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Abstract: While state sequence analysis (SSA) has been long used in social sciences, its use in
pharmacoepidemiology is still in its infancy. Indeed, this technique is relatively easy to use, and its
intrinsic visual nature may help investigators to untangle the latent information within prescription
data, facilitating the individuation of specific patterns and possible inappropriate use of medications.
In this paper, we provide an educational primer of the most important learning concepts and
methods of SSA, including measurement of dissimilarities between sequences, the application of
clustering methods to identify sequence patterns, the use of complexity measures for sequence
patterns, the graphical visualization of sequences, and the use of SSA in predictive models. As a
worked example, we present an application of SSA to opioid prescription patterns in patients with
non-cancer pain, using real-world data from Italy. We show how SSA allows the identification of
patterns in prescriptions in these data that might not be evident using standard statistical approaches
and how these patterns are associated with future discontinuation of opioid therapy.

Keywords: state-sequence analysis; pharmacoepidemiology; data-mining

1. Introduction

In the last decade, enormous progress has been made in the use of real-world data to
provide information on drug use, effectiveness and safety. This has been principally due
to the expansion of information technology with easier access to diverse sources such as
electronic health records (EHR), administrative or health claims data, as well as disease and
drug monitoring registries [1]. There is thus a pervasive need to adapt research designs
and statistical methods to such rapid evolution, which affects the amount, the frequency,
the type, and the nature of available information [2]. In this framework, classical statistical
tools can be integrated with novel data mining techniques suitable of identifying patterns
in complex data structures. Thus far, in pharmacoepidemiology, these techniques have
been mainly used to identify adverse drug reactions [3], while their application to the
analysis of drug prescriptions to identify longitudinal use patterns is still limited [4].
Indeed, most drug utilization studies currently rely on simple adherence measures such
as medication possession ratio and proportion of days covered [5]. While these summary
indicators have different advantages, they typically fail to identify the different prescription
patterns of patients, which in turn can be associated with important health-outcomes [6].
To fill this gap, in this paper, we show the application of state sequence analysis (SSA)
to pharmacoepidemiological data to evaluate the temporal order of prescriptions and
to identify latent complex patterns. Without assuming a priori hypothesis, SSA is an
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effective tool to study distinctive features of homogeneous groups of sequences, exploiting
their pairwise dissimilarities in unsupervised clustering [7]. The SSA method indeed
looks at the life sequence as a single unit of analysis, extracts fundamental descriptive
information, and makes the data easier to comprehend, differently from event history
analysis [8]. Identifying in sequences also typical trajectories and recurring structures, the
SSA is considered the most suitable tool for signal detection in healthcare databases [3].

While SSA has been long used in social sciences, especially for labor and family mo-
bility research [9–13], its use in pharmacoepidemiology is still in its infancy [14–16]. SSA
allows a simple and compact representation of life courses identical to the one used to
code DNA molecules [9]. Thus, in social sciences, SSA is employed, for instance, to model
demographic projections based on microsimulation methods [9], family file events [12],
early employment insecurity [13], pathways to adulthood [11], and the prevalence of
nuclear families [10]. Moreover, SSA in pharmacoepidemiology proves to be effective
in evaluating the impact of regulatory measures on the prescription of sedative medica-
tions [15]; describing longitudinal patterns of disease-modifying therapies usage, grouping
the population [16]; and investigating the conformity of prescribing practices of respiratory
drug treatments [14].

As a worked example, we present here an application of SSA to opioid prescription
patterns in patients with non-cancer pain, using real-world data from Italy. The choice
of this example is partly motivated by the fact that, while the use of opioids for the
management of chronic pain is increasing in many countries [17,18], there is still limited
research on related prescribing patterns [19]. Moreover, it is not clear whether some
patterns are associated with a longer duration of opioid use. Different studies suggest that
this condition might be associated with a higher risk of drug abuse and dependence [20–22].
Indeed, while treatment of acute pain is rarely associated with the development of opioid
abuse/dependence, chronic opioid therapy may result in opioid abuse/dependence in
3% to 19% of patients [22]. Results of a large Norwegian study suggest that even if only
one-fourth of patients starting opioid therapy for chronic nonmalignant pain enter long-
term treatment, a large proportion of this minority develops or is at risk for developing
problematic opioid use and addiction [23].

The paper is structured as follows. Section 2 introduces the prescription data that
will be used in the analysis. Section 3 presents the core steps of the SSA approach (data
coding Section 3.1, measurement of dissimilarities between sequences Section 3.2, the ap-
plication of clustering methods to the dissimilarity matrix Section 3.3). Sections 4 and 5
introduce complexity measures and tools for graphical visualization. Section 6 shows how
to include clusters obtained by SSA into predictive models. The main results are reported
in Sections 7 and 8, while Section 9 concludes the article with some final remarks and
indications for future research.

2. Data Source and Cohort Identification

Italian administrative data were used to show the application of SSA to drug pre-
scription data. Italy has a tax-based, universal coverage National Health System (NHS)
organized in three levels: national, regional (21 regions), and local (on average 10 Local
Health Authorities (LHA) per region). Healthcare is managed to the inhabitants by the LHA
according to their regular address. The local health authority databases contain, among
others, annual drug prescriptions dispensed by local pharmacies. In this study, we used
data from the LHA of Novara (about 350,000 residents), in the Piedmont region. For each
prescription contained in the database, the following information was retrieved: patient ID,
age and sex, dispensing date, ATC code, formulation, number of packages and Defined
Daily Dose (DDD). For the purposes of this study, we focused on opioid prescriptions (ATC
code N02A), which were classified in two groups [24], “strong” (S) and “weak” (W). The for-
mer group included morphine, hydromorphone, oxycodone, fentanyl, buprenorphine and
tapentadol, while the latter included codeine and tramadol. For each prescription, we
assumed that the consumption started on the day of dispensing. The duration of each
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prescription was calculated, dividing the total amount of active substance dispensed by
the relevant DDD, which is assumed to represent the average maintenance dose per day
for a drug used for its main indication in adults (https://www.whocc.no/atc_ddd_index/,
accessed on 1 January 2020).

New users of opioid therapy for chronic non-cancer pain were identified in the LHA
according to the following inclusion criteria:

1. Started an opioid treatment between 1 January 2012 and 31 November 2012. One year
of look-back was applied to exclude prevalent users;

2. Had at least two prescriptions of opioids, with the second one occurring within
70 days after the first one;

3. Have been treated with opioids for at least one year (i.e., the last opioid prescription
was dispensed at least one year after the first one);

4. Did not have any hospital discharge record in 2011 and 2012 with a diagnosis of cancer.

Cancer patients were not considered in this study for two reasons: (i) the different
time pattern in the opioid use when compared with patients with chronic or non-neoplastic
diseases; (ii) the use of painkillers often until the very end of their life, nullifying the
possibility of studying time to cessation of the therapy.

3. The SSA Approach

In SSA, the prescription history of a subject can be described as a sequence of dif-
ferent categorical states. In our case, states are defined from the type of opioid therapy
(strong/weak/none) assumed during each period of time. For instance, a subject could
start taking weak opioids for two weeks, then have a 12-week break and finally start strong
opioids until the end of the study. SSA allows to compare sequences among the different
subjects with respect to the succession of their component states and to identify common
patterns. In general, the core SSA process can be broken down into three main steps: data
coding, measurement of dissimilarities between sequences, and application of a clustering
method to identify sequence patterns [25].

3.1. Data Coding

Medication data are usually retrieved in SPELL format, in which each row represents
a single prescription. To carry out SSA, it is necessary first to convert these data into an
STS (state sequence) format, where each row represents a patient, as shown in Table 1.

The following step specifies the alphabet of the sequence. This is a discrete list of
all possible states appearing in the data. In our case, the alphabet is composed of the
following states: S, W, P, representing, respectively, strong opioid prescription, weak
opioid prescription and pause period, during which no opioid prescription is dispensed.
For example, the sequence SSWWPWP represents the following pattern: strong, strong,
weak, weak, pause, weak, pause. Once the alphabet has been specified, it is necessary to
define the length of the study period and the time unit (e.g., day, week, month, etc.) of
the analysis, also called sequence granularity. These two aspects will determine the start,
the end, and, therefore, the length of the sequences to be analyzed. In our example, we set
the time unit equal to one week. This choice was due to the fact that opioid prescriptions
typically cover one week of therapy in most of patients.

We classified the exposure status on each subject in the different weeks according
to the most frequent state that appeared in the considered time unit. Thus, for example,
if in a specific week a subject had three days of strong opioid therapy and four of weak
opioid therapy, the state for that time unit was W. In the case of equally frequent states, we
selected the first state that appears in the sequence. For each subject, the sequence started
with the first prescription of opioids dispensed in 2012 and ended one year after the index
prescription. Thus, for each subject, the sequence was constituted of 52 states. Notably,
we included only subjects that had at least one year of opioid therapy. This means that
we did not have to deal with right-truncated data (due, for example, to either cessation
or death). Moreover, as the study period started with the time of the first prescription,

https://www.whocc.no/atc_ddd_index/
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all the sequences were left-aligned. Thus, we did not have to deal with missing states
at the beginning of the sequence for some subjects (due to delayed entry in the cohort).
The absence of missing states in our database made the analysis simpler and overcome the
risk of creating an artifactual cluster of patients with missing states [25].

Table 1. Example of State Sequence (STS) format. W (in yellow) and S (in red) stand for weak and
strong opioid medication, respectively. P (in gray) stands for pause (no treatment).

ID Patient Week 1 Week 2 Week 3 Week 4 Week 5 ... Week 52
1 W W W W P ... P
2 W P S S W ... S
3 S S S S P ... P

3.2. Measurement of Dissimilarities between Sequences

Once sequences were created, we estimated the degree of dissimilarity between each
pair of sequences. To this aim, different measures of dissimilarity are available. Optimal
Matching (OM) is one of the most used methods in bioinformatics for the evaluation
of DNA sequences. The basic idea behind OM is to measure the dissimilarity of two
sequences by considering how much effort is required to transform one sequence into
the other one, applying some basic edit-operations (insertion, deletion, substitution) [9].
However, in settings different from bioinformatics (such as social sciences and, arguably,
pharmacoepidemiology), these edit-operations do not have a direct interpretation. This
makes it difficult to obtain meaningful results in these cases. For this reason, the longest
common subsequence (LCS) metric was introduced as a special case of the OM to be applied
to social sciences [26]. Briefly, the longer a subsequence that can be shared among two
different sequences, the more they are considered similar. This metric allows to construct a
dissimilarity matrix containing all the pairwise distances among the sequences (subjects)
included in the dataset.

3.3. Clustering Methods

The dissimilarity matrix was then used to cluster sequences and to identify differ-
ent prescription patterns [27]. Cluster analysis identifies a set of multivariate methods
designed to select and group homogeneous patients with respect to their quantitative or
qualitative characteristics (distances). In this study, we used hierarchical agglomerative
cluster methods, which are based on an iterative procedure to assemble observations in
groups [28]. These methods start considering every subject as a single group and, step by
step, end with a unique cluster composed of the whole set of observed subjects. In each step,
an observation is associated with an already existing cluster or forms a new cluster based
on the smallest observed distance. Among the different hierarchical methods, we adopted
the Ward method [29], which simultaneously minimizes the within-cluster variance and
maximizes the among-clusters variance at each iteration step. The optimal number of
clusters can be chosen either theoretically or empirically. In our case, the optimal number
of groups was determined empirically by visual inspection of the dendrogram, a graphical
representation of the cluster hierarchy based on the distance among the groups identified
in the iteration (Supplementary Figure S1).

4. Complexity Measures for Sequence Patterns

The distance between sequences is useful for representing their dissimilarities but
does not describe other important features, such as the number of states, the overall
time spent in each state, and the number of transitions between states. On the other
side, these three statistics may be difficult to interpret on their own, also considering
they are strictly correlated to each other. To overcome this limit, different indicators have
been proposed to summarize longitudinal characteristics of individual sequences [30].
In particular, we considered longitudinal Shannon’s entropy and Elzinga’s Turbulence.
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Longitudinal Shannon’s Entropy is a weighted average of the time spent in each state
within the same sequence (in our case, the total amount of time spent under a specific
drug regimen). Elzinga’s Turbulence [31] is instead a composite measure considering the
number of possible subsequences and the variance of the consecutive time spent in each
state. Further theoretical details on these indicators can be found in [30].

5. Graphical Visualization of Sequences

In SSA, graphical representations of patterns play an important role [30] in the commu-
nication of the results. In particular, the index plot is composed of horizontal lines for each
sequence, separating the states with different colors [32]. When it is directly used on a large
number of data, as in our case, it is usually not very helpful as it fails to capture specific
patterns and leads to the over-plotting phenomenon [32]. However, this plot becomes very
useful when it is employed after clustering methods, as it allows to identify characteristic
features of the different clusters. The state distribution plot is another available graphical
tool. It displays the general pattern of the whole set of data [30], showing the proportion
of patients in the different states at each time point. Jumps and peculiar moves among
vertical distributions can be interpreted following [33–35].

6. Predictive Models

Finally, results of sequence mining techniques can be integrated with classical sta-
tistical methods to evaluate the association between specific prescription patterns and
health-related outcomes. Here, we showed an application of this approach using the results
of cluster analysis and complexity measures to predict the future discontinuation of opioid
therapy. This is an important outcome in opioid chronic therapy, as a longer duration of
use is associated with a higher risk of abuse and dependence on these medications. For the
sake of this analysis, subjects were followed from the beginning of the second year of
therapy until 31 November 2015 or death, whatever occurred first, to evaluate discontin-
uation. Clusters identified by SSA during the first year of therapy and groups based on
the tertiles of the distribution of complexity measures were used as independent variables
to predict subsequent treatment discontinuation in a time-to-event analysis. Specifically,
the association between clusters and tertile subgroups with the outcome was evaluated
through the Kaplan–Meier method and multivariable Cox regression models adjusted by
age and gender.

Preliminary data management and manipulation of the dataset was carried out us-
ing SAS. All the SSA techniques used in this paper were performed using the R pack-
age TraMineR.

7. SSA Results

Based on our selection criteria, 469 new users of opioids for the treatment of chronic
non-cancer pain were identified and included in the analysis. Their characteristics are
summarized in Table 2. The majority of these patients were women (71%), with a mean age
of 72 years. In general, weak opioids were used more than strong ones. During the first
year, 79% of subjects received weak opioid prescriptions vs. 50% receiving strong opioids.
Notably, a substantial proportion of subjects (29%) received both. Women tended to use
both weak and strong opioids more than men. However, use of opioids was generally low
during the first year (on average, about 9 weeks of use of any type of opioids in both sexes)
(Table 2). This suggests that most of the subjects had intermittent therapy during the first
period of treatment. The state distribution plot, reported in Figure 1, shows changes in
the proportion of patients treated with weak and strong opioids during the first year of
treatment. Almost 80% of subjects started with weak opioids, but the “pause” state soon
became the dominant one (because of the intermittent regimen). Moreover, since the first
weeks, the number of users of weak and strong opioids became much more similar and
remained constant over time. This suggests that many subjects had an early escalation
from weak to strong opioids.
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Results of the cluster analysis are reported in Table 3 and Figure 2. Six main clusters
were identified, with cluster 1, 2 and 5 corresponding to patients mainly using weak opioids
and accounting for 70% of the cohort (Table 3). By contrast, clusters 3, 4 and 6 included
mainly strong opioid users. Cluster 1 and 4 had the largest use of weak and strong opioids,
respectively, while clusters 2 and 3 identified subjects with the lowest use of any type
of opioids.
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Figure 1. State distribution plot. Evolution of the proportion of patients using different types of
opioids during the first year of therapy.

Table 2. Characteristics of the sample.

Men Women

N 139 330
Age (SD) 66.9 (14.6) 73.3 (12.9)
Weeks with weak
opioids in first year (SD) 4.5 (5.4) 5.0 (5.0)
Weeks with strong
opioids in first year (SD) 3.1 (5.0) 3.3 (5.1)
Number of prescriptions
in first year (SD) 8.2 (6.5) 9.6 (6.1)
Discontinued by the
end of the FU (%) 62 (44.6%) 143 (43.3%)

Table 3. Characteristics of the subjects by clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

N 41 217 60 24 74 53
Women (%) 33 (80.5%) 142 (65.4%) 42 (74%) 18 (70%) 55 (75%) 40 (75.5%)
Age (SD) 75.7 (11.4) 70.0 (13.9) 72.4 (11.8) 65.4 (18.1) 74.7 (13.4) 70.6 (13.2)
Weeks with weak
opioids in first year (SD) 16.2 (6.7) 3.7 (1.7) 0.7 (1.4) 1 (1.5) 9.2 (1.8) 1.1 (1.7)
Weeks with strong
opioids in first year (SD) 1.5 (2.6) 1.3 (0.7) 3.4 (1.9) 19.8 (5.7) 0.2 (0.5) 9.3 (2.7)
Number of prescriptions
in first year (SD) 17.9 (8.7) 5.3 (2.9) 7.3 (4.1) 20.5 (5.0) 11.0 (2.7) 12.7 (4.3)
Discontinued by the
end of the FU (%) 17 (41%) 108 (50%) 29 (48%) 10 (42%) 29 (39%) 12 (23%)
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Figure 2. Index plots for weekly regimen use during the first year of opioid therapy.

8. Prediction of Treatment Discontinuation

The results of the cluster analysis were used to predict the future discontinuation of
opioid therapy in the cohort. Figure 3 shows that the probability of treatment discontin-
uation was different among the clusters (p < 0.001). These results were confirmed in the
Cox analysis reported in Table 4. Compared to cluster 2 (the reference group), subjects
belonging to cluster 6 had a 63% lower probability of stopping opioid treatment (adjusted
hazard ratio 0.36; 95% confidence interval: 0.20 to 0.65). The other clusters displayed an
intermediate behavior, with their curves falling between those of cluster 2 and 6.

The probability of treatment discontinuation has also been studied according to com-
plexity measures (Table 4 and Figure 4). Regarding entropy, the probability of discontinuing
the therapy decreased throughout the tertile groups (p < 0.001). Compared to the first
tertile, patients belonging to the third tertile had a 57% lower probability of discontinuation
(adjusted hazard ratio 0.36; 95% confidence interval: 0.30 to 0.64). Similar findings were
observed using turbulence (p < 0.001).
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Figure 3. Time to discontinuation of the opioid therapy in the different clusters.

Figure 4. Time to discontinuation of the opioid therapy according to different tertiles of entropy
(A) and turbulence (B).

Table 4. Association of clustering and complexity measures with time to discontinuation of opioid
therapy. Results from crude and adjusted Cox regression. * Results adjusted by age and sex.

Crude Adjusted *

Variable HR (95% CI) HR (95% CI)

Clusters Cluster 1 0.74 (0.44–1.23) 0.75 (0.45–1.26)
Cluster 2 1 (ref) 1 (ref)
Cluster 3 0.89 (0.59–1.33) 0.90 (0.59–1.35)
Cluster 4 0.70 (0.37–1.34) 0.70 (0.36–1.34)
Cluster 5 0.65 (0.43–0.98) 0.66 (0.44–1.00
Cluster 6 0.36 (0.20–0.65) 0.36 (0.30–0.65)

Entropy 1st tertile 1 (ref) 1 (ref)
2nd tertile 0.58 (0.41–0.78) 0.56 (0.41–0.77)
3rd tertile 0.43 (0.30–0.64) 0.44 (0.30–0.64)

Turbulence 1st tertile 1 (ref) 1 (ref)
2nd tertile 0.53 (0.39–0.73) 0.53 (0.39–0.73)
3rd tertile 0.49 (0.33–0.71) 0.49 (0.34–0.72)

9. Further Considerations

Using real-world data, in this paper, we showed how SSA allows the identification of
patterns in prescriptions that might not be detected using standard statistical approaches
and how these patterns are associated with future discontinuation of opioid therapy. In
recent years, epidemiological literature showed an increasing interest in different data
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mining techniques to characterize drug consumption [36,37]. Multivariate exploratory
methods, such as principal component analysis, multiple correspondence analysis and
agglomerative hierarchical clustering. Refs. [36,37] have been proposed, as well as latent
class models [4,36,38,39]. While all these approaches have their advantages, they usually
work on a limited number of class-defining variables and are thus not very suitable to
evaluate complex longitudinal patterns of prescriptions. Moreover, as their implementation
to real data is quite complex, their practical application in pharmacoepidemiology has
been limited so far. To this extent, SSA could constitute a simpler alternative to evaluate
prescription data. To date, only few epidemiological studies have exploited the potential
of SSA, mainly to evaluate patterns of healthcare utilization of patients with different
conditions [25,40–42]. Geographical disparities have been identified in care consumption
on a cohort of pregnant women [40] and on the elderly with end-stage renal disease [41]
with SSA. The latter has been recently employed also to detect the association between
ethnicity and socio-economic status on children’s body mass index trajectories [43].

To the best of our knowledge, the authors of [14] were the first to apply SSA in phar-
macoepidemiology to investigate patterns of respiratory drugs treatments. Nonetheless,
the use of SSA in their paper was indeed rather limited, as it only employed index plot as a
visualization tool and compared it with other methodologies. Two very recent studies made
a more comprehensive use of SSA with several advantages. On the one hand, SSA was
used to assess the effectiveness of regulatory restrictions in “sleeping pill” prescriptions,
detecting a reduced exposure in subgroups of long-term users [15]. On the other hand, SSA
helped to provide an overall characterization of disease-modifying therapies in patients
with multiple sclerosis both at individual and geographical levels [16].

There are some methodological aspects that should be kept in mind when performing
SSA of pharmacoepidemiological data. First, the strategy used for the assignation of the
exposure status (the state) should be appropriate for the research question. In the case of
equally frequent states within a specific time unit, we selected the first state that appears in
the sequence. However, in some situations it could be more sensible to consider an extra
state allowing for multiple exposures. For example, in our case-study, this would have
resulted in an additional “SW” state. Second, the effect of the chosen time-granularity on
results should be carefully evaluated. This issue was already raised by Vanasse et al. in the
context of healthcare utilization [42], and it could also be relevant when SSA is applied to
analyze prescriptions of specific medications. Thus, before drawing any inference from
SSA of pharmacoepidemiologic data, we recommend carrying out sensitivity analyses
using different levels of time-granularity.

Third, in some situations, it could be useful to analyze the patterns of different types
of drugs at the same time. In this regard, multichannel sequence analysis allows several
thematic sequences for one patient to be studied simultaneously and could represent
in the future a very interesting extension of standard SSA for pharmacoepidemiological
studies [25].

Given the nature of EHR data, SSA tools represents a potentially insightful integra-
tion of traditional approaches to study drug exposure and adverse effects. The method
can be applied within the traditional case-control [44] and cohort designs [45] but also
within the more recent self-matched designs [46], i.e., the self-controlled case series [47],
case-crossover [48] , and sequence symmetry analysis [49]. Typically, those designs are
implemented using parametric regression models and carry important statistical prop-
erties [47,48], but they also require several assumptions to be met and yield measures
that only answer well-defined research questions. Conversely, SSA aims at producing ex-
ploratory outputs throughout the construction of both visual and numeric data summaries
that can also be easily integrated into the most widely used regression models [15,16].
SSA might also represent a valuable practical tool in hypothesis-free signal detection in
pharmacovigilance [46,50] as it accommodates the analysis of a large dataset, increasingly
present, for instance, in national administrative databases.
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Research contributions of this study are mainly twofold. First, this paper provides an
educational primer of the most important learning concepts and methods of SSA. The latter
has been applied to a pharmacoepidemiology working example to propose a guide/tutorial
to the scientific community. Second, we have highlighted the need of a shift in perspective
to prescription data analysis from a cross-sectional and “compartmentalized” approach to
a holistic one, which enables extensive exploitation of the information available throughout
the application of a variety of data mining tools readily available in main statistical software.

Our working example has a limited sample size, no updated information or follow-
up, and limited patient information. For this reason, it should be not considered to
directly inform clinical practice but only for illustrative purposes. Further research might
address these issues conducting a thorough epidemiological analysis to shed light on
opioid use patterns at national, regional, and province levels. We also believe that extensive
investigations would be required to assess how SSA, in pharmacoepidemiology, performs
better at providing critical insights when compared to traditional approaches.

Finally, the SSA methodology could be combined with other novel approaches, such as
pharmacodynamic-based classification of drugs, built on the capacity of single medications
to interact with specific receptors [51,52]. In some cases, this strategy could be useful for
providing a pharmacological interpretation of the results of SSA.

10. Conclusions

Our contribution shows the potential of the SSA method in pharmacoepidemiologic
studies. This technique is easy to use, and its intrinsic visual nature may help investigators
to untangle the latent information within prescription datasets, facilitating the individua-
tion of specific patterns and possible inappropriate use of medications. In turn, this may
also help to evaluate the effect of drug policies and adherence to medical guidelines. All
these features make SSA a promising tool for future pharmacoepidemiologic research.
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