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Differential impact of government 
lockdown policies on reducing 
air pollution levels and related 
mortality in Europe
Rochelle Schneider1,2,3,4*, Pierre Masselot1, Ana M. Vicedo‑Cabrera5,6, Francesco Sera1,7, 
Marta Blangiardo8, Chiara Forlani8, John Douros9, Oriol Jorba10, Mario Adani11, 
Rostislav Kouznetsov12,13, Florian Couvidat14, Joaquim Arteta15, Blandine Raux14, 
Marc Guevara10, Augustin Colette14, Jérôme Barré4, Vincent‑Henri Peuch4 & 
Antonio Gasparrini1,3,16

Previous studies have reported a decrease in air pollution levels following the enforcement of 
lockdown measures during the first wave of the COVID‑19 pandemic. However, these investigations 
were mostly based on simple pre‑post comparisons using past years as a reference and did not assess 
the role of different policy interventions. This study contributes to knowledge by quantifying the 
association between specific lockdown measures and the decrease in  NO2,  O3,  PM2.5, and  PM10 levels 
across 47 European cities. It also estimated the number of avoided deaths during the period. This 
paper used new modelled data from the Copernicus Atmosphere Monitoring Service (CAMS) to define 
business‑as‑usual and lockdown scenarios of daily air pollution trends. This study applies a spatio‑
temporal Bayesian non‑linear mixed effect model to quantify the changes in pollutant concentrations 
associated with the stringency indices of individual policy measures. The results indicated non‑linear 
associations with a stronger decrease in  NO2 compared to  PM2.5 and  PM10 concentrations at very strict 
policy levels. Differences across interventions were also identified, specifically the strong effects of 
actions linked to school/workplace closure, limitations on gatherings, and stay‑at‑home requirements. 
Finally, the observed decrease in pollution potentially resulted in hundreds of avoided deaths across 
Europe.

COVID-19 disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This infec-
tious disease has spread worldwide placing enormous pressure on national health systems since it can cause 
 hospitalization1 and lead to  death2. The first official outbreak was reported in Wuhan (China) in December 
2019 and, as of January 4,  20223, the virus is already responsible for 5.46 million deaths worldwide and 1.54 
million across Europe. Several local and national policy interventions have been implemented to prevent the 
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transmission of SARS-CoV-2, such as social distancing, stay at home requirements, international travel controls, 
and non-essential business  closures4,5. As a consequence of this unique global coordinated response, several urban 
areas across the world experienced an abrupt drop in air pollution  levels6. Given the substantive evidence on the 
short-term effects of air pollution on health, recent studies have suggested that the decrease in exposure of entire 
populations likely resulted in a reduction in excess mortality and morbidity in different location  worldwide7–10.

Several studies explored different approaches to assess air pollution changes during the first COVID-19 
lockdown. In Europe, Ordóñez and  colleagues11 used the European Environment Agency’s ground monitor-
ing  database12 to estimate the  NO2 and  O3 changes from mid-March to April 2020 compared to 2015–2019. 
They used a generalised additive model to weather-normalise the daily maximum 1 h mean nitrogen dioxide 
 (NO2) and the 8 h mean Ozone  (O3). They identified an increase of around 10–22% in  O3 concentrations from 
northwestern to central Europe based on urban background monitors. Venter et al.13 collected satellite and 
ground station data to estimate air pollution differences between January and May 2020 and a baseline period 
(2017–2019) in 34 countries. They used a multiple linear regression model to weather-normalise during lock-
down period surface concentrations of  NO2 and particle matter (PM) with an aerodynamic diameter smaller 
than 2.5 µm  (PM2.5). They found a reduction in daily mean  NO2 and  PM2.5 of 60% and 31%, respectively, with 
a small increase in ozone  (O3) of 4%. Following up, Venter et al.14 used the estimated changes in pollution to 
compute the expected reduction in excess mortality and morbidity, reporting a total of 49,900 excess deaths and 
89,000 pediatric asthma emergency room visits avoided during the lockdown. Giani et al.15 assessed the health 
impact of daily mean  PM2.5 concentrations decline in Europe and China by integrating ground station data with 
a chemical transport model. They simulated the effect of the first COVID-19 lockdown (short-term) on  PM2.5 
concentrations and four emission scenarios of future economic recovery (long-term). In Europe, they found an 
estimated 2190 short-term avoided deaths (during February–May) and, depending on the economic recovery 
path, a number of preventable deaths in the long term ranging from 13,600 to 29,500.

Gkatzelis et al.16 critically reviewed more than 200 papers and acknowledged the significant effects of mete-
orological conditions on pollutant concentrations as well as the importance to account for it in the statistical 
models together with emission trends and atmospheric chemical interactions. They also reported that the major-
ity of publications did not weather-normalise the concentration of pollutants. These steps are relevant because 
air quality conditions are determined in part by changes in weather and in part by emissions of pollutants from 
human activities. At different layers of the atmosphere, these two elements will drive a complex package of physi-
cal and chemical non-linear  interactions17,18, determining the spread and concentrations of each pollutant. This 
makes it complex to conduct simple pre-post comparisons between concentrations in 2020 and previous years. 
For instance, Barré et al.19 demonstrated how much the estimated reduction in  NO2 levels can vary significantly 
using simple pre-post or weather-normalised comparisons as well as different data sources. For example, they 
weather-normalised all estimates and the results demonstrated a large variability on the average reductions 
from satellite (− 23%) and ground monitors observations (− 43%), and air quality models (− 32%). This study 
also identified that several previous studies defined the lockdown scenario as a fixed period of low air pollution 
levels. However, several policy responses were taken by governments at different dates, likely resulting in vary-
ing intensity and timing of the reduction in air pollution. More importantly, this simplistic definition prevents 
the quantitative assessment and comparison of several policy interventions and in particular their differential 
impact in reducing concentrations of different types of air pollutants.

This study aims first to address all significant effects reported in the literature (i.e. weather correction, emis-
sion trends, atmospheric chemistry, and temporally-variant lockdown period of air pollution levels), then to 
analyse the impact of government responses in reducing the concentration of four pollutants  [NO2,  O3,  PM2.5, 
and PM < 10 µm  (PM10)] across 47 European cities (listed in Table 1), and finally to report the related prevent-
able mortality for 46 locations (see “Data and methods”). This study contribute original evidence to the litera-
ture by estimating the decline of air pollution levels across Europe in association with the strictness of specific 
lockdown policies. This assessment will make use of the Copernicus Atmosphere Monitoring Service (CAMS)20 
operational air quality framework of forecast model ensemble applied under two temporally-variant emission 
scenarios, representing a business-as-usual (BAU) and lockdown settings, over the exact same period of 2020 
(February–July)21. The use of innovative data sources and methodological approaches will provide a quantita-
tive assessment of the roles of specific lockdown policy interventions in reducing pollution levels and associated 
short-term mortality during the study period.

Data and methods
Data. Design setting. This study originally selected 50 cities among the largest in Europe to represent most 
of the countries and populations (Table 1)4. Among these 50, three were excluded (Podgorica—Montenegro, 
Skopje—Moldova, and Valletta—Malta) because of the absence of government response data. This study report-
ed the results of the government responses to lower air pollution for 47 cities; however, the excess deaths were 
estimated for 46 cities since the mortality rate for Pristina (Kosovo) was not available on the Eurostat  database22. 
The study period ranges from 1st of February to 31st of July 2020 and roughly represents the first wave of COV-
ID-19 pandemic in Europe, with a short initial period characterised by the absence of government responses, 
followed by a strict implementation and then partial relaxation of lockdown policies. For this period and cities, 
concentrations of four air pollutants  (NO2,  O3,  PM2.5, and  PM10) were extracted from numerical forecast models 
(see below) under two emission scenarios: BAU and  Lockdown21.

Numerical forecast model dataset. CAMS is one of the services that form Copernicus, the European Union’s 
Earth observation programme providing quality-controlled information related to air pollution via chemical 
transport models that are driven by a single numerical weather prediction model. An ensemble of six state-of-
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City name Country Population Max SI

Difference in excess deaths by pollutant-specific change (Lockdown-BAU)

NO2 O3 PM25 PM10

Amsterdam Netherlands 1,128,715 79.63 − 5.9 (− 7.2; − 
4.6) 0.8 (0.6; 1.1) − 1.8 (− 2.1; − 

1.6)
− 1.4 (− 1.5; − 
1.2)

Ankara Turkey 3,002,440 77.78 − 8.3 (− 10.1; 
− 6.5)

− 1.3 (− 1.7; − 
0.9)

− 0.6 (− 0.7; − 
0.5)

− 0.7 (− 0.8; − 
0.6)

Athens Greece 3,315,199 84.26 − 40.1 (− 48.8; − 
31.2)

− 0.7 (− 1.0; − 
0.5)

− 10.0 (− 11.4; 
− 8.8)

− 7.8 (− 8.7; − 
6.9)

Barcelona Spain 3,832,012 85.19 − 39.2 (− 47.7; − 
30.5)

− 1.2 (− 1.6; − 
0.8)

− 12.2 (− 13.9; − 
10.7)

− 9.3 (− 10.3; 
− 8.3)

Belgrade Serbia 1,106,870 100 − 1.6 (− 2.0; − 
1.3)

− 2.5 (− 3.2; − 
1.7)

− 1.4 (− 1.6; − 
1.2)

− 1.0 (− 1.2; − 
0.9)

Berlin Germany 3,271,872 76.85 − 9.6 (− 11.6; 
− 7.4)

− 1.6 (− 2.1; − 
1.1)

− 4.7 (− 5.4; − 
4.1)

− 3.5 (− 3.8; − 
3.1)

Bern Switzerland 197,760 73.15 − 0.5 (− 0.6; − 
0.4)

− 0.3 (− 0.5; − 
0.2)

− 0.5 (− 0.6; − 
0.4)

− 0.4 (− 0.4; − 
0.3)

Birmingham United Kingdom 2,426,863 75.93 − 8.9 (− 10.8; 
− 6.9) 1.0 (0.7; 1.3) − 4.2 (− 4.8; − 

3.7)
− 3.1 (− 3.5; − 
2.8)

Bratislava Slovakia 352,002 87.04 − 1.0 (− 1.2; − 
0.8)

− 0.4 (− 0.6; − 
0.3)

− 0.5 (− 0.6; − 
0.4)

− 0.4 (− 0.4; − 
0.3)

Brussels Belgium 1,381,517 81.48 − 10.4 (− 12.7; 
− 8.1) 1.4 (0.9; 1.8) − 3.2 (− 3.7; − 

2.8)
− 2.4 (− 2.7; − 
2.1)

Bucharest Romania 1,774,128 87.04 − 9.5 (− 11.5; 
− 7.4)

− 2.4 (− 3.2; − 
1.7)

− 2.8 (− 3.1; − 
2.4)

− 2.2 (− 2.4; − 
1.9)

Budapest Hungary 1,758,468 76.85 − 7.3 (− 8.9; − 
5.7)

− 2.9 (− 3.9; − 
2.0)

− 2.8 (− 3.2; − 
2.4)

− 2.3 (− 2.5; − 
2.0)

Cologne Germany 1,508,677 76.85 − 10.1 (− 12.3; 
− 7.8) 0.6 (0.4; 0.8) − 4.4 (− 5.0; − 

3.8)
− 3.2 (− 3.6; − 
2.9)

Copenhagen Denmark 1,225,959 72.22 − 4.5 (− 5.5; − 
3.5) 0.5 (0.4; 0.7) − 1.2 (− 1.4; − 

1.1)
− 1.0 (− 1.1; − 
0.9)

Dublin Ireland 1,004,263 90.74 − 3.3 (− 4.0; − 
2.6) 0.3 (0.2; 0.4) − 1.0 (− 1.2; − 

0.9)
− 0.8 (− 0.9; − 
0.7)

Hamburg Germany 1,596,992 76.85 − 7.3 (− 8.9; − 
5.7) 0.3 (0.2; 0.4) − 2.4 (− 2.8; − 

2.1)
− 1.9 (− 2.1; − 
1.7)

Helsinki Finland 907,386 60.19 − 1.9 (− 2.3; − 
1.5) 0.1 (0.1; 0.1) − 0.5 (− 0.6; − 

0.4)
− 0.7 (− 0.8; − 
0.7)

Lisbon Portugal 1,958,521 87.96 − 18.9 (− 23.0; − 
14.7) 0.3 (0.2; 0.4) − 11.4 (− 13.1; − 

10.0)
− 10.6 (− 11.8; 
− 9.4)

Ljubljana Slovenia 250,335 89.81 − 0.7 (− 0.8; − 
0.5)

− 0.4 (− 0.6; − 
0.3)

− 0.4 (− 0.5; − 
0.4)

− 0.3 (− 0.3; − 
0.3)

London United Kingdom 9,609,627 75.93 − 37.9 (− 46.1; − 
29.5) 4.9 (3.4; 6.5) − 13.9 (− 15.8; − 

12.2)
− 10.5 (− 11.7; 
− 9.3)

Luxembourg Luxembourg 119,160 79.63 − 0.4 (− 0.4; − 
0.3)

− 0.1 (− 0.1; − 
0.1)

− 0.2 (− 0.3; − 
0.2)

− 0.2 (− 0.2; − 
0.2)

Lyon France 1,152,368 87.96 − 6.7 (− 8.2; − 
5.2)

− 1.0 (− 1.3; − 
0.7)

− 2.6 (− 3.0; − 
2.3)

− 2.0 (− 2.2; − 
1.8)

Madrid Spain 4,894,295 85.19 − 38.8 (− 47.2; − 
30.2)

− 3.4 (− 4.5; − 
2.3)

− 7.7 (− 8.7; − 
6.7)

− 6.1 (− 6.7; − 
5.4)

Marseille France 909,727 87.96 − 3.2 (− 3.8; − 
2.5)

− 1.5 (− 1.9; − 
1.0)

− 1.7 (− 1.9; − 
1.5)

− 1.3 (− 1.4; − 
1.1)

Milan Italy 3,011,030 93.52 − 36.7 (− 44.7; − 
28.6)

− 6.1 (− 8.0; − 
4.1)

− 18.1 (− 20.6; − 
15.8)

− 12.6 (− 14.0; − 
11.2)

Monaco France 59,433 87.96 − 0.2 (− 0.2; − 
0.1)

− 0.2 (− 0.2; − 
0.1)

− 0.1 (− 0.2; − 
0.1)

− 0.1 (− 0.1; − 
0.1)

Munich Germany 1,573,652 76.85 − 5.5 (− 6.7; − 
4.3)

− 1.5 (− 1.9; − 
1.0)

− 3.1 (− 3.5; − 
2.7)

− 2.3 (− 2.5; − 
2.0)

Naples Italy 3,167,668 93.52 − 29.9 (− 36.4; − 
23.3)

− 1.9 (− 2.6; − 
1.3)

− 8.2 (− 9.4; − 
7.2)

− 5.9 (− 6.5; − 
5.2)

Nicosia Cyprus 228,923 94.44 − 0.3 (− 0.4; − 
0.2)

− 0.3 (− 0.4; − 
0.2)

− 0.2 (− 0.2; − 
0.1)

− 0.1 (− 0.1; − 
0.1)

Oslo Norway 782,172 79.63 − 0.7 (− 0.9; − 
0.6)

− 0.1 (− 0.1; − 
0.0)

− 0.2 (− 0.2; − 
0.2)

− 0.2 (− 0.2; − 
0.1)

Paris France 9,711,652 87.96 − 69.2 (− 84.2; − 
53.8) 3.5 (2.4; 4.6) − 23.2 (− 26.5; − 

20.4)
− 17.4 (− 19.3; − 
15.4)

Prague Czech Republic 1,126,681 82.41 − 2.6 (− 3.2; − 
2.1)

− 1.0 (− 1.3; − 
0.7)

− 1.6 (− 1.8; − 
1.4)

− 1.1 (− 1.2; − 
1.0)

Pristina Kosovo 196,913 92.59 NA (NA; NA) NA (NA; NA) NA (NA; NA) NA (NA; NA)

Reykjavik Iceland 184,357 53.7 − 0.1 (− 0.1; − 
0.1) 0.0 (0.0; 0.0) − 0.0 (− 0.0; − 

0.0)
− 0.0 (− 0.0; − 
0.0)

Continued
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the-art chemistry-transport numerical forecast models (Table A3) included in the CAMS continuous air quality 
monitoring service has been used to simulate air pollution concentrations under the two emission scenarios. The 
BAU scenario considers no government restrictions, with air pollution emissions running at their default inven-
tory demand. The BAU emissions are obtained from the CAMS-REG-APv4.2 gridded inventory (0.1 × 0.05°)23 
constructed by Kuenen et al.24, which is largely based on the official reported emission data from individual 
countries in Europe to the Centre on Emission Inventories and Projections (CEIP) at European Monitoring and 
Evaluation Programme (EMEP) for each source category. The Lockdown scenario is based on daily-, sector-, 
pollutant- and country-dependent emission reduction factors determined by the Barcelona Supercomputing 
 Centre21. The rationale for the reduction factors was supported by many relevant activity-based and open-access 
observations, for example, Google mobility  reports25. The CAMS-REG-APv4.2 inventory was combined with 
the emission reduction factors in order to model dynamic emission reductions for each sector and country in 
the Lockdown scenario. The base year of the CAMS-REG-APv4.2 emissions used in the two scenarios was 2017, 
which was the most recent year available at the time of the study. Meteorological forcing that was used to gener-
ate the simulation remained identical, enabling a consistent comparison between the two scenarios. This CAMS 
product provides hourly concentrations of the ensemble median of the six models at the surface level of each 
pollutant across Europe in a regular latitude–longitude grid of 0.1° (approx. 10 × 10  km2). This study extracted 
for each of the 47 cities daily averages of Lockdown–BAU difference for  NO2,  PM2.5, and  PM10 and daily maxi-
mum 8 h mean for  O3.

Oxford coronavirus government response tracker. The Oxford Coronavirus Government Response Tracker 
(OxCGRT)4 dataset systematically collects information on governments responses to the COVID-19 pandemic. 
This global dataset is updated daily with information translated into 19 individual policy measures that are clas-
sified in four groups: containment and closure policies (C), economic policies (E), health system policies (H) 
and miscellaneous policies (M). These individual measures are coded as an integer between 0 (no government 
measure) and a maximum level that depends on the measure (usually between 2 and 4). The OxCGRT dataset 
also proposes several thematic indices combining subsets of the 19 measures.

This study focused on a quantitative measure of the strictness of the lockdown interventions, the Stringency 
Index (SI). This measure is constructed as the mean of nine policy measures: all eight C policies and the H1 policy 
that records public information campaigns (Table A14). The SI is computed as the mean of the standardized policy 
measures (between 0 and 1), so that each policy measure contributes equally to the SI, independently from its 

Table 1.  The sample of 46 cities (except Pristina (Kosovo)) selected from the European CAMS air quality 
information  webpage42. Reported are the population, the maximum daily Stringency Index (SI) reached in each 
city, and the estimated difference in number (with credible limits) of excess deaths associated with the change 
(Lockdown–BAU difference) in the four pollutants concentration. Negative values indicate that avoided deaths 
were expected from the Lockdown-BAU difference.

City name Country Population Max SI

Difference in excess deaths by pollutant-specific change (Lockdown-BAU)

NO2 O3 PM25 PM10

Riga Latvia 556,672 65.74 − 0.6 (− 0.8; − 
0.5)

− 0.4 (− 0.5; − 
0.3)

− 0.4 (− 0.4; − 
0.3)

− 0.3 (− 0.3; − 
0.3)

Rome Italy 2,342,860 93.52 − 18.4 (− 22.4; − 
14.3)

− 5.8 (− 7.7; − 
4.0)

− 6.8 (− 7.7; − 
5.9)

− 4.8 (− 5.3; − 
4.3)

Sarajevo Bosnia and 
Herzegovina 371,884 92.59 − 0.4 (− 0.5; − 

0.3)
− 0.7 (− 1.0; − 
0.5)

− 0.3 (− 0.4; − 
0.3)

− 0.2 (− 0.3; − 
0.2)

Sofia Bulgaria 926,881 73.15 − 3.5 (− 4.3; − 
2.7)

− 1.4 (− 1.9; − 
1.0)

− 1.1 (− 1.3; − 
1.0)

− 0.8 (− 0.9; − 
0.8)

Stockholm Sweden 1,305,076 46.3 − 1.8 (− 2.2; − 
1.4)

− 0.2 (− 0.3; − 
0.1)

− 0.7 (− 0.8; − 
0.6)

− 1.1 (− 1.2; − 
0.9)

Tallinn Estonia 344,511 77.78 − 0.5 (− 0.7; − 
0.4)

− 0.1 (− 0.1; − 
0.1)

− 0.1 (− 0.2; − 
0.1)

− 0.1 (− 0.1; − 
0.1)

Tirana Albania 719,252 89.81 − 1.5 (− 1.8; − 
1.1)

− 0.9 (− 1.1; − 
0.6)

− 0.7 (− 0.7; − 
0.6)

− 0.5 (− 0.6; − 
0.4)

Turin Italy 1,205,385 93.52 − 13.3 (− 16.2; − 
10.3)

− 3.6 (− 4.8; − 
2.5)

− 6.8 (− 7.8; − 
6.0)

− 4.9 (− 5.4; − 
4.3)

Valencia Spain 1,393,120 85.19 − 8.0 (− 9.7; − 
6.2)

− 1.9 (− 2.6; − 
1.3)

− 3.3 (− 3.7; − 
2.9)

− 2.5 (− 2.8; − 
2.2)

Vienna Austria 1,856,676 85.19 − 6.1 (− 7.4; − 
4.7)

− 1.8 (− 2.4; − 
1.2)

− 3.1 (− 3.5; − 
2.7)

− 2.3 (− 2.5; − 
2.0)

Vilnius Lithuania 355,430 87.04 − 0.8 (− 1.0; − 
0.6)

− 0.2 (− 0.3; − 
0.1)

− 0.3 (− 0.4; − 
0.3)

− 0.2 (− 0.3; − 
0.2)

Warsaw Poland 1,789,294 83.33 − 7.5 (− 9.2; − 
5.9)

− 1.0 (− 1.3; − 
0.7)

− 2.9 (− 3.3; − 
2.5)

− 2.0 (− 2.2; − 
1.8)

Zagreb Croatia 660,653 96.3 − 1.9 (− 2.3; − 
1.4)

− 1.5 (− 1.9; − 
1.0)

− 1.2 (− 1.4; − 
1.1)

− 1.0 (− 1.1; − 
0.9)

TOTAL 82,555,333 100 -485.5 (− 590.9 ; 
-377.6)

− 36.5 (− 57.1; − 
16.0)

− 174.6 (− 199.0; 
− 153.1)

− 133.5 (− 148.2; 
− 118.3)
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number of levels. The SI is then rescaled to have values between 0 (no response) and 100 (maximum response 
in every possible policy measure).

Health impact assessment. For the health impact assessment, estimates of relative risk (RR) of mortality associ-
ated with short-term exposure to each pollutant were collected from published multi-country studies for  NO2

26, 
 O3

8,  PM10
9 and  PM2.5

9. In addition, city-specific variables potentially related to differential pollution levels, spe-
cifically population size, NDVI (greenness), and built-up area, were collected for the year 2015 from the Global 
Human Settlement Urban Centres Database (GHS-UCDB)27. Finally, city-specific crude all-cause mortality rates 
for 2015 were extracted from  Eurostat22.

Statistical analysis. The statistical analysis follows three main steps: (1) estimation of the association 
between SI and changes in pollution between Lockdown and BAU scenarios, (2) estimation of the specific impact 
of each sub-policy measure on the pollution change, and (3) health impact assessment with the quantification 
of avoided deaths due to short-term exposure to air pollution. Each of these steps was performed independently 
for each of the four pollutants. The analysis was performed in R-4.0.328 with the addition of the integrated nested 
Laplace approximation (INLA)  package29.

Association between Stringency Index and pollution difference. The first step of the study modelled the associa-
tion between changes in air pollution and SI through a spatially structured Bayesian non-linear mixed effect 
model, expressed by Eq. (1):

where yit represents the pollutant-specific change (Lockdown-BAU) for city i and day t; xit is the daily SI for 
the city i; DOW represents a factor for day-of-week with city-specific coefficients γ 1i , while NDVI and BuiltUp 
area are city-specific indicators with related coefficients γ2 and γ3 . The γ 1i is estimated as city-specific since the 
DOW effect magnitude varies from city to city. ǫit is an unstructured Gaussian residual. Note that the intercept 
is removed from the model since no pollutant change ( yit = 0 ) is expected in the initial phase of no government 
response.

The nonlinear term f (xit;β + bi) is expanded through natural splines with four degrees of freedom and 
three knots placed at the 25, 50, and 75% quantiles. β is thus a four-dimensional vector representing fixed effect 
and bi are four-dimensional vectors representing city-specific deviations from the fixed effects β . For each of 
the four coefficients in bi , a spatial structure is added through a stochastic partial differential equation (SPDE) 
 approach30. Specifically, a Matérn covariance function was applied with penalized complexity prior as defined 
by Franco-Villoria et al.31.

The model in Eq. (1) is fitted through the INLA procedure for Bayesian  estimation32. Uninformative flat priors 
were used for all unstructured coefficients. In the main manuscript body, this study reports posterior means and 
95% credible intervals of predicted pollutant changes for a range of SI between 0 and 80%, as higher levels were 
not observed in most cities.

Impact of specific policy measures. The second step of the study assessed the impact of specific policy measures. 
Each policy indicator used to compute the SI was included as a new variable in the model of Eq. (1), generating 
the new following Eq. (2):

where zit is the policy measure with associated fixed and city-specific effects α and ai , and x′

it is the SI measure 
with zit removed. We standardize zit so that it takes zero when the policy is not implemented and one at its maxi-
mum level of stringency. The coefficient (α + ai) then represents the effect of the policy’s maximum level. All 
other components in Equation Eq. (2) are the same as their counterparts in Equation Eq. (1). As for the analysis 
of the full SI, city-specific policy coefficients ai are also spatially structured with a Matérn covariance function 
and corresponding penalized complexity priors. The model in Eq. (2) is also fitted by INLA. “Results” section 
reports posterior means of α for each pollutant and policy measure.

Estimating the excess deaths attributable to changes in air pollution levels. Given the estimates 
of the association between each pollutant and mortality ξ , daily mortality burdens are computed as:

where mi is the crude death rate, pi the population of city i  and yit the observed pollutant difference. ξ̂  is 
the pollutant-specific effect on mortality gathered from the  literature8,9,26. The estimated values of dit are then 
summed by city to obtain total city-specific mortality burdens for the period of February to July. To compare 
results, Table A4 reports both the total deaths by city and the excess deaths under the BAU scenario by pollutant 
and city, both during February and July 2020.

The uncertainty assessment of the mortality burdens was obtained by parametric Monte-Carlo simulations. 
A total of 1000 values were sampled from a Gaussian distribution with mean ξ̂  and standard deviation derived 
from the confidence intervals reported in the literature, and for each simulated coefficient, compute the mortality 

(1)yit = f (xit;β + bi)+ γ 1iDOWt + γ2NDVIi + γ3BuiltUpi + ǫit

(2)yit = (α + ai)zit + f
(
x
′

it;β + bi

)
+ γ 1iDOWt + γ2NDVIi + γ3BuiltUpi + ǫit

(3)dit = mi × pi × (1− e−ξ̂yit )
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burden. Empirical confidence intervals are then obtained by computing the percentile 2.5th and 97.5th of a 
sample of 1000 iterations of computed mortality burdens.

Results
Analysis of changes in air pollution levels across Europe. Several of the atmospheric models that are 
part of CAMS regional air quality forecast system were used to simulate the concentrations of the four pollutants 
under two scenarios, defined as ‘Lockdown’ and ‘BAU’ during the same period of 2020 (February–July). Their 
differences were used in this study to estimate city-specific changes in the daily concentration of each pollutant 
type. Figure 1 displays the time series of the change in levels of the daily mean of  NO2 and PM and daily maxi-
mum 8 h mean for  O3 in each of the 47 cities (listed in Table 1) and their average. Plots of  NO2 and PM indicate 
that their concentrations started to plummet during the first half of March, when the government responses 
were first implemented across the majority of the European cities. Differences across cities can be related to 
the different timing of lockdown policy implementations, as well as variation in strictness and potential effects 
of the policies. For instance, Milan (Italy) shows an earlier decline compared to the other cities, until the  NO2 
concentrations dropped to their minimum around mid-March. In contrast, London (United Kingdom) experi-
enced a noticeable decrease only in the second half of March. Stockholm (Sweden) had its air pollution levels less 
affected during the study period due mostly to the less stringent interventions from the government. After the 
strong decline in March/April, all cities experienced an attenuation in their  NO2 and PM changes, but still keep-
ing their levels lower than in the BAU scenario. Concentrations of daily maximum  O3 show a different pattern 
compared to the other three pollutants. The relative changes are very limited throughout the period with a slight 
increase up to the end of April, followed by very limited reductions for the remainder of the period. The seasonal 
variability of  O3 is very different compared to other pollutants because of its specific photochemical sensitivity 
which leads to enhanced formation in the summer season, while reductions in nitrogen oxides emissions  (NOx, 
combination of nitrogen oxides NO and  NO2) can lead to an increase of  O3 as a result of reduced titration and/
or depending on the mix of  O3 production precursors  (NOx and VOCs). Titration is of particular concern close 
to emission sources, at night, or in winter, in part due to conditions of increased atmospheric stability, but it can 
occur over a wide range of conditions. The specific temporal pattern of  O3 shown in Fig. 1 is therefore likely 
attributed to the transitioning between winter and summertime chemistry in the April/May period.

Quantifying the effect of lockdown strictness. Changes in pollution levels were then linked with 
measures of government policy responses to the pandemic, collected from the OxCGRT 4 (Table A1). In addition 
to offer a systematic definition of lockdown measures, the database provides quantitative indices of strictness 
across countries and periods. Specifically, an overall measure is offered by the SI (ranging from 0 to 100%), a 
summary of nine indicators related to containment, closure, and health policies. Table 1 reports the maximum 
daily SI score across the sample of cities, while Figure A1 in the supplementary material illustrates the average 
and city-specific daily series. As expected, there is a common temporal pattern in the strictness of the imple-
mented policies, although with noticeable differences across cities. Until early March, many cities experienced 
an increase in SI level by modest steps when an abruptly jump to an SI level around 75% was seen for most of 
the locations, and by mid-May, the SI levels were then generally going down by large steps (Figure A1). Belgrade 
(Serbia) was the only city having the maximum government response index (100%) while Stockholm (Sweden) 
reached only 46.3% (Table 1).

A quantitative estimate of the association between the strictness of lockdown policies and decrease in air 
pollution was obtained by relating daily Lockdown–BAU differences to SI measures in each of the 47 cities. The 
association was estimated based on a Bayesian hierarchical spatio-temporal model implemented using the INLA 
method. The model used daily time series of change in each pollutant as the outcome and the SI as a predictor, 
while controlling for the day of the week, normalised difference vegetation index (NDVI), and built-up area. This 
advanced methodology allowed us to flexibly model city-specific non-linear exposure–response relationships 
and to account for spatial correlation across locations in Europe.

Figure 2 displays the results as average and city-specific estimated change in concentrations across the SI 
range. On average, results indicate an inverse association for all cities, showing a decrease when increasing the 
strictness of government policies. This decrease is mild for low values of SI but sharpens at higher values. The 
decrease was substantial for  NO2, while the PM shows a weaker effect. Results for  O3 suggest a lower effect at 
very high SI ranges. The different relationship with  O3 can be influenced by the more complex temporal pattern 
of this pollutant and the role of seasonal factor that determine its concentration. The wider 95% credible interval 
seen between 20 and 40% SI in Fig. 2 is likely due to the sparse data within this range, as most of the cities have 
recorded levels jumping from around 0 to very high values.

Figure 3 displays maps of changes in each pollutant predicted with an 80% SI score (a value reached in most 
of the cities) across the European region. The actual estimates are reported in full in Table A2, together with 95% 
credible limits. The maps suggest a clear geographical pattern, although with some differences between pollut-
ants. The strongest effect on  NO2 for an 80% SI score was seen in Athens (Greece), presenting a Lockdown–BAU 
difference around − 10.2 µg/m3 (− 10.7; − 9.7) (Table A2). London shows strong effects, with a increase for  O3 
of 2.9 µg/m3 (1.9; 4.0) and a decrease of − 9.0 µg/m3 (− 10.1; − 7.9), − 2.6 µg/m3 (− 3.0; − 2.2), and − 2.9 µg/m3 
(− 3.4; − 2.5) for  NO2,  PM2.5, and  PM10, respectively. A clear latitudinal gradient is found for  O3, because of its 
specific photochemical formation, where titration effects are more pronounced in northern  NOx saturated areas 
such as the Benelux region, whereas reductions are found around the Mediterranean.

The third part of this study focused on investigating the contribution of individual policy indicators used to 
compute the SI on the reported change in air pollutants. The strictness levels of each indicator are described in 
Table A1. In this part, separate models were fitted to assess policy indicators individually, using each of them 
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Figure 1.  Pollutant change represented as % (Lockdown–BAU differences).  NO2 and PM are expressed by 
daily mean and  O3 by daily maximum 8 h-mean. This study includes 47 cities (solid thin light grey lines) and 
their average (solid thick coloured line) from 1st February to 31st July 2020. Three cities [Stockholm (Sweden), 
London (United Kingdom), and Milan (Italy)] were displayed with solid thin, dashed, and twodash coloured 
patterns, repectively. Figure created using R software, version 4.0.328.
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Figure 2.  Estimated association between the SI score and change (Lockdown–BAU differences) for each 
pollutant.  NO2 and PM are expressed by daily mean and  O3 by daily maximum 8 h-mean. All 47 cities are 
represented by thin light grey lines, with the average as the thick coloured line. The coloured shaded area 
represent the credible intervals of the average effect. Figure created using R software, version 4.0.328.
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as a predictor along with the SI computed without it, thus disentangling their respective contribution. Results 
reported in Fig. 4 show that decreases in  NO2 were mostly linked with policies that limited the daily commute 
travels, such as C1 (school closing), C2 (workplace closing), C3 (cancel public events), and C6 (stay at home 
requirements). Results for  PM2.5 and  PM10 show a consistent pattern, although with lower effects. C1 and C3 
policies had a strong effect in increasing  O3 concentrations during lockdown scenario (with similar but more 
uncertain evidence for C2 and C6), while C4 (restrictions on gatherings) contributed to lower  O3 levels. Interest-
ing to note is that some policies, such as C7 (restriction on internal movement), C8 (international travel controls), 
and H1 (public information campaigns) seemed to have little impact on pollution concentrations.

Avoided mortality due to short‑term exposure to air pollution. The fourth and last part was to 
estimate the number of premature deaths avoided due to the decline in air pollution levels associated with the 
government responses. The total deaths were estimated for each city using exposure–response relationships 
reported in recent literature for each pollutant and the observed changes in daily concentration, independently 
of the SI levels. Results are reported in Table 1, indicating a total number of avoided deaths of 486, 37, 175, and 
134 for  NO2,  O3,  PM2.5, and  PM10 across the 46 cities [except Pristina (Kosovo)]. Paris (France), London, and 
Barcelona (Spain), and Milan are within the top six cities with the highest number of avoided deaths for  NO2 and 
PM (Table 1). However, the highest excess deaths for  O3 were found in London and Paris.

Figure 3.  Change in each pollutant’s concentration estimated at 80% SI score across the 47 cities in Europe. 
 NO2 and PM are expressed by daily mean and  O3 by daily maximum 8 h-mean. Figure created using R software, 
version 4.0.328.
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Discussion
The response of governments to curb the COVID-19 pandemic spread offers an unprecedented case study to 
assess a range of interventions to reduce anthropogenic emissions from several sectors (i.e. road transport, energy 
industry, manufacturing industry, commercial and public services, shipping, and aviation). In this context, this 
study contributes to the literature in many aspects. First, it provides an accurate representation of air pollution 
decline during the first pandemic phase that was simulated by comparing lockdown versus BAU scenarios using 
an ensemble of six state-of-the-art numerical forecast models from the CAMS. The changes in  NO2,  O3,  PM2.5, 
and  PM10 were then separately regressed against the SI levels (i.e. standardized lockdown measures), thus pro-
viding quantitative estimates of the association with the strictness of the policies. The estimation was performed 
using a spatio-temporal Bayesian non-linear mixed effect model. This advanced methodological approach can 
estimate flexible relationships across cities while accounting for spatial dependencies. The main original aspect 
of this study is the assessment of multiple indices related to individual lockdown policies, in order to evaluate 
their comparative role in determining changes in air pollution. Finally, a quantitative health impact assessment 
was performed for the period of February–July of 2020, estimating the avoided/excess deaths due to the air pol-
lution changes in 46 of the 47 European cities.

It has been reported by several  space33 and environment  agencies34 that air quality satellites and ground-based 
monitors captured an abrupt drop in air pollution levels in several cities during the first COVID-19 lockdown. 
The literature includes many studies which have compared pollutant concentrations before and after the start 
of the lockdown or comparing the year 2020 to another. These procedures can neither account for the influence 
of weather variability nor account for complex atmospheric processes and chemical interactions of multiple 
pollutants and precursors. This study innovates from published approaches by using  CAMS20, an ensemble 
atmospheric model, which simulates pollutant concentrations in two scenarios during the exact same period 
and identical weather conditions. The quality of the CAMS regional production is closely monitored with regular 
quality  control35 and the models are also used in support of European air quality  policies36. The results demon-
strated that  NO2 was the pollutant with the largest decline (Fig. 1) displaying a reduction above 50% for Spain 
(Madrid), Portugal (Lisbon), France (Lyon and Paris), and Italy (Milan, Turin, and Rome). Although satellite, 
ground-observations, and modelled-based estimates demonstrate large discrepancies, Barré and  colleagues19 
using weather-normalised estimates found a consistent decrease of  NO2 surface concentrations across Europe. 
They also highlighted Spanish, Italian and French cities as the locations with the largest effect (around 50–60%). 
The main reason for  NO2 noticeable drop is because its main emission contributor (road transport) was the most 
affected sector by government restrictions. This study presented a smaller mean reduction in  PM2.5 of 0.60 µg/m3, 
compared to Giani et al.15 (1.82 µg/m3) using a shorter period (from 21st February to 17th May). However, they 
described  PM2.5 peaks of − 6.6 µg/m3 while this study found higher  PM2.5 change extremes (i.e., − 15.30 µg/m3). 
The  PM2.5 reductions are likely associated with policy interventions also in the energy, manufacturing industry, 
and commercial sectors; however, a small increase should be considered from residential activities due to stay-
at-home requirements. In contrast, ground-level  O3 concentrations increased slightly in urban locations across 
Europe at the beginning of the lockdown (April), primarily as a result of the absence or a lower titration of  O3 
by  NOx emissions from industrial and motor vehicle  activities37. Ordóñez and  colleagues11 identified higher  O3 
concentration during March–April 2020 compared to March–April 2015–2019 mostly over the northwestern 
area (i.e. Benelux region and the United Kingdom). They emphasized the role of meteorological variability in 
this comparison of an individual year (2020) with a 4-year average of the previous period. During March–April 

Figure 4.  The effect of individual policies that compose the SI score on changes in the four pollutants 
(Lockdown–BAU differences), with 95% credible intervals. Figure created using R software, version 4.0.328.
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2020 over the same area, this study also detected a high increase in  O3 production compared to the BAU sce-
nario. However, thanks to the use of a fixed meteorological year in our approach (i.e., both Lockdown and BAU 
scenarios performed during March–April 2020), this study can conclude that this  O3 increase was mainly due 
to the reduced  NOx concentrations and exclude meteorological factors. On the other hand, Ordóñez and col-
leagues results on the decrease in  O3 changes over Portugal and Spain contrasted with the increasing  O3 changes 
found in this study.

To our knowledge, this is the first study that quantifies the decline of air pollution levels across Europe in 
association with the strictness of specific lockdown policies. This analysis is based on flexible statistical techniques 
to capture effects across the range of standardised policy indices. The findings also revealed clear evidence of 
non-linear relationships, with stronger changes at higher SI values, indicating that stricter lockdown policies 
were more effective in decreasing air pollution. Extending the assessment to individual policies, this study 
revealed that the reduction in pollutant’s concentration cannot be attributed to all policies included in the SI. 
Government actions linked to school/workplace closure, limitations on gatherings and stay-at-home require-
ments had the greatest impact on reducing  NO2 concentrations. This is likely explained by their effectiveness in 
limiting local mobility, therefore, reducing the large contribution of road transport emissions to the total  NOx 
primary  emissions38. Despite the large drop in road transport emissions (one of the primary and secondary PM 
precursor emission sources), PM levels were reduced more modestly since they are also produced by natural 
sources. The secondary component of PM, which can respond non-linearly to emissions, may also be behind 
this moderate response, while some cities experienced a slight PM increase due the stay-at-home requirements 
which can stimulate the increase of residential wood combustion. However, even if wood combustion represents 
over half of PM primary  emissions39, its contribution to the total PM emissions was very limited during the first 
lockdown  wave40 due to the season period and its usage purpose (indoor heating) across Europe. The results 
also demonstrated that policies banning national movements and international travels seem less successful in 
lowering air pollution. This restriction relates mainly to emissions from the aviation sector, which usually have 
a low contribution to the overall urban air quality levels. These findings can contribute to the definition of future 
European strategies and priorities on the design and implementation of policies for reducing air pollution levels 
in urban areas. As a public health measure, this reduction experienced across Europe during February-July of 
2020 could have prevented hundreds of deaths associated with short-term exposure to air pollution. Based on 
independent estimates for  NO2,  O3,  PM2.5, and  PM10, it could have avoided 486, 37, 175, and 134 deaths (Table 1) 
compared to 2,573, 5,190, 2,441, and 2,186 excess deaths estimated under a BAU scenario (Table A4) respectively, 
over the same period.

This study also faced some limitations that must be acknowledged. This study did not investigate the following 
lockdown waves across Europe after July 2020 because the concentration of pollutants for the lockdown scenario 
were provided only between February and July 2020. The strictness of government policies (expressed by the SI) 
corresponds to the country’s response rather than city-specific interventions. The wide confidence intervals in 
Fig. 4 suggest that there is still important uncertainty about the results, stemming from the important collinearity 
between the individual policies that were roughly implemented at the same time. Therefore, such evidence should 
not be straightforwardly used to define specific public policies since it must be based on a broader assessment 
of the literature and not on the results of a single study. In the health impact assessment, this study applied the 
pollutant’s exposure–response relationship representing the average value reported in the referenced papers; 
therefore, not accounting for potential heterogeneity in the associated health risks across cities. The excess deaths 
also should be interpreted with caution, since all locations experienced a decrease in concentrations for many 
pollutants at the same period, with the  NO2-,  O3-,  PM10-, and  PM2.5-related avoided deaths partially overlapping. 
However, previous studies  reported41 a low risk of double counting, with similar associations between pollut-
ant and deaths from single-pollutant (e.g.  NO2

10) and two-pollutant concentration–response models (e.g.  NO2 
and  PM2.5

9). Another important point to acknowledge is that the preventable deaths reported in this study were 
estimated using outdoor air pollution levels, while lockdown conditions forced most of the people to spent most 
of their time indoors. Finally, this study did not account for cause-specific deaths or other health outcomes, as 
well as long-term mortality risks. This will be likely addressed in future research.

To conclude, this study assessed the association between standardised measures of global and individual 
policies responses to the COVID-19 pandemic with changes in air pollution and short-term premature mortality 
in Europe. These findings provide evidence on the effectiveness of government restrictions and target policies 
for reducing air pollution concentrations in urban areas and demonstrate the public health benefits of reducing 
human exposure to high air pollution levels across Europe.
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