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Abstract: It is commonly asserted that agricultural production systems must use fewer antibiotics in
food-producing animals in order to mitigate the global spread of antimicrobial resistance (AMR). In
order to assess the cost-effectiveness of such interventions, especially given the potential trade-off
with rural livelihoods, we must quantify more precisely the relationship between food-producing
animal antimicrobial use and AMR in humans. Here, we outline and compare methods that can be
used to estimate this relationship, calling on key literature in this area. Mechanistic mathematical
models have the advantage of being rooted in epidemiological theory, but may struggle to capture
relevant non-epidemiological covariates which have an uncertain relationship with human AMR. We
advocate greater use of panel regression models which can incorporate these factors in a flexible way,
capturing both shape and scale variation. We provide recommendations for future panel regression
studies to follow in order to inform cost-effectiveness analyses of AMR containment interventions
across the One Health spectrum, which will be key in the age of increasing AMR.

Keywords: antimicrobial resistance; One Health; agriculture

1. Background

Antimicrobial resistance (AMR) is an archetypally One Health problem, with increas-
ingly profound global consequences for human health [1,2]. Antimicrobial use (AMU) in
food-producing animals considerably outweighs that in humans; and there is evidence
of the transfer of resistant bacteria and genes (resistomes) from food-producing animals
to humans via the food chain, through direct contact with livestock and indirectly (via
contamination of crops and the environment by animal manure and slurry, through water-
ways in aquaculture, etc.) [3–8]. This can contribute to the prevalence of AMR pathogens
in humans. Consequently, there have been frequent calls to reduce this usage in order to
limit the growth of AMR in humans [5,8,9]. Within this, non-therapeutic AMU in food-
producing animals, especially in low- and middle-income countries (LMICs), is seen as
a key area for reduction [9–11]. However, achieving this reduction can be problematic as
antimicrobials are used to increase animal growth (growth-promoting use) and to prevent
disease outbreaks among livestock (metaphylactic and prophylactic use), and as such may
be important for agricultural livelihoods.

Decision and policy makers now frequently rely on economic analyses when deciding
on which intervention to prioritise [12]. In this case, weighing the risks to human health
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posed by AMU in food-producing animals against its potential economic value is difficult:
modellers and policy makers will require a good understanding of the relationship between
AMU in food-producing animals and infections due to AMR pathogens in humans in order
to justify, prioritise and design interventions to reduce the former [13].

2. Reducing AMU in Food-Producing Animals May Not, on Its Own, Be Effective in
Reducing AMR Prevalence in Humans

The size and shape of the relationship between food-producing animal AMU and
the number of infections with AMR pathogens in humans are uncertain, and there is no
consensus on the favourable versus unfavourable consequences of even non-therapeutic
animal antimicrobial use [2,14]. For certain bug–drug combinations, genomic studies find
that food-producing animal use is unlikely to be an important driver of AMR prevalence in
humans. For example, in countries where contact patterns would suggest a greater transfer
of AMR (such as living in close proximity to their livestock [15]), studies have contrasting
results in terms of directionality and statistical significance [16–20] (see Appendix A for a
summary of key studies aiming to quantify this relationship).

Additionally, resistant pathogens pass via the human, animal and environmental
components of the One Health system [21], and a high diversity of microbial isolates from
across the three One Health compartments suggests that resistance in each compartment
has multiple origins [22]. Humans and animals may acquire resistance from exposure
to antimicrobials other than those used in animal production, e.g., those used in crop
agriculture, or those found in manufacturing effluent and wastewater from production
for human use. Especially where resistance is transmitted with ease from humans to food-
producing animals, a pool of resistance may be maintained in those animals even when
agricultural AMU is low [23,24]. This necessitates a multi-sectoral approach, and suggests
that reducing food-producing animal use alone may have only a modest effect on AMR
carriage and disease burden in humans [2]. As shown in Figure 1, even in the absence of
AMU in livestock, a reservoir of resistant bacteria may be maintained in livestock due to
exposure to AMU from the environment and from human use: the One Health system
is intertwined.

Some resistant pathogens may already be endemic to human communities indepen-
dently of transmission from food-producing animals [25,26]. In such cases, resistance preva-
lence in humans would not respond to the curtailing of AMU in food-producing animals.
Using a system of differential equations to model the One Health system, Smith et al. [26].
find that the effect of reducing animal AMU is likely to be much lower when there already
exists a high resistance prevalence in humans, for example if resultant from high AMU
levels in humans. However, such actions can still limit the emergence of future resistant
strains [26].
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Figure 1. Simplified System Reflecting the Maintenance of Resistance Reservoirs in the Absence of 
Food-Producing Animal Antimicrobial Use. (Rectangles represent reservoirs of resistance, ovals 
represent introduction of antimicrobials into the system, and crosses represent the interruption of 
transmission or selection mechanisms.) 

3. Present Quantification of This Relationship Does Not Lend Itself to  
Cost-Effectiveness Analysis 

As agricultural AMU can aid rural livelihoods and poverty alleviation in the short 
term [27], reducing it implies a trade-off between this and the potential global health ben-
efits of curbing AMR carriage in humans in the medium to long term. This is especially 
important in highly agrarian economies, and in contexts with a weaker Water, Sanitation 
and Hygiene (WASH) infrastructure and weaker biosecurity and husbandry practices 
where antibiotic use may be more relied upon for limiting infectious disease outbreaks in 
livestock. Although often overlooked, the therapeutic use of antibiotics, which is threat-
ened by AMR, is also important for ensuring animal welfare. Given the theory and litera-
ture which suggest that it is still uncertain what effect reducing food-producing animal 
AMU may have on reducing carriage of AMR in humans (Section 2), the case for such 
interventions is not clear (aside from a few select drug–pathogen combinations for which 
a clear link between use and resistance can be established [28]). Aside from the precau-
tionary principle, which argues for the restriction of the use in food-producing animals of 
antibiotics of critical medical importance to humans, we argue that such decisions, which 
may have a large impact on farmers, need to be supported by quantification of their likely 
effect. Without quantifying the empirical relationship between food-producing animal 
AMU and human AMR, it is impossible to assess the health economic worthwhileness 
(i.e., cost-effectiveness) of targeting food-producing animal AMU, and thus difficult to 
make national-level policy decisions about this question. 

One way of quantifying the link between food-producing animal AMU and human 
AMR would be to examine the effect of real-world interventions to reduce food-producing 
animal antimicrobial use. To this end, the global health community commonly looks to 
the findings of a meta-analysis by Tang et al. (2017) [29], who synthesised the results of a 
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Food-Producing Animal Antimicrobial Use. (Rectangles represent reservoirs of resistance, ovals
represent introduction of antimicrobials into the system, and crosses represent the interruption of
transmission or selection mechanisms.)

3. Present Quantification of This Relationship Does Not Lend Itself to
Cost-Effectiveness Analysis

As agricultural AMU can aid rural livelihoods and poverty alleviation in the short
term [27], reducing it implies a trade-off between this and the potential global health
benefits of curbing AMR carriage in humans in the medium to long term. This is especially
important in highly agrarian economies, and in contexts with a weaker Water, Sanitation
and Hygiene (WASH) infrastructure and weaker biosecurity and husbandry practices where
antibiotic use may be more relied upon for limiting infectious disease outbreaks in livestock.
Although often overlooked, the therapeutic use of antibiotics, which is threatened by AMR,
is also important for ensuring animal welfare. Given the theory and literature which
suggest that it is still uncertain what effect reducing food-producing animal AMU may
have on reducing carriage of AMR in humans (Section 2), the case for such interventions
is not clear (aside from a few select drug–pathogen combinations for which a clear link
between use and resistance can be established [28]). Aside from the precautionary principle,
which argues for the restriction of the use in food-producing animals of antibiotics of critical
medical importance to humans, we argue that such decisions, which may have a large
impact on farmers, need to be supported by quantification of their likely effect. Without
quantifying the empirical relationship between food-producing animal AMU and human
AMR, it is impossible to assess the health economic worthwhileness (i.e., cost-effectiveness)
of targeting food-producing animal AMU, and thus difficult to make national-level policy
decisions about this question.
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One way of quantifying the link between food-producing animal AMU and human
AMR would be to examine the effect of real-world interventions to reduce food-producing
animal antimicrobial use. To this end, the global health community commonly looks to
the findings of a meta-analysis by Tang et al. (2017) [29], who synthesised the results of a
range of interventions to reduce AMU in food-producing animals. The authors found that,
across the thirteen included studies which described AMR outcomes in humans, the pooled
prevalence of AMR was 24% lower (CI 6–42%) in intervention groups than in controls, a
very large difference. Stratified by the human population considered, the difference was
9% for non-farm workers (CI 5–13%) across three studies, and 29% among farm workers
and household members (CI 4–54%) across nine studies.

That meta-analysis is a valuable and novel piece of work that has advanced our
understanding of AMR. However, while its results are indicative of the existence of a
relationship between food-producing animal AMU and human AMR, they do not allow us
to quantify that relationship for the purposes of cost-effectiveness analysis. Included studies
looking at human AMR outcomes were pooled across all drug–pathogen combinations
and intervention types due to the limited number of studies, which will obscure differing
resistance responses of microbial pathogens to AMU [30]. Most studies concerning human
AMR outcomes focused on outcomes among farmers and those with direct contact with
food-producing animals, with only two included studies looking at the community and
two included studies looking at hospital settings (reflective of a major limitation of existing
One Health studies in AMR). All included studies looking at human AMR outcomes were
from high-income countries, and most were from the Netherlands and Norway, again
precluding generalisation.

Moreover, it is difficult to reconcile this large treatment effect with the body of mathe-
matical models and genomic studies which suggest a much more ambiguous relationship
between human AMR and food-producing animal AMU (see Appendix A). This leads to
concerns of endogeneity, for example that some of the interventions included in the study
may have been implemented as part of broader national action plans (NAPs), and thus that
the observed effect may also reflect the impact of other contemporaneous interventions to
combat AMR (the included studies generally did not control for potential confounders [29]).
In a subsequent stratified meta-analysis focusing on food-producing animal AMR outcomes
in the same body of literature [31], the authors found that the ostensible effectiveness of
interventions was influenced considerably by the underlying prevalence of food-producing
animal AMU, again making results difficult to generalise across settings

More broadly, knowing the pooled effect of a set of past interventions presents a
black-box relationship between food-producing animal AMU and human AMR. Given that
the AMR system functions like a bath with several taps (Figure 1), and given suggestions
that reducing food-producing animal AMU alone may be ineffective (Section 2), it becomes
necessary to know the effect of altering a range of parameters simultaneously, as well as
the nature of their interactions and the role of transmission between compartments. Nor
can we know the time scale over which human resistance levels respond to food-producing
animal AMU, and any non-linearities inherent in that response, both of which are needed
in order to model the whole One Health system effectiveness and cost-effectiveness of
food-producing animal AMU interventions.

4. Alternative Ways of Assessing This Relationship

Given the difficulty in quantifying the relationship of interest using empirical meta-
analyses, we use this section to propose areas of focus for research going forward. We
outline appropriate methods for estimating the relationship, and provide guidelines for
future analyses. We recommend applying panel regression models to AMR surveillance
data, reinforced by transmission dynamic mathematical models of the One Health AMR
system (Appendix B).
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4.1. Transmission Dynamic Mathematical Models
4.1.1. What Is This Method, How Can It Be Used, and How Has This Method Been Used in
the Literature?

Transmission dynamic models can take a range of forms, for example including
difference equation models or individual-based models (IBMs). Most recent work exploring
AMR acquisition in the One Health system has used ordinary differential equation models
(ODEs) to estimate the relationship between food-producing animal AMU and human
AMR [21,23].

These models track sub-populations over time, with dynamics being a function of
the rate of transmission, antibiotic exposure and resistance evolution. For example, Van
Bunnik and Woolhouse [23] created a simple set of equations for modelling this system
with only two compartments (animal and human), and used Monte Carlo simulation to
evaluate the overall sensitivity of human AMR to changes in food-producing animal AMU.
Using surveillance data on resistance prevalence and antimicrobial consumption in each
compartment, such models can be fitted to specific country contexts to illuminate the
relationship between food-producing animal AMU and human AMR in that setting, e.g.,
Booton et al. [21] for Thailand.

4.1.2. Advantages and Limitations of this Method

Models such as this have the advantage of mechanistically modelling AMR acquisition
and transfer using known epidemiological foundations. A main limit to applying such
methods is their reliance on detailed, directly-comparable AMR surveillance data [32,33].
For example, the conclusions of the aforementioned paper by Booton et al. are limited
by the fitting of the model to Thailand using only ten point prevalence estimates across
different One Health settings from hard to reconcile geographically disparate studies [21].
Even where surveillance infrastructures exist, they may be opaque or the data may be
siloed [32], and there may be geographical disparities in data availability. In addition,
AMR surveillance is rarely set up with a One Health lens in mind, and different design
of surveillance systems for humans and animals limits effective comparison. At the time
of writing, a number of initiatives are already underway to create AMR surveillance
networks [32–35] and to monitor the costs associated with AMR for the purposes of cost-
effectiveness analysis [36].

4.1.3. Future Research Using This Method

Future research should then aim to fit models to longitudinal surveillance data when
and where they are available in order to determine the shape and size of the link between
food-producing animal AMU (and AMR) and human AMR for policy makers. Because
targeting food-producing animal AMU without addressing other factors is unlikely to
occur in reality and is potentially of limited efficacy, such models should explore the effect
of varying multiple parameters simultaneously (e.g., reducing human–human transmission
and food-producing animal AMU in tandem).

4.2. Panel Regression Models
4.2.1. What Is This Method, How Can It Be Used, and How Has This Method Been Used in
the Literature?

Mechanistic models are limited in their ability to capture and accurately parameterise
all the interacting components of a system. Statistical analysis does not rely on knowledge
of the mechanisms and instead can determine the contribution of various elements to
key dependent variables. For example, panel regression models can be used to combine
surveillance data on AMR and AMU prevalence in various countries and/or subnational
administrative areas over time, along with other relevant factors such as economic indica-
tors. Here, human AMR prevalence can be regressed against food-producing animal AMU
using static methods such as fixed and random effects, difference in difference, or first
difference; as well as dynamic methods such as difference and system generalised method
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of moments (GMM) [37]; and controlling for relevant factors such as medical staffing,
portion of employment in agriculture, population density, average annual temperature,
and income per capita. Including these diverse covariates allows more meaningful analysis
of the various non-epidemiological factors which in mechanistic models may be captured
by a single ‘contact’ parameter.

Once panel regression models have been used to determine the link between food-
producing animal AMU and human AMR (conditional on covariates), this relationship can
then be fed into mechanistic health economic models for the purpose of cost-effectiveness
analysis. For this reason, regression models which use data over time (including panel
regression) have been recommended over simpler methods such as correlation coefficients
for estimating the economic cost of AMR [38].

Panel regression techniques have been used, for example, to assess the relationship
between vaccination and AMU in Indian states [39], the relationship between medical
staffing and resistance prevalence in Chinese provinces [40,41], the relationship between
lab capacity and AMR in European countries [42]; and the association between animal
AMR and AMU, and animal AMR and human AMR, in European countries [43].

Such work has been elucidating at the national and subnational level, and works such
as Collignon et al. [44] represent a move towards mapping similar relationships at the global
level. AMU and AMR data from some countries can be drawn from existing surveillance
infrastructures [33,45–50]: for other countries, available surveillance data can be used in
combination with point prevalence estimates, and missingness partially mitigated using
techniques such as multiple imputation [51].

4.2.2. Advantages and Limitations of This Method

A key advantage of panel regression methods is that these models can accommodate
flexible functional forms (including lags, interactions, and non-linearities) which can be
used to reflect the relationship of interest accurately and comprehensively. They can
also control for a diverse range of factors to isolate the effect of each explanator: Noyes,
Slizovsky and Singer [52] note that the prevalence of AMR pathogens in humans depends
on a number of geographical, economic and social factors which are not generally taken
into account in transmission dynamic models but can easily be included in panel regression
models as covariates.

By including geographically and economically diverse countries, and by controlling
for relevant factors, the fitted values of such an analysis could be used to predict the
relationship between human AMR and food-producing animal AMU in various countries
based on their characteristics, including those for which no (or few) data are available. In
this way, while data missingness is still problematic, it can be overcome relatively effectively
in panel models.

Nonetheless, panel models are by no means a magic bullet, nor do the different
model types discussed here answer precisely the same question: in fact, panel models
can help to quantify the link between AMU and AMR in a way which can subsequently
be fed into mathematical models of transmission, as well as cost-effectiveness analyses.
The assumptions of panel regression models do not hold when food-producing animal
AMU is neither exogenous nor random (as is likely to be the case), and this issue must be
addressed carefully (Section 5). In addition to this, underlying causal mechanisms must
be understood before applying panel models to data, meaning that panel models must
be used in combination with other methods (e.g., impact evaluation and microbiology)
to triangulate relationships. As we have noted, cross-country panel regression models
with many controls and covariates can overcome data paucity quite well—that being
said, this method is still dependent on data availability and will suffer from a lack of
comprehensive data.
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5. Recommendations for Future Analysis

Researchers employing any of the methods discussed here should endeavour to follow
(or at the very least consult) appropriate standards and guidelines. For instance, mathe-
matical modelling exercises can make use of the TRACE paradigm [53], can incorporate
stochasticity to account for uncertainty and variability, can control for non-linearity and
heterogeneity, and can validate the chosen model both internally and externally [54]. The
advantage and disadvantages of each method are summarised in Table 1.

Table 1. Advantages, disadvantages, and data requirements for different methods of estimating the
relationship between animal AMU and human AMR.

Method Advantages Disadvantages Data Sources

Transmission
Dynamic

Mathematical Models

Mechanistic
capturing of AMR

evolution
Once fitted, can be

used to
predict/explore

scenarios

Requires
comprehensive data

Complexity of
development

Prevalence of AMR in
infections in both

humans and livestock
Multiple country data

on antibiotic use
across the One Health

spectrum

Panel Regression
Methods

Accommodation of
flexible functional

forms
Complexity in many

factors can be
included

Overcome data gaps

Has difficulty
accounting for

exogenous or random
relationships

Requires causal
mechanism

understanding
Requires

comprehensive data

Prevalence of AMR in
infections in both

humans and livestock
Multiple country data

on antibiotic use
across the One Health

spectrum
data on social and
economic factors

As discussed, panel regression studies have the potential to produce much-needed
inputs for cost-effectiveness analysis, but only by applying appropriate methods. We
therefore recommend that future panel studies aiming to quantify the relationship between
AMU in food-producing animals and AMR in humans aim to achieve the following:

Control for social and economic factors as well as epidemiological ones. Collignon et al. [44]
make excellent use of social covariates reflecting governance, health system design and the
macroeconomy. In particular, covariates which capture contact patterns between humans
and food-producing animals (e.g., the portion of employment in agriculture, or population
density) should be included. AMU in other animals (such as companion animals) can also
be accounted for if data are available.

Use panel rather than cross-sectional regression models. This includes the use of
lagged dependent and independent variables to understand the time to effect of the rela-
tionship of interest as well as the time dependency of human AMR. Both static and dynamic
panel methods should be used and compared [21], allowing researchers to distinguish
between the short-run and long-run values of covariates.

Be flexible in terms of functional form. The relationship of interest is a complex one,
and not reducible to a single parameter. Because we are unsure of the precise shape of the
relationship between human AMR and food-producing animal AMU, we should explore the
inclusion of various lags, non-linearities, threshold effects, and interaction terms. Supported
by the use of LASSO and other machine learning techniques for covariate selection, this
can minimise misspecification and allow the data to ‘speak for themselves’ (although in
the case of relative data paucity this may result in the selection of a parsimonious model
which ignores epidemiologically important terms [55]). As ‘big data’ on AMR become
increasingly available, machine learning prediction models may perform better than linear
panel models, especially in identifying and predicting complex causal relationships.

Take statistical potential sources of bias seriously. Regression models can reveal
an insignificant or even negative relationship between antimicrobial consumption and
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AMR [56]. While this may indeed be reflective of reality, such results can also arise from
omitted variable bias (e.g., an instance in which wealthier populaces are more likely to be
able to afford antimicrobials and simultaneously more likely to have well-funded WASH
infrastructures which reduce the spread of resistant pathogens). Such endogeneity can be
mitigated by including a range of epidemiologically relevant controls, and by exploring the
use of instrumental variable techniques [57] to reflect the exogenous component of AMU.
Reverse causality can also become problematic when factors associated with AMR also
influence prescribing patterns [58]. Use of one antibiotic can select both for and against
resistance to other antibiotic substances within and across antibiotic classes (disjoint and
concurrent resistance), and selective pressure also exists from non-antibiotic sources (e.g.,
heavy metals, disinfectants) in agricultural settings. Thus, using data on the use of one
or few antibiotics may not be sufficient. While using data on overall AMU can minimise
reverse causality, it may also attenuate any real relationships by including use of antibiotics
which do not select for resistance [58]. Given that the use prevalence of various antibiotics
may be closely related, multi-collinearity may also become an issue [58].

Include data from LMICs and HICs together. Due in part to data availability, studies on
AMR focus disproportionately on high-income settings. The relative social and economic
homogeneity of these countries can make it difficult to determine the effect of changes
in key parameters when data from LMICs are not included [44]. By understanding the
relationship between human AMR and covariates of interest at the global level, the fitted
values of such models can be used to predict the relationship of interest even for countries
with limited data availability.

Include as outcomes of interest as many drug–pathogen combinations as possible,
as well as indices of overall resistance. This will better reflect the unique response of
bacterial pathogens to changing levels of AMU [30], in contrast to focusing on only a
small handful of drug–pathogen combinations which is commonplace in the literature.
Including indices of overall resistance levels will also provide an overview of the total
societal effect of food-producing animal AMU, and can avoid the identification problems
arising from disjoint and concurrent resistance [59]. An index of overall resistance could,
for instance, be the average resistance prevalence from several key drug–pathogen pairs,
or an Anderson inverse covariance weighted index [60] of these values which adjusts for
correlation between individual outcome measures.

Finally, present results in a form with a cardinal interpretation. For the purposes
of comparability, many studies look at simple correlation coefficients or present the ef-
fect of a one-standard-deviation change in covariates of interest [44], which do not lend
themselves easily to cost-effectiveness modelling. To this end, we recommend that future
studies present the effect of a given level of food-producing animal AMU (e.g., in mg per
kg of live animal sold, or in mg per human population unit) on the prevalence of coloni-
sation of humans by resistant bacteria. This will not be a single value, but a potentially
complex relationship.

6. Final Remarks

The two methods discussed here are not mutually exclusive, nor exhaustive, and
we recommend that the results of both be compared, along with other methods, in order
to triangulate the relationship between food-producing animal AMU and human AMR
prevalence. These methods could include randomised control trials, quasi-experimental
settings and natural experiments, as well as other modelling strategies such as hierarchical
risk-assessment models of AMR acquisition [61].

Parameterising and validating models employing the methods discussed in this article
will benefit from the presence of stronger surveillance data on AMR and consumption,
across all three One Health compartments. For this reason, we underline the importance of
continuing to establish and expand AMR surveillance networks globally.

Just as it is important to quantify accurately the effect of food-producing animal AMU
on human AMR, so it is equally important to continue to quantify accurately the effect
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of food-producing animal AMU on farm productivity and profitability and on animal
welfare, as this outcome represents the other ‘half’ of the trade-off implied by reduced food-
producing animal AMU. Randomised trials at the farm level should be the gold standard
for estimating this. Outcomes considered should include feed conversion rate, animal
morbidity and mortality, the cost (labour and medicine) of treating sick animals, and the
effect of replacing antibiotics with alternatives such as probiotics [62]. Randomised trials
should consult guidelines such as CONSORT [63]. These results can be combined with
the effect on human AMR to generate holistic cost-effectiveness analyses of hypothetical
interventions to reduce food-producing animal AMU, consulting standards such as the
Harvard–Gates guidelines for cost–benefit analysis [12]. This cost-effectiveness analysis
will provide a robust basis for policy decisions concerning food-producing animal AMU.

In fact, a complete understanding of the relationship between animal AMU and human
AMR will require the syncrasy of AMU and AMR surveillance data, in vitro experiments
on antibiotic susceptibility in human and animal isolates, and animal experiments which
evaluate the AMR (and other) outcomes of different levels of AMU [64].

AMR is a significant global problem, one which is set to become more important in
the near future, and one which may disproportionately affect the Global South [65]. At
present, it is understood that AMU by food-producing animals is related to AMR carriage
in humans. However, the shape and size of this relationship, and precisely how food-
producing animal AMU interacts with other factors such as current AMR prevalence or
macroeconomic characteristics, remain largely unknown, and our current understanding
of this relationship does not allow us to make that important decision with confidence. In
order to inform policy, and in particular to model the effectiveness and cost-effectiveness of
interventions targeting food-producing animal AMU as a way to improve human health,
a more exact understanding must be reached using a data-driven approach. We suggest
ways forward in this article, and outline what we feel is an important knowledge gap.
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Appendix A

Selected Studies Relevant to the Link between Animal Antimicrobial Use and Human
Antimicrobial Resistance

Listed in the table below are the key results from studies that have attempted to
quantify the link between animal AMU and human AMR prevalence. We provide the
method and context for the relevant finding. These are only selected findings to give an
example of key results and the types of results available from such studies.
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Table A1. Findings of selected studies investigating the relationship between animal AMU and
human AMR.

Study Reference Method Relevant Findings

Muloi et al., 2018 [18] Systematic review of
genomic studies

Focusing on E. coli; 18% of studies
suggested transfer of resistance from
food-producing animals to humans,

56% of studies suggested
transmission between animals and
humans with no specified direction,
and 26% of studies did not support

the presence of transmission

Zhang, Cui and Zhang,
2019 [56] Panel regression model

A 10% increase in veterinary
antimicrobial consumption was
associated with a 1.65% (95% CI

0.376%, 2.924%) decrease in the rate
of resistance of P. aeruginosa to
fluoroquinolones in European

countries

Booton et al., 2021 [21] Differential equation
modelling

Completely eliminating animal
antibiotic use can be expected to

reduce colonisation of humans by
resistant bacteria by 7.1% (95% CI

1.0%, 16.8%) in Thailand

Tang et al., 2017 [29] Meta-analysis of real-life
intervention studies

Risk of AMR in humans was 24%
lower (95% CI 6%, 42%) in treatment

than control groups after
interventions to reduce antimicrobial

use in food-producing animals

Appendix B

Selected Estimation Methods and Data Requirements

Table A2. Explanation of different methods for estimating the relationship between animal AMU
and human AMR at the population level.

Method Description Data Requirement Reference Examples for the Case of AMU and
AMR

Transmission
dynamic

mathematical
models

Can take a number of
forms; including
individual-based

models, difference
equation models, and
differential equation

models. These
simulation models

attempt to track
important OH

sub-populations, their
resistance carriage and

antibiotic exposure, with
transmission rates

dependent on current
prevalence (dynamic)

Inputs: antibiotic
exposure, population
sizes, infection rates

To fit to: prevalence of
AMR (colonising or

infecting) over time for
each sub-population. This

can be used to infer
transmission parameters
and selection rates (per

antimicrobial) exposure)

δH
δt = γΛH(1 − H) + ΛH βHH H(1 − H) +

ΛH βΛH A(1 − H) +ΛH βEH E(1 − H)− µH H
(Booton et al., 2021) [21]

A single equation from this model of Thailand
where t is time; H, A, and E are resistance

prevalence in different sub-populations; xy is the
transmission of resistance between

sub-populations x and y; ΛH is human AMU; γ
is the speed at which humans and animals are
colonised by resistant bacteria; and µH is the
natural rate of decay of resistance in humans
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Table A2. Cont.

Method Description Data Requirement Reference Examples for the Case of AMU and
AMR

Decision-analytic
hierarchical models

The prevalence of AMR
in infections in humans
is a specified function of
a range of factors across

the various OH
compartments, which in

turn are functions of
other factors

Actual or approximate
values for all of the

parameters used across the
three OH compartments:
human (e.g., incidence of
raw meat consumption),

animal (e.g., prevalence of
biosecurity measures in

farms), and environment
(e.g., prevalence of good
manufacturing practices).

AMR surveillance data for
external validation

Antibiotics 2021, 10, x FOR PEER REVIEW 11 of 14 
 

Deci-
sion-an-
alytic hi-

erar-
chical 

models 

The prevalence 
of AMR in infec-
tions in humans 

is a specified 
function of a 

range of factors 
across the vari-
ous OH com-

partments, 
which in turn 

are functions of 
other factors 

Actual or approxi-
mate values for all 
of the parameters 

used across the 
three OH compart-

ments: human 
(e.g., incidence of 

raw meat con-
sumption), animal 
(e.g., prevalence of 

biosecurity 
measures in 

farms), and envi-
ronment (e.g., 

prevalence of good 
manufacturing 

practices). AMR 
surveillance data 

for external valida-
tion 

 

(Opatowski et al., 2020) [61]  
The risk of human AMR acquisition in a representative Asian 

population is modelled using this multi-level causal model 

Panel 
regres-

sion 
models 

Data on AMR 
and AMU in hu-
mans and food-
producing ani-
mals, as well as 
other relevant 
covariates, are 
collected over 
time and for 
multiple geo-

graphical units 
(e.g., countries 
or administra-

tive areas). Hu-
man AMR is re-
gressed against 
these covariates 
using a method 
such as fixed ef-
fects (static) or 
system GMM 

(dynamic) 

Country-level sur-
veillance data on 

AMR and AMU in 
humans and food-
producing animals 
over time, as well 
as country-level 

data on appropri-
ate controls, e.g., 
medical staffing, 

portion of employ-
ment in agricul-
ture, population 
density, average 
annual tempera-
ture, and income 

per capita 

௜,௧ܴܯܣ݈݊ = ଴ߚ  + ܯଵ݈݊ߚ ௜ܵ,௧ + ଶ݈ܸ݊ߚ ௜ܲ ,௧ + ௜,௧ܥܯܣܪଷ݈݊ߚ
+ ௜,௧ܥܯܣସ݈ܸ݊ߚ + ௜ݑ + ௧ߠ +  ௜,௧ߝ

(Zhang, Cui and Zhang, 2018) [56]  
Where lnAMR is log AMR prevalence in humans, i denotes 

country and t denotes year; MS denotes the number of medical 
staff and VP denotes the number of veterinary professionals; 
and VAMC and HAMC denote veterinary and human antimi-

crobial consumption  
Fluoroquinolone resistance in E. coli and P. aeruginosa is re-
gressed against a series of country-level factors for a panel of 

European countries 

References 
1. OECD. Stemming the Superbug Tide. In OECD Health Policy Studies; OECD: Paris, France, 2018. 
2. Woolhouse, M. Big Gaps in Our Knowledge about AMR; South-Western: Mason, OH, USA, 2018. 
3. Van Boeckel, T.P.; Brower, C.; Gilbert, M. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 

112, 5649–5654. 
4. van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global 

Trends in Antimicrobial Resistance in Animals in Low- and Middle-Income Countries. Science 2019, 365, 1256. 
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The risk of human AMR acquisition in a

representative Asian population is modelled
using this multi-level causal model

Panel regression
models

Data on AMR and AMU
in humans and

food-producing animals,
as well as other relevant
covariates, are collected

over time and for
multiple geographical
units (e.g., countries or
administrative areas).

Human AMR is
regressed against these

covariates using a
method such as fixed

effects (static) or system
GMM (dynamic)

Country-level surveillance
data on AMR and AMU in

humans and
food-producing animals

over time, as well as
country-level data on

appropriate controls, e.g.,
medical staffing, portion

of employment in
agriculture, population
density, average annual

temperature, and income
per capita

lnAMRi,t = β0 + β1lnMSi,t + β2lnVPi,t +
β3lnHAMCi,t +β4lnVAMCi,t + ui + θt + εi,t

(Zhang, Cui and Zhang, 2018) [56]
Where lnAMR is log AMR prevalence in humans,

i denotes country and t denotes year; MS
denotes the number of medical staff and VP

denotes the number of veterinary professionals;
and VAMC and HAMC denote veterinary and

human antimicrobial consumption
Fluoroquinolone resistance in E. coli and P.
aeruginosa is regressed against a series of

country-level factors for a panel of European
countries
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