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ABSTRACT Information about how the risk of death varies with age within the 0-5
age range represents critical evidence for guiding health policy. This study proposes a
new model for summarizing regularities about how under-5 mortality is distributed by
detailed age. The model is based on a newly compiled database that contains under-5
mortality information by detailed age in countries with high-quality vital registration
systems, covering a wide array of mortality levels and patterns. It uses a log-quadratic
approach in predicting a full mortality schedule between ages 0 and 5 on the basis of
only one or two parameters. With its larger number of age-groups, the proposed model
offers greater flexibility than existing models in terms of both entry parameters and
model outcomes. We present applications of this model for evaluating and correcting
under-5 mortality information by detailed age in countries with problematic mortality
data.

KEYWORDS Under-5 mortality ¢ Neonatal mortality * Model life tables * Age
patterns of mortality ¢ Indirect methods

Introduction

The Under-5 Mortality Rate (USMR) is a key and widely used indicator of child
health (United Nations 2011; United Nations Inter-agency Group for Child Mortality
Estimation (UN IGME) 2019b; Wang et al. 2016; You et al. 2015), but it conceals
important information about how this mortality is distributed by age from birth up
to the fifth birthday (Guillot et al. 2012; Hill 1995; Mejia-Guevara et al. 2019). For
better understanding and monitoring of child health, it is critical to examine how the
risk of death varies within the first five years of life. This includes age breakdowns
beyond the standard cut-off points of 28 days (for neonatal mortality) and 1 year (for
infant mortality). In many populations, however, the age pattern of under-5 mor-
tality is not well known. Low- and middle-income countries, in particular, lack the
high-quality detailed vital registration information necessary for the analysis of such
age patterns (Mikkelsen et al. 2015). Sample surveys collecting retrospective birth
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histories, such as Demographic and Health Surveys (DHS), do not satisfactorily fill
this gap, because they are subject to potential biases that are particularly consequen-
tial for estimating age patterns (Hill 1995; Lawn et al. 2008). This makes the need
for high-quality information on age patterns of under-5 mortality even more critical,
since regularities in these age patterns can be used as a powerful tool for evaluating
and correcting estimates when data are deficient.

This study proposes a new model for summarizing regularities about how under-5
mortality is distributed by detailed age in human populations. This model is based on
the Under-5 Mortality Database (USMD), a newly compiled database that contains
under-5 mortality information by detailed age in countries with high-quality vital reg-
istration systems, covering a wide array of mortality levels and patterns. Building on
previous work by Wilmoth et al. (2012), this model uses a log-quadratic approach in
predicting a full mortality schedule between ages 0 and 5 on the basis of only one or
two parameters. We present applications of this model for evaluating and correcting
under-5 mortality information by detailed age in countries with deficient mortality data.

This article builds on the model life tables literature. Model life tables summarize
regularities in how mortality varies by age in human populations. They represent
a useful framework for our purpose because they allow the estimation of arrays of
age-specific mortality rates or probabilities on the basis of only one or two mortal-
ity indicators, chosen as entry parameters (United Nations 1988). Two sets of model
life tables are considered classic in the field: one set was developed by Coale and
Demeny (Coale and Demeny 1966; Coale et al. 1983) and the other by the United
Nations Population Division (1982). These two sets are still commonly used today,
including for estimating the infant mortality rate (IMR) on the basis of USMR (UN
IGME 2019a). Current usage of the Coale and Demeny and the United Nations model
life tables for estimating patterns of under-5 mortality, however, is affected by several
important drawbacks.

First, these model life tables offer only 0 versus 1-4 as an age breakdown for
under-5 mortality. This is insufficient for most purposes, including for the estimation
of neonatal mortality or mortality in nonstandard age ranges. (One model that contains
additional age details is Bourgeois-Pichat’s “biometric” model (Bourgeois-Pichat
1951). This model, however, focuses on the first 12 months of age only and has been
shown to poorly fit data in a variety of contexts (Galley and Woods 1998; Knodel and
Kintner 1977; Lantoine and Pressat 1984; Lynch et al. 1998; Manfredini 2004). Sec-
ond, the Coale and Demeny and the United Nations model life tables rely on rather
old data, with the most recent information dating back to the early 1980s. Third, these
model life tables summarize age patterns as “families,” based on regional groupings,
and thus have a discrete rather than continuous nature. More recent developments
in the model life tables literature include Murray et al.’s (2003) modified logit sys-
tem, Wilmoth et al.’s (2012) log-quadratic model, and Clark’s (2019) singular value
decomposition (SVD)—component model. These models improve on many of the
weaknesses of the classic model life tables, including the use of a continuous rather
than discrete parameter for describing variations in mortality shapes and the use of
more recent data for deriving model coefficients. However, Murray et al.’s (2003) and
Wilmoth et al.’s (2012) models are still constrained by the 0 versus 1-4 age break-
down for the under-5 age range, and Clark’s (2019) model does not provide details
below single-year age-groups.
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Our study extends existing model life tables by (1) using a newly compiled data-
base that has greater age detail than the ones on which existing model life tables were
derived and (2) explicitly expanding the number of age-groups in the model, espe-
cially in the first year of life, thus allowing more flexibility than existing models in
terms of both entry parameters and model outcomes. Our model offers a number of
applications that are not feasible with existing model life tables, including the possi-
bility of detecting and adjusting for underestimation of neonatal mortality.

A New Database for Under-5 Mortality by Detailed Age

Description of the Database

The proposed model is based on the Under-5 Mortality Database, a newly compiled
database for under-5 mortality by detailed age drawn from high-quality vital registra-
tion (VR) data. In its original version, this database contains 1,741 annual distribu-
tions of under-5 deaths by detailed age (days, weeks, months, trimesters, and years),
representing 25 countries over a time window from the second half of the nineteenth
century to recent years (1841-2016). The list of available country-years is provided
in Table 1. This section summarizes how this database was built and harmonized. Full
details are available in the online Supplementary Materials 1.

Age distributions of deaths were obtained from two primary sources: (1) for his-
torical periods (prior to 1970), these distributions were collected manually from
archival sources such as national statistical yearbooks; and (2) for periods from 1970
onward, they were obtained electronically from a data repository compiled by the
United Nations Statistical Division.

The original selection of country-years was based on the criterion of virtual com-
pleteness of death registration and census data determined by the Human Mortality
Database (HMD) (Barbieri et al. 2015). This means that we considered only country-
years available in the HMD for inclusion in the USMD. The HMD comprises mostly
European countries (31) but also some other industrialized countries (nine). However,
we did not include all HMD countries in the USMD. As discussed in the online Sup-
plementary Materials 1, we excluded countries of the former Eastern bloc because
of well-documented concerns about the quality of the mortality data at early ages.
Greece was also excluded for similar reasons (Agorastakis et al. 2017). In addition,
Iceland and Luxembourg were removed owing to the small size of the population
leading to many zero cell counts in the narrow age-groups that we focus on. This
gives us an original database containing 1,741 country-years (see Table 1, column 1).

Starting from this original database, we then removed 276 country-years that did
not contain enough information for the full harmonization of the database by age and
sex (see Table 1, column 2). Specifically, we removed 81 country-years for which
death distributions were not broken down by sex. We also removed 117 country-years
in France and Belgium because of insufficient details regarding “false stillbirths,”
that is, deaths that occurred before corresponding births were registered, which were
tabulated separately in these two countries (see online Supplementary Materials 1 for
details). Regarding the detail of the age information, the minimum criterion for inclu-
sion in the USMD was the breakdown of infant deaths in terms of neonatal deaths
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Modeling Age Patterns of Under-5 Mortality 5

(<28 days) versus post-neonatal deaths (28 days—11 months). The death distributions
we collected typically included much finer age granularity, but the format of age
intervals varied greatly across the primary sources of information. Deaths were tabu-
lated unevenly by days, weeks, months, trimesters, semesters, and years, and distrib-
uted over different age spans (first year of age only versus larger age ranges up to the
full first five years). In order to address this unevenness, we harmonized age-groups
into 22 age intervals with the following exact-age cut-off points: 0, 7, 14, 21, and
28 days; 2, 3,4,5,6,7,8,9, 10, 11, 12, 15, 18, and 21 months; and 2, 3, 4, and 5
years. The harmonization was carried out by interpolating cumulative age distribu-
tions of deaths using a spline method developed by Steffen (1990), which ensures
that the interpolated curves behave monotonically. We excluded 78 country-years at
that stage because of insufficient age details during the first month for performing this
interpolation (see online Supplementary Materials 1 for details).

Our database was complemented by two pieces of information obtained directly
from the HMD for the country-years covered in the USMD: (1) raw death counts
between exact ages 1 and 5, which we used to fill potential missing information in
our database in that age range; and (2) exposures to the risk of dying in person-years,
by calendar year and by single year of age, calculated by the HMD from census and
birth data (Wilmoth et al. 2021).

Age-specific deaths rates (,M,) and corresponding probabilities of dying from
birth to age x (g(x)) were computed for each of the 22 harmonized age intervals.
Death rates were computed by dividing deaths by the exposure (person-years) to the
risk of death for each age interval and year. Since exposure terms were not available
for age-groups smaller than one year, we assumed a uniform distribution of exposure
within each single-year age-group. With this assumption, exposure terms are propor-
tional to the length of the age interval » within each single-year age-group. Mortality
rates for both sexes combined were calculated by aggregating sex-specific deaths and
exposures. We then calculated cumulative probabilities of dying g(x) (= 1 — 1.//, in
life table notation) with the assumption that mortality rates were constant within each
age interval, in which case g(x+mn)=1-(1—g(x))-e "»Mx. This assumption is not
very consequential given the small width of our age intervals. In total, this approach
produces a fully harmonized under-5 mortality database for a total of 1,465 coun-
try-years, by sex and 22 detailed age-groups (see online Supplementary Materials 1,
Table SM1-1, for details).

Evaluation of the Quality of the USMD

As discussed in the foregoing, the USMD includes a subset of country-years covered
in the HMD, a source representing the gold standard in terms of VR mortality infor-
mation. Nonetheless, when focusing on under-5 mortality by detailed age, questions
remain about the quality of the reported information, especially for earlier periods
(nineteenth century and early twentieth century) and for the neonatal age range. Neo-
natal deaths are known to be subject to underreporting, especially when they occur
very soon after birth. This is due in part to ambiguities about what constitutes a live
birth versus a stillbirth. Discussions of international standards for defining live births
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Fig. 1 Relationship between age-specific mortality rates (,M,) and the probability of dying between age 28
days and 5 years (¢(28d,5y)) for each of the first four weeks of life (;M ), M4, 1M and ;M,, ) in the
harmonized Under-5 Mortality Database (USMD), for both sexes combined

versus stillbirths started only in the 1920s under the impulse of the League of Nations
(United Nations 1954), and distinguishing between live births and stillbirths remains
a complex issue even today (Gourbin and Masuy-Stroobant 1995; Hug et al. 2019).
This raises questions about how correctly this distinction was made during the earlier
years covered in our database. Another source of underreporting arises from the fact
that when a child death occurs before the recording of the corresponding live birth,
the incentive to report these two events in civil registers is low. This further questions
the quality of the reporting of neonatal deaths during the earlier periods of the data-
base, at a time when most deliveries occurred at home (United Nations 1955).

As a result of these data quality concerns, we performed an evaluation of the
quality of the USMD prior to estimating our model. Specifically, we performed
plausibility checks, focusing on mortality during the neonatal period. We examined
the relationship between age-specific mortality rates for the first, second, third, and
fourth week of life (;Mo), 7M7) 7M 4 and ;M5 4, respectively, with the letter “d”
indicating that age is expressed in days) versus the probability that a 28-day-old child
will die prior to reaching the age of 5 years (¢(28d,5y)), that is, a mortality indicator
not affected by mortality rates for the neonatal period. These relationships are shown
in Figure 1.

Figure 1 shows that for weeks 2, 3, and 4, there is a clear positive—almost log-
linear—relationship between each weekly mortality rate and mortality between 28
days and 5 years. There is no large change in slope at any point in the relationship,
including when ¢(28d,5y) is high, that is, during the earlier years of our database. The
mortality rate for the first week, however, has a drastically different relationship with
q(28d,5y). While the relationship starts with a clear upward slope, there appears to be
a flattening of the relationship as ¢(28d,5y) reaches high levels. For some individual
country trajectories, we even found reversals in the relationship, depicting situations
where decreases over time in reported mortality between 28 days and 5 years coin-
cide with increases in the reported mortality rate for the first week.
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Modeling Age Patterns of Under-5 Mortality 7

These flattenings and reversals are suspicious for a number of reasons. First, the
changes in slope take place during the earlier years in our database, with turning
points typically occurring between World War I and World War II. These earlier years
are the years for which the sources of errors are most likely to apply. Second, the
changes in slope occur only for the first week, which is the week that is most subject
to the sources of errors mentioned earlier. Weeks 2—4, which are less subject to these
errors, show no such flattenings. Third, within the first week, changes in slope are
most pronounced during days 0-3, which are the days most subject to errors (results
not shown). The relationships are more log-linear for days 4-6, which are less subject
to errors. Fourth, reversals and flattenings do not occur everywhere, suggesting that
monotonic relationships between mortality for the first week (;M,,) and mortality
between ages 28 days and 5 years are biologically possible. In Switzerland, for exam-
ple, the level of ;M keeps increasing together with ¢(28d,5y) as we go further back
in time, with no signs of decrease in slope.

Taken altogether, these issues raise serious doubts about the quality of the early
neonatal mortality data during the earlier years covered in the database. Rather
than excluding all the data points above a given mortality level, we decided to take
an intermediate approach that excludes long-lasting reversals in the ;M versus
q(28d,5y) relationship. Specifically, we examined joint trajectories of the ;M and
q(28d,5y) over time and identified situations in which a local maximum in ;M
was preceded by more than 12 temporally consecutive values of ;M that were
all lower than that local maximum, while no such local maximum was present for
q(28d,5y). When such situations were identified, we excluded all years prior to
the local maximum in ;M. (When the available time series for a given country
started with such a pattern, we removed all points prior to the local maximum in
7M. even if the number of available years prior to that maximum was fewer than
12.) This approach removes the most suspicious patterns while keeping the pos-
sibility of a decrease in slope in the ,M,,, versus ¢(28d,5y) relationship at higher
levels of ¢(28d,5y). (See online Supplementary Materials 2, Figure SM2-1, for a
set of figures showing country-specific time trends in ,M,,, and ¢(28d,5y) as well as
the relationship between the two indicators, distinguishing years that are excluded
based on the foregoing criteria.)

This exclusion criteria removes 241 country-years. We also excluded the first
five years of data available for Switzerland (1877-1883), which became isolated,
extreme values of under-5 mortality after the removal of the other 241 country-
years. In total, 246 country-years were excluded at that stage (see Table 1, column 3).
As expected, these country-years pertain mostly to the early years covered by the
database: nineteenth century and early twentieth century. (See online Figure SM2-2
for scatterplots distinguishing included versus excluded country-years in the entire
database.)

Final Database for Modeling Purposes

The final USMD that we use for our model includes 1,219 country-years, by sex and
for both sexes combined. These country-years cover a wide range of time periods and
levels of under-5 mortality, from 1920 until 2016, with levels ranging from around
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8 M. Guillot et al.

150 to less than 5 per 1,000. A summary of the available country-years is available
in Table 1 (column 4), and full details are provided in Table A1 of the online appen-
dix. The USMD is freely accessible at https://web.sas.upenn.edu/global-age-patterns
-under-five-mortality/.

Log-Quadratic Model for Age-Specific Mortality by Detailed Age
Between0and5

Model Description

We propose a model able to predict a full mortality schedule by detailed age
between 0 and 5 years with only two parameters, one representing the overall
level of under-5 mortality and the other representing the shape of the age pattern
of mortality within the 0-5 age range. This model is adapted from Wilmoth et al.’s
(2012) log-quadratic model; it is based on the observation of log-quadratic rela-
tionships between the cumulative probability of dying from birth to age x, g(x),
and the under-5 mortality rate, g(5y), for each detailed age x within the under-5
age range:

In[q(x)]=a, +b, - [q(5y) |+ e, W[ gy +v, . o

As shown in Eq. (1), the model includes a set of age-specific coefficients
{a., b.,c.,v,}, whose estimation we describe as follows. When k=0, the model pre-
dicts a general pattern that is the average mortality schedule of the set of country-
years included in the final USMD. When & # 0, the model adjusts the probabilities of
dying in response to specificities in the age pattern of g(x) at a given level of ¢(5y),
bearing in mind that ¢(x) is a nondecreasing function of age. For a given level of
q(S5y), depending on the value of & , the age pattern of mortality will be either “early,”
with relatively high levels of neonatal and infant mortality, or “late,” when these lev-
els are relatively low.

Note that unlike the Wilmoth et al. (2012) approach, our model involves cumula-
tive probabilities of dying, g(x), rather than age-specific mortality rates, ,M,, in the
left-hand side of Eq. (1). There are four advantages in doing so: (1) the predicted set
of g(x) and its corresponding values of ,M_ will always agree with the level of ¢(5y)
that is chosen as predictor in the right-hand side of Eq. (1); (2) the model will be more
parsimonious, with 21 sets of coefficients versus 22 when using mortality rates; (3)
the model will be less sensitive to fluctuations in the mortality schedule that could
arise from misreported ages at death; and (4) the model will directly predict classic
mortality indicators such as early neonatal, neonatal, and infant mortality rates, which
are in fact cumulative probabilities of dying (¢(7d), ¢(28d), and ¢(12m), respec-
tively). There is, however, one drawback in using cumulative probabilities of dying
in this model: data errors at early ages, such as underreporting of neonatal deaths,
will carry through the entire g(x) curve. This makes our rather conservative approach
with respect to the inclusion of country-years in the final USMD all the more impor-
tant. Although our model predicts cumulative probabilities of dying rather than age-
specific mortality rates, corresponding mortality rates can be easily recovered from
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Modeling Age Patterns of Under-5 Mortality 9

the predicted g(x) values using the assumption of a constant force of mortality within
each of our 22 small age intervals:

h{l—q(x+n)}
M= 1-g(x)

n

While developing our model, we also explored the possibility of building a model
based on Clark’s (2019) more general SVD-component model. One of the main dif-
ferences between the log-quadratic model and the SVD-component model is that
the latter does not include a parametric assumption relating age-specific mortality
to a mortality indicator like ¢(5y) chosen as the main explanatory variable. Instead,
the SVD-component model is a linear sum of independent, age-varying vectors,
like in a principal component analysis (PCA) decomposition. After exploring both
approaches, we decided to follow the log-quadratic approach because the parametric
assumption was appropriate for the narrower (0 to 5) age range that is the focus here.
This parametric assumption makes the log-quadratic model more parsimonious and
easier to use when focusing on this under-5 age range.

Estimating the Coefficients {a,, b, ,c v }

The model coefficients in Eq. (1) were estimated in two steps. The first step involved
the estimation for each age x of'the set of age-specific coefficients {a,, b,,c,} regress-
ing g(x) against ¢(5y) with ordinary least squares. This is shown in Eq. (2), with the
subscript i indicating each country-year in our sample of N=1,219 observations:

In[¢,(x)]=a, +b, [ 4,65y) |+, [ 4,59 ] +e,(x). )

The second step uses the age covariance of the residuals e;(x) in Eq. (2), which
informs about systematic deviations from the general pattern of mortality, for estimating
the set of coefficients v,. For this purpose, we estimated the covariance matrix of the

residuals ¥, whose element (z,y) is givenby ¥_ = ﬁ . Z,N: a(2)-e(y)- Following

a common approach in demographic estimation (Clark 2019; Lee and Carter 1992;
Wilmoth et al. 2012; Wilmoth 1990), we estimated the set of coefficients v, as the
first-orthonormal eigenvector (of V) resulting from an SVD applied to the covariance
matrix: ¥ =V-Y - U. The SVD provides a least-squares solution to the principal com-
ponents of the residuals, hence the first vector will account for the higher proportion
of the overall covariance. In our case, the first eigenvalue accounts for 88% of the total
sum of eigenvalues. The R codes that we used to produce model coefficients are avail-
able at https://web.sas.upenn.edu/global-age-patterns-under-five-mortality/.

Model Results
Table 2 shows the model coefficients for males, females, and both sexes estimated

using the final USMD. This table shows that as age x increases, b, approaches 1 and
¢, approaches 0. This is expected given that as x increases, g(x) approaches g(5y).
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Fig. 2 Relationship between ¢g(x) and ¢(5y) for x = 7d, 28d, and 12m, with observed values in the final
US5MD versus values predicted using the log-quadratic model with k=0, -1, or +1, for both sexes combined

At younger ages, however, we find significantly negative values of c¢,. This reflects
decreasing slopes in the relationship between g(x) and g(5y) at high levels of ¢(5y).
Values of v, all have the same negative signs. This is due to the fact that when an
age pattern of mortality is late or early relative to the average, the entire g(x) curve
is shifted up or down. The comparison of male versus female coefficients shows that
while values of ¢, and v, are very similar for each sex, values of @, and b, present siz-
able differences, with male coefficients being systematically higher than the female
ones. This means that at a given level of ¢(5y) and &, the model will produce an earlier
age pattern of mortality for males.

These features of the model results are illustrated in Figure 2, which shows
observed versus predicted values of ¢(7d), ¢(28d), and ¢(12m) when k& = 0 and when
k = +1 or —1. Note that almost all data points used for estimating the model are
included within this range of values for k. (Country-specific plots for ¢(28d) are pre-
sented in online Supplementary Materials 2, Figure SM 2-3.)

The model results are further illustrated in Figure 3. Panels a and b show how
predicted values of g(x) and corresponding values of ,M, vary in response to changes
in the level of g(5y) at a given level of & (= 0 in this example). As the level of g(5y)
changes from 100 to 10 per 1,000, an increasing portion of under-5 mortality takes
place below 1 year and below 28 days. This is a well-known regularity that reflects
the transition from a situation with a high prevalence of infectious (“exogenous™)
causes of death that have an older age pattern to one in which infectious diseases
have been virtually eliminated and the only remaining causes are congenital anom-
alies and perinatal conditions, that is, “endogenous™ causes that have a younger age
pattern (Drevenstedt et al. 2008; Galley and Woods 1999; Liu et al. 2012; Rao et al.
2011). Examining the shape of the mortality curves in panel b, we see that our model
produces mortality patterns that monotonically decrease with age. This also reflects
the regularities present in our database. Indeed, the country-years included in the
database do not present any systematic age-specific mortality reversals. As the level
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a. Effect of varying q(5y) on gq(x) when k=0
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Fig. 3 Effect of varying ¢(5y) versus k on g(x) and ,M, in the log-quadratic model, for both sexes combined
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of g(5y) decreases, the entire mortality curve between 0 and 5 shifts down, with larger
relative declines at older versus younger ages.

Panel c of Figure 3 shows the effect of varying & on the g(x) curve at a given level
of ¢(5y) (= 100 per 1,000 in this example). When k£ = +1, the entire g(x) curve is
shifted down. This produces a “late” pattern of under-5 mortality, with lower levels
of neonatal and infant mortality while ¢(5y) remains unchanged. Conversely, when
k = —1, this produces an “early” pattern of under-5 mortality, with higher levels of
neonatal and infant mortality.

Figure 3 also shows corresponding effects of changing k on ,M, values between
0 and 5 (panel d), with a zoom on the first 3 months (panel ¢). The mortality curves
in this figure all produce the same level of under-5 mortality (100 per 1,000 in this
example). Higher levels of mortality at some ages will thus necessarily have to be
compensated by lower levels of mortality at some other ages. The resulting mor-
tality crossover is visible in panel e of Figure 3, which shows that the “tilting” age
occurs during the second month of life. This implies that at this level of ¢(5y), the
shape of the age pattern of mortality is entirely explained by the contrast between
q(28d) and ¢(28d,5y). The age at which this crossover occurs in our model is, how-
ever, not constant but related to the level of under-5 mortality. The lower the level of
q(5y), the earlier the crossing age. When ¢(5y) reaches a level around 50 per 1,000,
the crossover occurs during the second week, its lower limit. This means that at
these lower levels of g(5y), the shape of the age pattern of mortality in our model is
entirely explained by the ¢(7d) versus ¢(7d,5y) contrast. These shifts in the g(x) and
.M, curves in response to changes in & also reflect regularities in our database. They
show that a given level of ¢(5y) can be reached via a variety of routes, depending
on a population’s unique set of environmental and behavioral conditions. Yet these
routes are not unstructured and instead take place within a rather constrained set of
possibilities.

As discussed earlier, almost all data points used for estimating the model fall
between k = —1 and +1. This means that predicted values of ¢(x) using values of &
outside that range will represent extrapolations of the model. While the model can
certainly tolerate some extrapolation, extrapolating & beyond the range of observed
values (a range that spans between —1.1270 and +1.5047, as we estimate using a pro-
cedure discussed in the next section) should not be performed as they will not have
any empirical basis. Moreover, predicted values of g(x) when £ < —1.5 will sometimes
produce a nonmonotonic progression in g(x), which is impossible. As a rule of thumb,
users should use the model with & ranging between —1.1 and +1.5.

Estimating the Value of k for a Given Population

Our model can summarize a full set of observed g(x)’s between 0 and 5 years for a
given population with only two parameters: ¢(5y) and k. The first parameter, ¢(5y),
can be directly taken from the observed data. The second parameter, &, however,
needs to be estimated using model coefficients.

One option consists of finding the value of & that, together with the observed value
of ¢q(5y) for a given population 7, produces a predicted value of g(x) for a given age
x < Sy that exactly matches the observed value of g(x) for that population. This value
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of k, which we call k(x), is given in the following equation, derived from Egs. (1)
and (2):

h(x) = @ 3)

x

where e, (x) is the difference between the predicted and observed values of ¢;(x) when
the prediction is performed with k£ = 0, and v, is taken from Table 2. Equation (3)
implies that a value of & for a given population can be estimated on the basis of only
one observed value of ¢(x) in addition to g(5y). For example, knowledge of the infant
mortality rate (¢(12m)) in addition to ¢(5y) is sufficient for estimating k in a given
population.

Alternatively, the value of £ for a given population can be estimated using more
than one observed value of g(x) in addition to ¢(5y). Several approaches are possible
in this case. For example, one could simply use the mean or median of the k(x) val-
ues calculated independently for each age using Eq. (3). Another approach consists
of finding the value of £ that, together with the observed value of g(5y), minimizes
the root-mean-square error (RMSE) of predicted values of all the ¢(x) values for
that population. To derive the equation for this “best-fitting” value of & for a given
population 7, which we denote &*, we take into account the different lengths of the
age intervals in the g(x) series by using a weighted least-squares solution where the
weights w(x) correspond to the length of the previous age interval ending with age x.
The solution is given in Eq. (4) (see the online Appendix 1 for more details):

= Zaa 0 6, o)

l Y WXV

Compared to the solution based on averages of k,(x) values, this approach minimizes
the uncertainty about the predictions of the model. This is a desirable condition,
considering our goal to use this model for indirect estimation and data validation
purposes.

Figure 4 uses data from Finland in 1933 to illustrate how the model can fit an actual
observed g(x) series using g(5y) and £*. In panel a, the circles show the observed val-
ues of g(x) at different ages, with a g(5y) value of 109 per 1,000. Predicted values of
q(x) using the log-quadratic model with this value of ¢(5y) and k = 0 show a certain
amount of prediction error. These prediction errors are minimized by calculating the
value of £* (= 0.95 in this example) using Eq. (4). The two entry parameters for Fin-
land in the log-quadratic model are g(5y) = 0.109 and £* = 0.95, producing a series
of predicted g(x)s that fit the observed data remarkably well, with a RMSE of 2.0%.
Panel b of Figure 4 also shows how the model fits the observed ,M, series.

The approach discussed in the foregoing uses ¢(5y) as the first entry point, and
one or several intermediate g(x) values as additional information for estimating k.
For certain applications, it may be desirable to fit the model with input death prob-
abilities that do not start at age 0 and/or do not end at age 5 years. One example of
such a configuration is when the only available input values are observed values
of ¢(28d) and ¢(12m). In some other applications, it may be useful to estimate the
model parameters after excluding information at neonatal ages, for example, owing
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Fig.4 Observed and predicted values of ¢(x) and ,M, for Finland, 1933, for both sexes combined

Py

to concerns about the quality of the data at these ages. In that case, ¢(28d,5y), rather
than ¢(5y), would be a preferable input value. Another situation is when the avail-
able input values are mortality rates (,M,), rather than probabilities, over age-groups
that do not conform with the model’s harmonized age-groups. For all these more
complex applications, estimating the model parameters cannot be performed using
the method described earlier because of nonlinearities in the system of equations.
These applications can be resolved using simple iterative procedures, or using a more
general approach based on the method of Lagrange. This more general approach
is described in the online Appendix 2. We also use the Lagrange approach in an
R package, called “logquad5q0,” which we provide as a companion to this article.
This package, available at https://github.com/verhulsta/logquad5q0, allows users to
use the log-quadratic model to predict a full set of 22 ,M_ and g(x) values by detailed
age, by sex or for both sexes combined, based on a variety of inputs.

Our log-quadratic model is a two-dimensional model, but it can be reduced to one
dimension assuming k=0. In that case, any single mortality indicator within the 0-5
age range will be associated with one value of g(5y), and a full mortality schedule can
be predicted using that ¢(Sy) value and & = 0. This corresponds to the model’s aver-
age prediction in the database given the chosen predictor. In order to take advantage
of the two-dimensional feature of the model, at least two input mortality values are
necessary. However, not all pairs of mortality indicators within the 0—5 age range will
provide a solution. As discussed previously, the shape of the ¢(x) function, as summa-
rized by the parameter £, is to a large extent driven by the contrast between mortality
before versus after 28 days (or 7 days when ¢(5y) reaches low levels). This means
that, for example, when the pair of input mortality values are both located within the
28d-5y age range, there may not be a solution for ¢(5y) and & values that produces
an exact match for both input values, indicating in effect that the input information
is insufficient for determining the shape parameter k. In this case, the two-dimen-
sional model can be reduced to only one dimension assuming £ = 0, and the model
parameter g(5y) can be estimated using either of the two input values, which in such
situations will provide similar results. Among classic mortality indicators such as
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q(7d), ¢(7d,28d), ¢(28d), ¢(28d,12m), ¢(12m), ¢(12m,5y), and q(5y), pairs that are
both on the same side of the 28 days (or 7 days) threshold will most often not provide
enough information for estimating the shape parameter . This includes, for example,
the ¢(28d,12m) and ¢(12m,5y) pair, which only covers mortality information above
the 28 days threshold, or the ¢(7d) and ¢(7d,28d) pair, which only covers mortality
information below that threshold. The same conclusion applies when using three or
more indicators and solving for the model parameters by minimizing RMSE: these
multiple indicators need to combine mortality information before and after the 28
days (or 7 days) threshold to have enough traction for estimating &. When this is not
the case, assuming k = 0 will be the preferred solution.

How Does the Log-Quadratic Model Fit the USMD?

We evaluated model fitting as the capacity to make g(x) predictions with minimum
RMSE for the country-years included in the final USMD. In order to prevent overfit-
ting, we split our set of country-years into two random samples: one with 60% of the
country-years for estimating the coefficients of the model {a,, b,,c,,v,} and another
with 40% for evaluating the error of the prediction. We first estimated prediction
errors taking ¢(5y) as the only entry parameter in the model, assuming k£ = 0. We then
estimated how model fitting improves when using a second entry point for estimating
the shape parameter k, comparing different choices of entry points for that purpose
(¢(7d), ¢(28d), g(3m), g(6m), and g(12m)). Finally, we examined model fitting when
k is estimated on the basis of all g(x) values, that is, using £* in Eq. (4).

Table 3 shows the RMSEs for both sexes combined. We report means of the esti-
mates, after preserving the selection 60—40 for a total of 10,000 random samples
(without replacement), along with 95% confidence intervals. Global results from 0 to
5 years were calculated as the weighted average of the RMSE:s at different ages using
the same age weights used in Eq. (4). The overall adjustment of the model is satis-
factory even if a value of k£ =0 is assumed, with an RMSE of only 4.00%. Choosing
a second entry point and estimating the corresponding value of k& improves fit sub-
stantially, with the largest improvement occurring with ¢(3m) as second entry point
(RMSE =1.88% for both sexes combined). As expected, best results are obtained
when estimating k& optimally using £* based on all observed ¢(x)’s. Interestingly, this
optimal solution is not substantially different, in terms of RMSE, from the one using
q(3m) for estimating k. Table 3 also shows RMSE when focusing on specific g(x)
outcomes: neonatal and infant mortality, that is, ¢(28d) and ¢(12m), respectively. The
RMSE:s are higher in that case, in part because the global RMSE estimates include
values of ¢(x) at higher ages, which have smaller relative prediction errors. Nonethe-
less, the results show that these indicators are relatively well predicted, with predic-
tions that improve overall with the inclusion of the second parameter k. (A version of
Table 3 showing mean bias error (MBE) instead of RMSE is presented in the online
Appendix Table A2. It shows that the structure of errors is symmetric whenever ¢(5y)
is used as entry point, alone or in combination with other entry points.)

We also evaluated the performance of the model for predicting mortality outcomes
based on ¢(28d,5y). As mentioned earlier, this indicator excludes mortality informa-
tion during the neonatal period, making it a useful predictor of neonatal mortality
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Table 3 Root-mean-square error (RMSE) of predicted ¢(x)’s using the log-quadratic model applied to
the final USMD, with various combinations of outcomes and entry points for estimating &, for both sexes

combined
RMSE for the Following Outcomes:
Entry Point(s) All g(x) q(28d) q(12m) q(5y)
q(5y) only, k=0 0.0400 0.1439 0.0459 0.0000
[0.038, 0.042] [0.1365,0.1514]  [0.0427, 0.0493] —
q(5y) and ¢(7d) 0.0242 0.0450 0.0380 0.0000
[0.0231, 0.0253] [0.0415,0.0488]  [0.0360, 0.0400] —
q(28d) 0.0222 0.0000 0.0372 0.0000
[0.0210, 0.0234] — [0.0348, 0.0396] —
q(3m) 0.0188 0.0523 0.0299 0.0000
[0.0179, 0.0199] [0.0489, 0.0556]  [0.0277, 0.0323] —
q(6m) 0.0222 0.1081 0.0181 0.0000
[0.0209, 0.0236] [0.1008, 0.1165]  [0.0166, 0.0198] —
q(12m) 0.0324 0.1628 0.0000 0.0000
[0.0295, 0.036] [0.1477,0.1821] — —
all g(x)* 0.0174 0.0558 0.0252 0.0000
[0.0165, 0.0184] [0.0524, 0.0594]  [0.0233, 0.0274] —
q(28d, 5y) only, k=0 0.1936 0.3188 0.2051 0.1711

[0.1795, 0.2086]

[0.2971, 0.3419]

[0.1899, 0.2213]

[0.1584, 0.1845]

Notes: Reported values correspond to the mean of 10,000 random samples; 60% of the life tables were
used for estimation and 40% for evaluation. RMSE was calculated from the residuals of 487 life tables
(40% of sample). Figures in brackets are 95% confidence intervals.

* Using k=k* (Eq. (4)).

and other under-5 mortality indicators when there are concerns about undercount of
deaths at neonatal ages in a given population. Indeed, in such situations, the model’s
entry point cannot be g(5y), because that indicator is itself affected by undercount of
neonatal deaths. Also, estimating k£ will be problematic, because & is determined to a
large extent by the contrast between mortality before versus after 28 days, which is
missing in this configuration.

Predicting a full g(x) schedule in this case can be done assuming k& = 0. This
implies finding the level of ¢(5y) that matches the observed level of ¢(28d,5y) when
k = 0, using either simple iteration or the Lagrange option discussed in Appendix 2.
The last row of Table 3 shows the RMSE of ¢(28d) and other mortality outcomes,
here also selecting 60% of the country-years in the database for estimation and the
remaining 40% for evaluation. Focusing on ¢(28d), RMSEs are substantially higher
than when using ¢(5y) as a predictor (31.88% vs. 14.39%). This is expected given
that ¢(Sy) is to a large extent determined by the level of ¢(28d), making it easier to
predict ¢(28d) on the basis of g(5y) than on the basis of ¢(28d,5y). RMSEs for other
mortality outcomes including ¢(5y) are substantially lower, because of the overlap
in this case between predictor (¢(28d,5y)) and predicted (¢(5y)) indicators. A practi-
cal example of using the log-quadratic model for adjusting neonatal mortality based
on VR data from Jordan is provided later in the article. (MBE results presented in
the online Appendix Table A2 show that when ¢(28d,5y) is used as a predictor with
k =0, the model has a tendency to produce a downward bias in predicted estimates.
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However, this downward bias is small, that is, less than 3% of the true value of
q(28d). This slight lack of symmetry is addressed by using nonsymmetrical confi-
dence intervals, as shown in the next section. Note that of all mortality indicators
between 28 days and 5 years, ¢(28d,5y) is the one that produces the smallest pre-
diction errors in ¢(28d) when assuming k& = 0. We thus recommend using it when
available. Alternatively, neonatal mortality can be predicted using other mortality
indicators after 28 days, such as ¢(28d,12m) or ¢(12m,5y). In that case, prediction
errors will be slightly higher: 34.89% with ¢(28d,12m) and 32.31% with ¢(12m,5y)
versus 31.88% with ¢(28d,5y).)

Estimating Uncertainty in Predicted g(x) Values

Given ¢(5y) and £, the log-quadratic model predicts a series of g(x) values. These pre-
dictions are not perfectly accurate; the model will predict g(x) values with a certain
degree of uncertainty that needs to be quantified.

Our strategy for quantifying uncertainty in predicted values of g(x) values is
derived from our approach for estimating k", the optimal value of k for a given coun-
try i. Building on Eq. (4), we obtain in Eq. (5) an expression for the variance of k," in
terms of the prediction error e; (when k =0 ), the estimated coefficients for modeling
the mortality pattern v_, and the optimal value of &, (see the online Appendix 1 for
more details):

2 [ et .,

Vel S e

)

Equation (5) shows that the variance of &, is an increasing function of the var-
iance of the prediction error but a decreasing function of the absolute value of %;".
In other words, the certainty in the value k" will depend on the extent to which the
coefficients of the model effectively minimize the RMSE of the prediction. This esti-
mated variance around %, can then be used for calculating 95% confidence intervals
around each g(x) value predicted by the log-quadratic model. This involves calculat-
ing predicted values of g(x) in the log-quadratic model using k" £1.96 / Var[k,"] .

An illustration of this approach for calculating confidence intervals around pre-
dicted ¢g(x) values is provided in Figure 5, using data from Belgium in 1949. We
chose this example because of its relatively large remaining prediction errors after
estimating £* (RMSE = 3.4%), making the calculation of confidence intervals partic-
ularly relevant. In Figure 5, each predicted g(x) value (panel a) or ,M, value (panel b)
is presented with its corresponding 95% confidence interval.

In one-dimensional uses of the model (i.e., assuming k = 0), only one mortality
indicator is used as an entry point. Uncertainty in & for a given population in that
situation does not stem from variations in ; (x) across age-groups, but instead from
the overall lack of information about k. In such cases we propose to build confidence
intervals around predicted values by examining patterns of prediction errors in the
database when assuming & = 0 instead of the best-fitting value £*. We find that across
all 1,219 country-years of the final USMD, the central 95% of the distribution of
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Fig.5 Observed and predicted values of ¢(x) and ,M, for Belgium, 1949, for both sexes combined, with

95% confidence intervals

k* lies between —0.6300 and +0.9314. Confidence intervals around predicted values
of g(x) when k = 0 can be derived using these bounds for k. An application of this

approach is discussed in the next section.

Using the Model for Adjusting Under-5 Mortality in Populations
With Incomplete or Deficient Data

Our log-quadratic model for under-5 mortality has many practical applications. It
can be used, for example, to (1) smooth noisy age schedules, (2) correct mortality
estimates in the presence of age heaping or transfer, or (3) adjust mortality data for
underreporting in specific age ranges.

For the first application, we examine the case of age schedules of mortality esti-
mated using full birth histories collected in the DHS. Mortality information based on
this type of information is subject to more sampling error than VR-based information
owing to small sample sizes. This sampling error is particularly visible when examin-
ing age-specific deaths rates (,,) over narrow age intervals. The flexible parametric
assumptions of the log-quadratic model can be used to smooth this information: one
simply needs to solve for the model’s parameters on the basis of the observed g(x)
information, and then use these parameters to obtain predicted values of g(x) from

which a smoothed ,M, series can be derived.

An illustration of this application is provided in panels a and b of Figure 6, with
data from the 2011-2012 DHS in Honduras. Panel a shows observed g(x) values as
well as g(x) values predicted using the log-quadratic model given the observed g(5y)
value of 29 per 1,000 and the best-fitting £* value of 0.06, estimated using Eq. (4).
The model fits the g(x) series extremely well, with a RMSE value of 1.7% and nar-
row confidence intervals. Panel b shows corresponding observed versus predicted , M,
values, illustrating the use of the log-quadratic model for smoothing purposes. The
confidence intervals around predicted ,M, values are narrower than suggested by the
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a. Honduras 2011-2012: g(x)
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Fig. 6 Observed and predicted values of ¢(x) and ,M, for selected Demographic and Health Surveys, for
both sexes combined. In panel c, £* is estimated on the basis of observed ¢(x) points, excluding ages
9 months to 21 months.

random error in observed ,M, values. This is explained by the fact that these confi-
dence intervals reflect uncertainty in estimating k, assuming a known, fixed value of
q(5y), while the observed values of ,M, are affected by sampling error arising from
small sample sizes in each narrow age interval.

The second application deals with age heaping correction. In birth histories collected
by DHS surveys, ages at death tend to be reported with a certain amount of heaping,
most notably at age 12 months. This raises concerns about the quality of DHS-based
IMR estimates, since some infant deaths (i.e., at ages less than 12 months) may be mis-
reported as occurring at 12 months and thus erroneously excluded from IMR calcula-
tions (Croft et al. 2018). In order to correct for this issue, we suggest fitting the model to
observed ¢g(x) points in a DHS survey after excluding ages most likely to be affected by
heaping at 12 months because of their proximity, for example, 9 to 21 months. The idea
is to smooth out age heaping around 12 months while preserving the observed value of
q(5y), which is not expected to be affected by such age heaping.
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To illustrate this application, we show in panel ¢ of Figure 6 data from Bolivia’s
1989 DHS. In this example, the observed g(x) points display a large jump between
q(12m) and ¢(13m), illustrating the extent of age heaping for deaths reported at age
12 months. The observed data suggest an IMR level of 90 per 1,000, but this value is
questionable given the presence of such age heaping. This panel also shows predicted
values of g(x) with the observed ¢(5y) value of 138 per 1,000 and & estimated on
the basis of observed ¢(x) values excluding the problematic ages around 12 months.
The model fits the retained points well (RMSE = 2.5%) and predicts an IMR value
of 100 per 1,000, that is, 10 points higher than the observed one. In this example,
ages at death in the months preceding 12 months appear to be gradually misreported
as occurring at 12 months, generating a substantial downward bias in the observed
IMR value. (See Romero Prieto et al. (2021) for a more general discussion of this
approach.)

In the third application, we show how the model can be used to adjust mortality
information in situations where mortality may be underreported at some ages for rea-
sons other than age heaping, for example, owing to undercount of deaths. In this type
of situation, it will not be possible to use the reported value of g(5y) as one of the
model’s entry points, because that value will itself be biased by such underreporting.
However, as explained earlier, the model’s parameters can be estimated using entry
points over age ranges that may not start at zero and/or may not end at 5. This allows
users to estimate the model’s parameters on the basis of indicators within the 05 age
range that may be less affected by underreporting issues.

We illustrate this type of application using vital registration data from Jordan,
a country where VR-based under-5 mortality information appears largely under-
estimated (UN IGME 2019b). As is often the case, concerns about undercount are
particularly acute for neonatal mortality, as indicated in the Jordan VR data by an
unusually low level of neonatal mortality given the observed level of under-5 mortal-
ity. We propose here to use the log-quadratic model for adjusting under-5 mortality
in the country for the year 2015 using the observed value of ¢(28d,5y) for that year
as the model’s entry point. As discussed earlier, this choice is based on the fact that
q(28d,5y) is an indicator that remains unbiased in the presence of underreporting
of neonatal deaths. Unlike the previous applications, it will not be possible to solve
for the model’s second dimension k, because as we saw earlier, the estimation of &
requires entry points situated on both sides of the 28 days threshold. However, assum-
ing k=0, it is possible to solve for the value of ¢(5y) that corresponds to the observed
value ¢(28d,5y) and then obtain a full series of predicted g(x) values, including neo-
natal, infant, and under-5 mortality rates. We calculated confidence intervals around
predicted values using bounds of k£ varying between —0.6300 and +0.9314 as dis-
cussed in the previous section.

Results of this approach, shown in Figure 7, indicate that the model adjusts the
VR estimates of neonatal mortality upward by a factor of more than 2, from 3.7
to 9.9 per 1,000, producing adjusted levels that are consistent with DHS estimates
for the same period. Figure 7 also shows how this adjustment of neonatal mortality
affects levels of infant and under-5 mortality. The adjusted level of ¢(5y) produced
by the log-quadratic model is 17.9 per 1,000, more than 50% higher than the unad-
justed level of 11.7 and on a par with the DHS estimate. The consistency between our
VR-adjusted estimates and the DHS estimates is reassuring about the ability of our
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Fig.7 Levels of neonatal (¢(28d)), infant (¢(12m)), and under-5 (¢(5y)) mortality rates for Jordan in 2015,
for both sexes combined, with 95% confidence intervals. VR = vital registration; DHS =2017-2018 Demo-
graphic and Health Survey, with mortality values centered in 2015; obs. = unadjusted VR values; adj. =
adjusted VR values using the log-quadratic model with the observed VR-based value of ¢(28d,5y) and
k=0 as inputs.

approach to correct for deficiencies in the VR data. Confidence intervals between the
two approaches have comparable sizes, although they arise from different reasons. In
the case of DHS data, uncertainty reflects sampling error, while in the case of the VR
correction, the confidence interval reflects the model’s prediction error in the neonatal
mortality rate when &k = 0.

In order to further understand the mechanics of this adjustment, we show in online
Appendix Figure Al observed versus predicted values of ,M, in Jordan with a focus
on the first 12 months. This figure shows that, while there is close agreement between
observed and predicted rates from the second week of life onward, the model pre-
dicts much higher mortality for the first week. This suggests that underreporting in
neonatal mortality in the VR data for Jordan comes primarily from underreporting
during the first week, which is indeed the age range most sensitive to data errors.
Overall, this approach offers a promising solution for adjusting VR-based estimates
of under-5 mortality in situations where issues of undercount are concentrated at neo-
natal ages. This solution is particularly useful given the renewed emphasis on using
local vital registration information rather than international survey programs as a data
source for estimating mortality.

Discussion

Mortality between 0 and 5 years has features that make this age range unique over the
human life course, including a particularly fast decline by age during the first weeks
and months of life that has been interpreted using evolutionary and selection models
(Chu et al. 2008; Lee 2003; Scholey 2019). Over the history of mortality change, pop-
ulations have experienced large changes in both the level and shape of under-5 mor-
tality in response to epidemiological changes, such as a shift from exogenous causes
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of under-5 death (e.g., infectious and parasitic diseases) to endogenous causes (e.g.,
congenital malformations, birth injuries) (Drevenstedt et al. 2008; Galley and Woods
1999; Liu et al. 2012; Rao et al. 2011). As a tool for describing and summarizing
these regularities, the new model developed in this article has a number of strengths.

First, with 22 age-groups between ages 0 and 5, our model offers far more detailed
age granularity than existing model life tables. This age detail is particularly relevant
given the fast changes in age-specific mortality in that age range. Second, the model
fits high-quality VR data remarkably well. Thus, the two-dimensional log-quadratic
approach is well suited to describe changes in both the level and shape of under-5
mortality observed in the populations represented in our database. Third, our model
provides a more flexible choice of predictors, beyond the typical infant versus child
mortality contrast embedded in classic model life tables. This allows users to pre-
dict mortality curves using various combinations of predictors depending on data
availability and quality. Fourth, our model can be used for various data smoothing
and adjustment applications, as shown in our empirical applications. Our applica-
tion of the model to data from Jordan, in particular, shows how the model can be
used for correcting incomplete VR data in situations where underreporting is concen-
trated during the neonatal period. Fifth, unlike most model life table approaches, our
model provides solutions for estimating confidence intervals around predicted values.
Finally, our model is simple and easy to use. The coefficients provided in Table 2 con-
tain all the necessary information for using the model, and most applications can be
solved using simple formulas such as Egs. (3) and (4).

The model’s main limitation is that its empirical basis does not include mortality
data from low- and middle-income countries. This means that applications of the
model to a low- and middle-income population need to rely on the assumption that
the mortality regularities described by our model, representing mostly the experience
of historical and contemporary Western countries, apply to that particular population.
Our examples from Honduras, Bolivia, and Jordan for recent periods suggest that the
model’s applicability is broader than the geographic scope of the USMD. Indeed, in
all three cases, there was a close fit between observed and predicted values of g(x) for
the ages used as a basis for the prediction.

There are cases, however, where the model is clearly not able to reproduce the
observed age patterns for reasons that appear unrelated to data quality issues in the
observed data. The most extreme cases are populations that exhibit a large age-specific
reversal in mortality around age 6 months, as was observed, for example, in the
Niakhar surveillance site in Senegal in the 1960s and 1970s (Abdullah et al. 2007;
Cantrelle and Leridon 1971; Delaunay et al. 2001; Lalou and LeGrand 1996). This
unusual age pattern, which has been attributed to a combination of factors, including
inadequate weaning foods (Cantrelle and Leridon 1971; Garenne 1982), is absent
from the Western experience, and thus our log-quadratic model is not able to repro-
duce it. Outside these extreme cases, many sub-Saharan African populations tend to
display an unusually late age pattern of under-5 mortality (Guillot et al. 2012), which
is not well fitted by the log-quadratic model (Romero Prieto et al. 2021). As an illus-
tration, we show in panel d of Figure 6 observed ¢(x) values from the 20102011
DHS for Senegal against log-quadratic predictions given the same level of ¢(5y), with
k varying between —1 and +1. Clearly the log-quadratic model is not able to repro-
duce this age pattern, which combines an unusually high level of neonatal mortality
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(associated with an “early” pattern of under-5 mortality in the log-quadratic model)
with unusually low values of ¢(x) at later ages (associated with a “late” pattern).
This lack of fit shows that while the log-quadratic model can be applied to various
non-Western populations, it cannot be used indiscriminately everywhere.

In a recent paper, Mejia-Guevara et al. (2019) specifically modeled age patterns
of under-5 mortality in sub-Saharan Africa using DHS data calibrated on estimates
from UN IGME (2019Db). This study, like ours, recognizes the importance of age pat-
terns of mortality as a device for mortality estimation, but it pursues objectives that
are substantially different from ours, and thus is not directly comparable. Its goal
is primarily to smooth and forecast existing data on under-5 mortality by detailed
age; by contrast, our study follows a model life table approach, which consists of
extracting regularities from a reference data set via coefficients that may then be
used for evaluating and correcting data in populations not included in that data set.
Nonetheless, Mejia-Guevara et al.’s (2019) study raises the question of whether DHS
data may be used as a source for modeling age patterns in low- and middle-income
countries, including sub-Saharan Africa. In our study, we chose not to include DHS
data because of data quality concerns that are particularly consequential given the
specific goals of our model, including age heaping and concerns about the quality
of the reporting of neonatal deaths (Helleringer et al. 2020). This does not mean that
our model’s inability to fit patterns such as the one shown in panel d of Figure 6 for
Senegal is indicative of data errors in the DHS. There are many reasons to believe that
age patterns of under-5 mortality in many sub-Saharan African populations are truly
different from those observed in Western countries. However, we believe that the goal
to derive a model that can be used as a reference for data evaluation and correction in
all low- and middle-income countries requires a thorough evaluation of all the avail-
able sources of under-5 mortality information in those countries, an exercise that is
beyond the scope of this article. We provide here a model that describes age patterns
based on gold-standard, newly compiled vital registration data spanning a large num-
ber of countries and time periods. Nonetheless, more research is needed to augment
the geographical scope and generalizability of this model.

Conclusion

This article proposes a new model for summarizing regularities about how under-5
mortality is distributed by detailed age. This model is based on a newly compiled
database that contains under-5 mortality information by detailed age in countries with
high-quality vital registration systems, covering a wide array of mortality levels and
patterns. The model uses a log-quadratic approach, predicting a full mortality sched-
ule between ages 0 and 5 on the basis of only one or two parameters.

Results show that our model is able to accurately describe variations in both the
level and the shape of under-5 mortality across a variety of contexts. We believe that
our model, with its innovative features relative to existing models, contributes to bet-
ter estimating and understanding levels and age patterns of under-5 mortality. Future
research should focus on increasing the geographic scope of the model by gathering
the best possible data on under-5 mortality by detailed age in low- and middle-income
countries. m
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