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Background. Klebsiella species, including the notable pathogen K. pneumoniae, are increasingly associated with antimicrobial 
resistance (AMR). Genome-based surveillance can inform interventions aimed at controlling AMR. However, its widespread imple-
mentation requires tools to streamline bioinformatic analyses and public health reporting.

Methods. We developed the web application Pathogenwatch, which implements analytics tailored to Klebsiella species for inte-
gration and visualization of genomic and epidemiological data. We populated Pathogenwatch with 16 537 public Klebsiella genomes 
to enable contextualization of user genomes. We demonstrated its features with 1636 genomes from 4 low- and middle-income coun-
tries (LMICs) participating in the NIHR Global Health Research Unit (GHRU) on AMR.

Results. Using Pathogenwatch, we found that GHRU genomes were dominated by a small number of epidemic drug-resistant 
clones of K. pneumoniae. However, differences in their distribution were observed (eg, ST258/512 dominated in Colombia, ST231 
in India, ST307 in Nigeria, ST147 in the Philippines). Phylogenetic analyses including public genomes for contextualization enabled 
retrospective monitoring of their spread. In particular, we identified hospital outbreaks, detected introductions from abroad, and 
uncovered clonal expansions associated with resistance and virulence genes. Assessment of loci encoding O-antigens and capsule 
in K. pneumoniae, which represent possible vaccine candidates, showed that 3 O-types (O1–O3) represented 88.9% of all genomes, 
whereas capsule types were much more diverse.

Conclusions. Pathogenwatch provides a free, accessible platform for real-time analysis of Klebsiella genomes to aid surveil-
lance at local, national, and global levels. We have improved representation of genomes from GHRU participant countries, further 
facilitating ongoing surveillance.
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The Klebsiella genus, which belongs to the Enterobacteriaceae 
family, comprises several species that cause opportunistic infec-
tions in hospital and community settings [1, 2]. Klebsiella spe-
cies are found in the environment, and commonly contaminate 
healthcare environments and medical equipment [3, 4]. They 
also frequently colonize the intestinal tract and other mucosal 

surfaces of humans, which can serve as reservoirs for infection 
[1, 5, 6]. Infections occur most commonly in the elderly, neo-
nates, and in immunocompromised individuals, and include 
urinary tract infections, pneumonia, bloodstream infections, 
and sepsis [7, 8]. By far the most clinically significant member 
of the genus is Klebsiella pneumoniae [9]. However, other spe-
cies including K. quasipneumoniae, K. variicola, and K. oxytoca 
are also notable pathogens [10–12].

In recent years, the prevalence of infections caused by K. 
pneumoniae that are multidrug resistant has risen sharply [13]. 
Increasing resistance levels have largely been driven by the emer-
gence of strains producing extended-spectrum β-lactamase 
(ESBL) and carbapenemase enzymes, which are typically 
plasmid-encoded. ESBLs confer resistance to third-generation 
cephalosporins and monobactams, while carbapenemases result 
in resistance to almost all β-lactams including carbapenems [14, 
15]. In the community, hypervirulent K. pneumoniae can cause 
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severe infections due to the production of specific virulence 
factors including siderophores and the capsule expression regu-
lator RmpA [16]. Moreover, infections and outbreaks involving 
strains with both multidrug resistance and hypervirulence have 
now also been reported, leading to concern over a potential rise 
of serious untreatable infections [17, 18].

Increasing constraints around treatment options for 
multidrug-resistant Klebsiella infections, and accompanying rise 
in hypervirulence, have led to an urgent need for novel drugs. 
Some have reached the market recently, including ceftazidime-
avibactam and plazomicin, but more are needed. There is also 
renewed interest in the development of a preventative vaccine 
for K. pneumoniae infections [19, 20]. Potential vaccine can-
didates include K-antigens belonging to the bacterial capsule 
polysaccharide (CPS) and O-antigens comprising the outer-
most part of the lipopolysaccharide (LPS) [21]. However, these 
antigens are variable and may differ across geographic regions 
or infection types, underlining the need for seroepidemiology.

Pathogen surveillance provides a powerful tool for under-
standing the evolution and spread of resistant bacteria and 
defining their clinically relevant features [22]. With more wide-
spread adoption of genomic approaches, there is a growing 
need for tools that streamline whole-genome sequencing 
(WGS) analyses, circumvent the need for user expertise in 
bioinformatics, and deliver results for public health utility. 
Here we describe the Klebsiella scheme of the web applica-
tion Pathogenwatch, which incorporates community-driven 
tools together with additional functionality to provide de-
tailed typing and phylogenetic analyses of Klebsiella isolates, 
and integration of genomic and epidemiological data [23, 24]. 
We illustrate features of Pathogenwatch by analyzing Klebsiella 
genomes from 4 low- and middle-income countries (LMICs) 
participating in the National Institute for Health Research 
Global Health Research Unit (GHRU) on Genomic Surveillance 
of Antimicrobial Resistance (AMR). We also demonstrate how 
it can aid decision making in real time at local and global scales 
and inform the choice and effectiveness of key interventions 
such as vaccines.

METHODS

Assembly and Curation of Public Klebsiella Genomes for Pathogenwatch

We identified 18  319 samples in the European Nucleotide 
Archive (ENA) labeled either “Klebsiella” or “Raoultella” (a 
closely related genus that is not phylogenetically separate from 
Klebsiella; henceforth, included within “Klebsiella”) with paired-
end Illumina sequence data and geolocation data, as of 3 August 
2020. De novo assembly using the raw sequence data was at-
tempted using a SPAdes pipeline, resulting in the assembly of 
97.1% (17  783/18  319) of the samples [25]. Various quality-
control (QC) metrics were used to discard assemblies of poor 
quality (Supplementary Tables 1 and 2).

Ninety-three percent (16  537/17  783) of assemblies passed 
these QC criteria and were imported into Pathogenwatch as 
public genomes. Metadata for these samples (Supplementary 
Table 3) were downloaded via the ENA application program-
ming interface (API), curated, and linked to the assemblies in 
Pathogenwatch.

Pathogenwatch Features Tailored to Klebsiella Species
Species Determination
The Speciator tool assigns species by comparing assemblies to 
genomes within a reference library via Mash [26, 27]. This li-
brary comprises a manually curated set of reference assemblies 
tailored for Klebsiella and other Enterobacteriaceae species from 
Kleborate (version 2.0.1 at the time of writing) [28].

Genomic Characterization
Multi-locus sequence typing (MLST) and core genome MLST 
(cgMLST) are performed using the allelic and profile defin-
itions from databases hosted via the BIGSdb platform at Institut 
Pasteur [29]. Resistance and virulence loci, K- and O-loci, and 
wzi genes are typed in Pathogenwatch via an implementation of 
Kleborate (version 2.0.1 at the time of writing). K- and O- an-
tigen biosynthesis locus typing is achieved using Kaptive [30, 
31], while the wzi genes are defined using the BIGSdb-Pasteur 
platform [32]. Plasmid replicons are identified using Inctyper 
(currently version 0.0.4), with the Enterobacteriaceae database 
(11 May 2020 version) from PlasmidFinder [33, 34].

Phylogenetic Analyses
The pan-genome tool Roary was used previously to iden-
tify 2539 genes present in 95% or more of genomes from each 
species within a European collection of K. pneumoniae spe-
cies complex isolates (K. pneumoniae, K. quasipneumoniae, K. 
variicola, K. quasivariicola) [22, 35]. To further define a set of 
core genes in K. pneumoniae for phylogenetic analyses within 
Pathogenwatch, we first merged any matches to the 2539 genes 
that were overlapping in any of 13 diverse K. pneumoniae refer-
ence genomes to form pseudo-sequences (Supplementary Table 
4). We then removed any genes/pseudo-sequences that were 
paralogous (ie, matched another with >80% nucleotide identity 
and an e-value of <1e-35 via BLASTn) and any that were ab-
sent or incomplete in 1 or more references [36]. The core gene 
library used in Pathogenwatch thus comprised the remaining 
1972 genes (or pseudo-sequences). These are queried to gen-
erate pairwise single nucleotide polymorphism (SNP) distances 
between genomes, which are used to construct neighbor-
joining trees.

Whole-Genome Sequencing and Assembly of GHRU Isolates

Laboratories in 4 participant countries of the GHRU 
obtained 1706 Klebsiella genomes from isolates collected 
in 2013–2019 (Colombia, n = 589; India, n = 347; Nigeria, 
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n = 164; Philippines, n = 606) [37–40]. Of the samples from 
the Philippines, 342 of 606 (56.4%) have been previously re-
ported [41]. Raw sequence data were assembled and quality-
checked as described in this Methods section. Ninety-six 
percent (1636/1706) of assemblies passed QC criteria and 
were analyzed with Pathogenwatch (Supplementary Tables 5 
and 6). Of these 1636 isolates, 1625 were from human clinical 
samples and 11 from environmental samples (Nigeria only). 
Raw data have been deposited in the ENA under study acces-
sions ERP112087, ERP112088, ERP112089, ERP112091, and 
ERP019480.

RESULTS AND DISCUSSION

User Upload and Characterization of Klebsiella Genomes Using 
Pathogenwatch

Here we present features of the Pathogenwatch application 
(https://pathogen.watch/) that are tailored to genomic anal-
ysis of Klebsiella (including the closely related Raoultella 
genus). Users can upload either assemblies or raw sequence 
reads to Pathogenwatch, the latter of which will be assem-
bled via a SPAdes pipeline [25]. Assemblies identified by 
Pathogenwatch as belonging to Klebsiella are then subjected 
to specific analytic pipelines (Figure 1). These include 
MLST and cgMLST for species with available schemes, 
identification of resistance genes, virulence loci, cap-
sule and O-antigen biosynthesis loci, and replicon typing 
(Supplementary Table 7).

As standard in Pathogenwatch, users can browse public and/or 
uploaded genomes. Public genomes include 16 537 high-quality 
Klebsiella genomes with geolocation data (Supplementary Table 
3, Supplementary Figure 1). All metadata and results from the 
analytic pipelines can be viewed and downloaded for an indi-
vidual genome in a “Genome report” or collectively for mul-
tiple selected genomes from the “Genomes” page. Within the 
Genome report, a clustering tool can be used to rapidly identify 
the most closely related genomes (from all public and uploaded 
genomes) to a genome of interest based on cgMLST allelic dif-
ferences. Users can generate an interactive network visualiza-
tion of genomes clustered within a particular allelic threshold.

We have also developed the ability for users to generate a 
phylogenetic tree comprising multiple selected genomes of K. 
pneumoniae (comprising user and/or public genomes). The tree 
is functionally integrated in the “Collection” view with a map 
and timeline, showing the locations and sampling dates of gen-
omes if provided, and results from all analytic pipelines. This 
visualization enables the user to interactively explore the data, 
while the tree and all other data from individual collections can 
be downloaded in standard formats.

All sequence data and metadata uploaded by users remain pri-
vate to their accounts. Genomes grouped into collections are also 
kept private by default, although they can be shared with collab-
orators via a URL. There is also an option for users to integrate 

confidential metadata into visualizations locally within the 
browser, without uploading data to the Pathogenwatch server.

Pathogenwatch, as well as the integrated tools, is being ac-
tively developed and will be updated periodically to provide the 
latest typing information (including new resistance and viru-
lence mechanisms), newly available public genomes, and other 
features. The modular architecture of Pathogenwatch also en-
ables integration of new analytics. Detailed descriptions of all 
of the above processes can be found in the documentation [42].

Below we describe the utility of Pathogenwatch for epidemi-
ological surveillance with 1636 isolates collected from 4 labora-
tories linked to national or countrywide networks in Colombia, 
India, Nigeria, and the Philippines (Supplementary Table 6) [43]. 
All 4 countries have been previously underrepresented in ge-
nomic surveillance efforts (Table 1) despite previous estimates of 
significant burden of Klebsiella infections in those regions [44].

Species Identification

Pathogenwatch first assigns genome assemblies to a species 
via the Speciator tool. The assigned species then determines 
the downstream analyses. Speciator can currently identify as-
semblies belonging to K. pneumoniae, K. quasipneumoniae, K. 
variicola, K. quasivariicola, and K. africana (which together 
make up the K. pneumoniae species complex), as well as 11 
other Klebsiella species (Supplementary Table 7).

Klebsiella pneumoniae accounted for 88.5% (14 635/16 537) 
and 88.7% (1451/1636) of Klebsiella genomes from the public 
and GHRU collections, respectively (Supplementary Table 8), 
reaffirming the clinical dominance of this species. The other 
most frequently observed species were K. quasipneumoniae, K. 
variicola, K. aerogenes, and K. michiganensis (comprising 4.0%, 
1.9%, 1.8%, and 1.8% of the combined collections, respectively). 
As shown previously by others, we found inaccuracies in labo-
ratory identification methods for Klebsiella [45]. For example, 
of the 1576 isolates in the GHRU collection assigned to K. 
pneumoniae using laboratory methods, Speciator identified 147 
(9.3%) as K. quasipneumoniae, 4 (0.3%) as K. variicola, 2 (0.1%) 
as K. michiganensis, 2 (0.1%) as K. oxytoca, and 2 (0.1%) as K. 
quasivariicola (Supplementary Table 9).

Surveillance of High-Risk Clones

Assemblies identified by Pathogenwatch as Klebsiella are sub-
ject to MLST and/or cgMLST based on the availability of 
schemes (Supplementary Table 7). The majority of our GHRU 
K. pneumoniae genomes belonged to a small number of 
known epidemic (“high risk”) sequence types (STs) that were 
also overrepresented in the public genome collection. In par-
ticular, 51.7% (750/1451) of the GHRU genomes and 56.7% 
(8295/14 635) public genomes belonged to only 10 STs that were 
the most frequently observed across the combined collections 
(Table 2). Overall, a high number of STs were observed in both 
collections (209 and 1115 in the GHRU and public collections, 
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respectively). We also found 62 STs present among GHRU gen-
omes that were not identified among public genomes, of which 
33 were novel.

Clonal lineages of K. pneumoniae differ in their ability to ac-
quire resistance and virulence genes, and in their propensity 
to spread within hospital and community environments [46]. 

Closing geographic gaps in genomic surveillance to fully de-
scribe the diversity of clones circulating across different regions 
is therefore vital for a better understanding of the local epidemi-
ology of K. pneumoniae infections. We found clear differences 
in the dominant high-risk STs of K. pneumoniae circulating in 
the GHRU countries, with the single largest contribution from 

Figure 1. Overview of the analytical processes performed on Klebsiella genomes and the available visualizations in Pathogenwatch. Abbreviations: AMR, antimicrobial 
resistance; MLST, multi-locus sequence typing.
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ST258 in Colombia (24.3%), ST231 in India (34.5%), ST307 
in Nigeria (15.1%), and ST147 in the Philippines (20.1%) 
(Supplementary Figure 2). Each of these STs is widely dissemin-
ated across each country. Despite differences in sampling strat-
egies between countries, these results are in line with previous 
observations relating to the regional distribution of high-risk 
STs [46–50].

The ability of Pathogenwatch to generate phylogenetic trees 
of K. pneumoniae linked to metadata and other analytics pro-
vides a platform for monitoring the spread of lineages, of-
fering relevant insights at global through to local scales. For 
example, ST258 genomes from Colombia form a single major 
cluster within the global phylogeny, which represents isolates 
from 31 countries (Figure 2A). This indicates that a single main 
introduction followed by within-country spread is likely re-
sponsible for the high endemicity of this lineage reported in 
Colombia [51]. By contrast, multiple phylogenetic clusters of 
ST231, ST307, and ST147 are observed in India, Nigeria, and 
the Philippines, respectively, demonstrating different origins 
for the multiple circulating lineages (Figure 2B–D). At a local 
scale, we found evidence of clonal spread of OXA-181– and 

CTX-M-15–producing ST147 within a hospital in India, over 
a period of 3 years (Supplementary Figure 3). However, some 
ST147 isolates collected from the same hospital during this pe-
riod were phylogenetically distinct from the outbreak cluster, 
and thus the respective patients could be ruled out of the 
outbreak.

Detection of Resistance and Virulence Mechanisms

Known resistance and virulence loci are identified in 
Pathogenwatch via Kleborate [28]. Resistance mechanisms 
currently include SNPs, acquired genes, and gene truncations 
that are relevant for different antibiotics or antibiotic classes. 
Virulence genes include those encoding acquired sidero-
phores (yersiniabactin, salmochelin, aerobactin), the genotoxin 
colibactin, the hypermucoidy locus rmpADC, and alternative 
hypermucoidy marker gene rmpA2.

A high proportion of GHRU K. pneumoniae isolates con-
tained an ESBL or carbapenemase gene (75.2% and 63.0%, 
respectively). This was also seen in the public genomes, with 
54.5% (7983/14  635) of K. pneumoniae genomes carrying an 
ESBL and 57.5% (8416/14  635) carrying a carbapenemase. 

Table 1. Distribution of Klebsiella pneumoniae Genomes in the Combined Public and GHRU Collection by Region and Country Income Class

Income Group and Region 

No. of Countries Represented in Combined Public 
and GHRU Genome Collection (% of the Total 
Number of Countries in Each Income Group) 

No. of Genomes Represented in Combined Public 
and GHRU Genome Collection (% of the Total 
Number of Genomes Across All Income Groups) 

High income
(80 countries)

 East Asia and Pacific 7 904

 Europe and Central Asia 26 4452

 Middle East and North Africa 6 795

 North America 2 4970

 Subtotal 41/80 (51.3%) 11 121 (69.1%)

Upper middle income
(60 countries)

 East Asia and Pacific 3 1,213

 Europe and Central Asia 8 449

 Latin America and Caribbean 6 (incl. Colombia) 645 (incl. 493 GHRU)

 Middle East and North Africa 2 3

 Sub-Saharan Africa 1 36

 Subtotal 20/60 (33.3%) 2346 (14.6%)

Lower middle income (47 countries)

 East Asia and Pacific 6 (incl. Philippines) 1186 (incl. 512 GHRU)

 Latin America and Caribbean 1 3

 Middle East and North Africa 1 37

 South Asia 2 (incl. India) 577 (incl. 307 GHRU)

Sub-Saharan Africa 5 (incl. Nigeria) 374 (incl. 139 GHRU)

 Subtotal 15/47 (31.9%) 2177 (13.5%)

Low income (31 countries)

 South Asia 2 117

 Sub-Saharan Africa 4 323

 Subtotal 6/31 (19.3%) 440 (2.7%)

Other 2 2

Total 84 16 086

Abbreviations: GHRU, Global Health Research Unit; incl., including. 
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These rates far exceed those observed in most clinical settings to 
date (ie, typically <20% for carbapenemase-producing isolates) 
and demonstrate the tendency to prioritize multidrug-resistant 
isolates for sequencing [41, 52–54].

Despite sampling biases, clear differences existed between K. 
pneumoniae genomes from the GHRU countries with regard to 

major carbapenemase genes circulating (eg, KPC genes domi-
nate in Colombia, NDM genes in the Philippines and Nigeria, 
OXA-48–like genes in India [Supplementary Figure 4]). These 
findings are in line with broader regional patterns reported pre-
viously and also uncovered using the public genomes [55–58]. 
In contrast, CTX-M-15 was consistently the most frequently 

Figure 2. Pathogenwatch shows different dynamics of transmission and dissemination of the dominant “high risk” lineages in each GHRU participant country. ST258 gen-
omes from Colombia form 1 main phylogenetic cluster, suggestive of a single successful introduction (A). ST231 genomes from India (B), ST307 genomes from Nigeria (C), 
and ST147 genomes from the Philippines (D) all form multiple phylogenetic clusters, suggesting multiple origins. The map insets show the widespread distribution of these 
clones in each country. Abbreviations: GHRU, Global Health Research Unit; ST, sequence type.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab784#supplementary-data
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observed ESBL gene, carried by 72.9–100% of ESBL-producing 
K. pneumoniae in each country.

Assessment of the prevalence and dissemination of mobile 
colistin resistance (mcr) genes, the first variant of which was 
discovered in 2015, among K. pneumoniae genomes in the 
public and GHRU collections revealed that these are still rare 
across all regions [59]. Only 0.3% (5/1636) of GHRU genomes 
carried an mcr gene, and 0.9% (128/14 635) of public genomes 
did. Among the latter, 52.3% (67/128) carried mcr-9.

We found that the majority (>80%) of all K. pneumoniae 
genomes in both public and GHRU genome collections had 
either no known acquired virulence factors or yersiniabactin 
only (Supplementary Table 10). However, there was an over-
representation of colibactin among K. pneumoniae GHRU gen-
omes from Colombia (present in 24.7% of isolates), which was 
associated with ST258. Furthermore, 37.5% of K. pneumoniae 
GHRU genomes from India carried aerobactin, which was al-
most always carried by ST231 or ST2096. In particular, phylo-
genetic analysis using a collection of ST231 isolates from both 
the GHRU and public collections highlighted a sublineage that 
has acquired aerobactin and yersiniabactin, as well as the OXA-
232 carbapenemase (Figure 3A; see also [38]). This convergence 
of both resistance and virulence has been coupled with rapid 
clonal expansion and international spread, and close moni-
toring is needed.

Monitoring of Mobile Genetic Elements

Plasmid replicons in any Klebsiella genome are identified in 
Pathogenwatch using the Inctyper tool. While it is not usually 
possible to directly link resistance or virulence genes to partic-
ular plasmids with short-read assemblies, we can nevertheless 
gain important epidemiological insights by analyzing patterns 
in the diversity and distribution of plasmid replicons.

For example, we noted that 68.7% (211/307) of GHRU K. 
pneumoniae isolates from India carry the ColKP3 replicon, 
which was not found in isolates from any of the other 3 coun-
tries. This replicon was previously found in a conserved 6.1-kb 
ColE-type plasmid initially reported from or linked to interna-
tional travel to India but since identified elsewhere in patients 
without travel history and causing local outbreaks [60–63]. Of 
the 211 isolates with a ColKP3 replicon, all but one carry either 
the OXA-232 (n = 168; 79.6%) or OXA-181 (n = 42; 19.9%) 
carbapenemase.

Using the combined collection of GHRU and public K. 
pneumoniae genomes, we confirmed a strong association be-
tween the ColKP3 plasmid and the OXA-232 gene. In particular, 
we found that 86.7% (684/789) of K. pneumoniae isolates with a 
ColKP3 plasmid possess an OXA-232 gene, compared to 0.2% 
(35/15 297) of those without (Pearson’s chi-square = 13 136.39; 
P < .0001). The association between ColKP3 and OXA-232 does 
not appear to be an artefact of lineage or geographic effects, as 
we found ColKP3/OXA-232 isolates in 45 different STs and 

18 different countries overall. However, the majority (79.7%) 
do belong to only 4 STs (14, 16, 231, 2096), and they origi-
nate mostly from South and Southeast Asia, and the Arabian 
Peninsula. It has previously been suggested that disruption of 
the ISEcp1 transposase may have stabilized the OXA-232 gene 
on the ColKP3 plasmid [60]. Phylogenetic analysis of all ST231 
isolates in Pathogenwatch suggested that the ColKP3 plasmid 
was acquired once, and then disseminated vertically through 
the lineage via clonal spread (Figure 3B and 3C; see also [38]).

K- and O-Loci Monitoring to Aid Vaccine Development

O-antigen biosynthesis loci (O-loci) and capsular loci (in-
cluding the wzi alleles and K-loci) present in Klebsiella genomes 
are identified in Pathogenwatch via Kleborate. Studies have 
reported development of a K. pneumoniae (and Pseudomonas 
aeruginosa) glycoconjugate vaccine based on the O-serotypes 
O1, O2, O3, and O5, and another for hypervirulent K. 
pneumoniae based on the K1 and K2 capsule types [19, 20]. It is 
thus crucial to monitor the diversity of O- and K-types across 
different lineages, geographic regions, age groups, clinical 
sources, and over time to ensure that a potential vaccine will 
adequately protect target populations.

Despite the biases present in both the public and GHRU sample 
collections, the breadth of geographic representation and inclu-
sion of countries previously underrepresented make it a valuable 
collection to describe the diversity of O- and K-types. Here we 
considered human-associated isolates from the combined public 
and GHRU genomes that had O-types and K-types assigned with 
a confidence level of “good” or better by Kleborate.

We found that the O1, O2, and O3 serotypes (including their sub-
types) were the most prevalent, comprising 88.9% (10 252/11 530) 
of K. pneumoniae isolates, and in line with previous reports [21]. 
Major high-risk STs with high levels of multidrug resistance were 
also dominated by these serotypes (Table 2). Other serotypes 
present in more than 1% of K. pneumoniae isolates included O4 
(5.6%), OL101 (2.7%), and O5 (1.9%). As vaccines may be de-
veloped to target high-risk populations such as neonates, we also 
stratified the O-types identified in the GHRU isolates by patient 
age. We found that O1, O2, and O3 represented 52.9–91.4% of K. 
pneumoniae isolates from each age group (Supplementary Figure 
5). Furthermore, we noted that the distribution of O-types varied 
substantially across species. For example, despite dominating in 
K. pneumoniae (88.9%), O1–O3 together made up only 40.5% 
(145/358) and 49.7% (94/189) of isolates from K. quasipneumoniae 
and K. variicola, respectively. Meanwhile, O5 was far more prev-
alent in both species (found in 29.9% and 40.7% isolates, respec-
tively) than in K. pneumoniae (1.9%).

In contrast with the O-types, the 5 most common K-loci (KL) 
types (KL107, KL106, KL102, KL64, and KL51) represented 
only 47.8% (5218/10 922) of K. pneumoniae isolates, and a min-
imum of 39 KL-types were required to encompass 90% or more 
genomes. High-risk multidrug-resistant lineages were typically 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab784#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab784#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab784#supplementary-data
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Figure 3. Pathogenwatch demonstrates convergence of virulence and resistance in a phylogenetic tree of 308 ST231 genomes from the public and GHRU collections (clade 
indicated with an asterisk (*). (A) The tree and map are filtered via the search bar by the presence of the virulence determinant aerobactin (iuc). All aerobactin-positive isolates 
are indicated with a circular node in the tree (red or white). Red nodes indicate the additional presence of the OXA-232 carbapenemase gene. Pie charts on the map show 
the relative proportion of aerobactin-positive isolates with and without OXA-232. (B) The tree and map are filtered via the search bar by the presence of replicon sequence 
ColKP3. ColKP3-positive isolates are indicated with purple nodes in the tree. (C) Likely acquisition of virulence loci (yersiniabactin and aerobactin) and plasmid-borne resist-
ance (OXA-232 and ColKP3) followed by clonal expansion of the clade indicated with an asterisk (*). Abbreviations: GHRU, Global Health Research Unit; ST, sequence type.
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dominated by just 1 or 2 KL-types, although high numbers of 
types in some lineages also illustrate the capacity for genetic ex-
change of the cps locus. We found that the most frequently ob-
served K-loci were not consistently present across all age groups 
sampled in the GHRU collection (Supplementary Figure 5), al-
though larger sample collections of target populations with con-
sistent sampling will be required for a robust assessment.

Likewise, future analyses using representative sample collec-
tions from target populations will further elucidate key trends 
and differences in K- and O-loci diversity. The importance of 
combining patient information with genomic data for devel-
oping insights relevant to patient outcomes cannot be over-
stated. The ability of Pathogenwatch to combine these data 
with the temporal and spatial trends of clonal lineages, and 
multidrug resistance and virulence, provides a rational system 
for informing the development of vaccines and therapeutics, 
and also for monitoring population changes as a consequence 
of implementing interventions.

Concluding Remarks

Whole-genome sequencing empowers AMR surveillance la-
boratories to make public health decisions by providing a high-
resolution view of the circulating bacterial strains and aiding 
outbreak investigations. Here we have presented the features of 
Pathogenwatch, a free, accessible platform for characterization 
and contextualization of Klebsiella genomes to aid surveillance 
at local, national, and global levels. The newly built capacity and 
expertise of 4 laboratories in LMICs to undertake ongoing ge-
nome sequencing, as developed during the wider GHRU project, 
will be enhanced by the use of Pathogenwatch and the increased 
representation of genomes from their countries. Extending this 
model to laboratories in other LMICs is a future priority.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases on-
line. Consisting of data provided by the authors to benefit the reader, the 
posted materials are not copyedited and are the sole responsibility of the 
authors, so questions or comments should be addressed to the corre-
sponding author.
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