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ASN guidelines on P values
Dear Editor:

The recently proposed guidelines by the American Society for
Nutrition (ASN) journals on P values (1) correctly point out some of
the problems with P values, but directly contradict the explicit and
well-considered recommendation to abandon statistical significance
testing by the American Statistical Association (2) and many other
learned critiques by statisticians as reviewed by Hurlbert et al.
(3) and Greenland et al. (4). It is not helpful for researchers to
be confronted with conflicting recommendations. The ASN vision
reflects a dominant but erroneous way of thinking and ignores the
wealth of modern ideas on scientific inference. To justify significance
testing, ASN guidelines (1) state that medical and nutritional research
often requires making a binary choice (e.g., to declare a treatment
effective or not, to recommend 1 set of nutritional recommendations
or another, to further investigate or move on to another question).
Even so, we would hope that a binary decision is not made only based
on the presence or absence of an effect, but also and primarily on the
magnitude of the effect. Dichotomizing P values implies that biology
is discontinuous, which is seldom the case. It is disheartening to see
that, after decades of progress in thinking about these issues, this
misleading and simplified approach is being promoted by ASN.
The ASN guidelines (1) point out some well-known problems
that have collectively been referred to as the 4 horsemen of the
reproducibility apocalypse (5): publication bias, insufficient sample
size, P-hacking, and HARKing (hypothesizing after results are
known). They fail to address what is arguably the most important
issue—namely, that most researchers interpret P values using flawed
inferential reasoning (i.e., it is not the use, but the misuse of P
values that is the main problem). They fail to consider a P value
as a conditional probability (i.e., the probability of findings in the
sample at least as extreme as observed, given that, in truth, there is
no association in the sampled population). They are also looking “in
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the wrong direction,” from hypothesized effect to data instead of the
other way around.

To illustrate this point, consider a similar problem in clinical
practice: a physician reports to a patient that the result of her
diagnostic test was positive. When the patient asks whether the test
result could be wrong, she would be poorly served with an answer
that the test is highly specific (i.e., given the absence of disease,
it is very unlikely that the test result is positive). The patient’s
primary interest concerns the question: Given that my test result is
positive, what is the probability of truly having the disease? This
positive predictive value depends not only on specificity but also
on sensitivity and the a priori probability of disease. A clinician
weighs the evidence of a test result in view of her combined
understanding of the biology of the disease, patient characteristics,
and the pre-test probability of disease. That is why the interpretation
is not left to the laboratory technician. Similarly, statistically
significant results should be interpreted taking the prior expectation
and plausibility of the null hypothesis into account. By intuition,
people usually get this right. For example, consider a trial report
with a statistically significant benefit obtained with a homeopathic,
super-diluted remedy. People who do not believe in homeopathy
are unlikely to believe the test results. Statistical testing is like
interpreting a diagnostic test result by looking only at its specificity—
that is, under the null hypothesis of no disease. Interpretation of
statistical tests should also take into account the plausibility or
likelihood of the alternative hypothesis, which depends on external or
subjective knowledge. That is also why interpretation of study results
should not be left to a simplistic statistical rule.

Statistical adjustment for multiple comparisons, as recommended
by default in the ASN guidelines (1), results in an increased proba-
bility of false-negative results. It also undermines the interpretation
of related endpoints (6). It is equivalent to a physician finding an
abnormally low hemoglobin concentration in a patient but no longer
judging it worthy of treatment because she also found iron deficiency.
In their Figure 2, Sorkin et al. (1) show that the probability of at least
1 false-positive result occurring increases with the number of tests
performed. This is true when test results are independent. Because, in
practice, outcomes are typically related, the default should be to not
adjust, and if adjustment is nonetheless done, it should be justified.
Many other commentaries support this view, again summarized by
Hurlbert et al. (3).

To assist in the interpretation of significance, the ASN guidelines
(1) recommend that P values should be reported with a statement of
the sample size, an estimate of the treatment effect, and its variability.
This is 1 option, but it is very cumbersome and we do not believe that
adding more statistical information would help the general reader
in interpretating (non)significance. Why not demand instead that
effects are reported with CIs? Contrary to what is stated in the AJCN
guidelines (1), however, Cls do not give a range in which the true
value of a parameter 6 is expected to lie. It is not Bayesian; a 95% CI
does not mean that the probability that the true value of the parameter
is in the interval is 95%. Instead, as conceived by Neyman (7), a 95%
CI encompasses a range of hypothesized effect sizes that have a P
value exceeding 0.05—that is, hypothesized effect sizes within this
range would be compatible with the sample estimate x if the P value
would be set at 0.05. In mathematical notation: Pr(6|xy) # Pr(xo|6).
Some additional pitfalls in the interpretation of Cls are outlined by
Greenland et al. (4).

In conclusion, we agree that P values should not be banned. But,
they should generally not be dichotomized, they should never be
reported as (non)significant, and they should not be used unless there
are good reasons for doing so. Even better is to separate results into a
point estimate and its corresponding 95% CI. Because all information

about statistical precision is contained in Cls, it is not necessary to
additionally report P values.
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Reply to Verhoef et al.
Dear Editor:

We thank our colleagues, Verhoef et al., for their thoughtful reply
(1) to our article, “A guide for authors and readers of the American
Society for Nutrition Journals on the proper use of P values, and
transparency, to improve research reproducibility” (2).

Our colleagues state that we “directly contradict the explicit and
well-considered recommendation to abandon statistical significance
testing by the American Statistical Association.” We do not. In
the American Statistical Association (ASA) Statement on Statistical
Significance and P-Values (3), the ASA does not state that P values
should be banned but rather that they should be used in proper
context.
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