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ABSTRACT 
 
The accuracy of a prediction algorithm depends on contextual factors that may vary 
across deployment settings. To address this inherent limitation of prediction, we 
propose an approach to counterfactual prediction based on the g-formula to predict risk 
across populations that differ in their distribution of treatment strategies. We apply this 
to predict 5-year risk of mortality among persons receiving care for HIV in the U.S. 
Veterans Health Administration under different hypothetical treatment strategies. First, 
we implement a conventional approach to develop a prediction algorithm in the 
observed data and show how the algorithm may fail when transported to new 
populations with different treatment strategies. Second, we generate counterfactual data 
under different treatment strategies and use it to assess the robustness of the original 
algorithm’s performance to these differences and to develop counterfactual prediction 
algorithms. We discuss how estimating counterfactual risks under a particular treatment 
strategy is more challenging than conventional prediction as it requires the same data, 
methods, and unverifiable assumptions as causal inference. However, this may be 
required when the alternative assumption of constant treatment patterns across 
deployment settings is unlikely to hold and new data is not yet available to retrain the 
algorithm.  
 
Keywords: counterfactual prediction, causal inference, dataset shift, machine learning, 
parametric g-formula, transportability 
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Introduction 
 
The performance of a prediction algorithm depends on contextual factors that may vary 
across populations or time periods [1-4]. Therefore, an algorithm that performs well 
when developed in a particular database may underperform when applied to individuals 
from a different population or time period.  
 
As an example, suppose that we were interested in predicting the 5-year risk of death 
among individuals with HIV in a health system. To do so, we developed a high-
performance (e.g., well-calibrated) prediction algorithm using historical data from a 
sample of health system members. However, if in our healthcare system antiretroviral 
therapy was reserved for the most severely immunosuppressed individuals during the 
time period from which historical data were available, then there is no guarantee that 
the prediction algorithm will retain its high performance if, in the future, antiretroviral 
therapy becomes available to all individuals with HIV. For example, our prediction 
algorithm might rely heavily on an initial (baseline) measure of viral load that predicts 
subsequent 5-year mortality strongly if treatment access is restricted but weakly if there 
is universal access to treatment (because immediate treatment initiation quickly reduces 
viral load and thus the baseline value of viral load becomes less relevant). That is, 
changes in the treatment strategies over time bring about different patterns of 
associations between the predictors and outcome, which in turn can affect the 
performance of the prediction algorithm [3, 4].  
 
In the causal inference literature, the extension of inferences from one population to 
another is referred to as transportability [5, 6]. Adopting this terminology, the above 
problem is a transportability problem for prediction under a different treatment strategy 
(but in the same target population). Such problems – sometimes referred to as “dataset 
shift” or “domain adaptation” problems in computer science – have been recently cited 
as a major driver of failure of so-called artificial intelligence systems in medical settings 
[7]. The ideal way to address differences in treatment strategies is to collect updated 
data to retrain an algorithm to predict 5-year mortality after clinical practice changes [7]. 
However, we would have to wait at least 5 years to obtain these data, leaving open the 
question of how to predict risk in the meantime. One option is to use the existing data by 
reformulating prediction tasks as counterfactual prediction tasks [1-4, 8-10].  
 
Counterfactual prediction requires answering a “what if” question before the prediction 
takes place [1]. In our example, we would first answer the question “what if treatment 
were available to all individuals with HIV?” by simulating a counterfactual population 
with the same baseline characteristics as our study population but in which treatment is 
universally available after baseline, and then develop the prediction algorithm using 
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those counterfactual data. Sound counterfactual prediction requires the same methods, 
data, and assumptions as causal inference, which is the task defined by the contrast of 
two or more counterfactual predictions [11]. 
 
Here we describe an application of the g-formula to transport prediction algorithms 
across populations that differ only in their distribution of treatment strategies. We predict 
the 5-year mortality risk under different treatment strategies among individuals with HIV 
in the U.S. Veterans Health Administration, the largest provider of HIV care in the U.S. 
[12]. In the following sections, we first describe a conventional approach to develop a 
prediction algorithm in the observed data and discuss the limitations of using such an 
algorithm under changes in treatment strategy. We then generate counterfactual data 
under different treatment strategies and use them to assess the robustness of the 
original algorithm’s performance to changes in treatment strategies and to develop 
counterfactual prediction algorithms.  
 
Conventional (factual) prediction  
 
A (factual) prediction algorithm is a mapping from the candidate predictors 𝑉 to one or 
more outcomes 𝑌. In our example, 𝑌 is a binary indicator for death (1: dead, 0; alive) 
within 5 years and 𝑉 are the characteristics at the start of the 5-year period (baseline) 
shown in Table 1.  
 
The (factual) prediction task is to use the observed data on 𝑌 and 𝑉 to predict the 
conditional risks Pr[𝑌 = 1|𝑉] in the Veterans Aging Cohort Study (VACS), which 
includes individuals living with HIV and accessing care in the Veterans Health 
Administration. Data on inpatient and outpatient diagnoses, laboratory test results, and 
dispensed medications (to ascertain treatments) are recorded in electronic medical 
records during routine clinical care. Deaths are ascertained using inpatient medical 
records and the VA Beneficiary Identification Records Locator Subsystem mortality 
database [13].  
 
We focused on 6,707 individuals who were aged 35 years or older with moderate-to-
severe immunosuppression (defined as CD4 cell count ≤500 cells/μL), no history of 
AIDS, no previous use of antiretroviral therapy, and who were receiving care (defined as 
having CD4 cell count and plasma HIV-RNA viral load measurements within the past 3 
months) between January 2000 and August 2012. Most individuals were male (98%), 
the mean age was 50 years (standard deviation, 8.6 years), the mean CD4 cell count 
was 223 cells/µL (standard deviation, 147 cells/µL), and the median viral load was 
58,887 copies/mL (interquartile range, 15,280-168,000 copies/mL). Over the 5-year 
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follow-up, 994 individuals died and 2,364 were censored after 12 months without a CD4 
cell count or viral load measurement. 
 
We restricted the analysis to uncensored individuals (who are, by definition, the only 
ones with known Y), under the assumption that a predictive algorithm developed in the 
uncensored would apply to the entire study population. Below we will relax this 
assumption. As a first step, we randomly split the observed data into a training set 
(80%) to develop this algorithm and a test set (20%) to evaluate its performance. The 
training set included 3,474 individuals (804 deaths) and the test set included 869 
individuals (190 deaths). Both sets had an almost identical distribution of baseline 
characteristics (Appendix Table 1). 
 
To accomplish the factual prediction task, we fit a LASSO-regularized logistic regression 
model to the training set [14]. The LASSO combines coefficient shrinkage with predictor 
selection (because some coefficients are shrunk to zero) [15]. The optimal 
regularization parameter λ was selected using 10-fold cross-validation. We used the 
fitted model to predict the 5-year risk of death for each individual in the test set. Note 
that this model was developed for illustrative purposes rather than for clinical use; it is 
distinct from the established predictive index known as the VACS Index, which has 
been shown to have good discrimination and calibration across various samples of 
people receiving antiretroviral therapy for HIV infection [16, 17].  
 
We then examined measures of calibration and discrimination in the test set [18]. 
Calibration refers to how closely the predicted risks agree with the observed outcomes. 
We evaluated this graphically by generating a local regression-smoothed calibration plot 
(the 45-degree line in the plot indicates perfect calibration) [18, 19]. Discrimination 
refers to how well a prediction model can distinguish individuals who do vs. do not 
experience the outcome of interest. We assessed this by calculating the c-statistic, 
which is the area under the receiver-operating characteristic curve for binary outcomes 
and the probability that the model will assign a higher predicted risk to a randomly 
selected person who experiences the outcome than a randomly selected person who 
does not (a c-statistic value of 1 indicates perfect discrimination, while a value of 0.5 
indicates no discriminatory ability). All analyses in this paper were conducted using R 
version 4.0.4 and SAS version 9.4 (SAS Institute, Inc., Cary, NC, USA). 
 
LASSO predictor selection resulted in a model that included the baseline predictors age, 
CD4 cell count, viral load, history of infection with hepatitis C virus, and HIV diagnosis in 
the past year (Appendix Table 2). This prediction algorithm showed good 
discrimination (c-statistic 0.71) and calibration in the test set (Figure 1a).  
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The limits of factual prediction 
 
Our prediction algorithm is expected to perform differently in populations in which the 
relations between the predictors 𝑉 and 𝑌 differ from those in our training data. A shift in 
the 𝑉-𝑌 relation across populations or datasets may be due to several reasons. To see 
this, consider the simplified setting with no censoring represented by the causal directed 
acyclic graph (DAG) in Figure 2. 
 
The node 𝑌 denotes death status at 5 years. The nodes 𝑃! and  𝑃" denote predictors of 
mortality measured at the start of baseline month 0 (when the predictive algorithm is 
developed) and of month 1, respectively. The nodes 𝐴! and  𝐴" denote treatment 
(antiretroviral therapy) initiation by the end of month 0 and of month 1, respectively. The 
nodes 𝐿! and  𝐿" denote predictors of both treatment and mortality measured at the 
start of baseline month 0 and of month 1, respectively. The causal DAG also includes 
unmeasured variables 𝑈, which are therefore not usable in our analysis. For simplicity 
of presentation, our causal DAG only includes the predictors and treatments at baseline 
and one month later (in practice, they are measured in each of the 60 months of follow-
up), and it assumes no censoring throughout the follow-up and no deaths in the first two 
months. 
 
The baseline predictors 	𝑉 used to develop the predictive algorithm are selected from 
the union of 𝐿! and 𝑃!. The predictive algorithm cannot include the variables 𝐴!, 𝐿", 𝐴", 
and 𝑃" (because they are not yet measured at the start of month 0 when the algorithm is 
developed), but the strength and direction of the associations between the V variables 
and the outcome 𝑌 depend on the variables 𝐴!, 𝐿", 𝐴", and 𝑃" (because they are part of 
the causal structure that links 𝑉 and 𝑌). A predictive algorithm that is optimal in one 
population may be suboptimal in another population if the two populations differ in the 
magnitude or direction of any of 3 types of associations between 𝑉 and 𝑌: 1) those that 
involve only baseline variables, including the direct causal effects of 𝑉 on 𝑌 
(represented by the direct arrows from 𝐿! and 𝑃! to 𝑌) and the effect of 𝑈 (a common 
cause of 𝐿! and 𝑌), 2) those that involve post-baseline variables except for treatment, 
that is, the indirect causal effects of 𝑉 on 𝑌 in the absence of treatment (represented by 
the causal pathways from 𝐿! and 𝑃! to 𝑌 through 𝐿"	and 𝑃" but not through 𝐴! and 𝐴"), 
and 3) those that involve post-baseline treatment, that is, the indirect causal effects of 𝑉 
on 𝑌 through treatment (represented by the causal pathways from 𝐿! to Y through 𝐴! 
and 𝐴" but not through 𝑃" and 𝐿"). 
 
It follows that, even when considering two populations with identical baseline 
characteristics 𝐿! and 𝑃! (and therefore the potential subset 𝑉)	and with an identical 
causal structure linking 𝑉	to the outcome 𝑌, the associations between 𝑉	and 𝑌 are 
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expected to differ depending on the treatment strategies applied to each population. 
This is precisely the problem considered in this paper. That is, when developing an 
algorithm to be deployed in a healthcare system over time, we will need to adapt or 
retrain the algorithm when the distribution of treatment strategies in the system shifts. 
Because outcome data will not be immediately available after such treatment changes, 
a timely retraining of the algorithm is not possible. Therefore, we propose an approach 
to generate counterfactual data under hypothetical treatment strategies.  
 
Counterfactual prediction  
 
The data under different treatment strategies could be generated by conducting a trial in 
which individuals sampled from the target population are randomly allocated to one of 
several treatment strategies. Conceptualizing an observational analysis as the 
emulation of a target trial may help reduce bias when estimating counterfactual risks 
[20]. The protocol components of our target trial (including the same eligibility criteria, 
outcome, and follow-up described previously) are described in Table 2.  
 
We considered three treatment strategies 𝑔: (1) immediate initiation of antiretroviral 
therapy at baseline and continuation over follow-up; (2) initiation upon an AIDS 
diagnosis or a CD4 cell count <350 cells/μL and continuation over follow-up; and (3) no 
initiation over follow-up. There is a 3-month grace period for initiating treatment under 
strategies 1 and 2 so that individuals who have not yet initiated treatment by the end of 
the grace period would start at that time. Strategy 3 is not a clinically realistic treatment 
strategy but is included here as an extreme example of shift. In this target trial, the 5-
year mortality risk had individuals adhered to their assigned treatment strategy 𝑔 is an 
unbiased estimate of the counterfactual 5-year mortality risk had all individuals in the 
population adhered to that strategy Pr[𝑌# = 1] [21]. All treatment strategies discussed 
here implicitly include an intervention to eliminate censoring during follow-up. 
 
We emulated each component of the protocol of this target trial using the observational 
VACS data to obtain estimates of Pr[𝑌# = 1] under each strategy 𝑔. A correct emulation 
requires data on the eligibility criteria and, at each time 𝑘, the outcome 𝑌$, censoring 𝐶$, 
treatment 𝐴$, and confounders 𝐿$ under the assumption of no unmeasured confounding 
given 𝐿$ (encoded in the causal DAG above through the absence of direct arrows from 
the unmeasured variables 𝑈 to the treatment variables 𝐴$) and the assumption that 
censored and uncensored individuals in the original population had the same risk 
conditional on the measured variables 𝐿$ [22]. That is, these assumptions are required 
when generating counterfactual data under any treatment strategy 𝑔. We used the g-
formula [23, 24], a generalization of standardization to time-varying treatments that 
appropriately handles treatment-confounder feedback, that is, a setting like ours in 
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which the measured confounders (e.g., CD4 cell count) are affected by prior treatment 
(antiretroviral therapy), to generate counterfactual data under these assumptions. 
 
The g-formula risk under strategy 𝑔 is a weighted average (integral) of the mortality risk 
conditional on covariate history and weighted by the distribution of covariate histories 
compatible with the conditional distribution of covariates under 𝑔. We implemented a 
parametric g-formula algorithm in two stages, as previously described [25]. First, we fit 
parametric models for the distribution of outcome and covariates over time using 
maximum likelihood methods. See Appendix Table 3 and Appendix 1 for details on 
the variables and models used in our g-formula analysis of the VACS data. Second, we 
used a Monte Carlo simulation to approximate the weighted average under each 
strategy 𝑔. By generating indicators for death for individuals, a byproduct of the Monte 
Carlo simulation is a dataset comprised of individuals’ trajectories had everyone 
followed treatment strategy 𝑔. We repeated the process under each of the three 
treatment strategies to obtain three datasets, each representing the counterfactual 
trajectory of 6,707 individuals following each treatment strategy. Each dataset had an 
identical distribution of baseline predictors. Increasing the Monte Carlo simulation 
sample size to 100,000 did not affect the results described below. 
 
Assessing the performance of the original prediction model under treatment shifts 
 
We applied the original prediction model to the three counterfactual datasets simulated 
under hypothetical treatment strategies to predict individuals’ 5-year risk of death. We 
calculated the measures of calibration and discrimination in the same 20% of the data in 
each hypothetical setting, so that any differences in performance across settings could 
be solely attributed to differences in treatment strategies.  
 
We found that the original prediction model’s discriminatory ability was largely 
preserved (c-statistics ranging from 0.70-0.73) but its predictions were miscalibrated 
under all hypothetical treatment strategies (Figure 3). Risk was overpredicted under 
strategies that started treatment sooner (Figure 3a-b). This occurred because these 
treatment strategies disrupted the associations between the predictors and death, such 
that higher CD4 cell count was associated with a lower risk of death under strategies 
that start treatment sooner, which was not captured by the original prediction model 
(Appendix Figure 1). Risk was underpredicted under the never treat strategy (Figure 
3c). This occurred because, under the never treat strategy, the associations between 
key predictors such as CD4 cell count and death were strongest, which again was not 
captured by the original prediction model developed in a setting where the observed 
treatment pattern had dampened these associations (Appendix Figure 1). 
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Developing counterfactual prediction models  
 
The simulated counterfactual trajectories also provide an opportunity to develop 
counterfactual prediction models for use in settings where the original prediction model 
is expected to perform poorly but new data are unavailable to adapt or retrain the 
model. A counterfactual prediction model uses simulated values of the counterfactual 
outcome 𝑌# and observed data on baseline predictors 𝑉 to predict a given individual’s 
counterfactual risk under a given treatment strategy, Pr[𝑌# = 1|𝑉]. Developing such a 
model involves the same approach used to develop the original prediction model, 
except now we use the counterfactual outcomes under hypothetical treatment 
strategies.  
 
Specifically, we fit new LASSO-regularized logistic regression models to the training 
sets simulated under each strategy to predict the 5-year risk of death had everyone 
received treatment under that strategy, Pr[𝑌# = 1|𝑉]. This model considered information 
on the same candidate predictors as the original prediction model, counterfactual 
outcomes under the new strategies, and no information on postbaseline treatment 
initiation. LASSO predictor selection resulted in models that included the same 
predictors as in the original prediction model, except for diagnosis of HIV in the past 
year (Appendix Table 2).  
 
To assess the performance of the counterfactual prediction models, we applied them to 
test sets simulated under each strategy (each again using the same 20% of the data) to 
predict 5-year risk of death and calculated the same measures of calibration and 
discrimination, as previously described. Unlike the original prediction model, the 
counterfactual prediction showed good calibration under all the treatment strategies we 
considered (Figure 3d-f). Note that our primary analysis involved fitting g-formula 
models to the entire observed dataset to generate counterfactual data which were then 
split into train and test sets, which ensures that the train and test sets have the same 
exact data generating process at the potential expense of overfitting if the sample is not 
large. Results were similar when we estimated g-formula models separately in the 
training and test sets.  
 
Assessing the performance of the original prediction algorithm under the natural course 
 
To informally assess the adequacy of our procedure, we also simulated a dataset under 
the natural course, that is, under the same distribution of treatment strategies as in the 
observed data and under no censoring. If our counterfactual prediction methodology is 
correct, we expect that the original algorithm will have a similar performance in this 
simulated data as in the observed data.  
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A comparison of the performance of the algorithm in the observed data and in the data 
simulated under the natural course requires consideration of how censoring by loss to 
follow-up was handled, because approximately one-third of individuals were lost to 
follow-up in the observed data and therefore had no known value of Y.  
 
A common approach in the machine learning literature for addressing censoring by loss 
to follow-up is to restrict the analysis to individuals with known value of Y. In keeping 
with common practice, this is the approach that we used to develop the original 
prediction model. However, this approach makes the often-unrealistic assumption that 
censored and uncensored individuals are marginally (unconditionally) exchangeable in 
terms of outcome risk. By contrast, when generating the natural course data without 
censoring, we made the weaker assumption that censored and uncensored individuals 
are only exchangeable within strata defined by covariate history at each time point. 
 
A better approach would be to use inverse-probability weighting [22] to “eliminate” 
censoring in the observed data before the prediction algorithm is developed. This 
approach relies on the same conditional exchangeability assumption made when 
generating the natural course data under no censoring, permitting a direct comparison 
of algorithm performance across datasets with the same distribution of treatment 
strategies and also with no censoring. 
 
In this case, results were similar regardless of whether the original prediction model was 
developed with or without inverse-probability weighting in the observed data (Appendix 
Figure 2). This similarity suggests that the original algorithm was not sensitive to the 
choice between censoring assumptions in this particular application. Also, the original 
prediction model showed similar performance in the observed data (without inverse 
probability weighting) and in the natural course data (similar c-statistics and calibration 
curves, as shown in Figure 1). This similarity supports the adequacy of our simulation 
procedure for counterfactual prediction.  
 
 
DISCUSSION 
 
In an application of counterfactual prediction to mortality risk among individuals 
receiving care for HIV in the largest integrated healthcare system in the U.S., we found 
evidence that a conventional (factual) prediction model would yield systematically 
miscalibrated predictions when applied to new populations with different treatment 
patterns. The miscalibration was most pronounced under strategies with extreme 
differences in access to treatment (e.g., no access) but also evident under clinically 
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realistic treatment strategies that depend on evolving risk factors, largely because 
treatment disrupted the associations between those risk factors and the outcome. By 
contrast, a counterfactual prediction model showed good calibration under all treatment 
strategies considered.  
 
A common goal is to transport a prediction model developed in one population to a new 
population with a different data distribution. This may involve populations that have (1) 
different distributions of treatment strategies over time and different distributions of 
covariates at baseline, in which case both differences need to be accounted for, or (2) 
different distributions of treatment strategies but the same distributions of covariates at 
baseline. Here we consider the second case to introduce methodology for 
counterfactual prediction under hypothetical treatment strategies. 
 
Regardless of which components of the joint distribution of the variables differ across 
populations, the most natural solution to this transportability problem is to use data from 
the new population to adapt or retrain a factual prediction model [7, 26-28]. However, 
this requires data from the new population. If those data are not available, then we need 
to recast the prediction question as a counterfactual prediction question, which 
fundamentally changes the data analysis. In fact, counterfactual prediction requires the 
same data (eligibility criteria, outcome, censoring, time-varying treatments, time-varying 
confounders), assumptions (exchangeability, positivity, consistency [22]) and methods 
as those required for causal inference [11].  
 
In this application, we focused on counterfactual prediction to address treatment 
strategy shift within one healthcare system over time. We first took advantage of 
parametric g-formula procedures to generate counterfactual datasets had everyone 
been treated under one of three treatment strategies. We then applied a predictive 
algorithm (LASSO-regularized logistic regression in our example) to predict the 
counterfactual risk under a given treatment strategy. Therefore, via parametric g-
formula calculations, we estimated the joint distribution of the observed data and used it 
to simulate counterfactual data that differed only in their distribution of treatment 
strategies, assuming that other components of the joint distribution of the variables 
remained the same. A similar approach can be used in the presence of other types of 
differences in the joint distribution or “dataset shift”.  
 
Counterfactual prediction to address changes in treatment strategies requires rich data 
on time-varying treatments and confounders, like the VACS data. When these data are 
available, our methodology has several strengths.  
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First, our approach makes it explicit that the validity of counterfactual prediction under 
different treatment strategies relies on the same conditions as the validity of extending 
causal inferences for treatment effects across populations. These conditions include 
exchangeability between treatment groups and positivity of treatment assignment within 
a given population, as well as exchangeability between, and positivity of inclusion 
across, different populations [6]. In this particular application, we focus on changes in 
treatment strategies within a single population over time and so we are not concerned 
with transportability between populations or positivity of being in the data from the target 
population, but these may be important considerations in other applications. In any 
case, counterfactual prediction tasks require the application of well-established methods 
for causal inference. Causal directed acyclic graphs can be used to make assumptions 
explicit [4, 29-31], and g-methods can be used to carry out the data analysis under 
those assumptions [32].  
 
Second, we used the g-formula to appropriately handle treatment-confounder feedback, 
that is, the setting in which the decision to treat is based on patients’ values of evolving 
risk factors that are also affected by previous treatment. Treatment-confounder 
feedback has not been explicitly considered by previously proposed approaches to 
counterfactual prediction [29, 30]. Inverse-probability weighting, which has formed the 
basis of some previous applications [2, 8, 9], can also appropriately handle treatment-
confounder feedback. It does not involve the Monte Carlo simulation procedure that we 
leveraged here to generate counterfactual individual trajectories.  
 
Third, the parametric g-formula is a flexible g-method to generate counterfactual data 
under any type of treatment strategy. Our application involved sustained treatment 
strategies, in which treatment initiation was either static (start immediately or never) or 
dynamic (start upon AIDS diagnosis or when CD4 cell count drops below a certain 
level), but the same methodology can accommodate arbitrarily complex strategies (e.g., 
involving multiple treatments).  
 
When using counterfactual prediction to address differences in treatment patterns, the 
possibility of different versions of treatment must be considered [33]. Here we used a 
treatment variable which reflects the distribution of antiretroviral therapies available 
during the study period to estimate counterfactual risks after shifts in treatment 
strategies. That is, we considered two time periods over which the rules for determining 
treatment assignment are different but the versions of treatment itself are assumed to 
be the same (or different in ways that do not matter) [34]. If different versions of 
treatment are deployed across settings and those versions have different effects on the 
counterfactual outcomes of interest, then our counterfactual predictions will be incorrect 
unless they incorporate information on different versions of treatment. If these different 



 13 

versions involve a treatment not currently available in the data, then counterfactual 
prediction will not be generally possible. 
 
In summary, we propose methodology for counterfactual prediction as an interim 
mitigation strategy for shifts in treatment patterns while awaiting new data to retrain a 
prediction algorithm. Specifically, our proposed approach to counterfactual prediction 
permits the generation of counterfactual data under hypothetical treatment strategies, 
which can be used to assess the robustness of a prediction model to particular shifts, 
and, if needed, develop counterfactual prediction models. Estimating counterfactual 
risks under a particular treatment strategy is more challenging than conventional 
prediction as it requires the same data, methods, and unverifiable assumptions as 
causal inference. However, this may be necessary when the alternative assumption of 
constant treatment patterns across deployment settings is unlikely to hold and a factual 
prediction model cannot be assumed to retain good performance when transported to 
new patient populations.   
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  Table 1. Baseline characteristics of 6,707 eligible 
individuals, Veterans Aging Cohort Study, 2000-2012.a 

Characteristic, %  
Age (years)  
    <45 29 
    45-49.9 22 
    50-54.9 21 
    55-59.9 14 
    ≥60 13 
Male 98 
CD4 count (cells/µL)  
    <100 27 
    100-199 19 
    200-299 20 
    300-399 19 
    ≥400 15 
HIV-RNA viral load (copies/mL)  
   <10,000 20 
    10,000-49,999 27 
    50,000-99,999 17 
    100,000-199,999 15 
    ≥200,000 22 
History of infection with hepatitis C virus 11 
Diagnosis of HIV in the past year 13 
History of prophylaxis for opportunistic infectionsb  29 
Percentages may not sum to 100% due to rounding. 
a Baseline ranges from January 2000 to August 2012. 
Eligible individuals had complete data on all variables. 
b Includes treatment with atovaquone, dapsone, 
pentamidine isethionate, or combinations of sulfonamides 
and trimethoprim, including derivatives. 
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Table 2. Specification and emulation of a target trial of antiretroviral therapy initiation strategies and risk of death using 
observational data from the Veterans Aging Cohort Study.  
Protocol 
component 

Target trial specification Target trial emulation 

Eligibility 
criteria 

• Aged ≥35 
• Diagnosis of HIV-1 infection  
• Moderate-to-severe immunosuppression (defined as CD4 count ≤500 

cells/μL) 
• No history of AIDS 
• No previous antiretroviral therapy 
• Receiving care (defined as CD4 count and HIV-RNA viral load 

measurements within the past 3 months) between January 2000 and 
August 2012 

Baseline is defined as the first month in which all eligibility criteria are met.  

Same as for the target 
trial.  
 

Treatment 
strategies 

(1) Initiation of cART immediately, defined as within 3 months of baseline and 
irrespective of CD4 count, and continuation over follow-up 
(2) Initiation of cART within 3 months of an AIDS diagnosis or a CD4 count 
<350 cells/μL and continuation over follow-up 
(3) No initiation of cART over follow-up 
cART is defined as treatment with (1) boosted PI + ≥2 NRTI, (2) NNRTI + ≥2 
NRTI, (3) INSTI + ≥2 NRTI, (4) entry inhibitors + ≥2 NRTI, or (5) dual therapy 
(coformulated medications including dolutegravir + rilpivirine (Juluca), 
dolutegravir + 3TC (Dovato), raltegravir + 3TC (Dutrebis); any combination 
with boosted PI + 3TC; boosted PI + INSTI).  
Individuals must have a clinical visit at least once every 12 months to assess 
prognostic factors (CD4 count, HIV-RNA viral load) associated with 
adherence and loss to follow-up. 

Same as for the target 
trial. We considered 
cART to be continuous 
after initiation. AIDS 
diagnosis and CD4 
count were ascertained 
by the treating 
physicians.  

Treatment 
assignment 

All individuals are randomly assigned to a strategy at baseline, and individuals 
and their treating physicians will be aware of the assigned treatment strategy. 

Same as for the target 
trial with adjustment for 
baseline confounders in 
an attempt to emulate 
randomization (within 
covariate strata). 

Outcomes All-cause mortality. Same as for the target 
trial. Deaths were 
ascertained using 
inpatient medical 
records and the VA 
Beneficiary Identification 
Records Locator 
Subsystem mortality 
database.  

Follow-up  Starts at baseline and ends at the month of death, incomplete follow-up (12 
months after the last recorded prognostic factors), 5 years after baseline, or 
administrative end of follow-up (September 2017), whichever happens first.  

Same as for the target 
trial.  

Statistical 
analysis 

Parametric g-formula to estimate 5-year risk of death under each treatment 
strategy, with adjustment for pre- and post-baseline prognostic factors 
associated with adherence and loss to follow-up. 

Same as for the target 
trial with adjustment for 
baseline confounders. 

Abbreviations: cART, combined antiretroviral therapy; INSTI, integrase strand transfer inhibitor; NNRTI, non-nucleoside 
reverse transcriptase inhibitor; NRTI, nucleoside/nucleotide reverse transcriptase inhibitor; PI, protease inhibitor. 
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Appendix Table 1. Baseline characteristics of individuals in the training and test 
sets, Veterans Aging Cohort Study, 2000-2012.a 
Characteristic, % Training set 

(N=3,474) 
Test set 
(N=869) 

Age (years)   
    <45 25 26 
    45-49.9 22 20 
    50-54.9 22 24 
    55-59.9 15 13 
    ≥60 16 17 
Male  98 98 
CD4 count (cells/µL)   
    <100 30 28 
    100-199 19 21 
    200-299 19 19 
    300-399 19 19 
    ≥400 13 13 
HIV-RNA viral load (copies/mL)   
   <10,000 17 19 
    10,000-49,999 25 25 
    50,000-99,999 18 16 
    100,000-199,999 16 15 
    ≥200,000 25 24 
History of infection with hepatitis C virus 11 12 
Diagnosis of HIV in the past year 11 9 
History of prophylaxis for opportunistic infectionsb  31 31 
Percentages may not sum to 100% due to rounding. 
a Baseline ranges from January 2000 to August 2012. 
b Includes treatment with atovaquone, dapsone, pentamidine isethionate, or 
combinations of sulfonamides and trimethoprim, including derivatives. 
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Appendix Table 2. LASSO-regularized logistic regression model coefficients of the factual and counterfactual prediction 
models, Veterans Aging Cohort Study, 2000-2017.a 
 Factual prediction 

model 
Counterfactual prediction models 

Predictors   

 Start 
antiretroviral 

therapy 
immediately 

Start antiretroviral 
therapy upon AIDS 

diagnosis or CD4 
count <350 cells/µL 

Never start 
antiretroviral 

therapy 

Intercept -1.4912 -1.9247 -1.8016 -0.8081 
Age 0.3194 0.3533 0.3275 0.4450 
Sex -- -- -- -- 
CD4 count (cells/µL) -0.3457 -0.3841 -0.2955 -0.4868 
HIV-RNA viral load (copies/mL) 0.0149 0.0106 0.0263 0.0287 
History of infection with hepatitis C virus 1.3207 1.1706 1.1789 1.2408 
Diagnosis of HIV in the past year 0.3851 -- -- -- 
History of prophylaxis for opportunistic 
infections 

-- -- -- -- 

a HIV-RNA viral load was ln-transformed and CD4 count was sqrt-transformed. Continuous predictors (age, CD4 count, 
HIV-RNA viral load) were then standardized to mean = 0, standard deviation = 1 based on the training set distributions.   
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Ap_BDpendix Table 3. Variables used to model 5-year risk of death among individuals with HIV, 
Veterans Aging Cohort Study, 2000-2017.  

A. Time-fixed variables 
Functional form 

as predictor 
Variable name Categories 

Age Linear age_0 N/A 

Sex Indicator sex Female/Male 
CD4 count (sqrt-transformed) Linear sqrtcd40 N/A 
HIV-RNA viral load (ln-transformed) Linear lnrna0 N/A 
History of infection with hepatitis C 
virus 

Indicator hcv_pos_ab_v Yes/No 

B. Time-varying variables 
Modeling as 

dependent  Variable name  
Functional form as 

predictor 
Month of follow-up Not predicted month2 Restricted cubic 

splines, 3 knots at 5, 
28, and 53 months 

Visit to measure CD4 count Logistica visit_cd4 Linear (months since 
the last measurement) 

CD4 count (sqrt-transformed) Linearb sqrtcd4 Indicators (current and 
lagged values) 

Visit to measure HIV-RNA viral load Logistica visit_rna Linear (months since 
the last measurement) 

HIV-RNA viral load (ln-transformed) Logistic, then 
log-linearc 

lnrna Indicators (current and 
lagged values) 

Combined antiretroviral therapy Logistic to 
failured 

everhaart Indicator (combined 
antiretroviral therapy), 

Linear (months since its 
initiation) 

Diagnosis of an AIDS-defining illness Logistic to 
failured 

aids Indicator (AIDS-defining 
illness), Linear (months 

since diagnosis) 
a Fits logistic model for an indicator of the visit process, which is assumed to be an additional time-
varying confounder. For the simulation, a visit indicator is generated based on the logistic model 
parameters. When the simulated indicator is 1, the measurement value is simulated as described below. 
When the simulated indicator is 0, the measurement value is carried forward from the last simulated 
value. Values are carried forward for up to 12 months, after which the simulated visit indicator is set to 1.  
b Fits linear model to records with a simulated visit, described above. For the simulation, variables 
predicted by a linear model were assigned a value equal to the predicted value plus the standard error 
multiplied by a random number from a Normal (0,1) distribution. Therefore, two subjects with the same 
risk factor history were not necessarily predicted to have exactly the same risk factor value at the next 
time point. Simulated values of continuous risk factors were truncated so that they did not fall outside of 
the observed range.  
c Variables with many zero values were predicted in two stages. First, we fit a logistic model for an 
indicator that the variable is nonzero. Second, we fit a linear model for the natural log of the nonzero 
values. Simulated values were truncated so that they did not fall outside of the observed range.   
d Fits logistic model only to records where the first lagged value of the variable equals zero. For the 
simulation, variables predicted by the logistic model were assigned a value of 1 if the predicted 
probability was greater than a random number from a uniform distribution. After the first 1 is generated, 
the value was set to 1 thereafter. 
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Appendix Figure 1. Associations between key predictors and death in hypothetical 
settings defined by different antiretroviral therapy initiation strategies, Veterans Aging 
Cohort Study. Logistic regression models were fit to the same training set observations 
in each hypothetical setting and included the same predictors for direct comparability. 
HIV-RNA viral load was ln-transformed and CD4 count was sqrt-transformed. 
Continuous predictors (age, CD4 count, HIV-RNA viral load) were then standardized to 
mean = 0, standard deviation = 1.  
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Appendix 1 Models used in the parametric g-formula 
 
Model 1 Outcome (death) 
 
 

The LOGISTIC Procedure 
   
                                                             Model Information 
 
                                               Data Set                      WORK.PARAM       
                                               Response Variable             event            
                                               Number of Response Levels     2                
                                               Weight Variable               _weight_         
                                               Model                         binary logit     
                                               Optimization Technique        Fisher's scoring 
 
 
                                                  Number of Observations Read      286167 
                                                  Number of Observations Used      283803 
                                                  Sum of Weights Read              286167 
                                                  Sum of Weights Used              283803 
 
 
                                                              Response Profile 
  
                                             Ordered                      Total            Total 
                                               Value        event     Frequency           Weight 
 
                                                   1            1           994           994.00 
                                                   2            0        282809        282809.00 
 
                                                      Probability modeled is event=1. 
 
 
                                                          Model Convergence Status 
 
                                               Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                                                 Analysis of Maximum Likelihood Estimates 
  
                                                                       Standard          Wald 
                                Parameter            DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                                Intercept             1     -7.6780      0.3572      462.0592        <.0001 
                                age_0                 1      0.0530     0.00358      218.9970        <.0001 
                                sex                   1     -0.3273      0.2926        1.2514        0.2633 
                                sqrtcd40              1      0.0561     0.00879       40.7161        <.0001 
                                lnrna0                1      0.0796      0.0222       12.8405        0.0003 
                                hcv_pos_ab_v          1      0.9952      0.0753      174.6497        <.0001 
                                month2                1    -0.00615     0.00543        1.2849        0.2570 
                                month2_spl1           1      0.0148     0.00722        4.2051        0.0403 
                                sqrtcd4_l1            1      0.0521      0.0195        7.1545        0.0075 
                                sqrtcd4               1     -0.2136      0.0194      120.9885        <.0001 
                                ts_last_sqrtcd4       1     -0.0541      0.0290        3.4830        0.0620 
                                lnrna                 1      0.0280     0.00912        9.4430        0.0021 
                                ts_last_lnrna         1      0.1005      0.0284       12.5317        0.0004 
                                everhaart             1     -0.6132      0.0988       38.5058        <.0001 
                                tseverhaart_inter     1     0.00631     0.00417        2.2851        0.1306 
                                aids                  1      1.4808      0.1194      153.7881        <.0001 
                                tsaids_inter          1     -0.0277     0.00617       20.2034        <.0001 
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Model 2 Visit to measure CD4 count 
 
 
                                                           The LOGISTIC Procedure 
 
                                                             Model Information 
 
                                               Data Set                      WORK.PARAM       
                                               Response Variable             visit_cd4        
                                               Number of Response Levels     2                
                                               Weight Variable               _weight_         
                                               Model                         binary logit     
                                               Optimization Technique        Fisher's scoring 
 
 
                                                  Number of Observations Read      279220 
                                                  Number of Observations Used      279220 
                                                  Sum of Weights Read              279220 
                                                  Sum of Weights Used              279220 
 
 
                                                              Response Profile 
  
                                            Ordered                       Total            Total 
                                              Value     visit_cd4     Frequency           Weight 
 
                                                  1            1          67328         67328.00 
                                                  2            0         211892        211892.00 
 
                                                    Probability modeled is visit_cd4=1. 
 
 
                                                          Model Convergence Status 
 
                                               Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                                                            Model Fit Statistics 
  
                                                                                Intercept 
                                                                 Intercept            and 
                                                   Criterion          Only     Covariates 
 
                                                   AIC           308471.78      303766.83 
                                                   SC            308482.32      303946.00 
                                                   -2 Log L      308469.78      303732.83 
 
 
                                                  Testing Global Null Hypothesis: BETA=0 
  
                                          Test                 Chi-Square       DF     Pr > ChiSq 
 
                                          Likelihood Ratio      4736.9498       16         <.0001 
                                          Score                 4781.0516       16         <.0001 
                                          Wald                  4680.2110       16         <.0001 
_                                                               The SAS System 
 
                                                           The LOGISTIC Procedure 
 
                                                  Analysis of Maximum Likelihood Estimates 
  
                                                                         Standard          Wald 
                               Parameter               DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                               Intercept                1     -2.1690      0.0508     1824.8048        <.0001 
                               age_0                    1     0.00805    0.000527      232.8895        <.0001 
                               sex                      1    -0.00298      0.0295        0.0102        0.9194 
                               sqrtcd40                 1    -0.00404     0.00119       11.4459        0.0007 
                               lnrna0                   1      0.0212     0.00301       49.7930        <.0001 
                               hcv_pos_ab_v             1     -0.0632      0.0160       15.6887        <.0001 
                               month2                   1    -0.00598    0.000836       51.0817        <.0001 
                               month2_spl1              1      0.0161    0.000996      260.8463        <.0001 
                               sqrtcd4_l2               1      0.0597     0.00330      327.3119        <.0001 
                               sqrtcd4_l1               1     -0.0630     0.00329      366.3845        <.0001 
                               ts_last_sqrtcd4_l1       1      0.0337     0.00437       59.4472        <.0001 
                               lnrna_l1                 1      0.0138     0.00131      111.7310        <.0001 
                               ts_last_lnrna_l1         1      0.0550     0.00443      154.2067        <.0001 
                               everhaart_l1             1      0.6493      0.0157     1717.4627        <.0001 
                               tseverhaart_l1_inter     1     -0.0139    0.000576      586.1415        <.0001 
                               aids_l1                  1      0.2542      0.0327       60.3638        <.0001 
                               tsaids_l1_inter          1    -0.00646     0.00122       27.9804        <.0001 
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Model 3 CD4 count 
 
 
                                                             The REG Procedure 
                                                               Model: MODEL1 
                                                        Dependent Variable: sqrtcd4  
 
                                                  Number of Observations Read       67568 
                                                  Number of Observations Used       67568 
 
 
                                            Root MSE              2.77103    R-Square     0.7832 
                                            Dependent Mean       18.41451    Adj R-Sq     0.7831 
                                            Coeff Var            15.04807                        
 
 
                                                            Parameter Estimates 
  
                                                              Parameter       Standard 
                              Variable                DF       Estimate          Error    t Value    Pr > |t| 
 
                              Intercept                1        2.17939        0.12102      18.01      <.0001 
                              age_0                    1       -0.01235        0.00125      -9.85      <.0001 
                              sex                      1        0.15957        0.07061       2.26      0.0238 
                              sqrtcd40                 1        0.10083        0.00280      35.96      <.0001 
                              lnrna0                   1        0.10370        0.00711      14.59      <.0001 
                              hcv_pos_ab_v             1       -0.21224        0.03825      -5.55      <.0001 
                              month2                   1       -0.02882        0.00198     -14.58      <.0001 
                              month2_spl1              1        0.03866        0.00235      16.43      <.0001 
                              sqrtcd4_l2               1        0.27967        0.01016      27.53      <.0001 
                              sqrtcd4_l1               1        0.53070        0.01013      52.37      <.0001 
                              ts_last_sqrtcd4_l1       1        0.04433        0.01153       3.85      0.0001 
                              lnrna_l1                 1       -0.05814        0.00307     -18.95      <.0001 
                              ts_last_lnrna_l1         1       -0.08017        0.01169      -6.85      <.0001 
                              everhaart_l1             1        0.86122        0.03703      23.26      <.0001 
                              tseverhaart_l1_inter     1       -0.00656        0.00138      -4.77      <.0001 
                              aids_l1                  1       -0.43022        0.07479      -5.75      <.0001 
                              tsaids_l1_inter          1        0.00384        0.00282       1.36      0.1736 
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Model 4 Visit to measure HIV-RNA viral load 
 
 
                                                           The LOGISTIC Procedure 
 
                                                             Model Information 
 
                                               Data Set                      WORK.PARAM       
                                               Response Variable             visit_rna        
                                               Number of Response Levels     2                
                                               Weight Variable               _weight_         
                                               Model                         binary logit     
                                               Optimization Technique        Fisher's scoring 
 
 
                                                  Number of Observations Read      279236 
                                                  Number of Observations Used      279236 
                                                  Sum of Weights Read              279236 
                                                  Sum of Weights Used              279236 
 
 
                                                              Response Profile 
  
                                            Ordered                       Total            Total 
                                              Value     visit_rna     Frequency           Weight 
 
                                                  1            1          69147         69147.00 
                                                  2            0         210089        210089.00 
 
                                                    Probability modeled is visit_rna=1. 
 
 
                                                          Model Convergence Status 
 
                                               Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                                                            Model Fit Statistics 
  
                                                                                Intercept 
                                                                 Intercept            and 
                                                   Criterion          Only     Covariates 
 
                                                   AIC           312587.48      107192.93 
                                                   SC            312598.02      107382.65 
                                                   -2 Log L      312585.48      107156.93 
 
 
                                                  Testing Global Null Hypothesis: BETA=0 
  
                                          Test                 Chi-Square       DF     Pr > ChiSq 
 
                                          Likelihood Ratio     205428.549       17         <.0001 
                                          Score                149909.420       17         <.0001 
                                          Wald                 66184.8312       17         <.0001 
_                                                               The SAS System 
 
                                                           The LOGISTIC Procedure 
 
                                                  Analysis of Maximum Likelihood Estimates 
  
                                                                         Standard          Wald 
                               Parameter               DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                               Intercept                1     -0.4530      0.0912       24.6538        <.0001 
                               age_0                    1     0.00414    0.000955       18.8014        <.0001 
                               sex                      1      0.0468      0.0540        0.7516        0.3860 
                               sqrtcd40                 1    -0.00879     0.00218       16.2475        <.0001 
                               lnrna0                   1     0.00662     0.00544        1.4804        0.2237 
                               hcv_pos_ab_v             1     -0.0830      0.0291        8.1576        0.0043 
                               month2                   1     -0.0114     0.00143       64.1313        <.0001 
                               month2_spl1              1      0.0202     0.00178      129.3813        <.0001 
                               sqrtcd4_l2               1      0.0337     0.00409       67.9847        <.0001 
                               sqrtcd4_l1               1     -0.0928     0.00552      282.9134        <.0001 
                               ts_last_sqrtcd4          1     -2.3031      0.0103    49973.7290        <.0001 
                               lnrna_l1                 1      0.0507     0.00234      468.3945        <.0001 
                               ts_last_lnrna_l1         1      0.9612     0.00675    20273.4216        <.0001 
                               everhaart_l1             1      0.6448      0.0269      573.5337        <.0001 
                               tseverhaart_l1_inter     1     -0.0116     0.00104      125.7539        <.0001 
                               aids_l1                  1      0.0577      0.0553        1.0872        0.2971 
                               tsaids_l1_inter          1    -0.00393     0.00216        3.3063        0.0690 
                               sqrtcd4                  1      0.0625     0.00437      204.4490        <.0001 
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Models 5, 6 HIV-RNA viral load models 
 
 
                                                           The LOGISTIC Procedure 
 
                                                             Model Information 
 
                                               Data Set                      WORK.PARAM       
                                               Response Variable             zlnrna           
                                               Number of Response Levels     2                
                                               Weight Variable               _weight_         
                                               Model                         binary logit     
                                               Optimization Technique        Fisher's scoring 
 
 
                                                  Number of Observations Read       69371 
                                                  Number of Observations Used       69371 
                                                  Sum of Weights Read               69371 
                                                  Sum of Weights Used               69371 
 
 
                                                              Response Profile 
  
                                             Ordered                      Total            Total 
                                               Value       zlnrna     Frequency           Weight 
 
                                                   1            1         38303        38303.000 
                                                   2            0         31068        31068.000 
 
                                                      Probability modeled is zlnrna=1. 
 
 
                                                          Model Convergence Status 
 
                                               Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                                                  Analysis of Maximum Likelihood Estimates 
  
                                                                         Standard          Wald 
                               Parameter               DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                               Intercept                1     -0.9176      0.1173       61.1971        <.0001 
                               age_0                    1    -0.00618     0.00120       26.5277        <.0001 
                               sex                      1      0.1913      0.0698        7.5218        0.0061 
                               sqrtcd40                 1    -0.00393     0.00266        2.1959        0.1384 
                               lnrna0                   1      0.0129     0.00678        3.6018        0.0577 
                               hcv_pos_ab_v             1      0.1455      0.0367       15.7016        <.0001 
                               month2                   1      0.0335     0.00210      255.4762        <.0001 
                               month2_spl1              1     -0.0373     0.00231      260.0867        <.0001 
                               sqrtcd4_l2               1     0.00653      0.0104        0.3955        0.5294 
                               sqrtcd4_l1               1      0.0610      0.0106       32.9589        <.0001 
                               ts_last_sqrtcd4          1     -0.0519      0.0109       22.8529        <.0001 
                               lnrna_l1                 1      0.4459     0.00352    16043.7095        <.0001 
                               ts_last_lnrna_l1         1     -0.0170     0.00560        9.1851        0.0024 
                               everhaart_l1             1     -0.7678      0.0424      327.6621        <.0001 
                               tseverhaart_l1_inter     1     0.00293     0.00137        4.5885        0.0322 
                               aids_l1                  1      0.2390      0.0765        9.7524        0.0018 
                               tsaids_l1_inter          1    -0.00158     0.00275        0.3298        0.5658 
                               sqrtcd4                  1     -0.0805     0.00397      409.9896        <.0001 
_                                                               The SAS System 
 
                                                             The REG Procedure 
                                                               Model: MODEL1 
                                                        Dependent Variable: llnrna  
 
                                                  Number of Observations Read       38303 
                                                  Number of Observations Used       38303 
 
 
                                            Root MSE              0.26880    R-Square     0.4765 
                                            Dependent Mean        1.90385    Adj R-Sq     0.4763 
                                            Coeff Var            14.11869                        
 
 
                                                            Parameter Estimates 
  
                                                              Parameter       Standard 
                              Variable                DF       Estimate          Error    t Value    Pr > |t| 
 
                              Intercept                1        1.86245        0.01574     118.36      <.0001 
                              age_0                    1       -0.00315     0.00016391     -19.19      <.0001 
                              sex                      1        0.02041        0.00853       2.39      0.0168 
                              sqrtcd40                 1        0.01083     0.00037796      28.66      <.0001 
                              lnrna0                   1        0.01242     0.00091590      13.56      <.0001 
                              hcv_pos_ab_v             1       -0.03044        0.00481      -6.33      <.0001 
                              month2                   1        0.00153     0.00023643       6.49      <.0001 
                              month2_spl1              1       -0.00455     0.00030560     -14.87      <.0001 
                              sqrtcd4_l2               1        0.00335        0.00114       2.93      0.0034 
                              sqrtcd4_l1               1        0.01208        0.00118      10.26      <.0001 
                              ts_last_sqrtcd4          1       -0.00225        0.00148      -1.53      0.1270 
                              lnrna_l1                 1        0.04406     0.00046800      94.15      <.0001 
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                              ts_last_lnrna_l1         1        0.01561     0.00068627      22.75      <.0001 
                              everhaart_l1             1       -0.25648        0.00423     -60.65      <.0001 
                              tseverhaart_l1_inter     1        0.00360     0.00017097      21.05      <.0001 
                              aids_l1                  1        0.01024        0.00890       1.15      0.2498 
                              tsaids_l1_inter          1    -0.00018530     0.00035672      -0.52      0.6035 
                              sqrtcd4                  1       -0.03245     0.00049821     -65.13      <.0001 

 
Model 7 Combined antiretroviral therapy 
 
 
                                                           The LOGISTIC Procedure 
 
                                                             Model Information 
 
                                               Data Set                      WORK.PARAM       
                                               Response Variable             everhaart        
                                               Number of Response Levels     2                
                                               Weight Variable               _weight_         
                                               Model                         binary logit     
                                               Optimization Technique        Fisher's scoring 
 
 
                                                  Number of Observations Read       61239 
                                                  Number of Observations Used       61239 
                                                  Sum of Weights Read               61239 
                                                  Sum of Weights Used               61239 
 
 
                                                              Response Profile 
  
                                            Ordered                       Total            Total 
                                              Value     everhaart     Frequency           Weight 
 
                                                  1            1           3744         3744.000 
                                                  2            0          57495        57495.000 
 
                                                    Probability modeled is everhaart=1. 
 
 
                                                          Model Convergence Status 
 
                                               Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                                                 Analysis of Maximum Likelihood Estimates 
  
                                                                      Standard          Wald 
                                 Parameter          DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                                 Intercept           1     -2.4464      0.1988      151.4150        <.0001 
                                 age_0               1      0.0151     0.00211       51.0855        <.0001 
                                 sex                 1      0.2021      0.1132        3.1843        0.0744 
                                 sqrtcd40            1      0.0586     0.00849       47.5716        <.0001 
                                 lnrna0              1      0.0296      0.0140        4.4560        0.0348 
                                 hcv_pos_ab_v        1     -0.4206      0.0619       46.1860        <.0001 
                                 month2              1     -0.0921     0.00353      679.7947        <.0001 
                                 month2_spl1         1      0.1121     0.00594      356.1836        <.0001 
                                 sqrtcd4_l2          1      0.0142      0.0145        0.9558        0.3282 
                                 sqrtcd4_l1          1     -0.0566      0.0164       11.8398        0.0006 
                                 ts_last_sqrtcd4     1     -0.2170      0.0290       56.1688        <.0001 
                                 lnrna_l1            1      0.0214      0.0138        2.4147        0.1202 
                                 ts_last_lnrna       1     -0.2647      0.0288       84.4924        <.0001 
                                 aids_l1             1     -0.1760      0.1437        1.5013        0.2205 
                                 tsaids_l1_inter     1     0.00386     0.00994        0.1509        0.6977 
                                 sqrtcd4             1     -0.0836      0.0111       57.1759        <.0001 
                                 lnrna               1      0.1268      0.0127       99.0249        <.0001 
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Model 8 Diagnosis of an AIDS-defining illness 
 
 
                                                           The LOGISTIC Procedure 
 
                                                             Model Information 
 
                                               Data Set                      WORK.PARAM       
                                               Response Variable             aids             
                                               Number of Response Levels     2                
                                               Weight Variable               _weight_         
                                               Model                         binary logit     
                                               Optimization Technique        Fisher's scoring 
 
 
                                                  Number of Observations Read      264252 
                                                  Number of Observations Used      264252 
                                                  Sum of Weights Read              264252 
                                                  Sum of Weights Used              264252 
 
 
                                                              Response Profile 
  
                                             Ordered                      Total            Total 
                                               Value         aids     Frequency           Weight 
 
                                                   1            1           536           536.00 
                                                   2            0        263716        263716.00 
 
                                                       Probability modeled is aids=1. 
 
 
                                                          Model Convergence Status 
 
                                               Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                                                 Analysis of Maximum Likelihood Estimates 
  
                                                                       Standard          Wald 
                                Parameter            DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                                Intercept             1     -4.3722      0.5226       69.9983        <.0001 
                                age_0                 1     0.00559     0.00534        1.0973        0.2949 
                                sex                   1      0.3339      0.2760        1.4637        0.2263 
                                sqrtcd40              1      0.0452      0.0141       10.3141        0.0013 
                                lnrna0                1      0.1482      0.0344       18.5283        <.0001 
                                hcv_pos_ab_v          1     -0.1702      0.1494        1.2968        0.2548 
                                month2                1     -0.0450     0.00837       28.8932        <.0001 
                                month2_spl1           1      0.0503      0.0110       21.0638        <.0001 
                                sqrtcd4_l2            1      0.0360      0.0263        1.8776        0.1706 
                                sqrtcd4_l1            1     -0.0507      0.0321        2.4984        0.1140 
                                ts_last_sqrtcd4       1     -0.4732      0.0528       80.2139        <.0001 
                                lnrna_l1              1      0.0477      0.0212        5.0559        0.0245 
                                ts_last_lnrna         1      0.0570      0.0440        1.6772        0.1953 
                                everhaart             1     -0.1112      0.1175        0.8952        0.3441 
                                tseverhaart_inter     1     0.00355     0.00691        0.2644        0.6071 
                                sqrtcd4               1     -0.2364      0.0227      108.6731        <.0001 
                                lnrna                 1      0.0223      0.0197        1.2758        0.2587 
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