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Men who have sex with men (MSM) make up the majority of new human immunodeficiency
virus (HIV) diagnoses among young people in China. Understanding HIV transmission
dynamics among the MSM population is, therefore, crucial for the control and prevention of
HIV infections, especially for some newly reported genotypes of HIV. This study presents
a metapopulation model considering the impact of pre-exposure prophylaxis (PrEP) to
investigate the geographical spread of a hypothetically new genotype of HIV among MSM
in Guangdong, China. We use multiple data sources to construct this model to characterize
the behavioural dynamics underlying the spread of HIV within and between 21 prefecture-
level cities (i.e. Guangzhou, Shenzhen, Foshan, etc.) in Guangdong province: the online social
network via a gay social networking app, the offline human mobility network via the Baidu
mobility website, and self-reported sexual behaviours among MSM. Results show that PrEP
initiation exponentially delays the occurrence of the virus for the rest of the cities transmitted
from the initial outbreak city; hubs on the movement network, such as Guangzhou, Shenzhen,
and Foshan are at a higher risk of ‘earliest’ exposure to the new HIV genotype; most cities
acquire the virus directly from the initial outbreak city while others acquire the virus from
cities that are not initial outbreak locations and have relatively high betweenness centralities,
such as Guangzhou, Shenzhen and Shantou. This study provides insights in predicting the
geographical spread of a new genotype of HIV among an MSM population from different
regions and assessing the importance of prefecture-level cities in the control and prevention of
HIV in Guangdong province.

This article is part of the theme issue ‘Data science approach to infectious disease
surveillance’.

1. Introduction
Despite substantial progress in tackling the human immunodeficiency virus (HIV) epidemic,
HIV continues to pose public health threats in China [1,2]. Specifically, HIV transmission among
men who have sex with men (MSM) has increased markedly in recent years, making up the
majority of new diagnoses among young people in China [3–5]. HIV mutates frequently. Some
genotypes may become more infectious and virulent than the existing ones, which causes
current antiretroviral treatment (ART) to be less effective and a larger number of people to be
infected [6,7]. Increasing connectivity among cities has further complicated HIV transmission.
Understanding transmission patterns of a new genotype of HIV among MSM, especially the
geographical spread patterns, is important for the control and prevention of HIV infections.
An example of the outbreak of a new genotype in recent years is HIV-1 CRF55_01B, which
was first reported in 2012 and was later proven to have originated in MSM in Shenzhen, a
city of Guangdong province in China [6,7]. This genotype has been causing thousands of HIV
infection cases in the whole Guangdong province through an inter-city geographical transmission
pattern from Shenzhen. A surveillance system to alert neighbouring cities about the emergence
of a new HIV genotype may help us better control and prevent HIV transmission across cities.
Therefore, the motivation of this study is to first construct such an alarming system (i.e. an
inter-city probabilistic transmission network model) for cities by hypothesizing the emergence
of a new HIV genotype in a certain city and to predict possible geographical spread using a
metapopulation model.

Metapopulation models are widely used to investigate the transmission of infectious diseases,
such as influenza, the 2003 SARS epidemic, and the COVID-19, in a large-scale spatial area, where
disease transmission among spatially separated populations occurs via population movement
[8–12]. Previous research has used metapopulation models to measure the effect of human
mobility on HIV transmission, to evaluate the effectiveness of different intervention strategies,
and to predict further transmission [13–17]. For example, Megan et al. employed the
metapopulation approach to estimate the impact of migration on the spread of HIV based on
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a population study of migrant, non-migrant men, and their rural partners, in South Africa
[13]. They concluded that migration influences HIV spread by increasing likelihood of high-risk
sexual behaviours in their destination cities. Xiao et al. assessed the HIV epidemic in mainland
China based on a mobility network of diagnosed HIV/AIDS cases, which was constructed using
differences in their current residences and registered residences in China surveillance systems
[14]. Isdory et al. built a Susceptible-Infected-Removed (SIR) based metapopulation model to
analyse the impact of human mobility on HIV transmission based on the mobile phone location
data in Kenya [15]. They showed that mobility between regions played a relatively small role in
HIV transmission in Kenya where HIV has already been endemic.

However, little has been done to examine the geographical spread of HIV among the
MSM population under the context where HIV prevention measures are provided to at-
risk populations, such as HIV pre-exposure prophylaxis (PrEP) in China [18]. Effective HIV
prevention measures including sexuality education, condom use promotion, and PrEP can
significantly lower risks for transmitting the HIV virus. We focus on the MSM population and
the usage of PrEP in this model due to the high HIV prevalence among MSM in China and
the fairly large number of Chinese MSM who are willing to take PrEP [19]. To investigate the
geographical spread of a new HIV genotype among MSM, we construct a movement probabilistic
network to infer the MSM movement patterns between cities in Guangdong, one of the major
provinces with a high HIV incidence among MSM in China [20]. Based on this network, we
propose a metapopulation model, considering the impact of PrEP and parameterized with sexual
behaviour data among MSM in Guangdong, to mimic the HIV transmission patterns between
and within cities. This study aims to predict the geographical spread of a new genotype of HIV
among MSM populations from different cities, and to assess the importance of each city in the
control and prevention of HIV infections through simulations considering the impact of PrEP.
Note that our approach can be adopted to predict geographical spread at a larger scale (such as
transmission across provinces and countries). In this paper we used inter-city geographical spread
in Guangdong province to illustrate the model building process.

2. Inter-city movement probabilistic network
Because (i) MSM with follower–followee relationships in online social media may have real-life
contacts [21], and (ii) MSM population may have similar mobility patterns to other populations,
we constructed an inter-city movement probabilistic network among MSM which integrates the
multi-source data of online social networks and the offline mobility network to capture the MSM
movement patterns between 21 prefecture-level cities (we use ‘cities’ thereafter for simplicity)
in Guangdong. The offline mobility network is constructed using data from Baiduqianxi [22],
a public website providing a real-time migration index based on the number of inbound and
outbound events by rail, air and road traffic across mainland China for the entire migrant
population (not just MSM migrants). Here, a node represents a city. An edge between nodes
represents the average number of individuals travelling between two cities. We specify the
number of MSM travelling between cities on a pro rata basis: denote the total number of migrants
travelling between city i and city j per time step as Mij, then the number of MSM migrants
travelling between city i and city j per time step is δMij, where δ denotes the percentage of MSM
population among the whole population for all cities (see electronic supplementary material for
details). The online social network is constructed using data from Blued, the biggest gay men’s
dating app in China [23]. We randomly select 2011 users located in Guangdong province to infer
the general online inter-city social network. Here, a node also represents a city. An edge between
two cities represents the number of follower–followee relationships between two cities. Figure 1
illustrates the weighted degree distribution of the offline mobility network and the online social
network. We can observe the long-tailed (power-low) degree distribution on both networks, and
the offline mobility network has a longer tail than the online social network. We illustrate the
construction of the movement probabilistic network in figure 2. We denote Xij, Yij, Wij as the
adjacency matrix of the online social network, the offline mobility network, and the movement



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210126

...............................................................

0.1 0.2 0.3 0.4

degree

0

0.1

0.2

0.3

de
gr

ee
 d

is
tr

ib
ut

io
n

0.1 0.2 0.3 0.4
degree

0

0.1

0.2

0.3

de
gr

ee
 d

is
tr

ib
ut

io
n

(a) (b)

Figure 1. Weighted degree distribution of (a) the offline mobility network and (b) the online social network. For clear
illustration, theweighted degree of each city is rescaled by dividing through the sumof theweighted degree of all cities. (Online
version in colour.)

probabilistic network. Then, we use the following weighted linear combination to infer the actual
movement patterns among MSM.

Wij = α
Xij

Xi
+ (1 − α)

Yij

Yi
, (2.1)

where Xi = ∑
j Xij, Yj = ∑

i Yij, and α is the relative weight of the online social network in deciding
the actual movement. Here, Wij indicates the movement preference for MSM in city i [24].
Specifically, if one of MSM in city i moves, he goes to city j with a probability Wij. Wii = 0 and∑

j Wij = 1. According to equation (2.1), we assume such movement preference is determined by
the weight of the interaction on the online social network and the offline mobility network. Note
that, although the online social network and the offline mobility network are both symmetric
and undirected networks, i.e. Xij = Xji and Yij = Yji, the movement probabilistic network is an
asymmetric and directed network, i.e. Wij �= Wji. Owing to limited data, we cannot obtain a
specific value of α that describes the accurate combination of the online social network and the
offline mobility network. We will present and compare the geographical spread patterns under
different combinations (i.e. different values of α) in this study.

3. The Meta-Spudtr model
To investigate transmission patterns of a new HIV genotype within and between cities, we
propose Meta-Spudtr, a metapopulation model where the whole MSM population in Guangdong
is divided by a set of subpopulations connected by moving individuals (figure 3). To be specific,
we follow the prefecture-level divisions, with each subpopulation corresponding to all MSM
in a city. We describe the disease dynamics within each city based on a deterministic dynamic
compartmental model in [25]. Individuals in each city are divided into six classes: susceptible, on
PrEP, living with undiagnosed HIV, living with diagnosed HIV, on HIV ART, and removed. We
illustrate the transitions between states (e.g. ‘Susceptible’, ‘On PrEP’, etc.) in figure 3.

Denote Si(t), Pi(t), Ui(t), Di(t), Ti(t) and Ri(t) as the number of susceptible, on pre-exposure
PrEP, living with undiagnosed HIV, living with diagnosed HIV, on HIV ART, and removed
individuals at time t for city i, respectively. Ni = Si(t) + Pi(t) + Ui(t) + Di(t) + Ti(t) + Ri(t) is the
total number of individuals in city i. Susceptible individuals will initiate PrEP at a rate σ and we
assume that all individuals will not stop PrEP once starting. Susceptible and on PrEP individuals
may acquire HIV through sexual activities with individuals living with undiagnosed HIV and
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Figure 2. Construction of the movement probabilistic network. The panels in the left column show the visualizations of the
online social network (topone; obtained fromBlueD) and theofflinemobility network (bottomone; obtained fromBaiduqianxi).
A node represents a city in Guangdong, China. Node labels represent the abbreviations of city names. A detailedmapping of city
names and abbreviations is presented in the electronic supplementary material. An edge on online social network represents
the number of follower–followee relationships between two cities. An edge on the offline mobility network represents the
number of individuals travelling between two cities. The movement probabilistic network on the right column is constructed
by integrating the information on the online social network and the offline mobility network (the middle panel); see equation
(2.1). A directed edge on the movement probabilistic network represents the probability of individuals moving from the source
city to the target city. (Online version in colour.)
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Figure 3. Illustration of the transitions between states within cities. Definitions for parameters in figure 3 are provided in the
electronic supplementary material, equations (3.1) and (3.2). (Online version in colour.)

diagnosed HIV. We hypothesize that the risks for transmitting HIV from people living with
HIV but on regular ART treatment to susceptible individuals are minimal [26]. We also make an
assumption that once diagnosed as HIV-positive, individuals will decrease the number of sexual
contacts and use condoms in sexual activities. Denote the rates at which susceptible and on PrEP
individuals acquire HIV are λi(t) and λP

i (t), respectively. For susceptible individuals,

λi(t) = CβS

[
Ui(t)
Ni

+ (1 − θ ) (1 − ηC)
Di(t)
Ni

]
, (3.1)
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where C is the average number of contacts per person per time, βS is the transmission probability
per anal sex act, θ is the relative decrease change in the number of contacts for individuals living
with diagnosed HIV compared to those living with undiagnosed HIV, ηC is the condom efficacy
among MSM. Similarly, for individuals on PrEP,

λP
i (t) = CβP

[
Ui(t)
Ni

+ (1 − θ ) (1 − ηC)
Di(t)
Ni

]
, (3.2)

where βP = ηPβS is the transmission probability per anal sex act with condom use. ηP is the
efficacy of PrEP. After being infected with HIV, on PrEP individuals will immediately become
living with diagnosed HIV, while susceptible ones will first become undiagnosed and then transit
to diagnosed at a rate ψ . The mortality rates for individuals living with undiagnosed HIV and
diagnosed HIV are the same, denoted by v. Individuals living with diagnosed HIV will initiate
ART at a rate k and we assume that no one will drop out once starting. The mortality rate for
individuals on ART is denoted by vT. In addition to transmission dynamics within each city,
HIV can spread between cities through individual movements. Denote γ = ∑

i,j Yij/
∑

i Ni as the
average movement rate, i.e. each MSM decides whether or not to move with probability γ or
remain in current city with probability 1 − γ . If he moves, the choice of destination is decided by
Wij obtained from equation (2.1). Then, we can obtain the differential equations to describe HIV
transmission dynamics within and between cities as follows:

∂tSi(t) = −[λi(t) + σ ]Si(t) + γNi
∑
j�=i

Wij

[
Sj(t)

Nj
− Si(t)

Ni

]
,

∂tPi(t) = σSi(t) − λP
i (t)Pi(t) + γNi

∑
j�=i

Wij

[
Pj(t)

Nj
− Pi(t)

Ni

]
,

∂tUi(t) = λi(t)Si(t) − (ψ + v)Ui(t) + γNi
∑
j�=i

Wij

[
Uj(t)

Nj
− Ui(t)

Ni

]
,

∂tDi(t) =ψUi(t) + λP
i (t)Pi(t) − (k + v)Di(t) + γNi

∑
j�=i

Wij

[
Dj(t)

Nj
− Di(t)

Ni

]
,

∂tTi(t) = kDi(t) − vTTi(t) + γNi
∑
j�=i

Wij

[
Tj(t)

Nj
− Ti(t)

Ni

]

and ∂tRi(t) = v[Ui(t) + Di(t)] + vTTi(t) + γNi
∑
j�=i

Wij

[
Rj(t)

Nj
− Ri(t)

Ni

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

The model works in a monthly time step. Note that (a) there is no entry into or departure
from the whole MSM population; (b) the model is restricted to the transmission of the new
genotype of HIV, thus, infections with other genotypes are not considered; (c) we only consider
HIV transmission among MSM (i.e. via anal sex) in this model for simplicity. The values of
epidemiological parameters in equation (3.3) are estimated mainly based on previous sexual
behavioural surveys and reports of MSM in Guangdong, as all cities in Guangdong province are
selected for modelling. Corresponding references are provided in the electronic supplementary
material.

4. Simulations and results

(a) General transmission patterns
Figure 4 presents the total numbers of MSM living with HIV (i.e. undiagnosed, diagnosed but
not on ART, and diagnosed and on ART) and the distribution of infected cases in the five most
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Figure 4. Total numbers of infected MSM (i.e. MSM living with HIV) in GZ, SZ, DG, FS and ZJ with (a)σ = 0 and (c)σ = 0.01.
Distribution of infectedMSM inGZ, SZ, DG, FS and ZJwith (b)σ = 0 and (d)σ = 0.01.α= 0.5, Guangzhou is initially infected
with 20 MSM at t = 0. GZ, Guangzhou; SZ, Shenzhen; DG, Dongguan; FS, Foshan; ZJ, Zhanjiang. (Online version in colour.)

populous cities (i.e. Guangzhou, Shenzhen, Dongguan, Foshan and Zhanjiang) during the first
10 years with 20 MSM initially infected in Guangzhou. Although all five cities report infections
within 2 years, most new infections still occur in the initial outbreak city, Guangzhou, within
the first 10 years. The growth rate of infected cases for each city is partially relevant to the
movement probability from the initial outbreak city to other cities: the movement probability
from Guangzhou to Foshan (0.23) is greater than that to Dongguan (0.11), thus, the growth rate
at Foshan is higher than that at Dongguan. Of note, the movement probabilities from Guangzhou
to Dongguan and Shenzhen are almost the same, but we observe a slightly higher growth rate in
Shenzhen than that in Dongguan. Besides, PrEP initiation has a significant effect in preventing
infections: the number of infected cases in Guangzhou decreases gradually from the fifth year
when σ is 0.01, while it keeps growing when σ is 0. Although the numbers of infected cases in
other cities still grow when σ is 0.01, we can observe a much lower increase compared to the
scenario when σ is 0 and the increase rate is getting slower. Details about the difference in the
time series of infected cases are presented in the electronic supplementary material.

(b) Impact of PrEP
To quantitatively explain the impact of PrEP and the dynamics underlying the geographical
spread of HIV, we provide a simpler framework to capture the dynamics in equation (3.3).
Essentially, if the PrEP initiation rate σ = 0, the Meta-Spudtr model is approximately an SIR
based metapopulation model. Previous studies have proposed a framework that can reduce the
complex spatiotemporal patterns of such disease transmission by a simple propagation pattern.
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Specifically, the disease arrival time can be predicted by a probabilistically motivated effective
distance [9,27]. Following this literature, we define the effective distance from city i to a connected
city j as

dij = (1 − log Wij) ≥ 1. (4.1)

Note that, although the definition of Wij is a bit different from that in [9], they both quantify the
fraction of individuals with destination city j emanating from city i. Equation (4.1) is consistent
with the concept in [9] that a small Wij is equivalent to a large effective distance, and vice versa.
Since Wij �= Wji, then dij �= dji. Then, we can obtain the lengthΛ(Γ ) (based on the effective distance)
of a directed path Γ = {i1, . . . , iL} as

Λ(Γ ) =
m=L−1∑

m=1

dimim+1, (4.2)

Then, we define the effective distance from city i to an arbitrary city j as the shortest length among
all directed paths from city i to city j, i.e.

Dij = min
Γ
Λ(Γ ). (4.3)

Assuming the initial outbreak city of a specific genotype of HIV is city i, this genotype arrives
in an arbitrary city j at time Ta

ij, the framework in [9] suggests a linear relationship between the
disease arrival time Ta

ij and the effective distance Dij, i.e.

Ta
ij ∝ Dij. (4.4)

The arrival time is defined as the date of the first infected individual (living with undiagnosed
or diagnosed HIV). Figure 5a demonstrates the relationship between Ta and D with the initial
outbreak in Zhuhai, α = 0.7, and σ = 0. We observe a high value of R2, indicating that the HIV
transmission patterns can be well characterized by equation (4.4) with no one taking PrEP.
However, as σ grows, Ta correlates weakly with D. Figure 5b demonstrates the relationship
between Ta and D when σ = 0.03, other parameters are the same as that in figure 5a. We observe
that R2 decreases greatly, dropping to 0.61 in figure 5b from 0.87 in figure 5a. This indicates that,
since the framework in [9] did not consider the impact of prevention tools, equation (4.4) cannot
perfectly characterize the underlying dynamics of HIV transmission as σ grows.

Here, we propose a new framework that can better capture the geographical spread patterns
of HIV among MSM considering the impact of PrEP. We modified the framework in [9] to
characterize the relationship between the disease arrival time Ta

ij and the effective distance Dij as

log Ta
ij ∝ Dij. (4.5)

Figure 5 demonstrates the comparison of equations (4.4) and (4.5) in describing the relationship
between the arrival time Ta and the effective distance D with different initial outbreak cities,
different combinations of online social network and offline mobility network, and different PrEP
initiation rates. We can observe in all subfigures that, due to the impact of PrEP (σ > 0), effective
distance D has a stronger correlation with the natural logarithm of the arrival time log Ta than
the arrival time Ta itself. More similar results for a wide range of σ are presented in the electronic
supplementary material. These indicate that (a) given an initial outbreak city, the order in which
each city is infected by HIV transmission depends only on the underlying movement probabilistic
network regardless of the PrEP initiation rate σ ; (b) PrEP initiation exponentially delays the
occurrence of a specific genotype of HIV for all cities.

(c) ‘Earliest’ exposure risk
According to the linear relationship between log Ta and D, virus occurrence delays are much
shorter in cities with shorter effective distances from the initial outbreak city. Thus, cities with
shorter distances from other cities remain at high risk of immediate exposure to the virus,
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Figure 5. The relationship between the HIV arrival time Ta and the effective distance D when initial outbreak city is Zhuhai,
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initially infected MSM is 20. GZ, Guangzhou; ZH, Zhuhai and YF, Yunfu. (Online version in colour.)

even with the impact of PrEP. An earlier occurrence of the virus indicates a shorter time for
preparedness against the virus. Here, we define the ‘earliest’ exposure risk for each city by the
probability of being the first infected city except the initial outbreak city. Given a movement
probabilistic network (fixed α), the ‘earliest’ infection risk for city i EIRi is denoted as

EIRi =
∑

j I(Dji = minj�=kDjk)

n
, (4.6)

where n is the number of cities, I(·) is the indicator function.
∑

i EIRi = 1. Figure 6 illustrates
the ‘earliest’ exposure risk for each city with respect to different values of α. We can observe
that Guangzhou, Shenzhen, Foshan and Shantou will always face the risk of ‘earliest’ exposure
regardless of the value of α. The differences in the ‘earliest’ exposure risks for cities can also
be well explained by their positions on the movement network. Here, we plot the relationship
between EIR and the weighted degree for each city with α = 0 and α= 1, respectively, in figure 7.
We can observe in both subfigures that hub cities usually face higher ‘earliest’ exposure risk. As α
grows, fewer cities have large degrees while Guangzhou becomes a larger hub, thus, the ‘earliest’
exposure risk has been transferred to Guangzhou from other cities. Compared to figure 6a, we can
observe that fewer cities face the ‘earliest’ exposure risk while Guangzhou faces a much higher
‘earliest’ exposure risk in figure 6c.

(d) Most possible transmission path
By converting weights of edges on the movement probabilistic network to the effective distance
based on equation (4.1), we can obtain an effective distance-based movement network among
MSM. The shortest path tree generating from the effective distance-based movement network
indicates the most possible transmission path from the initial outbreak city to a random
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city. Figure 8 illustrates the shortest path tree with different values of α and different initial
outbreak cities. Here, we only present the results for α ∈ {0, 0.5, 1} and initial outbreak in
{ST (Shantou), HY (Heyuan)}. Results for other scenarios are consistent with the results in
figure 8. We can observe that most cities acquire the virus directly from the initial outbreak
city, while some cities acquire the virus from non-initial outbreak cities like Guangzhou,
Shenzhen and Shantou. Figure 9 illustrates the betweenness centralities [28] for these three
cities on the effective distance-based movement network with different values of α. As α

increases, all betweenness centralities for Guangzhou, Shenzhen and Shantou increase. Besides,
Guangzhou always has a higher betweenness centrality than Shenzhen and Shantou. These
results quantitatively demonstrate the importance of each city in facilitating HIV transmission
between cities. Containment of the outbreak in cities with high betweenness centralities slows
the contagion of the virus, because several cities can only reach each other via longer paths. It
is not surprising that Guangzhou, the capital of Guangdong province and Shenzhen, the first
special economic zone in China, play a huge role in bridging cities and facilitating transmission.
However, Shantou, as a medium sized city in Guangdong province, should also not be neglected
for control and prevention measures.
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5. Conclusion
In this study, we have developed the Meta-Spudtr, a metapopulation model considering the
impact of PrEP, to investigate the transmission patterns of a specific genotype of HIV among
MSM in Guangdong, China. Our Meta-Spudtr model works based on an inter-city movement
probabilistic network among MSM, which integrates the offline mobility network and the online
social network among MSM. Based on previous studies [9], we propose a new framework that can
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quantitatively capture the geographical spread patterns of HIV under the circumstances when
PrEP services are provided to MSM.

We find that (a) although the virus arrives in some cities 2 years after the initial outbreak,
the majority of new infections remain in the initial outbreak city in the first 10 years; (b) PrEP
initiation will not change the order in which cities will be infected; (c) but PrEP initiation
exponentially delays the occurrence of a new HIV genotype in all rest cities transmitted from
the outbreak city; (d) due to the hub-effect, Guangzhou, Shenzhen, Foshan and Shantou will
always face the risk of ‘earliest’ exposure in all combinations of the offline mobility network and
the online social network; (e) most cities acquire the virus directly from the initial outbreak city,
while some cities acquire the virus from cities that are not initial outbreak locations but have
relatively high betweenness centralities on the effective distance-based movement network, such
as Guangzhou, Shenzhen and Shantou. Our study extends previous studies [9] to predict the
arrival times of a new HIV genotype considering the impact of PrEP. It also assesses the exposure
risk and measures the importance in facilitating transmission for each city in Guangdong. This
framework can be easily extended to investigate the large-scale transmission patterns of other
infectious diseases with the impact of intervention tools by quantifying the underlying movement
probabilistic network and the related epidemiological parameters. Our model has limitations.
First, we do not consider the heterogeneity in PrEP initiation rates, HIV testing rates, ART
initiation rates among cities, and the sexual behaviour preferences, contact patterns among
MSM. Incorporating such heterogeneity will be interesting future work. Second, due to limited
access to administrative data, we combine online social networking apps and public website
documenting human mobility for estimation, and the value of α cannot be accurately determined.
Further studies should be conducted for calibrations of the current model in real-world
applications.

(All identifiable personal information was removed for privacy protection.)

Ethics. Some parameters of simulation are set based on our previous study’s data, whose ethical review of
biomedical research has been obtained from the Ethics Committee of Zhuhai Center for Disease Control
and Prevention prior to study enrollment (Number: ZhuhaiCDC-201901). For the survey data collection, all
participants have be provided with online consent and sign it electronically prior to taking part in our studies.
Data accessibility. Some parts of our data are available after signing a confidential agreement. For more
information about the data access, contact our two corresponding authors.
Authors’ contributions. F.J., Y.Y., Y.Z., W.T. and D.W. conceived this study. Y.Y. built the model and ran simulation
experiments. Y.Y. and F.J. drafted the manuscript. Y.Y., Y.Z., H.Z., Y.L., X.T. contributed to data collection. F.J.,
Z.X., S.Y., W.C., J.T., W.T. and D.W. provided insights to revisions. All authors reviewed and authorized the
final manuscript.
Competing interests. We declare we have no competing interests.
Funding. This study was supported by Key-Area Research and Development Program of Guangdong Province
(2020B0101130020); Research Grants Council of the Hong Kong Special Administrative Region, China (Project
No. CityU 11218221); and Economic and Social Research Council, UK Research and Innovation (UKRI) (Grant
No. ES/T014547/1).
Acknowledgements. We thank for the guest editor of this theme issue, Dr Qingpeng Zhang, for his valuable
comments and constructive suggestions for this work.

References
1. UNAIDS. 2019 2019 China AIDS response progress report. See www.unaids.org/sites/default/

files/country/documents/CHN.
2. Zheng S. 2018 The growing threat of China’s HIV epidemic. Lancet Public Health 3, e311.

(doi:10.1016/S2468-2667(18)30098-7)
3. Dong MJ, Peng B, Liu ZF, Ye Qn, Liu H, Lu XL, Zhang B, Chen JJ. 2019 The prevalence

of HIV among MSM in china: a large-scale systematic analysis. BMC Infect. Dis. 19, 1–20.
(doi:10.1186/s12879-018-3567-x)

4. Wu Z, Chen J, Scott SR, McGoogan JM. 2019 History of the HIV epidemic in China. Curr.
HIV/AIDS Rep. 16, 458–466. (doi:10.1007/s11904-019-00471-4)

www.unaids.org/sites/default/files/country/documents/CHN
www.unaids.org/sites/default/files/country/documents/CHN
http://dx.doi.org/10.1016/S2468-2667(18)30098-7
http://dx.doi.org/10.1186/s12879-018-3567-x
http://dx.doi.org/10.1007/s11904-019-00471-4


13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210126

...............................................................

5. Booton RD et al. 2021 Modelling the impact of an HIV testing intervention on HIV
transmission among men who have sex with men in China. HIV Med. 22, 467–477.
(doi:10.1111/hiv.13063)

6. Zhao J. et al. 2016 The dynamics of the HIV epidemic among men who have sex with men
(MSM) from 2005 to 2012 in Shenzhen, China. Sci. Rep. 6, 1–8. (doi:10.1038/s41598-016-0001-8)

7. Yu G et al. 2020 Genetic diversity and drug resistance of HIV-1 crf55_01b in Guangdong,
China. Curr. HIV Res. 18, 210–218. (doi:10.2174/1570162X18666200415140652)

8. Pei S, Kandula S, Yang W, Shaman J. 2018 Forecasting the spatial transmission of influenza in
the United States. Proc. Natl Acad. Sci. USA 115, 2752–2757. (doi:10.1073/pnas.1708856115)

9. Brockmann D, Helbing D. 2013 The hidden geometry of complex, network-driven contagion
phenomena. Science 342, 1337–1342. (doi:10.1126/science.1245200)

10. Ruktanonchai NW et al. 2020 Assessing the impact of coordinated Covid-19 exit strategies
across Europe. Science 369, 1465–1470. (doi:10.1126/science.abc5096)

11. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, Leskovec J. 2021 Mobility
network models of Covid-19 explain inequities and inform reopening. Nature 589, 82–87.
(doi:10.1038/s41586-020-2923-3)

12. Liao H, Zhang L, Marley G, Tang W. 2020 Differentiating Covid-19 response strategies.
Innovation 1, 100003. (doi:10.1016/j.xinn.2020.04.003)

13. Coffee M, Lurie MN, Garnett GP. 2007 Modelling the impact of migration on the HIV
epidemic in South Africa. Aids 21, 343–350. (doi:10.1097/QAD.0b013e328011dac9)

14. Xiao Y, Tang S, Zhou Y, Smith RJ, Wu J, Wang N. 2013 Predicting the HIV/Aids epidemic
and measuring the effect of mobility in mainland China. J. Theor. Biol. 317, 271–285.
(doi:10.1016/j.jtbi.2012.09.037)

15. Isdory A, Mureithi EW, Sumpter DJ. 2015 The impact of human mobility on HIV transmission
in kenya. PLoS ONE 10, e0142805. (doi:10.1371/journal.pone.0142805)

16. Smith RJ, Li J, Gordon R, Heffernan JM. 2009 Can we spend our way out of
the AIDS epidemic? A world halting AIDS model. BMC Public Health 9, 1–17.
(doi:10.1186/1471-2458-9-S1-S1)

17. Sun X, Xiao Y, Peng Z, Wang N. 2018 Frequent implementation of interventions may increase
HIV infections among MSM in China. Sci. Rep. 8, 1–11. (doi:10.1038/s41598-017-18743-7)

18. Anderson PL et al. 2012 Emtricitabine-tenofovir concentrations and pre-exposure
prophylaxis efficacy in men who have sex with men. Sci. Transl. Med. 4, 151ra125.
(doi:10.1126/scitranslmed.3004006)

19. Xu J, Tang W, Zhang F, Shang H. 2020 Prep in China: choices are ahead. Lancet HIV 7,
e155–e157. (doi:10.1016/S2352-3018(19)30293-0)

20. Huang W, Wang Y, Lu H, Wu D, Pan SW, Tucker JD, Tang W. 2020 High HIV incidence among
men who have sex with men in 8 Chinese cities: results from a trial. In Open forum infectious
diseases (ed. PE Sax), vol. 7, p. ofaa147. Oxford University Press US.

21. Young SD, Nianogo RA, Chiu CJ, Menacho L, Galea J. 2016 Substance use and
sexual risk behaviors among peruvian MSM social media users. AIDS Care 28, 112–118.
(doi:10.1080/09540121.2015.1069789)

22. Baidu. 2020 Baidu Qianxi. See https://qianxi.baidu.com/.
23. Blued. See https://blued.cn/.
24. Soriano-Paños D, Lotero L, Arenas A, Gómez-Gardeñes J. 2018 Spreading processes in

multiplex metapopulations containing different mobility networks. Phys. Rev. X 8, 031039.
(doi:10.1103/PhysRevX.8.031039)

25. Wang L et al. 2021 Mathematical modelling of the influence of serosorting on the
population-level HIV transmission impact of pre-exposure prophylaxis. AIDS 35, 1113.
(doi:10.1097/QAD.0000000000002826)

26. Rodger AJ et al. 2016 Sexual activity without condoms and risk of hiv transmission in
serodifferent couples when the HIV-positive partner is using suppressive antiretroviral
therapy. Jama 316, 171–181. (doi:10.1001/jama.2016.5148)

27. Wang L, Wu JT. 2018 Characterizing the dynamics underlying global spread of epidemics.
Nat. Commun. 9, 1–11. (doi:10.1038/s41467-017-02088-w)

28. Borgatti SP. 1995 Centrality and aids. Connections 18, 112–114.

http://dx.doi.org/10.1111/hiv.13063
http://dx.doi.org/10.1038/s41598-016-0001-8
http://dx.doi.org/10.2174/1570162X18666200415140652
http://dx.doi.org/10.1073/pnas.1708856115
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1126/science.abc5096
http://dx.doi.org/10.1038/s41586-020-2923-3
http://dx.doi.org/10.1016/j.xinn.2020.04.003
http://dx.doi.org/10.1097/QAD.0b013e328011dac9
http://dx.doi.org/10.1016/j.jtbi.2012.09.037
http://dx.doi.org/10.1371/journal.pone.0142805
http://dx.doi.org/10.1186/1471-2458-9-S1-S1
http://dx.doi.org/10.1038/s41598-017-18743-7
http://dx.doi.org/10.1126/scitranslmed.3004006
http://dx.doi.org/10.1016/S2352-3018(19)30293-0
http://dx.doi.org/10.1080/09540121.2015.1069789
https://qianxi.baidu.com/
https://blued.cn/
http://dx.doi.org/10.1103/PhysRevX.8.031039
http://dx.doi.org/10.1097/QAD.0000000000002826
http://dx.doi.org/10.1001/jama.2016.5148
http://dx.doi.org/10.1038/s41467-017-02088-w

	Introduction
	Inter-city movement probabilistic network
	The Meta-Spudtr model
	Simulations and results
	General transmission patterns
	Impact of PrEP
	`Earliest' exposure risk
	Most possible transmission path

	Conclusion
	References

