
sustainability

Article

Could Assistive Technology Provision Models Help Pave the
Way for More Environmentally Sustainable Models of Product
Design, Manufacture and Service in a Post-COVID World?

Ben Oldfrey 1,2,*, Giulia Barbareschi 1,3 , Priya Morjaria 4 , Tamara Giltsoff 1, Jessica Massie 4,
Mark Miodownik 2 and Catherine Holloway 1,3

����������
�������

Citation: Oldfrey, B.; Barbareschi, G.;

Morjaria, P.; Giltsoff, T.; Massie, J.;

Miodownik, M.; Holloway, C. Could

Assistive Technology Provision

Models Help Pave the Way for More

Environmentally Sustainable Models

of Product Design, Manufacture and

Service in a Post-COVID World?.

Sustainability 2021, 13, 10867.

https://doi.org/10.3390/

su131910867

Academic Editor: Lucian-Ionel Cioca

Received: 16 July 2021

Accepted: 26 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Global Disability Innovation Hub (GDI Hub), London E15 2GW, UK; giulia.barbareschi.14@ucl.ac.uk (G.B.);
t.giltsoff@gmail.com (T.G.); c.holloway@ucl.ac.uk (C.H.)

2 Institute of Making, University College London, London WC1E 7JE, UK; m.miodownik@ucl.ac.uk
3 University College London Interaction Centre (UCLIC), London WC1E 6EA, UK
4 International Centre for Eye Health, Clinical Research Department, London School of Hygiene and Tropical

Medicine, London WC1E 7HT, UK; priya.morjaria@lshtm.ac.uk (P.M.);
Jessica.Massie1@student.lshtm.ac.uk (J.M.)

* Correspondence: b.oldfrey@ucl.ac.uk

Abstract: From multiple studies conducted through the FCDO AT2030 Programme, as well as key
literature, we examine whether Assistive Technology (AT) provision models could look towards
more sustainable approaches, and by doing this benefit not only the environment, but also address
the problems that the current provision systems have. We show the intrinsic links between disability
inclusion and the climate crisis, and the particular vulnerability people with disabilities face in its
wake. In particular, we discuss how localised circular models of production could be beneficial,
facilitating context driven solutions and much needed service elements such as repair and main-
tenance. Key discussion areas include systems approaches, digital fabrication, repair and reuse,
and material recovery. Finally, we look at what needs be done in order to enable these approaches to
be implemented. In conclusion, we find that there are distinct parallels between what AT provision
models require to improve equitable reliable access, and strategies that could reduce environmental
impact and bring economic benefit to local communities. This could allow future AT ecosystems
to be key demonstrators of circular models, however further exploration of these ideas is required
to make sense of the correct next steps. What is key in all respects, moving forward, is aligning AT
provision with sustainability interventions.

Keywords: assistive technology; disability; inclusion; circular economy; sustainability; localization;
distributed manufacturing; low resource settings; repair; production

1. Introduction

Assistive Technology (AT) is defined by the WHO as “an umbrella term covering the
systems and services related to the delivery of assistive products and services” [1]. This
definition makes clear that AT not only includes the physical and digital products used
by people with disabilities, but also the systems and services that are necessary to the
provision of these products.

Over one billion people need one or more assistive devices, with a projected two
billion in need by 2050; yet only 5–15% of assistive technology needs are currently met [2].
At the same time, global demand for resources at large is projected to double by 2050,
all the while the climate crisis rages on [3].

Globalisation, particularly the pairing of mass production and global supply chains,
is a hugely effective model for the provision of manufactured goods. However, it also
leads to a reduction in the number of independent products and services available to
customers, e.g., in the hearing aid and eyeglasses markets [4,5], with a lack of context
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specific product development. It also creates a global supply chain that is vulnerable
to disruption. The fragility of supply chains has been exposed during the COVID-19
pandemic, where the global provision of healthcare products–PPE, medical devices, oxygen,
vaccines and other pharmaceuticals have been shown to be highly problematic when
global supply chains break down [6]. The result has been a lack of equitable access to
healthcare and healthcare products. AT has been particularly affected by the supply chain
disruption and a lack of local service provision during the pandemic [7]. However, it has
also allowed society to experience the challenges that people with disabilities face–exclusion
and isolation [8]. There is then an interesting confluence where society’s requirements for
more robust, local solutions is coinciding with the technological progress on the circular
economy that can provide it.

The provision of AT is essential to each of the United Nation’s Sustainable devel-
opment goals (SDGs) [9]. Nilsson et al. show that implicit in the SDG logic is that the
goals depend on each other–but no one has specified exactly how [10]. They state that if
countries ignore the overlaps and simply start trying to tick off targets one by one, they risk
perverse outcomes. If mutually reinforced actions are not taken and trade-offs minimised,
the agenda will not be able to deliver on its potential [10]. Global AT provision is a good
example of where reinforced actions are important. It is estimated there will be 2 billion
people requiring one or more assistive products by 2050 [11], but with the projected rise in
climate change induced natural disasters bringing higher risk of severe trauma and injury
to communities around the world-this number could increase further still [12]. Therefore,
it is essential that AT provision is realised using a sustainable approach.

Although the environmental responsibility should not be placed at the door of the
poorest consumers, Khavul and Bruton argue that “for those living at the bottom of the
economic ladder in developing countries, sustainability enhancing innovations can resolve
the logjam at the intersection of sustainability, poverty, and the environment. However,
for such innovations to stick, they need to be designed with local customers, networks,
and business ecosystems in mind” [13]. If this is not the case, then businesses run the risk
of introducing innovations that repeatedly fail to be adopted, and never cross the last mile
of the innovation journey [14].

2. Aims of This Paper

By drawing upon multiple studies conducted through AT2030 and partner pro-
grammes, as well as relevant literature, we examine whether AT provision models could
take advantage of the shifts that are occurring due to the COVID-19 pandemic, towards
more sustainable models of AT provision. We argue that more circular models of produc-
tion could benefit not only the environment, but users of AT and those who could yet
benefit from AT. The current provision systems are failing to meet the global need [15].
Part of the reason for this is the monopoly that the globalised model has, in which AT is
designed, manufactured, distributed, provided and explained to users, repaired, upgraded,
and adapted [16]. We ask if many of the problems currently identified within AT provision
could be combated if more of the AT value chain was located nearer the end users.

In this paper we aim to initiate more tangible discussion on the way forward to
sustainable models of AT provision. We do this from the perspective of how sustainable
approaches could also mean better provision overall.

By moving more of the AT value chain to a local setting, the route to user-led in-
novation and context-driven solutions can be facilitated. This potentially reduces the
environmental impact of AT provision too, but it may still lead to perverse outcomes.
In this paper we therefore seek to explore the potential of a more circular approach to AT
and weigh up the advantages and drawbacks.

3. Methods and Content

Layout of the rest of the paper:

Section 4. The Relationship between Disability Inclusion and Environmental Sustainability.
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Section 5. Circular Model of AT Provision.
Section 6. Potential Opportunities in a Systems Approach to Local Production of AT.
Section 7. Innovation Opportunity Areas that Could Allow Increased and Sustainable

AT Provision:

Section 7.1. Potential of Digital Fabrication;
Section 7.2. Repair of AT;
Section 7.3. Reuse Strategies;
Section 7.4. Material Efficiency and Recovery from AT.

Section 8. Conclusion:

Section 8.1. What needs to be done;
Section 8.2. Concluding Summary and Final Remarks.

To explore these ideas, we begin in Section 4 by looking at the intrinsic relationship
between disability inclusion and sustainability, and the effect the climate crisis is having
on the global disabled population, and therefore stakeholders operating in these different
missions need to pay better attention to each other.

In Section 5, we discuss the circular economy and introduce what a more circular
model of AT provision could look like.

In Section 6, we make the case for the potential of increased localisation to enable
systems approaches to AT provision as an answer to the issues that various stakeholders
see from their perspective given in two scoping studies done by AT2030. Specifically
we look at local production systems and the unified potential they hold in addressing
these co-missions.

The first is a scoping study into current issues and innovation in prosthetics [17].
For this, we conducted semi-structured interviews with 12 stakeholders in the field across
industry and academia. We similarly conducted a study with the aim to understanding the
barriers and facilitators to delivering innovation in the area of refraction care and delivery
of eyeglasses in LMICs [5]. For this, 8 semi-structured interviews were undertaken with
entrepreneurs who are active in the delivery of eyeglasses in low- and middle-income
settings. Across both of these studies, these stakeholders primarily operate in LMICs with
particular presence in East and Southern Africa, and South East Asia, as well as India and
Sri Lanka.

In Section 7, we then look at specific innovation opportunity areas that could be further
encouraged in AT strategies to allow increased and sustainable AT provision: starting
with (a) Potential of digital fabrication; (b) Repair of AT; (c) Re-use strategies; and finally
(d) Material efficiency and recovery in AT.

Finally, in Section 8, we discuss what is needed to critically appraise and push these
ideas forward, and conclude with reflections on the originally posed question.

Where appropriate across sections, we also draw upon case studies from the AT
Impact fund, which is currently being supported by a part of AT2030, which aims to foster
technology solutions to reach people with disabilities in Africa, and to test business models
that are most likely to succeed.

4. The Relationship between Disability Inclusion and Environmental Sustainability

While the focus of this paper is how the two missions of AT innovation and sustainabil-
ity can and should be aligned, it is important to recognise the causal relationship between
climate change and disability. Several authors have highlighted how people with disabili-
ties are more likely to be vulnerable to the negative effects of climate change [18–21], whilst
this group could also represent an invaluable resource to help develop better strategies for
climate resilience, equality and sustainability [22–25].

Climate change has been linked to food and energy shortages, increased likelihood
of dangerous weather events, freshwater scarcity, global health threats and many other
negative consequences that disproportionally affect people who are socially vulnerable
because of their gender, socio-economic status or disability [26]. As shown by numerous
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researchers, poverty and disability are closely intertwined in a vicious cycle that exacerbates
inequality and negatively affects the individual leading to limited access to education,
inability to access work and social opportunities, and reduced health outcomes which are
likely to lead to worsening of disability [27,28].

These intersecting vulnerabilities put people with disabilities at particular risk of nega-
tive consequences of climate change, and the relevance of this risk is increased both during
and after environmental disasters, which are increasing in prevalence due to the climate
crisis [29]. Drawing on the experiences of both the tsunamis that devastated much of the
coastal regions of South Asia on the 26 December 2004and the Hurricane Katrina which
hit the Southern US between the 25 and 29 August 2005, Priestley and Hemingway [29]
highlight how the difficulties experienced by people hit by these two natural disasters
increase for people with disabilities. Forced and unplanned displacement causes loss of ac-
cess to essential services; sudden separation from family members means that people with
disabilities find themselves without primary caregivers who, in case of people with severe
disability are often the only economic provider granting financial assistance; the reduced
availability of education or work opportunity is often liked to increased discrimination [29].
Furthermore, in the same fashion as wars or other humanitarian emergencies, natural dis-
asters can lead many to acquire disability as a result of traumatic events causing anything
from limb loss, spinal cord injuries, brain traumas and more [12].

On the other hand, people with disabilities and Disabled People Organisations (DPOs)
can provide invaluable resources and expertise which are key to mitigate the negative
impact of environmental disasters and promote inclusive reconstruction efforts [22–25,29].
For example, Pertiwi, Llewellyn and Villeneuve [25] examined the implementation of
three disability-inclusive preparedness projects led by DPOs in Indonesia. Their findings
highlight how, after they took part in a capacity development programme on disaster
risk reduction, and received adequate funding for the programmes, DPOs were able to
collect relevant data to advocate for policy changes, and work with influential members
of local communities to reduce disability stigma. The DPOs were able to work with
multiple stakeholders and pool resources with other organisations to implement effective
and inclusive community-based disaster risk reduction efforts [25].

Top-down missions, sustainability particularly, run the risk of being confused by non-
alignment of definitions. Salkeld [22] in discussing disability and sustainability in relation
to UK policy, lays out the implications of ‘multiple sustainabilities’ in relation to disability
inclusion. According to Salked there is ‘weak’ and ‘strong sustainability’. The difference
between these two concepts lies in the belief that the capital of natural resources can be
substituted by man-made or technological capital–this is weak sustainability. In contrast
strong sustainability is the belief that the continuity of the natural resources’ capital is
essential to the continuity of human life and civilisation [30]. Salkeld explains that there
are disablist implications for both ends of the spectrum, which impact disabled people,
and create tensions between the priorities of disability equality and the natural environ-
ment [22]. Both conceptualizations of sustainability in their current form lack emphasis
on the social implications of sustainability in the context of disability. As an alternative
to these views, the concept of ‘just sustainabilities’ allows disability as an issue of social
justice to be combined with concern for environmental sustainability [31,32]. Agyeman,
Bullard, and Evans [33] conceptualise a ‘just sustainability’ as ‘the need to ensure a better
quality of life for all, now and into the future, in a just and equitable manner, whilst living
within the limits of supporting ecosystems’.

Recent contributions to ecological economics and related social sciences indicate that
issues such as climate change, resource depletion and environmental degradation cannot
be effectively addressed under conditions of continued economic growth [34]. Fritz and
Koch 2014 [34] discuss the growing body of literature that interprets prosperity ‘beyond’
economic growth, with ecological sustainability, social inclusion and quality of life being
the dimensions of measure. However, to ensure that these balanced prosperities that enable
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ecological sustainability become a reality, the projected 2 billion people in need of AT by
2050 must be both included and accommodated for [2].

5. Circular Models of AT Provision

The circular economy (CE) is based on the principles of designing out waste and
pollution, keeping products and materials in use, and regenerating natural systems. Value
retention is built in at all stages, to reduce the necessity for further finite resource use.
The basic principle of CE is that materials and products are reused, remanufactured,
repaired and recycled at end of life rather than discarded.

CE has never been so high on the political agendas of governments as it is right
now [35–38]-it is widely acknowledged to promote economic growth by creating new busi-
nesses and job opportunities, saving material cost, dampening price volatility, improving
the security of supply, while at the same time reducing environmental pressures and im-
pacts [39]. Patwa et al. [40] investigating CE models in an emerging economy context found
that there is a strong influence of factors such as consumer behaviour on the acceptance of
remanufactured products and using products as a service to encourage the adoption of CE
practices in emerging economies–the AT sector may be well placed to accommodate these
factors. As well as this, it is important to realise that these approaches are not just about
individual business practice, and indeed much potential is lost by looking at the overall
solution this way. Fehrer [41] discusses this and promotes an institutional perspective that
shows that all business practices are part of larger societal and ecological systems, so that a
real transition toward sustainability demands joint institutional alignment processes which
balance the adaptive tensions between social mission, environmental stewardship and
economic growth.

Putting a circular model into practice in AT is illustrated in Figure 1, with differing
appropriate actors overlapping across activities. It can be seen that many elements of CE
are highly synergistic with existing AT service delivery in low resource settings, or they
already represent a core aspect of AT provision models. Maclachlan et al. [42] state that the
adoption of a stronger systems thinking perspective within the assistive technology field
should allow for more equitable, more resilient and more sustainable assistive technology
across high, middle- and low-income contexts and countries. We propose that increased
localisation of the entire loop would be a key enabler of this systems approach.
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6. Potential Opportunities in a Systems Approach to Local Production of AT

The concept of localised, distributed manufacture is not new. Prior to the Industrial
revolution, products were made locally by artisans and craftspeople, who would mostly use
local materials, and they would sell directly to customers, who were known to them. There
were no brokers and barely any supply chain, other than for raw materials. If something
broke and was fixable, this was usually done by the original maker, who was best placed
to do the work. Most of the world has moved very far from this model, and global supply
chains dominate most sectors. As a result, a linear model of take-make-dispose is now
dominant, i.e., taking materials, making a product, and simply throwing it away when it
does not work well, and buying another one. Whether the approach is charity- or profit-led,
this is no less true of AT. In wealthy countries this disposable approach to AT does not lead
to lack of AT provision, but it is a problem in low-resource settings. Community-based
approaches are recognised as a route to better achieve AT access for those in LMICs. Matter
et al. [43] completed comprehensive scoping review of assistive technology in 2016 and
two of their key findings were that taking a systems approach could help improve access
to affordable assistive technologies and that ‘community based approaches may be a way
to enable underserved groups to access assistive technologies’.

For a wide range of AT, some form of customisation is required if the AT is going to
meet the needs of the user. This is best done by a trained clinician or professional who needs
to physically assess the patient’s needs and prescribe a bespoke solution. For example,
the correct sizing and tuning of a wheelchair, the bespoke fabrication of a prosthetic socket
for the specific anatomy and use case of a person-’s residual limb, or the examination of
a person’s eyes and subsequent prescription of appropriate glasses or contact lenses to
correct refractive error.

In high resource settings this clinic-patient relationship generally continues beyond
fitting or initial prescription, however in low resource settings, AT provision is often
conducted in such a manner that there is a disconnect with the user after provision, a lack
of outcome tracking and the available follow up services are largely inadequate [44].

In the prosthetics scoping study, multiple participants highlighted the clear need for
greater engagement after initial provision, and a lack of both aftercare and repair services.
There was a strong desire for more field repairable devices, and the need for innovation in
both process and product that address components with a short useful life–socket liners
being an example, which wear out quickly, and have a critical impact on the efficacy of the
whole prosthesis.

Participants highlighted a need for systems approaches and multi-stakeholder inno-
vation, but recognised the difficulties in pushing these ideas forward. Context specific
innovation is needed with adaptable, adjustable designs being developed or desired by
participants. This is particularly important in agricultural communities where residual
limbs swell and change with the seasons, based on the varying work and diet of the person.
This is not so much the case in high income settings, where urban life does not see much
seasonal variation in life style. Yet, devices are pretty much all designed for this later
context, which limits utility elsewhere.

One participant estimated that a person that is born with a congenital condition
requires on average of 25 devices in a lifetime. Therefore, a solution for long term provision
is required, yet the stability of the supply of devices does not reflect this, and devices in
LMICs are used for far longer than they should be, or simply not at all.

In the eyecare scoping study, many entrepreneurs in the eyecare scoping study com-
mented on the difficulties in “closing the supply chain gap” because of inefficient or
inaccessible aspects of the supply chain. In particular, manufacturing processes, logistical
barriers and the complex procurement of materials were often discussed by entrepreneurs
as barriers to delivering innovation in the area of provision of eyeglasses.

Entrepreneurs noted how limited material options and production capacity often
cause supply chain bottlenecks, leading to inaccessible or inefficient supply chain options.
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The impact these barriers have on the supply chain is amplified when business is not
limited to national or regional production and delivery.

When delivery is attempted outside of urban settings, into less resourced areas, these
supply chain issues are made more difficult as manufacture and distribution involves an
increased complexity with the added costs. Rural delivery models are notoriously hard to
achieve. These problems could be improved with a local ecosystem around manufacture.
Lengthy, complex supply chains for materials and products could be simplified and more
of the value creation achieved locally.

AT2030 Case Study: Wazi

The Ugandan company, Wazi, are being supported through the AT Impact Fund. Wazi
have a specific goal of localising eyeglasses frame production within Uganda as currently
there is a complete lack of regional manufacture, and all components are imported, mostly
from China. These imports come with high taxation and customs duties, as eyeglasses are
deemed to be luxury items, increasing the price of these ATs that are a requirement for
nearly 2 million people per year in Uganda. This includes both adults and children and
takes into account the spectacle replacement rate for different groups.

A lack of local production also means a lack of local design, and for eyeglasses, aesthetic
is of high importance, no matter the income setting–it has a significant influence on the
stigma associated with visually impairment, which carries more connotations in low
resource settings compared to high for various social reasons. It is also important to
keep in mind that eyeglasses are a medical device and once frames have the prescription
lenses glazed in them, not only does the perceived benefit for them increase, they have
the potential to increase someone’s productivity and quality of life over a life course [45].
Such small batch, local manufacture is not specific to LMICs, Cubitts in the UK manage
this eyeglass manufacturing model while residing in central London where property
prices are some of the highest in the world.

If more focus could be placed on building local capacities, i.e., more of the innovation
process and production in a local setting then this could have a vital knock-on effect on a
number of other poorly functioning aspects of the value chain. Furthering local production
and expertise allows product design to be highly context specific, and appropriate for the
specific climate. Manufacturing expertise and capacity could directly facilitate formal or
semi-formal repair services for AT. Re-use strategies, which reduce costs and increase avail-
ability of shorter term AT, for children for example, could be facilitated by manufacturer
led refurbishment, and end of life material and component recovery could be achieved
efficiently, retaining value in the AT ecosystem. Not only this, but profit where it is made
could be building self-sustaining businesses, and not reliant on aid funding. By building
local ecosystems, the circular systems approaches are required for sustainable AT provision
could be enabled [30].

Local systems approaches do not mean siloed activity, and the advantages of globali-
sation can still be fully utilised. The international transmission of know-how, knowledge
and technological expertise is growing and it is increasingly important in the world econ-
omy [31,32]. The systems of distributed manufacturing and design sharing, are changing
business models everywhere. An important additional global trend that can facilitate local
innovators is the move to shared makerspaces and workshop facilities. These give AT
innovators, and if accessible, people with disabilities, the opportunity to prototype devices
and develop their ideas in a supported setting, and the number of these are increasing
rapidly throughout income settings [46–48].

A particularly important additional result of more distributed manufacturing capabil-
ities across LMICs, is the facilitation of humanitarian response efforts, which are crucial
in terms of disability inclusion. Reliance on global supply chains and lack of production
close by has long hampered critical disaster response, and for this reason humanitarian
groups are moving to encourage distributed manufacturing [49,50]. A humanitarian NGO,
Field Ready, uses distributed manufacturing to produce essential non-food items locally
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where they are needed during humanitarian responses [51]. Such supplies can be available
to communities in need and to relief workers more quickly. They are often cheaper than
alternatives, and provide appropriate solutions to problems, often engaging local people
in designing and making necessary items, and supporting economic development [51].
However, scaling up requires local production capabilities-skills, tools, and information
such as designs to be boosted by adoption of these methods by aid agencies, international
non-governmental organizations (INGOs) and others [51].

The pieces of the puzzle we focus on here are not truly the whole ‘system’. Bringing
the production ecosystem closer is not enough without financing and distribution in
place too. When this is not inherent within government systems such as health coverage,
new economic systems around AT will also be required. For example, SME financing for
the producer, working capital for the distributor (might be the same person as the producer)
and, most definitely, ways of financing the solution for the end user (which could include
charitable contributions) will be needed.

To enable localised systems approaches that also take advantage of symbiotic relation-
ships with other sectors, the Innovation Action [52] initiative looks to create mappings of
various sectors, so that local ecosystems can be better understood, and potential beneficial
relationships can be identified. This project aims to bring together data and understanding
from different programmes for future use. Local Production Local Solutions is part of the
FCDO COVIDaction Programme which responded to the COVID pandemic by supporting
innovators pivoting to healthcare products needed in their local communities. As part of
this over 600 producers have been mapped, mainly within Africa. Concurrently on Innova-
tion Action, the AT2030 programme is gathering information about stakeholders working
in areas relevant to innovation, disability, and assistive technology in Kenya, with plans to
expand this more widely. By housing these maps together, creating a cross-referenceable
resource, local manufacturing capacities can be more easily identified. The initiative is also
partnered with the Open Know Where Project [53], which aims to allow different mapping
initiatives to cooperate more easily with a common data standard. This is guided by the
principle that the best way for all of these resources to bring the social good is by working
together and compiling unified data on all of the various sectors and specific aims that
different organisations have.

Finally, it is important to re-iterate that while we are discussing the potential of
more distributed manufacturing capacities to improve overall AT provision-not all AT is
suitable for these models. For products and components where requirements are broadly
similar across contexts or allow core components with modular adaptation to specific
contextual needs, then mass production in singular locations may be the best way forward.
Sensitive electronic devices, like those found in many hearing aid central units, may be
best manufactured in established clean factories, until there is significant improvement in
the complexity and scaled quality that local production ecosystems could provide.

7. Innovation Opportunity Areas That Could Allow Increased and Sustainable AT
Provision

Assistive products work best when they are matched to the needs and goals of the
individual, and the environment in which the activities are or will be performed [54,55].
There is a well-recognised and critical need for much greater context specific innovation
for bespoke AT, which is much harder to achieve if the majority of the processes of prod-
uct development and production are geographically separated. There is huge value in
fully understanding outcomes, but with large geographic barriers between stakeholders,
the likelihood of extensive user feedback influencing AT design is much less likely, or at
least very expensive.

Albala et al. [16] explain that charity-based and globalisation models appear to be the
most prominent models in LMICs and dictate how AT are innovated, produced, supplied
and experienced by users. They go on to show that current delivery options available
within LMICs tend to produce a power relationship whereby LMIC users are reliant
on the sporadic willingness of companies and donor agencies to supply AT, often with
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inappropriate fit and poor quality [16]. Smith et al. [54] show that distributing a “one-
size fits all” assistive product may result in limited usage, and poor technology adoption.
Moreover, the resulting AT provision might not only result in non-use but can actually
harm the user or other people in the user’s environment and lead to reluctance to try other
or additional products [54,56,57].

Bringing more of the product development and production ecosystem closer to users
could help address these issues. Pearlman et al. has highlighted a number of technical
advances and approaches for design, manufacturing that could increase production in
low-income countries [54,58,59].

Durability is another key convergence between what is needed to improve AT prod-
uct ranges for low resource settings, and what is also essential for sustainable models.
The ‘planned obsolescence’ that has become highly problematic in many consumer prod-
ucts is certainly much less present in AT products, however the unsuitability of many
AT designs for the environments faced in LMICs result in the same issue. Durability is
a precursor to repair for product life extension, and in general each product life stage
should be extended as much as possible before moving to the next in order to prolong total
life [60–62].

7.1. Potential of Digital Fabrication

Digital fabrication (including additive manufacturing, CNC (computer-numerical
control) and lasercutting) are becoming widely available. These are all within the same
family of machinery that has already transformed mass production factory line approaches.
They focus on ‘economies of scope’ rather than ‘economies of scale’. What used to require
a larger set of machines and therefore greater initial capital expenditure to even prototype
is much more accessibly costed and sized, and this has a great potential to democratise
and localise innovation and subsequent production globally. This accessibility is not only
economically inclusive, it is inclusive of people with disabilities, with digitally led processes
bringing more access to user-led making [63,64].

There is strong potential for these techniques to change the way many forms of AT are
delivered, and for some this is already the case. Much of AT needs individual customisation
of components and this is exactly what these methods offer–efficient, digitally led one-off
production of parts in accessibly sized machines for a range of scales. This could also ease
the production of ‘orphan AT’–devices to serve unique needs that will never be viable for
any kind of scale [65,66]. As discussed earlier, context specific solution could be developed
that take into account specific environmental or cultural challenges.

We will not go into much detail here, but additive manufacturing approaches are
already in use or being developed for various AT–wheelchairs [67], hearing aid compo-
nents [68], extensively in eyeglasses [69–71] with particular use in addressing provision
for users with craniofacial abnormalities [72,73], prosthetics [74,75] and orthotics [76,77]
as well as many others AT types. Much of this development is current at the research and
development stage but work on the service approach in real LMIC settings is lagging.

A double-edged sword is that additive manufacture currently is overwhelmingly dom-
inated by plastic–plastic is a versatile, malleable, shapable material, and this is what allows
much of the current abilities of 3D printing, and many other established manufacturing
processes. However, evidence of the environmental impact of plastics is becoming more
and more bleak. Other materials are available for digital manufacture but currently have
higher price tags. Many groups are working on circularising additive manufacturing by
recycling printing material [78–81], and this does present high potential for shorter, more
resilient supply chains, however there are hurdles to overcome if scale is to be achieved for
these approaches.

In P&O particularly, digital manufacturing is used extensively already. This is a well-
researched area with many commercialised models; however, these primarily reside in high
income countries. Dickinson et al. [82] discuss the applicability of these methods to LMIC
settings in a recent study. The human-device interfacing component that requires bespoke
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construction, is already usually made locally, but usually using non-digital methods. Digital
methods could address the lack of provision in LMICs which results in only 5–15% of
amputees in LMICs having access to a prosthesis [83,84]. They promise to optimise the
available clinical resources, however the truth of this claim is currently difficult to assess,
as the production chain and variables involved are complex [85].

Centralised models, likely placed in capital cities or major urban centres, are ‘more
local’ than overseas manufacture, and offer advantages to AT clinics, such as specialist
manufacturing expertise, trained staff, and much better potential for quality assurances [54].
Centralised models also open up the potential for ‘one stop shop’ models of AT production,
with multiple AT types using the same service, taking advantage of the overlapping
knowledge sets of devices, and creating a more scalable, stable business model. This
approach could allow the integration of circular strategies through product life extension
facilitation in the form of regional access to expertise and spare parts and material recovery
through engagement with the network of AT clinics they could be involved with.

Another opportunity of is that digital product development flows lend themselves very
well to non-local expertise involvement, which is a key reason why digital techniques are at
the forefront of distributed manufacturing strategies [86]. Designs can be shared globally,
and modified to suit specific requirements. This takes advantage of globalisation, while
building the capacity and economic benefits in a localised setting–i.e., the now famous adage
‘Think globally, act locally’, introduced in 1915 by the Scottish planner and conservationist,
Patrick Geddes [87,88]. Assistive technology design sharing is well underway with multiple
websites either dedicated to it, or have large relevant sections [89,90].

Major challenges remain, however. The produced pieces still require finishing and
post-processing (for instance, heat treatment) to achieve functional tolerances and perfor-
mance targets. Many sectors are still addressing how 3D printed parts will be assessed
for quality, as there is high variation between machines, environment and indeed from
part-to part, with strength concerns due to the layer-by-layer construction. These issues
are forcing many to rethink methods for inspection and testing, particularly when only
a single custom part is needed [86]. It must also be kept in mind that once scale of any
specific geometry of product or component that is required goes above a certain level, then
these methods are not an efficient way in which to produce mature designs, and other
more established manufacturing techniques are best suited.

7.2. Repair of AT

While end of life approaches to reduced environmental impact such as recycling have
been widespread across the world for some time, the developed world is rediscovering the
importance of extending product life cycles as a route to improved sustainability. In LMICs,
the informal repair economy has always been highly present, as people simply cannot
afford to just replace products. For instance, there is a strong role that could be played
by the Juakali within Africa—the high prevalence of micro SMEs (MSMEs) and the skills
developed within these are well suited to further amplify a repair economy with greater
links with other sectors. High income countries are only now realising the benefits both to
local economies and to the environment of repair, with the European Commission and the
UK recently bringing in Right to Repair regulations on a range of key products [91].

From our analysis of multiple studies conducted by AT2030 and partners in Uganda,
Sierra Leone, Indonesia and Kenya (submitted to Disability & Society journal) we found
that the majority of the useful life of AT is achieved via repair and maintenance. However,
this is commonly not achieved as part of the provision model of the original supplier of the
AT. In Lower- and Middle-Income Countries (LMICs), AT provision is often conducted in
such a manner that there is a disconnect with the user after provision, a lack of outcome
tracking with few follow up services [44]. Repair is achieved either by the user or via a
third party, which is usually an informal, non-specialist tradesperson. This informality
is not necessarily bad, informal strategies, if facilitated appropriately bring together user
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empowerment, capacity building and take advantage of present strengths of low resource
settings, rather than trying to impose new systems on communities.

For many AT though, specialist skills are necessary, and while specialist repair services
exist, UNICEF found that in developing countries 28% of respondents reported that spe-
cialist repair services were not available and 47% reported that only limited repair services
were available [1]. Only a minority (25%) reported that these repair services were available,
this compares to the 62% in high income countries [2].

With increased localisation of AT production, a key advantage would be that the
crucial repair services for AT could be more easily enabled. With manufacture of devices
being closer to the user, as well as allowing context specific designs and further user
engagement, the expertise of the original producers could be leveraged in creating better
repair services. This could take the form of product-service models of business, where the
original company not only provides the initial product but has a continued relationship
with the user and provides the continued maintenance of the device [92].

An additional advantage of local manufacturing in relation to repair is that spare
parts can be supplied much more effectively. The WHO states that assistive products are
often manufactured using parts that are not replaceable locally, for example, hearing aid
batteries and wheelchair tyres. This contributes to high abandonment rates. To achieve
equitable access, assistive products need to be manufactured with parts that can be repaired,
maintained and replaced locally (Director General WHO, 2017).

Even if original devices are indeed shipped in from overseas, an increase in local
specialist production capacities could enable local spare part production, which is being
explored by multiple groups from other sectors using digital manufacture such as 3D
printing [93–96]. This could still be facilitated by original AT suppliers with the sharing
of digital blueprints of parts. This does not have to rely on advanced manufacturing
techniques as, unlike in most high-income settings the general informal repair economy is
a thriving area in LMICs. However, informed schematics and guidance from AT product
designers would greatly increase the effectiveness of this part of the value chain.

No matter the specific model, repair instructions for AT would amplify the availability
of quality repair of AT, potentially leading to reduced environmental impact of devices,
but more importantly increased value to the AT user. This would have a knock-on effect on
the efficacy of AT provision, as a mistrust of poor repairs and a lack of faith in the continued
access to AT was cited by users in our above studies as highly detrimental to their AT
experience. This lack of trust in provision has also been well documented elsewhere
to be highly detrimental to engagement of both current and potential beneficiaries of
AT [57]. What is key is to recognise the inevitability of AT repair and therefore to design
AT for repair.

7.3. Reuse Strategies

Reuse strategies are a key part of sustainable, circular approaches, generally being
labelled as the top three ‘R’s along with Reduce and Recycle. In general, the concept
of Reuse refers to the repeated utilization of materials, parts or finished products by
multiple users. However, different definitions of circular economy might offer different
interpretations or complementary conceptualizations [97].

The idea of Reuse of AT is not new. The argument is that reused AT is less expensive
than new, for whoever is paying-be it a health service, charity or user or a combination of
these. Reuse represents a common model of AT provision implemented by many charities
operating in low resource settings [98]. The reasoning behind this model is that donated
devices could be refurbished and be effective for individuals who might otherwise be
unable to access AT through other forms of provision [57]. On the other hand, many of
these donated devices are of low quality, not appropriate to the context of use and fail
to match the needs of users [98]. The inherent risk of providing devices that users are
dissatisfied with is that many will simply be abandoned, also contributing to the increase
in waste rather than reducing it, but also building up of distrust in AT as an option [57,99].
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However, AT reuse schemes are not necessarily only implemented in LMICs. For ex-
ample, Kniskern, Philips and Patterson reports the presence of several community-based
reuse programmes of AT that have been active in the US since 1984 [100]. The Association
of Assistive Technology Act Programs (ATAP) even developed a reporting protocol that
can be used to collect data about AT reuse at a national level and estimate the total value
of reused devices. As part of the development of the reporting tool they distinguish two
type of reuse. The first one being linked to exchange activities of AT between users and the
latter as a result of refurbishment/repair/recycling activities that are usually mediated by
third sector organizations [100].

Fundamental to the success of AT reuse programmes is adequate monitoring of the
outcome and impact of the devices provided to new users. A positive example of this is the
Paraquad community-based programme affiliated with the School of Occupational Therapy
at Washington University [101]. As part of this programme, providers carry out follow-up
evaluations after three to six months using surveys to assess the changes that reused AT
cause in both functional performance and inclusion in community activities [101].

Another form of AT reuse are loaning schemes that are common for providers of
paediatric AT. Because of their fast changing abilities associated with growth and develop-
ment, children often need to use ATs for only limited periods of time. Even if their need
for AT remains somehow consistent, their physical growth means that devices will need
to be changed to accommodate growth [102]. Reuse programmes provide children and
families with easier access to a variety for different loaned ATs ranging from wheelchairs
to communication boards, feeding aids to devices for environmental control. Although the
practice of AT reuse for children was found to be both common and effective, most reuse
happens only within a single programme carried out by an individual organisation, which
limits the reach and capacity of these practices [102].

A highly successful example of AT loaning and reuse scheme implemented at na-
tional level is the Norwegian Assistive Technology Provision Model [103]. Through the
18 AT centres established around the country, people with disabilities in Norway can be
assessed and provided with AT devices that will be loaned to them for as long as they
need them [103]. Once the user has no more need for the AT device it can be returned to
the same centre which will proceed to repair and refurbish it before loaning it to another
potential user [104]. Thanks to the effectiveness of this scheme, approximately a third of
AT devices provided in Norway are actually reused [104]. Ultimately, reuse of AT has huge
potential to cut costs and improve the sustainability of AT provision, but it can only be
effective if there is a strong commitment to ensure that AT for reuse is of good quality and
appropriately match the needs of users and their context.

7.4. Material Efficiency and Recovery from AT

Consumption is at the heart of the climate crisis, and ways to reduce material con-
sumption will contribute to a reduction in human caused impacts. Overall useful product
life extension is crucial, but outside of this, product and process innovation that continues
to retain value in material resources is beneficial. This value retention in resources is
not only good for the environment but means less requirement for external value input,
and ultimately this could trickle down into more reliable provision for users.

AT2030 Case Study: Amparo

Frequent socket replacement is especially common in the earliest stages of becoming a
prosthesis wearer, as the residual limb shrinks and stabilises over the first few years of
prosthesis wear [105]. Prosthetic service delivery models, therefore, need to be set up for
the initial prescription process, and the continued needs of maintenance and adaption.
In LMICs, scarce resources, limited-service delivery locations and a lack of trained experts
make the delivery and continued maintenance of prosthetics challenging. [106,107]

Amparo’s leading innovation is a mouldable prosthetic socket which prosthetists can
reshape multiple times to fit a wearer’s residual limbs as they naturally change shape.
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Additionally, the socket is not fitted using the traditional plaster-casting method, it uses
a novel direct to limb vacuum moulding technique.

While addressing the user requirements was primary for the Amparo team, the potential
for increased environmental sustainability through better material efficiency is signif-
icant for the approach they have taken. Not only does their fitting process remove the
material usage during the plaster casting process and prototyping, but the continued
reshapability means the same socket replaces multiple discarded sockets over the first few
years of a user’s journey through rehabilitation. There is also a high degree of reduction
in overall machinery requirements meaning less footprint associated with upkeep and
eventual replacement.

Another example is the use of highly recyclable polymers in AT design such as
polypropylene. In the P&O scoping study we spoke to a clinic in Cambodia who have been
recovering polypropylene from the fabrication process, and used sockets for some time.
They re-process the material where possible to make new sockets [108]. Further exploration
and research is needed to identify where material recovery could be better achieved.

An advantage with the prosthetic sockets mentioned above, which holds true for a
range of components across prosthetics and orthotic braces, is that they are often a single
material. This makes material recovery strategies easier to achieve, although more and
more high-end devices may be composites such as carbon fibre reinforced polymers which
limit recovery. More complex assistive devices, particularly those containing electronics
are a harder problem to solve, both in regard to reuse and material recovery. They may
represent a significant environmental impact however, with a range of materials used
paired with low useful life span. If devices had end of life considerations built into the
original design, then they could be better planned for. These considerations often go hand
in hand with design for repair and reuse, for example modularity, which often increases
both upgradability and component breakdown.

8. Conclusions
8.1. What Needs to Be Done?

While we have laid out the potential opportunities in these approaches, there is much
that would need to happen to make them possible, and there is a great deal of complexity
in the necessary actions. The following actions are neither exhaustive, nor complete, but act
as a starting point for discussion.

Governments and funders can help tilt the playing field towards local production-led
innovation by the provision of tax breaks, grants or other financial incentives. They could
also look to provide locally produced devices, perhaps helping to co-locate production sites
near to hospitals and within community sites and programmes. This would help to drive
demand, whilst also producing local employment. The building of local capacity and skills
would also be needed and the training that this requires would not be a quick process.

Current importers, who, in LMICs are often not the government but NGOs would
need to be persuaded to work together and shift from the centralised manufacturing and
import model to a localised production model or at least find a balance between the two.
This requires research into what works, what is appropriate where.

A full scoping of the current barriers to local production models, particularly address-
ing issues around actual and perceived quality is needed. For example, access to quality
assessment and testing facilities is currently a barrier faced by many medically oriented
innovators in LMICs–in Africa particularly, there is a total lack of these services.

The answers to some of the questions that are outstanding may already be available,
but require increased communication between government, funders, NGOs, academic
groups, industries that focus their attention on specific separate mission-led arenas. This
obviously refers to disability inclusion and sustainability, but this is not exclusive.
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8.2. Concluding Summary and Final Remarks

The disruption of supply chains globally due to COVID-19 has shone a light on the
problems of the globalised model of manufacturing for essential items such as AT. This does
however bring potential in the recovery period from the pandemic as a time to re-assess
the monopoly that this model has. While these global supply chains are an important
part of the puzzle, allowing cheap prices for some products through economies of scale,
we have illustrated some localised approaches that could offer the missing pieces that AT
ecosystems need to improve and allow trustworthy and robust access to devices.

Interestingly there are multiple synergies between what improvements are needed
within AT provision and the wider environmental issues in the SDGs, which suggest AT
could be particularly suited to pave the way for the sustainable local models that are
needed in other industries.

To summarise these ideas:

• People with disabilities are particularly vulnerable to the negative effects of climate
change, which will also likely exacerbate the difficulties of AT provision globally.

• Localised models of AT production could increase user and context specific AT innova-
tions, while concurrently enabling circular approaches that reduce their environmental
impact as well as bringing economic benefit to local communities.

• Localised models of AT could enable the potential of much needed service aspects
of AT provision such as reuse and repair-increasing stable, reliable access to devices,
and prolonging the useful life of products, and reduce the environmental impact of AT.

• AT needs to be designed with end of life in mind, this means designing for a system
where the materials and components can easily be recovered and recirculated to the
local points of production.

• Resilient, stable, and importantly equitable access to AT are an imperative and will
become more so as climate change intensifies. The circular approaches we have
outlined in this paper are the foundation of a systems approach to reducing the impact
of climate change while increasing AT provision.
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