0.05

-0.05

-0.01

-0.03

0.01

-0.01

0.05

0

0.07

0.02

0.01

-0.05

-0.02

-0.03

-0.02

-0.02

0

0.02

-0.02

-0.04

0.01

-0.09

-0.1

-0.04

0

-0.01

0.04

-0.03

0.02

-0.01

0.04

0

0.02

0

0.01

-0.07

-0.01

-0.02

0

0.03

0.03

-0.01

0.05

0

0.05

-0.01

-0.03

0.02

0.00

0.25

0.50

0.75

1.00

0.025 0.05 0.1 0.2 0.5
Rate of loss of cross-protection (�)

St
re

ng
th

 o
f c

ro
ss

-p
ro

te
ct

io
n 

(�
)

-1.0
-0.5
0.0
0.5
1.0

Correlation between �I and �R

0.35

0.25

0.29

0.39

0.43

0.53

0.13

0.31

0.49

0.84

0.9

0.42

0.67

0.67

0.73

0.78

0.86

0.84

0.85

0.62

0.66

0.88

0.08

0.17

-0.03

0.13

-0.01

-0.16

0.27

0.65

0.27

0.64

0.76

0.12

0.1

0.15

0.13

0

0.02

0.12

0.04

0.28

0.82

0.79

0.51

0.69

0.79

0.91

0.91

0.88

0.9

0.89

0.9

0.92

0.91

0.00

0.25

0.50

0.75

1.00

0.025 0.05 0.1 0.2 0.5
Rate of loss of cross-protection (�)

St
re

ng
th

 o
f c

ro
ss

-p
ro

te
ct

io
n 

(�
)

-1.0
-0.5
0.0
0.5
1.0

Correlation between �I and �I

-0.51

-0.41

-0.41

-0.43

-0.45

-0.31

0.23

0.26

0.36

0.37

0.48

-0.58

-0.65

-0.65

-0.6

-0.58

-0.53

-0.46

-0.22

0.23

0.35

0.47

0.1

-0.05

0.25

0.2

0.31

0.61

0.33

0.3

0.65

0.48

0.52

-0.27

-0.25

-0.09

-0.03

0.27

0.33

0.4

0.51

0.5

0.33

0.51

-0.65

-0.71

-0.7

-0.46

-0.19

0.29

0.56

0.68

0.76

0.44

0.52

0.00

0.25

0.50

0.75

1.00

0.025 0.05 0.1 0.2 0.5
Rate of loss of cross-protection (�)

St
re

ng
th

 o
f c

ro
ss

-p
ro

te
ct

io
n 

(�
)

-1.0
-0.5
0.0
0.5
1.0

Correlation between �I and �

0.01

-0.02

0.01

-0.01

0.01

0.01

0.01

0

-0.01

0.01

0

0

0.02

-0.02

0.01

0.01

-0.02

0

-0.02

0.04

0.01

0.01

0.01

-0.01

0

0

0.01

0.01

0

0

0.01

0.03

0.01

0

-0.01

0.01

0.02

0

0.02

0.01

0.03

0.01

0

0

0.01

0

0.01

0.01

-0.02

0.01

0.01

0

0.02

0

0

0.00

0.25

0.50

0.75

1.00

0.025 0.05 0.1 0.2 0.5
Rate of loss of cross-protection (�)

St
re

ng
th

 o
f c

ro
ss

-p
ro

te
ct

io
n 

(�
)

-1.0
-0.5
0.0
0.5
1.0

Correlation between �R2 and �R5



 166 

 
Appendix A Figure S18: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S19: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S20: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S21: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S22: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S23: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S24: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S25: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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Appendix A Figure S26: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 

 
Appendix A Figure S27: Pearson correlation coefficients for parameter combinations specified in the title, with 

changing interaction parameters (ρ and σ). 
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For each simulation, we generated 5 replicates, for which we ran two chains with 450 000 iterations as burn in 

followed by a further 250 000 iterations. For chains that did not converge, we extended the chains for a 

further 250 000 iterations iteratively until convergence was reached or a total of 1 200 000 iterations were 

run. Figure S27 shows the number of runs that reached convergence for each parameter combination. We 

expect that all runs will converge with sufficient iterations, however we were faced with computational limits.  
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Appendix A Figure S28: Number of Simulations for which the MCMC chains converged. 

 

 Individual Simulation Analysis 

 

 
Appendix A Figure S29: Inference results for simulation with 𝜎 = 0.99 and 𝜌 = 0.1. A: Posterior densities for all 

estimate parameters. The black vertical line represents the simulated (true) value. B: Points – simulated weekly 

incidence from the simulation, by virus and age group. Lines represent the model fit using the median value 

from the posterior distribution for each parameter. Ribbons represent 95% quantiles of the model fit (CIs) C: 
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Pearson correlation coefficient between each parameter combination in the model.

 

Appendix A Figure S30: Inference results for simulation with 𝜎 = 0.1 and 𝜌 = 0.1. See the legend of Figure S28 

for more details. 

 
Appendix A Figure S31: Inference results for simulation with 𝜎 = 0.8 and 𝜌 = 0.1. See the legend of Figure S28 

for more details. 
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Appendix A Figure S32: Inference results for simulation with 𝜎 = 0.7 and 𝜌 = 0.1. See the legend of Figure S28 

for more details 

 
Appendix A Figure S33: Inference results for simulation with 𝜎 = 0.6 and 𝜌 = 0.1. See the legend of Figure S28 

for more details. 
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Appendix A Figure S34: Inference results for simulation with 𝜎 = 0.5 and 𝜌 = 0.1. See the legend of Figure S28 

for more details. 

 
Appendix A Figure S35: Inference results for simulation with σ = 0.4 and ρ = 0.1. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S36: Inference results for simulation with 𝜎 = 0.3 and 𝜌 = 0.1. See the legend of Figure S28 

for more details.
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Appendix A Figure S37: Inference results for simulation with σ = 0.2 and ρ = 0.1. See the legend of Figure S28 for 

more details.

 

Appendix A Figure S38: Inference results for simulation with σ = 0.1 and ρ = 0.1. See the legend of Figure S28 for 

more details. 

 
Appendix A Figure S39: Inference results for simulation with σ = 0.01 and ρ = 0.1. See the legend of Figure S28 

for more details. 
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Appendix A Figure S40: Inference results for simulation with σ = 0.99 and ρ = 0.05. See the legend of Figure S28 

for more details. 
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Appendix A Figure S41: Inference results for simulation with σ = 0.9 and ρ = 0.05. See the legend of Figure S28 

for more details

 

Appendix A Figure S42: Inference results for simulation with σ = 0.8 and ρ = 0.05. See the legend of Figure S28 

for more details 
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Appendix A Figure S43: Inference results for simulation with σ = 0.7 and ρ = 0.05. See the legend of Figure S28 

for more details.

 

Appendix A Figure S44: Inference results for simulation with σ = 0.6 and ρ = 0.05. See the legend of Figure S28 

for more details 
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Appendix A Figure S45: Inference results for simulation with σ = 0.5 and ρ = 0.05. See the legend of Figure S28 

for more details. 

 
Appendix A Figure S46: Inference results for simulation with σ = 0.4 and ρ = 0.05. See the legend of Figure S28 

for more details
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Appendix A Figure S47: Inference results for simulation with σ = 0.3 and ρ = 0.05. See the legend of Figure S28 

for more details.

 

Appendix A Figure S48: Inference results for simulation with σ = 0.2 and ρ = 0.05. See the legend of Figure S28 

for more details. 
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Appendix A Figure S49: Inference results for simulation with σ = 0.1 and ρ = 0.05. See the legend of Figure S28 

for more details. 

 
Appendix A Figure S50: Inference results for simulation with σ = 0.01 and ρ = 0.05. See the legend of Figure S28 

for more details. 
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Appendix A Figure S51: Inference results for simulation with σ = 0.99 and ρ = 0.5. See the legend of Figure S28 

for more details. 

 
Appendix A Figure S52: Inference results for simulation with σ = 0.9 and ρ = 0.5. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S53: Inference results for simulation with σ = 0.8 and ρ = 0.5. See the legend of Figure S28 for 

more details. 

Appendix A Figure S54: Inference results for simulation with σ = 0.7 and ρ = 0.5. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S55: Inference results for simulation with σ = 0.6 and ρ = 0.5. See the legend of Figure S28 for 

more details. 

 
Appendix A Figure S56: Inference results for simulation with σ = 0.5 and ρ = 0.5. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S57: Inference results for simulation with σ = 0.4 and ρ = 0.5. See the legend of Figure S28 for 

more details.  

Appendix A Figure S58: Inference results for simulation with σ = 0.3 and ρ = 0.5. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S59: Inference results for simulation with σ = 0.2 and ρ = 0.5. See the legend of Figure S28 for 

more details. 

Appendix A Figure S60: Inference results for simulation with σ = 0.1 and ρ = 0.5. See the legend of Figure S28 for 

more details.  

�R �I �

�R5 �I 1/�

�R �I �R2

0 0.5 1 1.5 2 2.5 3 5 10 15 20 0 0.2 0.4 0.6

0.00095 0.001 0.0011 0.0011 0.0018 0.0019 0.002 0.0021 0.0022 0 20 40 60 80 100

0.043 0.043 0.043 0.043 0.044 0.044 0.062 0.064 0.066 0.0038 0.0039 0.004 0.0041 0.0042

Parameter value

D
en

si
tie

s

A: Posterior densities

0

500

1000

1500

0 10 20 30 40 50
week of simulation

In
ci

de
nc

e

Group
INF < 2
INF 2-5
RSV < 2
RSV 2-5

B: Simulation (points) and Model Fit (lines)

-0.04

-0.08 0.02

-0.03 -0.01 0.01

0.02 -0.65 0 0

0.01 -0.01 -0.01 0.02 0.13

0.76 -0.04 -0.05 -0.02 0.02 0.01

-0.02 0.27 -0.01 0 -0.2 0.42 -0.02

-0.02 0.65 0.02 -0.01 -0.45 -0.41 -0.02 -0.5

�R

�I

�R2

�R5

�I

�

�R

�I

�I �R2 �R5 �I � �R �I �

-1.0
-0.5
0.0
0.5
1.0

C: Pearson correlation coefficient

�  =  0.2  and  1/ �  =  2

�R �I �

�R5 �I 1/�

�R �I �R2

0 0.5 1 1.5 2 2.5 3 5 10 15 20 25 0 0.2 0.4 0.6

0.00095 0.001 0.0011 0.0011 0.0017 0.0018 0.0019 0.002 0.0021 0 20 40 60 80 100

0.043 0.043 0.043 0.043 0.044 0.044 0.044 0.062 0.064 0.066 0.068 0.07 0.0038 0.0039 0.004 0.0041 0.0042 0.0043

Parameter value

D
en

si
tie

s

A: Posterior densities

0

500

1000

1500

0 10 20 30 40 50
week of simulation

In
ci

de
nc

e

Group
INF < 2
INF 2-5
RSV < 2
RSV 2-5

B: Simulation (points) and Model Fit (lines)

-0.02

-0.04 0.05

-0.03 -0.03 0.03

0.02 -0.62 -0.05 -0.01

-0.02 0.27 -0.02 0 0.05

0.76 0 -0.03 -0.02 0.02 0.01

-0.02 0.64 0.02 -0.02 -0.33 0.57 0.01

-0.02 0.48 0.04 -0.01 -0.46 -0.37 -0.03 -0.3

�R

�I

�R2

�R5

�I

�

�R

�I

�I �R2 �R5 �I � �R �I �

-1.0
-0.5
0.0
0.5
1.0

C: Pearson correlation coefficient

�  =  0.1  and  1/ �  =  2



 188 

Appendix A Figure S61: Inference results for simulation with σ = 0.01 and ρ = 0.5. See the legend of Figure S28 

for more details

Appendix A Figure S62: Inference results for simulation with σ = 0.99 and ρ = 0.2. See the legend of Figure S28 

for more details. 
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Appendix A Figure S63: Inference results for simulation with σ = 0.9 and ρ = 0.2. See the legend of Figure S28 for 

more details.

Appendix A Figure S64: Inference results for simulation with σ = 0.8 and ρ = 0.2. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S65: Inference results for simulation with σ = 0.7 and ρ = 0.2. See the legend of Figure S28 for 

more details.

Appendix A Figure S66: Inference results for simulation with σ = 0.6 and ρ = 0.2. See the legend of Figure S28 for 
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more details.

 

Appendix A Figure S67: Inference results for simulation with σ = 0.5 and ρ = 0.2. See the legend of Figure S28 for 

more details.

 

Appendix A Figure S68: Inference results for simulation with σ = 0.4 and ρ = 0.2. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S69: Inference results for simulation with σ = 0.3 and ρ = 0.2. See the legend of Figure S28 for 

more details.

Appendix A Figure S70: Inference results for simulation with σ = 0.2 and ρ = 0.2. See the legend of Figure S28 for 

more details. 
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Appendix A Figure S71: Inference results for simulation with σ = 0.1 and ρ = 0.2. See the legend of Figure S28 for 

more details.

Appendix A Figure S72: Inference results for simulation with σ = 0.01 and ρ = 0.2. See the legend of Figure S28 

for more details. 
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Appendix A Figure S73: Inference results for simulation with σ = 0.99 and ρ = 0.025. See the legend of Figure 

S28 for more details.

 

Appendix A Figure S74: Inference results for simulation with σ = 0.9 and ρ = 0.025. See the legend of Figure S28 

for more details. 
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Appendix A Figure S75: Inference results for simulation with σ = 0.8 and ρ = 0.025. See the legend of Figure S28 

for more details. 

 
Appendix A Figure S76: Inference results for simulation with σ = 0.7  and ρ = 0.025. See the legend of Figure S28 

for more details. 
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Appendix A Figure S77: Inference results for simulation with σ = 0.6 and ρ = 0.025. See the legend of Figure S28 

for more details.

Appendix A Figure S78: Inference results for simulation with σ = 0.5 and ρ = 0.025. See the legend of Figure S28 

for more details. 
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Appendix A Figure S79: Inference results for simulation with σ = 0.4 and ρ = 0.025. See the legend of Figure S28 

for more details.

Appendix A Figure S80: Inference results for simulation with σ = 0.3 and ρ = 0.025. See the legend of Figure S28 

for more details. 
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Appendix A Figure S81: Inference results for simulation with σ = 0.2 and ρ = 0.025. See the legend of Figure S28 

for more details.

Appendix A Figure S82: Inference results for simulation with σ = 0.1 and ρ = 0.025. See the legend of Figure S28 

for more details. 
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Appendix A Figure S83: Inference results for simulation with σ = 0.01 and ρ = 0.025. See the legend of Figure 

S28 for more details. 

 

  Varying the R0 

 

The R0 value we used for influenza was 2.91. This led to reasonable epidemics and an Reffective at 

the start of the simulated season of 1.55. Some previous estimates have placed R0 for influenza 

below 2. We therefore modelled 5 additional scenarios, all with an R0 of 1.98.  

  

1) Original parameters (R0 2.91, Reffective 1.55 ) 

2) Reduced R0 (1.98, Reffective 1.06) 

3) Reduced R0 (1.98), increased importation (125 cases per day, Reffective 1.06) 

4) Reduced R0 (1.98, Reffective 1.09), increased importation (125 cases per day), increased 

influenza susceptibility (3% increased, upper bound of the confidence intervals for 

susceptibility that we used from Baguelin et al. 2013) 

5) Reduced R0 (1.98, Reffective 1.26), increased importation (125 cases per day), increased 

influenza susceptibility (20% increased) 

6) Reduced R0 (1.98, Reffective 1.26), increased importation (5000 cases per day), increased 

influenza susceptibility (20% increased) 
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These simulations, along with the simulations for the original parameter values (R0 = 2.91), are 

shown Figures S83 – S87 for five combinations of parameter sets.  

 

In none of the scenarios other than the original were we able to replicate the influenza 

epidemic. In all additional scenarios, influenza peak incidence was lower and the duration of the 

epidemics was longer than a typical influenza season in the UK. While an increased amount of 

importations allowed the peak to shift forward the width and peak height in the additional 

scenarios indicated an R0 that in combination with the observed susceptibility was not 

compatible in the model with the shape of a typical influenza season in the UK. The typical 

influenza season in the UK lasts less than 2.5 months/10 weeks6,7 and occurs after/during the 

RSV epidemic8, so these simulations were not deemed appropriate. 

 

 

 
Appendix A Figure S84: Simulations with different model parameters, for Simulation 23 (σ = 0.99, 1/ρ = 2 days). 

Model types are 1 – original parameter values with and R0 of 2.91. 2 – R0 of 1.98. 3 – R0 of 1.98 and increased 

importation (125 imports per day)  , 4 – R0 of 1.98, increased importation (125 imports per day)  and 3% 

increased susceptibility. 5 – R0 of 1.98, increased importation (125 imports per day) and 20% increased 

susceptibility. 6 – R0 of 1.98, increased importation (5000 imports per day) and 20% increased susceptibility. 
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Appendix A Figure S 85: Simulations with different model parameters, for Simulation 30 (σ = 0.7, 1/ρ = 2 days). 

Model types are 1 – original parameter values with and R0 of 2.91. 2 – R0 of 1.98. 3 – R0 of 1.98 and increased 

importation (125 imports per day)  , 4 – R0 of 1.98, increased importation (125 imports per day)  and 3% 

increased susceptibility. 5 – R0 of 1.98, increased importation (125 imports per day) and 20% increased 

susceptibility. 6 – R0 of 1.98, increased importation (5000 imports per day) and 20% increased susceptibility. 

 

Appendix A Figure S 86: Simulations with different model parameters, for Simulation 32 (σ = 0.1, 1/ρ = 2 days). 

Model types are 1 – original parameter values with and R0 of 2.91. 2 – R0 of 1.98. 3 – R0 of 1.98 and increased 

importation (125 imports per day)  , 4 – R0 of 1.98, increased importation (125 imports per day)  and 3% 
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increased susceptibility. 5 – R0 of 1.98, increased importation (125 imports per day) and 20% increased 

susceptibility. 6 – R0 of 1.98, increased importation (5000 imports per day) and 20% increased susceptibility. 

 
Appendix A Figure S 87: Simulations with different model parameters, for Simulation 41 (σ = 0.3, 1/ρ = 10 days). 

Model types are 1 – original parameter values with and R0 of 2.91. 2 – R0 of 1.98. 3 – R0 of 1.98 and increased 

importation (125 imports per day)  , 4 – R0 of 1.98, increased importation (125 imports per day)  and 3% 

increased susceptibility. 5 – R0 of 1.98, increased importation (125 imports per day) and 20% increased 

susceptibility. 6 – R0 of 1.98, increased importation (5000 imports per day) and 20% increased susceptibility. 
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Appendix A Figure S88: Simulations with different model parameters, for Simulation 49 (σ = 0.6, 1/ρ = 40 days). 

Model types are 1 – original parameter values with and R0 of 2.91. 2 – R0 of 1.98. 3 – R0 of 1.98 and increased 

importation (125 imports per day)  , 4 – R0 of 1.98, increased importation (125 imports per day)  and 3% 

increased susceptibility. 5 – R0 of 1.98, increased importation (125 imports per day) and 20% increased 

susceptibility. 6 – R0 of 1.98, increased importation (5000 imports per day) and 20% increased susceptibility. 
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 Estimated influenza attack rate 
 
Assuming no interaction (in susceptibility to or severity of dual infections), we calculated the 

required annual influenza infection attack rate in order to achieve the observed number of dual 

infections (equations 1-3). Using a negative binomial likelihood with Brent optimization we 

estimated the RSV reporting rate that would correspond to the maximum likelihood of observing the 

reported weekly number of dual infections. We then used this estimate of the reporting rate to 

calculate the annual RSV population attack rate required in order to observe this many dual cases. 

The confidence intervals for the attack rate were calculated using the Hessian matrix from the 

optimisation.  

 

𝐼D;EF 	≃ 𝐼%"5 ∗ 	𝑃$>GF;H>IE      (1)  
 
𝑃$>GF;H>IE ≃ 𝐼$>GF;H>IE ∗ 	1/𝛾$>GF;H>IE	/	𝜐$>GF;H>IE   (2) 
 
𝐴𝑅$>GF;H>IE ≃ 𝐼$>GF;H>IE/	𝜐$>GF;H>IE     (3) 
 

With parameters: Incidence of reported cases (I), Prevalence of Infection (P), Duration of Infection 

(1/𝛾$34), 3.8 days - see main text Table 1) and estimated reporting rate (𝜐). 

 

We estimated that in order to achieve the weekly reported number of dual infections given no 

interaction, we would require an annual influenza attack rate of 4.4 (3.4 -6.5) in ages 0-1 and 1.3 (0.9 

- 3.0) in ages 2-4. 

 
 Data 

 
The annual mean number of ARI admissions under the age of 15 was 1030, ranging from 595 to 

1299, with 94% being enrolled in the study. Of enrolled patients, the median age was 15.9 months, 

with an interquartile range of 8.5 to 25.3 months. This compares to 19.9 months (IQR: 11.6 – 30.4) 

for RSV positive patients and 13.7 months (IQR: 6.7 – 22.2) for the RSV positive patients. Figure S1 

shows a scatter plot between the weekly Influenza and RSV cases.  
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Appendix B Figure S1: Reported cases. Scatter plot of weekly influenza and RSV cases reported through the 

enhanced surveillance study in less than 5-year-olds over the whole time period.  

 
 Model equations 

 

Full model equations are shown below. Each compartment includes the state for both RSV and 

influenza, with the first letter indicating the state for RSV, and the second for influenza. E.g. 𝑆𝑆& 	is 

shorthand for 𝑆%"5,&𝑆$34,& .	Subscripts used are “INF” for influenza and “RSV” 

 

𝜆$34,& 	= 	∑ 𝛽$34𝛼&(𝐼$34,(				6
(78 																																				(4)  

 

𝜆%"5,& 	= 	∑ 𝛽%"5𝛼&(𝐼%"5,(	6
(78 																																				(5)  

 

 

𝑑𝑆𝑆&
𝑑𝑡

= −	𝜏&𝜆%"5"𝑆𝑆& 		−	𝜆$34"𝑆𝑆& 	− 	𝜖$34 −		𝜖%"5 			

 

𝑑𝐼𝑆&
𝑑𝑡

= 	 𝜏&𝜆%"5"𝑆𝑆& 	−	(1 − 𝜎)𝜆$34"𝐼𝑆& − 𝛾%"5𝐼𝑆& 	+ 		𝜖%"5 	
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𝑑𝑃𝑆&
𝑑𝑡

= 		 𝛾%"5𝐼𝑆& − 𝜌𝑃𝑆& − (1 − 𝜎)𝜆$34&𝑃𝑆& 	

 

𝑑𝑅𝑆&
𝑑𝑡

= 	𝜌𝑃𝑆& − 𝜆$34&𝑅𝑆& 	

 

𝑑𝑆𝐼&
𝑑𝑡

= 		 𝜆$34"𝑆𝑆& −	(1 − 𝜎)𝜏&𝜆%"5"𝑆𝐼& − 𝛾$34𝑆𝐼& 	+ 		𝜖$34 	

	
𝑑𝐼𝐼&
𝑑𝑡

= 		 (1 − 𝜎)𝜆$34"𝐼𝑆& + (1 − 𝜎)𝜏&𝜆%"5"𝑆𝐼& − 𝛾$34𝐼𝐼& −	𝛾%"5𝐼𝐼& 			

	
𝑑𝑃𝐼&
𝑑𝑡

= 		𝜆𝑃𝑆& − 𝛾$34𝑃𝐼& + 𝛾%"5𝐼𝐼& + 𝜆$34"𝑅𝑆& 	

	
𝑑𝑆𝑃&
𝑑𝑡

= 		 𝛾$34𝑆𝐼& − 𝜌𝑆𝑃& − (1 − 𝜎)𝜏&𝜆%"5&𝑆𝑃& 	

 

𝑑𝐼𝑃&
𝑑𝑡

= 		 (1 − 𝜎)𝜏&𝜆%"5𝑆𝑃& − 𝛾%"5𝐼𝑃& + 𝛾$34𝐼𝐼& + 𝜏&𝜆%"5"𝑆𝑅& 	

 

𝑑𝑆𝑅&
𝑑𝑡

= 	𝜌𝑆𝑃& − 𝜏&𝜆%"5&𝑆𝑅& 	

 

𝑑𝑅𝑅&
𝑑𝑡

= 		 𝛾%"5𝐼𝑃& + 𝛾$34𝑃𝐼&  

 

Where: 

𝜆&,(  -  force of infection between age groups I and J 

𝛽-  transmission rate 

𝛼&(- contact rate between group I and j 

𝜏&  - age group susceptibility to RSV 

𝜎 -  level of cross-protection 

𝛾 -  rate of recovery 

𝜌 -  rate of loss of cross-protection 
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𝜖 - introduction rate from external sources

 
 

 R0 equations 
 

The R0’s were calculated as the dominant eigenvalue of the matrix  

−𝑇𝛴.8	

Where 𝑇	is the transmission matrix, describing new infections, and	𝛴 is the transition matrix, 

describing other changes in state. This method is described in full in Diekmann et al (2009)1 

 

 

 

 
 
 



 210 

 Susceptibility to RSV 
 

We used a longitudinal study by Hendersen et a. (1979) to determine age-susceptibility to RSV 

infection. They estimated that at 1st exposure 98.4% of children became infected, at second 

exposure 74.5% of children became infected and at 3rd exposure 65.4% of children became 

infected2. As most children are infected by 24 months of age, we used the susceptibility estimates 

for the age groups: ages 0-1 = 100% susceptible, ages 2-4 = 75% susceptible, ages 5 and over = 65% 

susceptible3.  

 

 Susceptibility to Influenza 
 

Influenza susceptibility each season (s) is determined by the parameter 𝜂<using the inverse density 

of an exponential distribution at each age group (i, where ages 0-1 is age group zero, up to ages 65+ 

at age group four). Equation 6 shows the calculations and example susceptibility profiles are shown 

in Figure S2. 

 

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦&,< =	𝜂<𝑒(.R&&) + 1 − 𝜂<        (6) 

 

 
Appendix B Figure S2: Susceptibility. Susceptibility to influenza by age group for different values of η. 
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 Parallel tempering 

 
Our parallel tempering algorithm was implemented in R and we used Amazon Web Services (AWS) 

to run it. We proposed swaps with the next temperature chains every 5 iterations. We ran the 

parallel tempering algorithm using a covariance matrix to propose parameters. We removed 250000 

iterations as burn in, followed by 200000 more samples, and assessed convergence using the 

Geweke statistic in the null chain (Chain with temperature 1). This calculates the difference between 

the two sample means of the first 10 and last 50% of the chain, divided by its estimated standard 

error, resulting in a Z score. Note however that due to the large number of parameters (44), the 

multiple modes and the swapping between chains as a result of the parallel tempering the Geweke 

statistic is not an ideal measure of convergence in this situation. Despite this, all key parameters 

(transmission rates, interaction parameters, dual detection rate) had a Z score within the 95% 

confidence interval and overall over 80% of parameters fell within a 99% confidence interval. Figure 

S3 shows one of the traces for a sample of parameters, thinned to 1 in 10. Figure S4 shows the final 

posterior densities of each parameter, and table S1 describes the distribution.  

 

 

 
Appendix B Figure S3: Parallel Tempering Trace. Sample trace from parallel tempering, showing a subsection of 

parameters. Each colour is a chain at a different temperature, where the main chain is pink and the chain at 
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the highest temperatures is red. The chains are thinned to 1:10. Parameters are: betaR - βRSV – RSV 

transmission rate , betaI – βINF – Influenza transmission rate,  Rdetect5 – κRSV, 2 – RSV proportion detected in 

ages 2 to 4, propR_1 – δRSV,1  - proportion infected with RSV at the start of season 1, sig – σ- strength of 

interaction , rho – ρ – 1/duration of interaction , inf_sus_1 – η1 – susceptibility parameter defining susceptibility 

to influenza at the start of season 1 (see supplement section 6), overdispersion – k – overdispersion parameter 

for negative binomial , Dual_mult – κDual – multiplier for the proportion reported if dual infected as opposed to 

RSV infected.  

 
Appendix B Figure S4: Posterior Density.  Density of fitted parameters from the final sample. 

 
Appendix B Figure S5: Posterior parameter estimates, split by the value of sigma (interaction parameter) 
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 Attack Rates 

 
Figure S5 shows the Attack Rates for each virus, season and age group, as well as the susceptibility 

to influenza at the start of the season by age group, calculated from 50 posterior samples.  

 
Appendix B Figure S6: Modelled Output. A) Season attack rates for influenza and RSV by age group. B) 

Proportion susceptible to influenza at the beginning of the season for each year by age group, using the median 

value of the posterior samples. Each year the susceptibility of each age group is defined by one parameter in an 

exponential function, see supplement for details. 

 
 Sensitivity to severity of dual infected cases 

 
We tested the assumption of the severity of dual infected cases, by rerunning the fit without the 

parameter that multiplied the proportion of RSV detected to give a new dual infection detection 

rate. Instead the dual infections had the same reporting rate as for RSV. This set of chains were run 

for 100000 iterations and 50000 was discarded as burnin, and then the remaining samples were 

thinned to 1 in 10. Cross-protection estimates overlapped with estimates of the ‘no interaction’ 

mode in the main model, with the posterior for interaction at 0.008 (95% CrI 0.00 - 0.04) compared 

to 0.004 (95% CrI 0.000 - 0.046). 
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Appendix B Figure S7:Parameter Density.  Density of fitted parameters from the final sample. Black lines show 

the median and 95% CrI for the main model run. 

 

 Prior Sensitivity 

 
As a sensitivity analysis, we reran the model fit with a prior for a high strength of interaction (normal 

distribution, mean = 0.8, standard deviation =  0.15). This is due to the existing evidence of cross-

protection. Figure S6 shows the posterior estimates for the parameters. This set of chains were run 

for 100000 iterations and 25000 was discarded as burnin, and then the remaining samples were 

thinned to 1 in 10. Cross-protection estimates overlapped with estimates of the ‘moderate 

interaction’ mode in the main model, with the posterior for interaction at 0.22 (95% CrI 0.13 - 0.47) 

compared to 0.41 (95% 0.36 - 0.54) and the duration of cross-protection at 5.2 days (95% CrI  3.1 -

10) compared to 10.0 days (95% CrI 7.1 -12.8 days). 
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Appendix B Figure S8: Parameter Density with interaction prior. Density of fitted parameters from the model 

with a prior for strong cross-protection. 

 

 Modelled correlation 

 
Figure S8 shows the correlation between weekly cases of influenza and RSV reported from one 

sample of the model output. (cf. input data Figure S1, which shows the same overall trend). 
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Appendix B Figure S8: Model version of Figure S1. Scatter plot of weekly influenza and RSV cases reported in 

the model over the whole time period.   
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 Data 
 

We excluded one data point (April 03, 2017) as it was a duplicate of January 30, 2017, and due to the 

trend in the epidemic we assumed that January 30, 2017 was the correct one.  

 
Appendix C Figure S1: Seasonal Coronavirus reported cases  

 
Appendix C Figure S2: A) Seasonality of seasonal coronavirus reports by age and year. B) Proportion of all seasonal 
coronavirus cases reported by age group. C) Histogram of the monthly number of seasonal coronavirus cases reported 
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 Model equations 

 
Appendix C Figure S3: Model Figure 

 
 
 
𝜆JKL5,&,#	 	= ∑ ((S4567∗	U4567

%8,4567
) ∗ 𝑐𝑜𝑠( CV

6C∗W
− 	𝜙) 	+ 𝛽JKL5)

(7	3
(78 ∗ 𝛼&,( ∗ 	 𝐼JKL5,( 	  (1) 

 

𝜆K8M,&,#	 	= ∑ ((S59:∗	U59:
%8,59:

) ∗ 𝑐𝑜𝑠( CV
6C∗W

− 	𝜙) 	+ 𝛽K8M)
(7	3
(78 ∗ 𝛼&,( ∗ 	 𝐼K8M,()	    (2) 

 

 

𝑑𝑆𝑆&
𝑑𝑡

	= −	𝜆K8M,&	 	𝑆𝑆& 	− 	𝜆JKL5,&,#	 𝑆𝑆& 	+ 	𝜔K8M𝑅𝑆& 	+ 	𝜔JKL5𝑆𝑅& 	+ 	𝜇E,&𝑆𝑆&.8 −	𝜇E,&X8𝑆𝑆& 	+ 	𝜇Y,& 	

− 	𝜇!,&𝑆𝑆&  

 

𝑑𝐸𝑆&
𝑑𝑡

	= −	𝜈K8M𝐸𝑆& −		𝜆JKL5,&,#	 𝐸𝑆& 	+ 	𝜆K8M,&	 	𝑆𝑆& 	+ 	𝜔JKL5𝐸𝑅& 	+ 		𝜇E,&𝐸𝑆&.8 −	𝜇E,&X8𝐸𝑆& 	

− 		𝜇!,&𝐸𝑆&  

 

𝑑𝐼𝑆&
𝑑𝑡
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𝑑𝑅𝑆&
𝑑𝑡

	= 	−𝜔K8M𝑅𝑆& 	− 	𝜆JKL5,&,#	 𝑅𝑆& 	+ 𝛾K8M𝐼𝑆& 	+ 	𝜔JKL5𝑅𝑅& 	+ 		𝜇E,&𝑅𝑆&.8 −	𝜇E,&X8𝑅𝑆& −		𝜇!,&𝑅𝑆&  
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𝑑𝑆𝐸&
𝑑𝑡

	= −	𝜆K8M,&	 	𝑆𝐸& 	− 𝜈JKL5𝑆𝐸& 	+ 	𝜔K8M𝑅𝐸& 	+ 	𝜆JKL5,&,#	 𝑆𝑆& 	+ 		𝜇E,&𝑆𝐸&.8 −	𝜇E,&X8𝑆𝐸& 		

− 		𝜇!,&𝑆𝐸&  

 

𝑑𝐸𝐸&
𝑑𝑡

	= −	𝜈K8M𝐸𝐸& −		𝜈JKL5𝐸𝐸& 	+ 	𝜆K8M,&	 	𝑆𝐸& 	+ 	𝜆JKL5,&,#	 𝐸𝑆& 	+ 		𝜇E,&𝐸𝐸&.8 −	𝜇E,&X8𝐸𝐸& 		

− 		𝜇!,&𝐸𝐸& 	 

 

𝑑𝐼𝐸&
𝑑𝑡

	= 		−	𝛾K8M𝐼𝐸& 	− 		𝜈JKL5𝐼𝐸& 	+ 𝜈K8M𝐸𝐸& 	+ 		𝜆JKL5,&,#	 𝑅𝑆& 	+ 		𝜇E,&𝐼𝐸&.8 −	𝜇E,&X8𝐼𝐸& 	− 		𝜇!,&𝐼𝐸&  

 

𝑑𝑅𝐸&
𝑑𝑡

	= 	−	𝜔K8M𝑅𝐸& 	− 𝜈JKL5𝑅𝐸& 	+ 	𝛾K8M𝐼𝐸& 	+ 		𝜆JKL5,&,#	 𝑅𝑆& 	+ 		𝜇E,&𝑅𝐸&.8 −	𝜇E,&X8𝑅𝐸& 	

− 		𝜇!,&𝑅𝑆&  

 

𝑑𝑆𝐼&
𝑑𝑡

	= 	−	𝜎	𝜆K8M,&	 	𝑆𝐼& 	− 	𝛾JKL5𝑆𝐼& 	+ 	𝜔K8M𝑅𝐼& 	+ 	𝜈JKL5𝑆𝐸& 	+ 		𝜇E,&𝑆𝐼&.8 −	𝜇E,&X8𝑆𝐼& 	− 		𝜇!,&𝑆𝐼&  

 

𝑑𝐸𝐼&
𝑑𝑡

	= 	−		𝜈K8M𝐸𝐼& 	− 	𝛾JKL5𝐸𝐼& 	+ 𝜎	𝜆K8M,&	 	𝑆𝐼& 	+ 𝜈JKL5𝐸𝐸& 	+ 		𝜇E,&𝐸𝐼&.8 −	𝜇E,&X8𝐸𝐼& −	𝜇!,&𝐸𝐼&  

 

𝑑𝐼𝐼&
𝑑𝑡

	= 	−		𝛾K8M𝐼𝐼& 	− 	𝛾JKL5𝐼𝐼& 	+ 𝜈K8M𝐸𝐼& 	+ 	𝜈JKL5𝐼𝐸& 	+ 		𝜇E,&𝐼𝐼&.8 −	𝜇E,&X8𝐼𝐼& 	− 		𝜇!,&𝐼𝐼&  

 
!%$"
!#
	= 	−	𝜔K8M𝑅𝐼&  - 𝛾JKL5𝑅𝐼& 	+ 	𝛾K8M𝐼𝐼& 	+ 𝜈JKL5𝑅𝐸& 	+ 		𝜇E,&𝑅𝐼&.8 −	𝜇E,&X8𝑅𝐼& 	− 		𝜇!,&𝑅𝐼&  

 

𝑑𝑆𝑅&
𝑑𝑡

	= 	−	𝜎	𝜆K8M,&	 	𝑆𝑅& 	− 𝜔JKL5𝑆𝑅& 		+ 	𝜔K8M𝑅𝑅& 	+ 	𝛾JKL5𝑆𝐼& 	+ 		𝜇E,&𝑆𝑅&.8 −	𝜇E,&X8𝑆𝑅& 	

− 		𝜇!,&𝑆𝑅&  

 

𝑑𝐸𝑅&
𝑑𝑡

	= 	−	𝜈K8M𝐸𝑅& 		− 	𝜔JKL5𝐸𝑅& 	+ 𝜎	𝜆K8M,&	 	𝑆𝑅& 	+ 	 	𝛾JKL5𝐸𝐼& 		+ 		𝜇E,&𝐸𝑅&.8 −	𝜇E,&X8𝐸𝑅& 	

− 		𝜇!,&𝐸𝑅&  

 

𝑑𝐼𝑅&
𝑑𝑡

	= 	−		𝛾K8M𝐼𝑅& 	− 	𝜔JKL5𝐼𝑅& 	+ 	𝜈JKL5𝐸𝑅& 	+ 	𝛾JKL5𝐼𝐼& 		+ 		𝜇E,&𝐼𝑅&.8 −	𝜇E,&X8𝐼𝑅& 	− 		𝜇!,&𝐼𝑅&  

 

𝑑𝑅𝑅&
𝑑𝑡

	= 	−𝜔K8M𝑅𝑅& 	− 	 	𝜔JKL5𝑅𝑅& 	+ 	𝛾K8M𝐼𝑅& 	+ 	 	𝛾JKL5𝑅𝐼& +		𝜇E,&𝑅𝑅&.8 −	𝜇E,&X8𝑅𝑅& 		− 		𝜇!,&𝑅𝑅&  
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States 

The first letter of the state indicates the state for SARS-CoV-2, the second letter indicates the state 

for HCoVs. 

S: Susceptible 

E: Exposed 

I: Infected 

R: Recovered 

 

Subscripts 

C19: SARS-CoV-2 

HCoV: Seasonal HCoVs 

i, j: age groups 

t: time 

 

 

Appendix C Table S1: Model Parameters 

Parameter 
type 

Parameter Symbol Value Reference 

Seasonal 
HCoV 
 

Basic Reproduction number R0,HCoV Fitted. Limits: 1-8.5 Wide range 

Transmission rate βHCoV Fitted Based on R0 calculation 
(supplement) 

Latent period 1/νHCoV 2.5 days 1,2 

Duration of infectiousness 1/γHCoV 5 days 1 

Incubation period (time to 
symptoms) 

1/δ1HCoV 2 days 3 

Reporting delay (symptom to 
report) 

1/δ2HCoV 3 days Based on influenza model4 

Age-specific reporting 
proportion 

μHCoV,i Fitted. Limits 0-1. 
Proposed on log 
odds scale. 

 

Seasonal forcing amplitude Α Fitted. Limits: 0 - 2  

Seasonal forcing timing ϕ Fitted. Limits: -
(52*7)- (52*7) 
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Immunity duration 1/𝜔  Fitted. Limits: 100 - 
3000 

Covers range of 100 days to over 
8 years 

SARS-CoV-2 
 

Basic Reproduction number R0,C19 Fitted  Based on R0 calculations (see 
supplement).  

Transmission rate βC19 Fitted   

Effective Reproduction Number Reff,C19 Fitted R0 * proportion susceptible (see 
supplement) 

Latent period 1/νC19 3 days 1  

Duration of infectiousness 1/γC19 5 days 5 

Time between infectiousness 
(entering I compartment) and 
death 

1/δC19 22 days (split over 
two compartments, 
Erlang distributed) 

6 

Age-specific infection fatality 
proportions (age groups 0-4, 5-
14, 15-44, 45-64, 65+) 

μC19,i 0.00004, 0.00004, 
0.00024, 0.00441, 
0.06720 

As in Levin7, weighted by model 
population sizes 

Adult (15-64 years) introduction 
rate 

1/η Fitted  

Duration of immunity 1/ω Fitted Assumed equal to HCoV waning 
rate 

Demographic Birth rate 𝜇1 640 370 per year  ONS statistical bulletin 20198 

Death rate 𝜇2 640 370 per year  Equal to birth rate to maintain 
constant population 

Population size  N 59 439 840 ONS 2019 population estimates 
for England and Wales, 5-year 
age bands9 

 

 

  R0 calculations 
 

We used the method described by Diekmann et al. (2009)11 to calculate the R0 for each virus. The 

dominant eigenvalue of the matrix is the R0 of the matrix −𝑇𝛴.8, where 𝑇is the transmission part of 

the Jacobian matrix, describing new infections and 𝛴 is the transition part, describing changes in the 

infectious state. See reference for further details. For seasonal HCoVs we used the base transmission 

rate.  
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For each age group, compartments in the matrix are SE and SI, and ES and IS, as we calculate the R0 

assuming no cross-protection. The first row/column represents the E compartments, and the second 

row represents the I compartment for the first age group. Only the transmissions for the first age 

group are shown. Three dots (…) represent the pattern continuing, one dot (.) represents equations 

not shown because they do not refer to the first age group. 

TK8M =	

p

p

p

p

0 𝛽K8M	𝛼&,( 0 𝛽K8M	𝛼&,( … 𝛽K8M	𝛼&,(

0 0 0 0 … 0

0 𝛽K8M	𝛼&,( . . . .

0 0 . . . .

0 𝛽K8M	𝛼&,( . . . .

… … . . . .

0 𝛽K8M	𝛼&,( . . . .

p

p

p

p

 

 

 

TJKL5 =	

p

p

p

p

0 𝛽JKL5 	𝛼&,( 0 𝛽JKL5 	𝛼&,( … 𝛽JKL5 	𝛼&,(

0 0 0 0 … 0

0 𝛽JKL5 	𝛼&,( . . . .

0 0 . . . .

0 𝛽JKL5 	𝛼&,( . . . .

… … . . . .

0 𝛽JKL5 	𝛼&,( . . . .

p

p

p

p

 

 

 

ΣK8M =	

p

p

p

p

−𝜈K8M − 𝜇𝛼& 0 0 … 0

−𝜈K8M −𝛾K8M − 𝜇𝛼& 0 … 0

𝜇𝛼&X8 0 . . .

0 𝜇𝛼&X8 . . .

0 0 . . .

… … . . .

0 0 . . .

p

p

p

p
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ΣJKL5 =	

p

p

p

p

−𝜈JKL5 − 𝜇𝛼& 0 0 … 0

−𝜈JKL5 −𝛾JKL5 − 𝜇𝛼& 0 … 0

𝜇𝛼&X8 0 . . .

0 𝜇𝛼&X8 . . .

0 0 . . .

… … . . .

0 0 . . .

p

p

p

p

 

 

 

 

For the SARS-CoV-2 simulations we calculated the Reff through time (Figure S1), which is influenced 

by the R0, the level of cross-protection and the seasonal HCoV circulation. The Reffective is the largest 

eigenvalue of the NGM where each row is multiplied by the proportion susceptible in that age 

group. Estimates for the Reffective in the UK of SARS-CoV-2 before lockdown were between 2.25 and 

3.75, so we used these as boundaries. During this period it was only the highest level of cross-

protection that did not have an appropriate R0.  
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Appendix C Figure S4: Reffective values over time for SARS-CoV-2. Blue lines indicate Reffective for simulations at 

different levels of cross-protection. Black lines show the Reffective limits of 2.25 and 3.75 and the red line shows 

the date of SARS-CoV-2 introduction. 

 

 Parallel Tempering 
 

We proposed chains to swap with the chain of the next lowest temperature every 5 iterations of the 

MCMC. The highest and lowest temperatures were fixed at 1000 and 1 (the null chain). The number 

of chains was then adjusted to achieve an acceptance rate of swaps of between 0.15 and 0.25 . 

Swaps were accepted based on our swapping equation, adapted from Vousden et al12 following the 

equation:  

 

𝑅	 = 𝑒
((++(&)	.	++(())1!	.	1"

)
	 

Where   

𝜏& 	= 	
1
𝑇&

 

 

And 𝑇&  is the temperature of chain i, and LL(i) is the log likelihood of chain i.  

 

We then ran the parallel tempering algorithm from multiple different start values, each with 16 

chains. Within each chain parameters were proposed using a covariance matrix. This resulted in two 



 227 

converged chains, which we confirmed by checking that the Gelman-Rubin statistic13 was <1.1. We 

discarded 12000 iterations of each as burn in and then combined the samples from the two 

converged regions to increase the sample size. A set of chains is shown in Figure S2. Figure S3 shows 

the posterior distribution for all parameters and they are summarised in Table S1.  

 
Appendix C Figure S5: Trace plots of one replicate showing all 16 chains. Each colour is one chain, with bright 

pink being the coolest (null) chain. 
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Appendix C Figure S6: Posterior distributions of fitted parameters for the HCoV fit. 

 

Appendix C Table S2: Median and 95% quantiles of the posterior distributions of fitted HCoV parameters. 

Parameter Symbol Median (95% CrI) 

Basic Reproduction number R0,HCoV 5.9 (5.5 - 6.2) 

Immunity duration 𝜔 7.8 (6.3 - 8.2) 

Age-specific reporting proportion 0-4 μHCoV,i 0.00096 (0.00087 - 0.00100) 

Age-specific reporting proportion 5 - 
14, 45-64 

μHCoV,i 0.00019 (0.00016 - 0.00020)  

Age-specific reporting proportion 15-
44 

μHCoV,i 0.00013 (0.00011 - 0.00014) 

Age-specific reporting proportion 65+ μHCoV,i 0.00058 (0.00043  - 0.00061) 

Seasonal forcing amplitude Α 0.58 (0.42 - 0.61) 

Seasonal forcing timing ϕ -35.1 (-36.2 -  -24.1)  

 

 

Figure S6 shows a heatmap of the likelihood of the model at different value of R0 and durations of 

immunity waning. One sample from the posterior of the fit was taken, and all parameter values 

apart from the R0 and the duration of waning were kept constant. The log likelihood was then 

calculated for each combination of R0 and waning durations. The fitted value is shown with a +.  
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Appendix C Figure S7: Likelihood plane with varying R0 and duration of waning. A) shows the full range B) and 

C) show zoomed in areas. Colour indicates the likelihood value. The black rectangles show the area zoomed in 

on and the ‘+’ symbol shows the estimated values from the parallel tempering fits. 

 

 Attack Rates 
 

Average annual attack rates for the seasonal HCoV are shown in Table S2. This is the mean attack 

rate for each age group, averaged over 100 samples from the joint posterior and the last 5 years in 

our seasonal HCoV fit.  
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Appendix C Table S 3: Mean attack rates by age group. Values given are mean across 100 random samples 
from the posterior and the last 5 years of the seasonal HCoV fit. 

Age group Attack rate (%) 

< 5 19.9 

5 - 14 13.9 

15 - 44 11.0 

45 - 64 10.4 

65+ 9.3 

 

 

 Simulating lockdown 
 

Due to the non-pharmaceutical interventions implemented in this period (“lockdown”), we adjust 

the contact matrices, which are split into three categories: school contacts, household contacts and 

other contacts. Other contacts included all other categories reported in the POLYMOD dataset. We 

then adjusted the contacts as follows.  

- From February 21, 2020 (when google mobility data first becomes available), we adjust our 

‘other’ contacts group by the average change in retail/recreation, workplace, 

grocery/pharmacy and transit stations, according to the Google Mobility UK records 

- From March 23, 2020 (lockdown including school closures), school contacts are reduced to 0 

with no re-attribution of those contacts. 

- From March 23, 2020 (lockdown), Other and household contacts are multiplied by a ‘social 

distancing factor’ which we set at 0.33. This simulates other interventions such as social 

distancing, increased hand washing and mask wearing, and we chose the value based on 

being within a plausible range and appropriate looking simulations. We adapt households as 

the original contact matrix includes all household interactions, including visitors. 

- Importations occur from the date of SARS-CoV-2 introduction (February 15, 2020) in the UK 

until the March 23, 2020 (lockdown). The date of SARS-CoV-2 introduction was chosen as a 

plausible value that allowed the simulated deaths to peak at the right time of year. 
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 SARS-CoV-2 death simulations 

 
Appendix C Figure S8: Fit to deaths. SARS-CoV-2 death simulations compared to the death data, with varying 

strength of cross-protection. The red line indicates the date of SARS-COV-2 introduction. 

 
 Sensitivity - Duration of immunity 

 

To assess the sensitivity of our duration of immunity on the age-susceptibility to SARS-CoV-2, we 

reran the 2020 simulations, varying the duration of immunity parameter between 365 days and 

3285 days. All other parameters were kept constant and the same samples were used as in the 

original analysis. Figure S8 shows the results. In all simulations, complete cross-protection resulted 

in a lower age susceptibility for children, however if the immunity was less than 2 years, the pattern 

of immunity was different. The simulations were not able to account for the reduced susceptibility in 

children in any scenario.  
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Appendix C Figure S9: Age-specific serology. Simulated age-specific serology rates for SARS-CoV-2 by the end of 

May 2020. Each facet was run with a different duration of protection, displayed in the facet title, in days.   

 

 Sensitivity - Excluding 2014 season 
 

As the 2014/15 season has a lower epidemic peak than the other seasons, we ran a sensitivity 

analysis by excluding data before August 2015. This is to take into account potential reduced testing 

in the first season. As previously, we ran the parallel tempering algorithm and removed 50,000 

samples as burn in, resulting in 50,000 samples. The posterior parameter estimates differed slightly 

compared to the main model (Table S4), although both the estimate of the R0 and the waning 

parameter were still substantially higher than previous estimates. As before, we took samples from 

the posterior (in this case 50), and modelled the impact on age-susceptibility to SARS-CoV-2, with 

varying degrees of cross-protection. The conclusions remained the same as in the main paper, where 

cross-protection was unable to explain the reduced susceptibility of children.  

 

Appendix C Table S 4: Posterior parameter estimates for the sensitivity analysis excluding all data before 
August 2015. 

Parameter Symbol Median (95% CrI) - 
excluding 2014/15 

Median (95% CrI) - 
main model 

Basic Reproduction 
number 

R0,HCoV 3.7 (3.6 - 3.8) 5.9 (5.5-6.2) 

Immunity duration 𝜔 4.4 (4.3 - 4.6) 7.8 (6.3 - 8.2) 

Age-specific reporting 
proportion 0-4 

μHCoV,i 0.00097 (0.00094 - 0.0010) 0.00096 (0.00087 - 0.00100) 
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Age-specific reporting 
proportion 5 - 14, 45-64 

μHCoV,i 0.00015 (0.00014 - 0.00015) 0.00019 (0.00016 - 0.00020) 

Age-specific reporting 
proportion 15-44 

μHCoV,i 0.000097 (0.000092 - 
0.00010) 

0.00013 (0.00011 - 0.00014) 

Age-specific reporting 
proportion 65+ 

μHCoV,i 0.00037 (0.00036 - 0.00038) 0.00058 (0.00043 -0.00061) 

Seasonal forcing 
amplitude 

Α 0.42 (0.040 - 0.43) 0.58 (0.42 - 0.61) 

Seasonal forcing timing ϕ -39 (-39 - -38) -35.1 (-36.2 - -24.1) 

 

 

 
Appendix C Figure S10: Posteriors from sensitivity analysis excluding 2014/2015 season. A) Histogram of 

posterior estimates from the beta-coronavirus only sensitivity analysis. Black lines show the median and 95% 

CrI from the main model. 
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Appendix C Figure S11: Simulations excluding 2014/15 season. A) Estimated R0 values for SARS-CoV-2 with 

different strengths of cross-protection. Points display the R0, C19 and lines show the range of Reff, C19 during the 

simulation. B)  Simulated age-specific serology rates for SARS-CoV-2 by the end of May 2020. 

 Sensitivity - Only beta-coronaviruses 
 

Due to the complexities of cross-subtype immunity, we ran a sensitivity analysis including only beta-

coronaviruses. We fixed the number of beta-coronaviruses at 54% of the overall number of 

coronaviruses each month, based on subtype-specific surveillance data from 2005-2017 in 

Glasgow14. Case numbers were rounded to the nearest full number. We reran the model fit with 

parallel tempering (50’000 burn-in, 50’000 samples), and the estimated posterior parameters are 

shown in Figure S10A. The key parameters of the seasonal HCoV R0 and the duration of immunity 

overlapped with estimates from the main model (Figure S12). However in this sensitivity analysis 

parameters, especially the R0 , appear bimodal. Figure S10B shows that these two modes have 

equivalent likelihood, with one mode coinciding with the estimated posterior R0 from the main 

analysis. We ran the SARS-CoV-2 simulations with 50 samples from these new posteriors and found 

the same message: cross-protection was unable to explain the reduced susceptibility of children. 

(Figure S11).  
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Appendix C Figure S12: Beta-coronavirus only data. Blue shows the original data including all subtypes, red 

shows the data following our assumption that only 54% of cases are beta-coronavirus cases. 

 
Appendix C Figure S13: Posteriors from beta-coronavirus sensitivity analysis. A) Histogram of posterior 

estimates from the beta-coronavirus only sensitivity analysis. Black lines show the median and 95% CrI from the 

main model. B) Subset of parameters showing histograms of the posterior distribution split by R0 mode. Black 

line shows the median and 95% CrI from the main model. C) Correlation between posterior samples of Seasonal 

HCoV R0 and the waning duration. 
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Appendix C Figure S14: Simulations excluding alpha-coronaviruses. A) Estimated R0 values for SARS-CoV-2 with 

different strengths of cross-protection. Points display the R0, C19 and lines show the range of Reff, C19 during the 

simulation. B)  Simulated age-specific serology rates for SARS-CoV-2 by the end of May 2020. 

 

 Comparison with existing estimates  
 

As our estimate of the duration of immunity is longer than other estimates, we compared it to 

parameters estimated in the 2020 Kissler et al. paper1. While the states are the same in the two 

model, there are some key differences including: 

● Kissler et al. only model beta-coronaviruses, whereas we model all seasonal coronaviruses 

● Kissler et al. model the two coronaviruses separately and estimate the cross-protection 

between them. We are instead modelling all coronaviruses together, thereby implicitly 

assuming complete cross-protection.  

● The Kissler et al. model is not age structured 

● The latency period in the Kissler et al. model is slightly longer (3 days instead of 2 days). 

 

We investigated the impact of using their estimated parameter values in our model. We fixed their 

estimated values of R0 (2), waning (45 weeks) and seasonality parameters, as well as changing our 

model to match their longer latency period. We then fit the reporting rates using Maximum 

Likelihood Estimation (L-BFGS-B optimisation) to fit the seasonal coronavirus, using the same 
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likelihood as in the main paper. While the model still produced what looked like a good fit (See Fig 

S4), the log likelihood values were significantly lower (-2235 vs -1905). 

 
Appendix C Figure S15: Model fit for seasonal HCoV, using the immunity and R0 parameters from Kissler et al. 
2020.  
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