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Background: Population-level mathematical models of 
outbreaks typically assume that disease transmission 
is not impacted by population density (‘frequency-
dependent’) or that it increases linearly with density 
(‘density-dependent’). Aim: We sought evidence for 
the role of population density in SARS-CoV-2 transmis-
sion. Methods: Using COVID-19-associated mortality 
data from England, we fitted multiple functional forms 
linking density with transmission. We projected for-
wards beyond lockdown to ascertain the consequences 
of different functional forms on infection resurgence.
Results: COVID-19-associated mortality data from 
England show evidence of increasing with population 
density until a saturating level, after adjusting for 
local age distribution, deprivation, proportion of eth-
nic minority population and proportion of key work-
ers among the working population. Projections from 
a mathematical model that accounts for this obser-
vation deviate markedly from the current status quo 
for SARS-CoV-2 models which either assume linearity 
between density and transmission (30% of models) or 
no relationship at all (70%). Respectively, these clas-
sical model structures over- and underestimate the 
delay in infection resurgence following the release of 
lockdown. Conclusion: Identifying saturation points for 
given populations and including transmission terms 
that account for this feature will improve model accu-
racy and utility for the current and future pandemics.

Introduction
Like many pathogens that cause respiratory diseases 
[1-3], severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) appears to be transmitted more effec-
tively in densely populated areas [4-6]. The increased 
disease rates reported among high-density populations 
[4,5,7,8] may, however, be an artefact of confounders, 
such as a higher proportion of individuals of lower 
socioeconomic status or from minority ethnic groups in 
urban areas [9]. Using coronavirus disease (COVID-19)-
associated mortality data from the Office for National 
Statistics, we aimed to assess the evidence for density 
dependence.

Standard transmission models that either do or do not 
account for this density dependence have been used 
interchangeably because their projections are gen-
erally equivalent when population density remains 
unperturbed or is homogeneous, e.g. at a national 
level. While the ca 1% infection fatality rate for COVID-
19 [10] is insufficient to destabilise populations, the 
reaction of most countries’ governments to curtail 
disease spread through lockdown and physical dis-
tancing has had unprecedented impacts on the den-
sity of mobile human populations. For example, the 
United Kingdom’s lockdown, which came into effect 
on 23 March 2020, effectively reduced the freely mov-
ing population from 66.5 million to 10.6 million (key 
workers) [11]. This same intervention was employed by 
numerous countries, similarly impacting their mobile 
populations [12]. We evaluate the extent to which mod-
els built to inform the epidemiology of COVID-19 use an 
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underlying structure that can accommodate the dras-
tic changes and variation in densities experienced by 
most global populations.

As lockdowns were gradually released over the lat-
ter part of 2020, global populations were expected 
to re-equilibrate to a ‘new normal’ whereby densities 
of mobile people were increased but in which contact 
patterns were expected to remain reduced through 
physical distancing interventions [13]. Using a suite 
of mathematical models, we illustrate the impact that 
the different, routinely ignored, assumptions under-
lying transmission and density may have in project-
ing infection dynamics and measuring intervention 
effectiveness.

Methods

Data
Reported COVID-19-related deaths between 1 March 
and 31 July 2020 were obtained in anonymised linelist 
form from Public Health England and were filtered to 
include all deaths which occurred within 28 days of 
positive COVID-19 test (n = 36,311). We aggregated indi-
vidual records to lower-tier local authority (LTLA), and 
nationally by 10-year age bands in order to calculate 
age-standardised expected counts.

Local authority shapefiles and single-age population 
estimates were obtained from the Office for National 

Statistics [14]. Four sub-regions of Buckinghamshire 
(Aylesbury Vale, Chiltern, South Bucks, Wycombe) 
were aggregated in order to match most recent popu-
lation estimates. The City of London was aggregated 
with Westminster because of its very small resident 
population, and the Isles of Scilly were excluded since 
no COVID-19-related deaths had been reported there 
during the study period. Index of multiple deprivation 
(IMD) [15], percentage of minority ethnic population 
[16] and percentage of key workers among the working 
population [17] are characteristics of the LTLA popula-
tion potentially associated with both COVID-19 mortal-
ity and population density, therefore we included them 
as covariates in all models. Percentage of key workers 
was missing for Westminster and Cornwall; these were 
imputed by the median value across all neighbouring 
LTLA.

Statistical analysis
Negative binomial regression models were fitted to 
the number of deaths (n) per LTLA, adjusting initially 
for the three covariates (IMD, % minority population, % 
key workers) and subsequently adding a fourth covari-
ate, namely the lag in weeks behind the first death 
nationally. We adjusted for age distribution within the 
LTLA via inclusion of age-adjusted expected deaths 
(E) as an offset; these were calculated according to 
national age-specific rates (deaths per 100,000 per age 
band) applied to local population estimates in 10-year 
age bands. We accounted for population density in one 
of four functional forms: (i) constant/independent of 
population density, (ii) linear, (iii) log-linear and (iv) 
saturating.

For observed number of deaths (D), age-adjusted 
expected deaths (E) and defining  xi 

IMD  ,  xi 
mino, xi 

KW, 
xi 

lag and xi 
dens  , respectively, as the deprivation score, 

% minority population, % key workers, lag in weeks 
behind first death nationally and population density of 
LTLA this yields the following model specification:

where μi is the rate relative to the expected, ϕ the size 
parameter (1/overdispersion) of the negative binomial 
distribution and  βj  the regression coefficients. The 
functional form of population density is defined as

where

Figure 1
SARS-CoV-2 transmission model compartments and 
alternative transmission assumptions, England, March–
July 2020
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SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

Model compartments are: ‘S’usceptible, ‘E’xposed, ‘I’nfectious, 
‘P’re-critical infectious, ‘C’ritically ill, ‘D’ead and ‘R’ecovered. 
The three functional forms are shown for the force of infection, 
λ. Each is a product of the infectious proportion of the 
population and the transmission coefficient, β. The transmission 
coefficients are differentiated between the three functional 
forms using primes. The transmission coefficient is itself the 
product of the transmission probability per contact with an 
infectious individual and the contact rate. Under a linearly 
density-dependent assumption, the contact rate increases 
linearly with the total population, N. This numerator N cancels 
out the N denominator which is why β` is multiplied by the 
number of infectious individuals instead of the proportion. The 
saturating density-dependent formulation assumes the force 
of infection is a product of the transmission coefficient and a 
function that increases contact rate nonlinearly with population 
density as informed by parameter θ derived from analysing 
England’s regional mortality data.
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Models were fitted using the rstanarm package [18] with 
default weakly-informative priors. We compared the 
four model variants on leave-one-out information crite-
rion (LOOIC), calculated via approximate leave-one-out 
cross-validation as implemented in the  loo  package 
[19]. Interpretation was the same as that of the Akaike 
information criterion in that smaller values reflected 
better fit. The value of ϴ for the saturating function was 
determined by manual optimisation of the generalised 
linear model with respect to LOOIC on a hold-out set of 
40% of LTLA, over a range from 0.001 to 1.

For the saturating model, the impact of an 84% reduc-
tion in effective population density as a result of lock-
down on predicted mortality rates among the freely 
moving population was calculated as a percentage 
change between mean model-predicted deaths under 
the original and reduced densities.

Mathematical model
We use a discrete-time, deterministic compartmental 
model (Figure 1) with daily timesteps to simulate SARS-
CoV-2 transmission. From the first day of lockdown (23 

March 2020), we assumed 84% of the population to 
enter isolation in which frequency-dependent trans-
mission occurs. We made this assumption for the 
lockdown sub-population because an individual’s like-
lihood of contracting infection while in their home is 
limited by their household size (i.e. not impacted by 
the density of individuals under isolation in different 
households). Each model was fitted independently to 
England’s COVID-19-associated mortality data (up until 
1 August 2020). We compared frequency-dependent 
and both linearly and saturating density-dependent 
transmission for when lockdown is released. We also 
explored the impact of varying rates of connectiv-
ity between locked-down and free-moving individu-
als because those under lockdown were still afforded 
some freedom of movement, and because key work-
ers potentially cohabit with those under lockdown 
(Supplementary Figure S1  shows limited impact of 
doubling the rate of this connectivity). We compared 
frequency-dependent and linearly density-dependent 
transmission (the limiting cases for the saturating 
density-dependent model [20]) among the remaining 
free-movers for a range of lockdown release schedules 
(over a period of between 1 and 12 months). Contact 

Figure 2
Dependence of observed vs age-specific expected mortality rates (standardised mortality ratio) on population density, 
England, March–July 2020
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LOOIC: leave-one-out information criterion; SMR: standardised mortality ratio.

A. Four forms of density dependence (and loess curve, dashed black line) are illustrated in the left panel, with LOOIC values (in brackets 
after each model type) for each fit demonstrating superiority of the saturating density-dependent function. Population density has units of 
people per km2. For the saturating function, fitted θ = 0.05.

B. The heterogeneous impact of 84% effective density reduction on the proportional reduction in predicted mortality among the freely moving 
population according to the saturating model is mapped in the right panel.



4 www.eurosurveillance.org

rates are reduced through two distinct mechanisms 
under the density-dependent models: whereas reduced 
contact through physical distancing and behavioural 
changes among the freely moving population (e.g. the 
2 m rule) was included in all models, only the density-
dependent versions assumed reduced opportuni-
ties for mobile people coming into contact with other 
mobile people because of their substantially depleted 
numbers. Full model specification and sources for its 
parameterisation can be found in the Supplement, and 
the Python (v3.8) code is freely available from github 
(https://github.com/lwyakob/COVIDsaturates). 

Ethical statement
No ethical clearance was needed for this publication 
because all data which were freely available from the 
Office for National Statistics were anonymised.

Results 

Evidence for saturating density dependence in 
COVID-19-associated deaths 
Owing to the heightened risk of earlier outbreak seed-
ing for higher density areas, we repeated the analysis, 
additionally adjusting for the lag of the local epidemic 
behind the national. The saturating model was retained 
as the best fit (Table) and suggested a similar increase 
in mortality rate of fourfold (90% CrI: 2.15–7.08).

Under the saturating density-dependent model, the 
impact of lockdown on reducing transmission among 
mobile individuals, and consequently on deaths, is 
heterogeneous, having greatest benefit in regions with 
low population density (> 30% reduction in projected 
deaths for example in Devon, Herefordshire and the 
Derbyshire Dales) but reduced benefit in high-density 
regions (ca 5–7% reduction for the London boroughs 
of Tower Hamlets, Hackney, Islington and Camden) 
(Figure 2B). These results were retained when account-
ing for the lag of the local epidemic behind the national 
(Supplementary Figure S3).

Projecting SARS-CoV-2 resurgence after 
lockdown is released
A full-text review of 100 epidemiological models of 
SARS-CoV-2 published until 19 June 2020 showed that 

70% explicitly assumed that contact rate between 
people (and hence transmission) is unaffected by 
population density (see  Supplement  for details of the 
models). Of the remaining 30% of models, all assumed 
a linear relationship between population density and 
transmission.

We used a metapopulation model to simulate the infec-
tion dynamics among freely moving as well as locked-
down individuals, incorporating transmission terms 
that can accommodate density-independent (referred 
to as ‘frequency-dependent’) as well as linearly and 
saturating density-dependent assumptions. While all 
functional forms performed equivalently in fitting mor-
tality data leading up to lockdown, dynamics under 
alternate assumptions may diverge markedly during 
and following the phase when lockdown is released 
(Figure 3). We note that we ignored any adaptive public 
health responses (i.e. additional interventions) curb-
ing the second wave - this comparison was intended 
to illustrate the consequences to projected dynam-
ics of alternative assumptions underlying density and 
transmission.

Although final epidemic size and total deaths were 
equivalent for the alternative classical assumptions (fd 
and linearly dd), transmission was delayed by almost 
a year under a density- vs frequency-dependent model 
(Figure 3). This delay occurs because only under the 
density-dependent assumption, the force of infection 
is reduced while any part of the population remains 
locked down. At the very high densities of London pop-
ulations, locking down 84% of people under our satu-
rating density-dependent model had an impact most 
similar to a frequency-dependent assumption. This 
means that, if the density of England’s entire popula-
tion was equivalent to the density found in London, 
infection dynamics and deaths resulting from a saturat-
ing density-dependent model most closely match the 
frequency-dependent projections. However, London 
has a population density that is an order of magnitude 
higher than the next most populated region in England, 
and projected infection dynamics diverged more con-
siderably under scenarios reflecting densities expe-
rienced outside of the capital. The force of infection 
and the timing of peak prevalence for the saturating 

Table
Model comparison for explaining variation in COVID-19 mortality rates, England, March–July 2020

Model form LOOIC LOOIC SE Difference elpd Difference elpd SE
Saturating 1,927 25.4 0.0 0.0
Log-linear 1,931 25.6 −1.7 1.4
Independent 1,948 23.4 −10.2 4.6
Linear 1,949 23.8 −10.7 4.3

elpd: expected log pointwise predictive density; COVID-19: coronavirus disease; LOOIC: leave one out information criterion; SE: standard 
error.

Models additionally account for the time the local epidemic lags behind the national and are compared on LOOIC, with all compared with the 
optimal model (saturating form) in the first row. Saturating and log-linear forms are not clearly distinguishable from each other, but both 
appear preferable over the independent and linear forms.
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density-dependent model is constrained between the 
frequency- and linearly density-dependent versions 
[20], with lower densities tending towards the latter.

Assuming a maximum national capacity of 5,000 inten-
sive care unit (ICU) beds, we assessed the difference 
between these temporal limits in the projected dura-
tion between the release of lockdown and a second 
wave of infection exceeding ICU capacity (Figure 4). 
Threshold levels of physical distancing to interrupt 
transmission (i.e. maintain an effective reproduc-
tion number < 1) are similar for both classical models. 
However, where interventions failed to achieve this 
threshold, density-dependent transmission resulted in 
a delay of more than a year before the ICU capacity was 
exceeded. This is contingent on the timeframe across 
which lockdown is released, whereby more gradual 
releases extend delays. 

Discussion
Projections of COVID-19 infection dynamics following 
the release of a huge proportion of the population from 
lockdown comprise an urgent and critical component of 
public health decision-making [22]. The classical forms 

of modelling infectious diseases among populations 
have been used interchangeably by different research 
groups because, under most plausible circumstances, 
they exhibit equivalent dynamics. In March 2020, 
England locked down more than four-fifths of its popu-
lation. For most, this fundamentally altered the rate at 
which people made contact. Under the circumstance of 
millions of people easing out of lockdown, substantial 
differences between projections from a frequency- and 
density-dependent transmission assumption emerge. 
Most notably, density dependence results in delayed 
infection resurgence and, contingent on the timeframe 
across which lockdown is released and the effective-
ness of physical distancing, this delay can extend to 
more than a year.

The delay is a function of a fundamental aspect of 
density-dependent transmission: lower host densities 
reduce the force of infection, and there is a threshold 
host density below which an infection cannot spread. 
Despite its origins in human infectious disease mod-
elling [23], the existence of this threshold has his-
torically had limited epidemiological application. The 
phenomenon is discussed more widely in wildlife dis-
ease ecology [24] where it underlies key disease con-
trol decisions such as culling [25]. Current expectation 
is that lockdowns, either full or in a more moderate 
or localised form, will be reimplemented when cases 
start increasing again. Density effects and thresholds 
are particularly pertinent in the current COVID-19 pan-
demic during which extreme fluctuations in mobile 
human density are likely to continue.

Analysing COVID-19-associated deaths across different 
regions in England, and accounting for known major 
confounders [9], the nonlinear increase in deaths with 
population density was adequately captured by neither 
classical form of modelling transmission. Using a func-
tion that captures the saturating increase in deaths 
with population density resulted in an expedited resur-
gence compared with a linearly density-dependent 
model and a delayed resurgence compared with the 
popularly used frequency-dependent model.

Less populated areas were shown to have fewer deaths 
per capita (as per England’s mortality data) and slower 
resurgences following the release of lockdown. This 
provides more achievable targets and considerably 
more lead time for health services to prepare than 
would otherwise be anticipated. It also highlights a 
hazard. During and after releases from lockdown, in 
order to fit a prolonged lag in cases, transmission rates 
derived from most current (frequency-dependent) mod-
els will underestimate the effective reproduction num-
ber. This could exaggerate the perceived effectiveness 
of ongoing interventions, such as physical distancing 
or face masks, with potentially serious consequences.

Our study is limited by the fact that we do not have 
comprehensive data on how contact rates were 
affected before and over the lockdown period for 

Figure 3
Population density and SARS-CoV-2-associated mortality 
and infection dynamics following the release of lockdown, 
by transmission assumptions, England, March–July 2020

COVID-19: coronavirus disease; dd: density-dependent; fd: 
frequency-dependent; LD: lockdown; K: ×1,000; SARS-CoV-2: 
severe acute respiratory syndrome coronavirus 2.

COVID-19 associated mortality (top) and infection dynamics 
(bottom) following the release of lockdown under the three 
different transmission terms (fd, linearly dd and saturating dd). 
Lighter filled areas illustrate saturating dd dynamics for lower 
population density (where England’s density is set to equal 
that of London at 5,700 people per km2, the average English 
population density at 430 people per km2 or Cornwall at 160 
people per km2). These simulations show a 1-year release of 
locked-down individuals and infection preventative behaviours 
(e.g. face masks) that halve the transmission rate per contact 
(grey band denoted ‘Release’). Details of model-fitting are in the 
Supplement.
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individuals inhabiting regions of differing popula-
tion density. We also do not know where people were 
infected, only where they were when they died. Instead 
we had to resort to mortality rates and locations as a 
proxy. It is possible, for example, that contact rates 
are not affected by dramatic shifts in population den-
sity regardless of baseline levels (i.e. the average 
England resident came into contact with as many indi-
viduals during lockdown as before lockdown, satisfy-
ing a frequency-dependent assumption), and that the 
increased per capita fatality seen in more densely pop-
ulated regions has an alternative, thus far unidentified, 
explanation. Mobile phone applications developed to 
notify participants of urgent health information have 
already gained millions of users in the current corona-
virus context [26]. Piggy-backing on these efforts could 
help substantiate the evidence for the contact-density 
relationships we have identified.

Owing to the highly complex interactions between pop-
ulation characteristics, behaviours and mortality risk, 
the association discovered between saturating density 
and mortality rates may remain confounded by fac-
tors not considered here. Moreover, the criterion used 
for model comparison depends on an independence 
assumption which may not hold between neighbouring 
LTLA. Work is ongoing to characterise the patterns of 
spatial correlation in mortality at the LTLA level.

Conclusion
Infectious diseases are emerging at an unprece-
dented rate and the upwards trend in global travel 

and urbanisation increases the likelihood of pandem-
ics. Their success in controlling SARS-CoV-2 means 
that widescale lockdowns will not only continue to be 
enforced as this pandemic progresses, but they are 
likely to be more readily applied in future emergencies. 
It is crucial that we use the current opportunity to col-
lect data to inform more precise forms of how contact 
rates are altered at varying stages of lockdown. Future 
work should also address whether the feature of satu-
rating density dependence we have identified from 
England’s data are generalisable to other countries. 
Incorporating realistic contact-density relationships 
into the transmission term of population-level math-
ematical models will improve precision of their projec-
tions and their utility in public health decision-making.
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