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ABSTRACT Information about how the risk of death varies with age within the 0–5 
age range rep re sents crit i cal evi dence for guid ing health pol icy. This study pro poses a 
new model for sum ma riz ing reg u lar i ties about how under-5 mor tal ity is dis trib uted by 
detailed age. The model is based on a newly com piled data base that con tains under-5 
mor tal ity infor ma tion by detailed age in countries with high-qual ity vital reg is tra tion 
sys tems, cov er ing a wide array of mor tal ity lev els and pat terns. It uses a log-qua dratic 
approach in predicting a full mor tal ity sched ule between ages 0 and 5 on the basis of 
only one or two param e ters. With its larger num ber of age-groups, the pro posed model 
offers greater flex i bil ity than existing mod els in terms of both entry param e ters and 
model out comes. We pres ent appli ca tions of this model for eval u at ing and correcting 
under-5 mor tal ity infor ma tion by detailed age in countries with prob lem atic mor tal ity 
data.

KEYWORDS Under-5 mor tal ity • Neonatal mor tal ity • Model life tables • Age 
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Introduction

The Under-5 Mortality Rate (U5MR) is a key and widely used indi ca tor of child 
health (United Nations 2011; United Nations Inter-agency Group for Child Mortality 
Estimation (UN IGME) 2019b; Wang et al. 2016; You et al. 2015), but it con ceals 
impor tant infor ma tion about how this mor tal ity is dis trib uted by age from birth up 
to the fifth birth day (Guillot et al. 2012; Hill 1995; Mejía-Guevara et al. 2019). For 
bet ter under stand ing and mon i tor ing of child health, it is crit i cal to exam ine how the 
risk of death varies within the first five years of life. This includes age break downs 
beyond the stan dard cut-off points of 28 days (for neo na tal mor tal ity) and 1 year (for 
infant mor tal ity). In many pop u la tions, how ever, the age pat tern of under-5 mor-
tal ity is not well known. Low- and mid dle-income countries, in par tic u lar, lack the 
high-qual ity detailed vital reg is tra tion infor ma tion nec es sary for the anal y sis of such 
age pat terns (Mikkelsen et al. 2015). Sample sur veys collecting ret ro spec tive birth 
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his to ries, such as Demographic and Health Surveys (DHS), do not sat is fac to rily fill 
this gap, because they are sub ject to poten tial biases that are par tic u larly con se quen-
tial for esti mat ing age pat terns (Hill 1995; Lawn et al. 2008). This makes the need 
for high-qual ity infor ma tion on age pat terns of under-5 mor tal ity even more crit i cal, 
since reg u lar i ties in these age pat terns can be used as a pow er ful tool for eval u at ing 
and correcting esti ma tes when data are defi cient.

This study pro poses a new model for sum ma riz ing reg u lar i ties about how under-5 
mor tal ity is dis trib uted by detailed age in human pop u la tions. This model is based on 
the Under-5 Mortality Database (U5MD), a newly com piled data base that con tains 
under-5 mor tal ity infor ma tion by detailed age in countries with high-qual ity vital reg-
is tra tion sys tems, cov er ing a wide array of mor tal ity lev els and pat terns. Building on 
pre vi ous work by Wilmoth et al. (2012), this model uses a log-qua dratic approach in 
predicting a full mor tal ity sched ule between ages 0 and 5 on the basis of only one or 
two param e ters. We pres ent appli ca tions of this model for eval u at ing and correcting 
under-5 mor tal ity infor ma tion by detailed age in countries with defi cient mor tal ity data.

This arti cle builds on the model life tables lit er a ture. Model life tables sum ma rize 
reg u lar i ties in how mor tal ity varies by age in human pop u la tions. They rep re sent 
a use ful frame work for our pur pose because they allow the esti ma tion of arrays of 
age-spe cific mor tal ity rates or prob a bil i ties on the basis of only one or two mor tal-
ity indi ca tors, cho sen as entry param e ters (United Nations 1988). Two sets of model 
life tables are con sid ered clas sic in the field: one set was devel oped by Coale and 
Demeny (Coale and Demeny 1966; Coale et al. 1983) and the other by the United 
Nations Population Division (1982). These two sets are still com monly used today, 
includ ing for esti mat ing the infant mor tal ity rate (IMR) on the basis of U5MR (UN 
IGME 2019a). Current usage of the Coale and Demeny and the United Nations model 
life tables for esti mat ing pat terns of under-5 mor tal ity, how ever, is affected by sev eral 
impor tant draw backs.

First, these model life tables offer only 0 ver sus 1–4 as an age break down for 
under-5 mor tal ity. This is insuf fi cient for most pur poses, includ ing for the esti ma tion 
of neo na tal mor tal ity or mor tal ity in non stan dard age ranges. (One model that con tains 
addi tional age details is Bourgeois-Pichat’s “bio met ric” model (Bourgeois-Pichat 
1951). This model, how ever, focuses on the first 12 months of age only and has been 
shown to poorly fit data in a vari ety of con texts (Galley and Woods 1998; Knodel and 
Kintner 1977; Lantoine and Pressat 1984; Lynch et al. 1998; Manfredini 2004). Sec-
ond, the Coale and Demeny and the United Nations model life tables rely on rather 
old data, with the most recent infor ma tion dat ing back to the early 1980s. Third, these 
model life tables sum ma rize age pat terns as “fam i lies,” based on regional group ings, 
and thus have a dis crete rather than con tin u ous nature. More recent devel op ments 
in the model life tables lit er a ture include Murray et al.’s (2003) mod i fied logit sys-
tem, Wilmoth et al.’s (2012) log-qua dratic model, and Clark’s (2019) sin gu lar value 
decom po si tion (SVD)–com po nent model. These mod els improve on many of the 
weaknesses of the clas sic model life tables, includ ing the use of a con tin u ous rather 
than dis crete param e ter for describ ing var i a tions in mor tal ity shapes and the use of 
more recent data for deriv ing model coef fi cients. However, Murray et al.’s (2003) and 
Wilmoth et al.’s (2012) mod els are still constrained by the 0 ver sus 1–4 age break-
down for the under-5 age range, and Clark’s (2019) model does not pro vide details 
below sin gle-year age-groups.
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Our study extends existing model life tables by (1) using a newly com piled data-
base that has greater age detail than the ones on which existing model life tables were 
derived and (2) explic itly expanding the num ber of age-groups in the model, espe-
cially in the first year of life, thus allowing more flex i bil ity than existing mod els in 
terms of both entry param e ters and model out comes. Our model offers a num ber of 
appli ca tions that are not fea si ble with existing model life tables, includ ing the pos si-
bil ity of detecting and adjusting for under es ti ma tion of neo na tal mor tal ity.

A New Database for Under-5 Mortality by Detailed Age

Description of the Database

The pro posed model is based on the Under-5 Mortality Database, a newly com piled 
data base for under-5 mor tal ity by detailed age drawn from high-qual ity vital reg is tra-
tion (VR) data. In its orig i nal ver sion, this data base con tains 1,741 annual dis tri bu-
tions of under-5 deaths by detailed age (days, weeks, months, tri mes ters, and years), 
representing 25 countries over a time win dow from the sec ond half of the nineteenth 
cen tury to recent years (1841–2016). The list of avail  able coun try-years is pro vided 
in Table 1. This sec tion sum ma rizes how this data base was built and har mo nized. Full 
details are avail  able in the online Supplementary Materials 1.

Age dis tri bu tions of deaths were obtained from two pri mary sources: (1) for his-
tor i cal peri ods (prior to 1970), these dis tri bu tions were col lected man u ally from 
archi val sources such as national sta tis ti cal year books; and (2) for peri ods from 1970 
onward, they were obtained elec tron i cally from a data repos i tory com piled by the 
United Nations Statistical Division.

The orig i nal selec tion of coun try-years was based on the cri te rion of vir tual com-
plete ness of death reg is tra tion and cen sus data deter mined by the Human Mortality 
Database (HMD) (Barbieri et al. 2015). This means that we con sid ered only coun try- 
years avail  able in the HMD for inclu sion in the U5MD. The HMD com prises mostly 
Euro pean countries (31) but also some other indus tri al ized countries (nine). However, 
we did not include all  HMD countries in the U5MD. As discussed in the online Sup-
plementary Materials 1, we excluded countries of the for mer Eastern bloc because 
of well-documented con cerns about the qual ity of the mor tal ity data at early ages. 
Greece was also excluded for sim i lar rea sons (Agorastakis et al. 2017). In addi tion, 
Iceland and Luxembourg were removed owing to the small size of the pop u la tion 
lead ing to many zero cell counts in the nar row age-groups that we focus on. This 
gives us an orig i nal data base containing 1,741 coun try-years (see Table 1, col umn 1).

Starting from this orig i nal data base, we then removed 276 coun try-years that did 
not con tain enough infor ma tion for the full har mo ni za tion of the data base by age and 
sex (see Table 1, col umn 2). Specifically, we removed 81 coun try-years for which 
death dis tri bu tions were not bro ken down by sex. We also removed 117 coun try-years 
in France and Belgium because of insuf fi cient details regard ing “false still births,” 
that is, deaths that occurred before cor re spond ing births were reg is tered, which were 
tab u lated sep a rately in these two countries (see online Supplementary Materials 1 for 
details). Regarding the detail of the age infor ma tion, the min i mum criterion for inclu-
sion in the U5MD was the break down of infant deaths in terms of neo na tal deaths  
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(<28 days) ver sus post-neo na tal deaths (28 days–11 months). The death dis tri bu tions 
we col lected typ i cally included much finer age gran u lar ity, but the for mat of age 
inter vals var ied greatly across the pri mary sources of infor ma tion. Deaths were tab u-
lated unevenly by days, weeks, months, tri mes ters, semes ters, and years, and dis trib-
uted over dif fer ent age spans (first year of age only ver sus larger age ranges up to the 
full first five years). In order to address this uneven ness, we har mo nized age-groups 
into 22 age inter vals with the fol low ing exact-age cut-off points: 0, 7, 14, 21, and 
28 days; 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, and 21 months; and 2, 3, 4, and 5 
years. The har mo ni za tion was car ried out by inter po lat ing cumu la tive age dis tri bu-
tions of deaths using a spline method devel oped by Steffen (1990), which ensures 
that the inter po lated curves behave mono ton i cally. We excluded 78 coun try-years at 
that stage because of insuf fi cient age details dur ing the first month for performing this 
inter po la tion (see online Supplementary Materials 1 for details).

Our data base was complemented by two pieces of infor ma tion obtained directly 
from the HMD for the coun try-years cov ered in the U5MD: (1) raw death counts 
between exact ages 1 and 5, which we used to fill poten tial miss ing infor ma tion in 
our data base in that age range; and (2) expo sures to the risk of dying in per son-years, 
by cal en dar year and by sin gle year of age, cal cu lated by the HMD from cen sus and 
birth data (Wilmoth et al. 2021).

Age-spe cific deaths rates (nMx) and cor re spond ing prob a bil i ties of dying from 
birth to age x (q(x)) were com puted for each of the 22 har mo nized age inter vals. 
Death rates were com puted by divid ing deaths by the expo sure (per son-years) to the 
risk of death for each age inter val and year. Since expo sure terms were not avail  able 
for age-groups smaller than one year, we assumed a uni form dis tri bu tion of expo sure 
within each sin gle-year age-group. With this assump tion, expo sure terms are pro por-
tional to the length of the age inter val n within each sin gle-year age-group. Mortality 
rates for both sexes com bined were cal cu lated by aggre gat ing sex-spe cific deaths and 
expo sures. We then cal cu lated cumu la tive prob a bil i ties of dying q(x) (= 1 – lx / l0 in 
life table nota tion) with the assump tion that mor tal ity rates were con stant within each 
age inter val, in which case q(x + n) = 1− (1− q(x)) ⋅e−n⋅n Mx. This assump tion is not 
very con se quen tial given the small width of our age inter vals. In total, this approach 
pro duces a fully har mo nized under-5 mor tal ity data base for a total of 1,465 coun-
try-years, by sex and 22 detailed age-groups (see online Supplementary Materials 1, 
Table SM1-1, for details).

Evaluation of the Quality of the U5MD

As discussed in the fore go ing, the U5MD includes a sub set of coun try-years cov ered 
in the HMD, a source representing the gold stan dard in terms of VR mor tal ity infor-
ma tion. Nonetheless, when focus ing on under-5 mor tal ity by detailed age, ques tions 
remain about the qual ity of the reported infor ma tion, espe cially for ear lier peri ods 
(nineteenth cen tury and early twen ti eth cen tury) and for the neo na tal age range. Neo-
natal deaths are known to be sub ject to underreporting, espe cially when they occur 
very soon after birth. This is due in part to ambi gu i ties about what con sti tutes a live 
birth ver sus a still birth. Discussions of inter na tional stan dards for defin ing live births 
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ver sus still births started only in the 1920s under the impulse of the League of Nations 
(United Nations 1954), and distinguishing between live births and still births remains 
a com plex issue even today (Gourbin and Masuy-Stroobant 1995; Hug et al. 2019). 
This raises ques tions about how cor rectly this dis tinc tion was made dur ing the ear lier 
years cov ered in our data base. Another source of underreporting arises from the fact 
that when a child death occurs before the record ing of the cor re spond ing live birth, 
the incen tive to report these two events in civil reg is ters is low. This fur ther ques tions 
the qual ity of the reporting of neo na tal deaths dur ing the ear lier peri ods of the data-
base, at a time when most deliv er ies occurred at home (United Nations 1955).

As a result of these data qual ity con cerns, we performed an eval u a tion of the 
qual ity of the U5MD prior to esti mat ing our model. Specifically, we performed 
plau si bil ity checks, focus ing on mor tal ity dur ing the neo na tal period. We exam ined 
the rela tion ship between age-spe cific mor tal ity rates for the first, sec ond, third, and 
fourth week of life (7M0(d), 7M7(d), 7M14(d), and 7M21(d), respec tively, with the let ter “d” 
indi cat ing that age is expressed in days) ver sus the prob a bil ity that a 28-day-old child 
will die prior to reaching the age of 5 years (q(28d,5y)), that is, a mor tal ity indi ca tor 
not affected by mor tal ity rates for the neo na tal period. These rela tion ships are shown 
in Figure 1.

Figure 1 shows that for weeks 2, 3, and 4, there is a clear pos i tive—almost log-
lin ear—rela tion ship between each weekly mor tal ity rate and mor tal ity between 28 
days and 5 years. There is no large change in slope at any point in the rela tion ship, 
includ ing when q(28d,5y) is high, that is, dur ing the ear lier years of our data base. The 
mor tal ity rate for the first week, how ever, has a dras ti cally dif fer ent rela tion ship with 
q(28d,5y). While the rela tion ship starts with a clear upward slope, there appears to be 
a flat ten ing of the rela tion ship as q(28d,5y) reaches high lev els. For some indi vid ual 
coun try tra jec to ries, we even found rever sals in the rela tion ship, depicting sit u a tions 
where decreases over time in reported mor tal ity between 28 days and 5 years coin-
cide with increases in the reported mor tal ity rate for the first week.

Fig. 1 Relationship between age-specific mortality rates (nMx) and the probability of dying between age 28 
days and 5 years (q(28d,5y)) for each of the first four weeks of life (7M0(d), 7M7(d), 7M14(d), and 7M21(d)) in the 
harmonized Under-5 Mortality Database (U5MD), for both sexes combined
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These flat ten ings and rever sals are sus pi cious for a num ber of rea sons. First, the 
changes in slope take place dur ing the ear lier years in our data base, with turn ing 
points typ i cally occur ring between World War I and World War II. These ear lier years 
are the years for which the sources of errors are most likely to apply. Second, the 
changes in slope occur only for the first week, which is the week that is most sub ject 
to the sources of errors men tioned ear lier. Weeks 2–4, which are less sub ject to these 
errors, show no such flat ten ings. Third, within the first week, changes in slope are 
most pro nounced dur ing days 0–3, which are the days most sub ject to errors (results 
not shown). The rela tion ships are more log-lin ear for days 4–6, which are less sub ject 
to errors. Fourth, rever sals and flat ten ings do not occur every where, suggesting that 
mono tonic rela tion ships between mor tal ity for the first week (7M0(d)) and mor tal ity 
between ages 28 days and 5 years are bio log i cally pos si ble. In Switzerland, for exam-
ple, the level of 7M0(d) keeps increas ing together with q(28d,5y) as we go fur ther back 
in time, with no signs of decrease in slope.

Taken alto gether, these issues raise seri ous doubts about the qual ity of the early 
neo na tal mor tal ity data dur ing the ear lier years cov ered in the data base. Rather 
than exclud ing all  the data points above a given mor tal ity level, we decided to take 
an inter me di ate approach that excludes long-last ing rever sals in the 7M0(d) ver sus 
q(28d,5y) rela tion ship. Specifically, we exam ined joint tra jec to ries of the 7M0(d) and 
q(28d,5y) over time and iden ti fied sit u a tions in which a local max i mum in 7M0(d) 
was pre ceded by more than 12 tem po rally con sec u tive val ues of 7M0(d) that were 
all  lower than that local max i mum, while no such local max i mum was pres ent for 
q(28d,5y). When such sit u a tions were iden ti fied, we excluded all  years prior to 
the local max i mum in 7M0(d). (When the avail  able time series for a given coun try 
started with such a pat tern, we removed all  points prior to the local max i mum in 
7M0(d) even if the num ber of avail  able years prior to that max i mum was fewer than 
12.) This approach removes the most sus pi cious pat terns while keep ing the pos-
si bil ity of a decrease in slope in the 7M0(d) ver sus q(28d,5y) rela tion ship at higher 
lev els of q(28d,5y). (See online Supplementary Materials 2, Figure SM2-1, for a 
set of fig ures show ing coun try-spe cific time trends in 7M0(d) and q(28d,5y) as well as 
the rela tion ship between the two indi ca tors, distinguishing years that are excluded 
based on the fore go ing cri te ria.)

This exclu sion cri te ria removes 241 coun try-years. We also excluded the first 
five years of data avail  able for Switzerland (1877–1883), which became iso lated, 
extreme val ues of under-5 mor tal ity after the removal of the other 241 coun try-
years. In total, 246 coun try-years were excluded at that stage (see Table 1, col umn 3). 
As expected, these coun try-years per tain mostly to the early years cov ered by the 
data base:  nineteenth cen tury and early twen ti eth cen tury. (See online Figure SM2-2 
for scatterplots distinguishing included ver sus excluded coun try-years in the entire 
data base.)

Final Database for Modeling Purposes

The final U5MD that we use for our model includes 1,219 coun try-years, by sex and 
for both sexes com bined. These coun try-years cover a wide range of time peri ods and 
lev els of under-5 mor tal ity, from 1920 until 2016, with lev els rang ing from around 
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150 to less than 5 per 1,000. A sum mary of the avail  able coun try-years is avail  able 
in Table 1 (col umn 4), and full details are pro vided in Table A1 of the online appen-
dix. The U5MD is freely acces si ble at https:  /  /web  .sas  .upenn  .edu  /global  -age  -patterns 
 -under  -five  -mortality  /.

Log-Quadratic Model for Age-Specific Mortality by Detailed Age 
Between 0 and 5

Model Description

We pro pose a model  able to pre dict a full mor tal ity sched ule by detailed age 
between 0 and 5 years with only two param e ters, one representing the over all 
level of under-5 mor tal ity and the other representing the shape of the age pat tern 
of mor tal ity within the 0–5 age range. This model is adapted from Wilmoth et al.’s 
(2012) log-qua dratic model; it is based on the obser va tion of log-qua dratic rela-
tion ships between the cumu la tive prob a bil ity of dying from birth to age x, q(x), 
and the under-5 mor tal ity rate, q(5y), for each detailed age x within the under-5 
age range:

 ln q(x)⎡⎣ ⎤⎦ = ax + bx ⋅ ln q(5y)⎡⎣ ⎤⎦ + cx ⋅ ln q(5y)⎡⎣ ⎤⎦
2
+ vx ⋅ k.  (1)

As shown in Eq. (1), the model includes a set of age-spe cific coef fi cients 
{ax , bx ,cx ,vx}, whose esti ma tion we describe as follows. When k = 0, the model pre-
dicts a gen eral pat tern that is the aver age mor tal ity sched ule of the set of coun try-
years included in the final U5MD. When k ≠ 0, the model adjusts the prob a bil i ties of 
dying in response to specificities in the age pat tern of q(x) at a given level of q(5y), 
bear ing in mind that q(x) is a non de creas ing func tion of age. For a given level of 
q(5y), depending on the value of k , the age pat tern of mor tal ity will be either “early,” 
with rel a tively high lev els of neo na tal and infant mor tal ity, or “late,” when these lev-
els are rel a tively low.

Note that unlike the Wilmoth et al. (2012) approach, our model involves cumu la-
tive prob a bil i ties of dying, q(x), rather than age-spe cific mor tal ity rates, nMx, in the 
left-hand side of Eq. (1). There are four advan tages in doing so: (1) the predicted set 
of q(x) and its cor re spond ing val ues of nMx will always agree with the level of q(5y) 
that is cho sen as pre dic tor in the right-hand side of Eq. (1); (2) the model will be more 
par si mo ni ous, with 21 sets of coef fi cients ver sus 22 when using mor tal ity rates; (3) 
the model will be less sen si tive to fluc tu a tions in the mor tal ity sched ule that could 
arise from misreported ages at death; and (4) the model will directly pre dict clas sic 
mor tal ity indi ca tors such as early neo na tal, neo na tal, and infant mor tal ity rates, which 
are in fact cumu la tive prob a bil i ties of dying (q(7d), q(28d), and q(12m), respec-
tively). There is, how ever, one draw back in using cumu la tive prob a bil i ties of dying 
in this model: data errors at early ages, such as underreporting of neo na tal deaths, 
will carry through the entire q(x) curve. This makes our rather con ser va tive approach 
with respect to the inclu sion of coun try-years in the final U5MD all  the more impor-
tant. Although our model pre dicts cumu la tive prob a bil i ties of dying rather than age-
spe cific mor tal ity rates, cor re spond ing mor tal ity rates can be eas ily recov ered from 
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the predicted q(x) val ues using the assump tion of a con stant force of mor tal ity within 
each of our 22 small age inter vals:

n Mx = −
ln 1− q(x + n)

1− q(x)
⎡
⎣
⎢

⎤
⎦
⎥

n
.

While devel op ing our model, we also explored the pos si bil ity of build ing a model 
based on Clark’s (2019) more gen eral SVD-com po nent model. One of the main dif-
fer ences between the log-qua dratic model and the SVD-com po nent model is that 
the lat ter does not include a para met ric assump tion relat ing age-spe cific mor tal ity 
to a mor tal ity indi ca tor like q(5y) cho sen as the main explan a tory var i able. Instead, 
the SVD-com po nent model is a lin ear sum of inde pen dent, age-vary ing vec tors, 
like in a prin ci pal com po nent anal y sis (PCA) decom po si tion. After explor ing both 
approaches, we decided to fol low the log-qua dratic approach because the para met ric 
assump tion was appro pri ate for the narrower (0 to 5) age range that is the focus here. 
This para met ric assump tion makes the log-qua dratic model more par si mo ni ous and 
eas ier to use when focus ing on this under-5 age range.

Estimating the Coefficients {ax , bx ,cx ,vx}

The model coef fi cients in Eq. (1) were esti mated in two steps. The first step involved 
the esti ma tion for each age x  of the set of age-spe cific coef fi cients {ax , bx ,cx}  regress-
ing q(x) against q(5y) with ordi nary least squares. This is shown in Eq. (2), with the 
sub script i indi cat ing each coun try-year in our sam ple of N = 1,219 obser va tions:

 
ln qi(x)⎡⎣ ⎤⎦ = ax + bx ⋅ ln qi(5y)⎡⎣ ⎤⎦ + cx ⋅ ln qi(5y)⎡⎣ ⎤⎦

2
+ ei(x).  

(2)

The sec ond step uses the age covari ance of the resid u als ei (x) in Eq. (2), which 
informs about sys tem atic devi a tions from the gen eral pat tern of mor tal ity, for  esti mat ing 
the set of coef fi cients vx. For this pur pose, we esti mated the covari ance matrix of the 
resid u als Ψ, whose ele ment (z, y)  is given by Ψ zy =

1
N − 3

⋅
i=1

N
∑ ei (z) ⋅ei ( y) . Following 

a com mon approach in demo graphic esti ma tion (Clark 2019; Lee and  Carter 1992; 
Wilmoth et al. 2012; Wilmoth 1990), we esti mated the set of coef fi cients vx as the 
first-ortho nor mal eigen vec tor (of V) resulting from an SVD applied to the covari ance 
matrix: Ψ = V ⋅∑ ⋅U. The SVD pro vi des a least-squares solu tion to the prin ci pal com-
po nents of the resid u als, hence the first vec tor will account for the higher pro por tion 
of the over all covari ance. In our case, the first eigen value accounts for 88% of the total 
sum of eigen val ues. The R codes that we used to pro duce model coef fi cients are avail -
able at https:  /  /web  .sas  .upenn  .edu  /global  -age  -patterns  -under  -five  -mortality  /.

Model Results

Table 2 shows the model coef fi cients for males, females, and both sexes esti mated 
using the final U5MD. This table shows that as age x increases, bx approaches 1 and 
cx approaches 0. This is expected given that as x increases, q(x) approaches q(5y). 
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11Modeling Age Patterns of Under-5 Mortality

At youn ger ages, how ever, we find sig nifi  cantly neg a tive val ues of cx. This reflects 
decreas ing slopes in the rela tion ship between q(x) and q(5y) at high lev els of q(5y). 
Values of vx all  have the same neg a tive signs. This is due to the fact that when an 
age pat tern of mor tal ity is late or early rel a tive to the aver age, the entire q(x) curve 
is shifted up or down. The com par i son of male ver sus female coef fi cients shows that 
while val ues of cx and vx are very sim i lar for each sex, val ues of ax and bx pres ent siz-
able dif fer ences, with male coef fi cients being sys tem at i cally higher than the female 
ones. This means that at a given level of q(5y) and k, the model will pro duce an ear lier 
age pat tern of mor tal ity for males.

These fea tures of the model results are illus trated in Figure 2, which shows 
observed ver sus predicted val ues of q(7d), q(28d), and q(12m) when k = 0 and when  
k = +1 or −1. Note that almost all  data points used for esti mat ing the model are 
included within this range of val ues for k. (Country-spe cific plots for q(28d) are pre-
sented in online Supplementary Materials 2, Figure SM 2-3.)

The model results are fur ther illus trated in Figure 3. Panels a and b show how 
predicted val ues of q(x) and cor re spond ing val ues of nMx vary in response to changes 
in the level of q(5y) at a given level of k (= 0 in this exam ple). As the level of q(5y) 
changes from 100 to 10 per 1,000, an increas ing por tion of under-5 mor tal ity takes 
place below 1 year and below 28 days. This is a well-known reg u lar ity that reflects 
the tran si tion from a sit u a tion with a high prev a lence of infec tious (“exog e nous”) 
causes of death that have an older age pat tern to one in which infec tious dis eases 
have been vir tu ally elim i nated and the only remaining causes are con gen i tal anom-
a lies and peri na tal con di tions, that is, “endog e nous” causes that have a youn ger age 
pat tern (Drevenstedt et al. 2008; Galley and Woods 1999; Liu et al. 2012; Rao et al. 
2011). Examining the shape of the mor tal ity curves in panel b, we see that our model 
pro duces mor tal ity pat terns that mono ton i cally decrease with age. This also reflects 
the reg u lar i ties pres ent in our data base. Indeed, the coun try-years included in the 
data base do not pres ent any sys tem atic age-spe cific mor tal ity rever sals. As the level 

Fig. 2 Relationship between q(x) and q(5y) for x = 7d, 28d, and 12m, with observed values in the final 
U5MD versus values predicted using the log-quadratic model with k = 0, −1, or +1, for both sexes combined
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Fig. 3 Effect of varying q(5y) versus k on q(x) and nMx in the log-quadratic model, for both sexes combined
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13Modeling Age Patterns of Under-5 Mortality

of q(5y) decreases, the entire mor tal ity curve between 0 and 5 shifts down, with larger 
rel a tive declines at older ver sus youn ger ages.

Panel c of Figure 3 shows the effect of vary ing k on the q(x) curve at a given level 
of q(5y) (= 100 per 1,000 in this exam ple). When k = +1, the entire q(x) curve is 
shifted down. This pro duces a “late” pat tern of under-5 mor tal ity, with lower lev els 
of neo na tal and infant mor tal ity while q(5y) remains unchanged. Conversely, when 
k = −1, this pro duces an “early” pat tern of under-5 mor tal ity, with higher lev els of 
neo na tal and infant mor tal ity.

Figure 3 also shows cor re spond ing effects of chang ing k on nMx val ues between 
0 and 5 (panel d), with a zoom on the first 3 months (panel e). The mor tal ity curves 
in this fig ure all  pro duce the same level of under-5 mor tal ity (100 per 1,000 in this 
exam ple). Higher lev els of mor tal ity at some ages will thus nec es sar ily have to be 
com pen sated by lower lev els of mor tal ity at some other ages. The resulting mor-
tal ity cross over is vis i ble in panel e of Figure 3, which shows that the “tilting” age 
occurs dur ing the sec ond month of life. This implies that at this level of q(5y), the 
shape of the age pat tern of mor tal ity is entirely explained by the con trast between 
q(28d) and q(28d,5y). The age at which this cross over occurs in our model is, how-
ever, not con stant but related to the level of under-5 mor tal ity. The lower the level of 
q(5y), the ear lier the cross ing age. When q(5y) reaches a level around 50 per 1,000, 
the cross over occurs dur ing the sec ond week, its lower limit. This means that at 
these lower lev els of q(5y), the shape of the age pat tern of mor tal ity in our model is 
entirely explained by the q(7d) ver sus q(7d,5y) con trast. These shifts in the q(x) and 
nMx curves in response to changes in k also reflect reg u lar i ties in our data base. They 
show that a given level of q(5y) can be reached via a vari ety of routes, depending 
on a pop u la tion’s unique set of envi ron men tal and behav ioral con di tions. Yet these 
routes are not unstruc tured and instead take place within a rather constrained set of 
pos si bil i ties.

As discussed ear lier, almost all  data points used for esti mat ing the model fall 
between k = −1 and +1. This means that predicted val ues of q(x) using val ues of k 
out side that range will rep re sent extrap o la tions of the model. While the model can 
cer tainly tol er ate some extrap o la tion, extrap o lat ing k beyond the range of observed 
val ues (a range that spans between −1.1270 and +1.5047, as we esti mate using a pro-
ce dure discussed in the next sec tion) should not be performed as they will not have 
any empir i cal basis. Moreover, predicted val ues of q(x) when k < −1.5 will some times 
pro duce a nonmonotonic pro gres sion in q(x), which is impos si ble. As a rule of thumb, 
users should use the model with k rang ing between −1.1 and +1.5.

Estimating the Value of k for a Given Population

Our model can sum ma rize a full set of observed q(x)’s between 0 and 5 years for a 
given pop u la tion with only two param e ters: q(5y) and k. The first param e ter, q(5y), 
can be directly taken from the observed data. The sec ond param e ter, k, how ever, 
needs to be esti mated using model coef fi cients.

One option con sists of find ing the value of k that, together with the observed value 
of q(5y) for a given pop u la tion i, pro duces a predicted value of q(x) for a given age 
x < 5y  that exactly matches the observed value of q(x) for that pop u la tion. This value 
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of k, which we call ki(x), is given in the fol low ing equa tion, derived from Eqs. (1) 
and (2):

 
ki(x) =

ei(x)
v x

,
 

(3)

where ei (x) is the dif fer ence between the predicted and observed val ues of qi (x) when 
the pre dic tion is performed with k = 0, and vx is taken from Table 2. Equation (3) 
implies that a value of k for a given pop u la tion can be esti mated on the basis of only 
one observed value of q(x) in addi tion to q(5y). For exam ple, knowl edge of the infant 
mor tal ity rate (q(12m)) in addi tion to q(5y) is suf fi cient for esti mat ing k in a given 
pop u la tion.

Alternatively, the value of k for a given pop u la tion can be esti mated using more 
than one observed value of q(x) in addi tion to q(5y). Several approaches are pos si ble 
in this case. For exam ple, one could sim ply use the mean or median of the ki(x) val-
ues cal cu lated inde pen dently for each age using Eq. (3). Another approach con sists 
of find ing the value of k that, together with the observed value of q(5y), min i mizes 
the root-mean-square error (RMSE) of predicted val ues of all  the q(x) val ues for 
that pop u la tion. To derive the equa tion for this “best-fit ting” value of k for a given 
pop u la tion i, which we denote ki*, we take into account the dif fer ent lengths of the 
age inter vals in the q(x) series by using a weighted least-squares solu tion where the 
weights w(x) cor re spond to the length of the pre vi ous age inter val end ing with age x. 
The solu tion is given in Eq. (4) (see the online Appendix 1 for more details):

 
ki* = x∈X∑ w(x) ⋅ei(x) ⋅vx

x∈X∑ w(x) ⋅vx2
.
 (4)

Compared to the solu tion based on aver ages of ki(x) val ues, this approach min i mizes 
the uncer tainty about the pre dic tions of the model. This is a desir able con di tion, 
con sid er ing our goal to use this model for indi rect esti ma tion and data val i da tion 
pur poses.

Figure 4 uses data from Finland in 1933 to illus trate how the model can fit an actual 
observed q(x) series using q(5y) and k*. In panel a, the cir cles show the observed val-
ues of q(x) at dif fer ent ages, with a q(5y) value of 109 per 1,000. Predicted val ues of 
q(x) using the log-qua dratic model with this value of q(5y) and k = 0 show a cer tain 
amount of pre dic tion error. These pre dic tion errors are min i mized by cal cu lat ing the 
value of k* (= 0.95 in this exam ple) using Eq. (4). The two entry param e ters for Fin-
land in the log-qua dratic model are q(5y) = 0.109 and k* = 0.95, pro duc ing a series 
of predicted q(x)s that fit the observed data remark ably well, with a RMSE of 2.0%. 
Panel b of Figure 4 also shows how the model fits the observed nMx series.

The approach discussed in the fore go ing uses q(5y) as the first entry point, and 
one or sev eral inter me di ate q(x) val ues as addi tional infor ma tion for esti mat ing k. 
For cer tain appli ca tions, it may be desir able to fit the model with input death prob-
a bil i ties that do not start at age 0 and/or do not end at age 5 years. One exam ple of 
such a con fig u ra tion is when the only avail  able input val ues are observed val ues 
of q(28d) and q(12m). In some other appli ca tions, it may be use ful to esti mate the 
model param e ters after exclud ing infor ma tion at neo na tal ages, for exam ple, owing 
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15Modeling Age Patterns of Under-5 Mortality

to con cerns about the qual ity of the data at these ages. In that case, q(28d,5y), rather 
than q(5y), would be a pref er a ble input value. Another sit u a tion is when the avail -
able input val ues are mor tal ity rates (nMx), rather than prob a bil i ties, over age-groups 
that do not con form with the model’s har mo nized age-groups. For all  these more 
com plex appli ca tions, esti mat ing the model param e ters can not be performed using 
the method described ear lier because of nonlinearities in the sys tem of equa tions. 
These appli ca tions can be resolved using sim ple iter a tive pro ce dures, or using a more 
gen eral approach based on the method of Lagrange. This more gen eral approach 
is described in the online Appendix 2. We also use the Lagrange approach in an  
R pack age, called “logquad5q0,” which we pro vide as a com pan ion to this arti cle. 
This pack age, avail  able at https:  /  /github  .com  /verhulsta  /logquad5q0, allows users to 
use the log-qua dratic model to pre dict a full set of 22 nMx and q(x) val ues by detailed 
age, by sex or for both sexes com bined, based on a vari ety of inputs.

Our log-qua dratic model is a two-dimen sional model, but it can be reduced to one 
dimen sion assum ing k = 0. In that case, any sin gle mor tal ity indi ca tor within the 0–5 
age range will be asso ci ated with one value of q(5y), and a full mor tal ity sched ule can 
be predicted using that q(5y) value and k = 0. This cor re sponds to the model’s aver-
age pre dic tion in the data base given the cho sen pre dic tor. In order to take advan tage 
of the two-dimen sional fea ture of the model, at least two input mor tal ity val ues are 
nec es sary. However, not all  pairs of mor tal ity indi ca tors within the 0–5 age range will 
pro vide a solu tion. As discussed previously, the shape of the q(x) func tion, as sum ma-
rized by the param e ter k, is to a large extent driven by the con trast between mor tal ity 
before ver sus after 28 days (or 7 days when q(5y) reaches low lev els). This means 
that, for exam ple, when the pair of input mor tal ity val ues are both located within the 
28d–5y age range, there may not be a solu tion for q(5y) and k val ues that pro duces 
an exact match for both input val ues, indi cat ing in effect that the input infor ma tion 
is insuf fi cient for deter min ing the shape param e ter k. In this case, the two-dimen-
sional model can be reduced to only one dimen sion assum ing k = 0, and the model 
param e ter q(5y) can be esti mated using either of the two input val ues, which in such 
sit u a tions will pro vide sim i lar results. Among clas sic mor tal ity indi ca tors such as 

Fig. 4 Observed and predicted values of q(x) and nMx for Finland, 1933, for both sexes combined
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q(7d), q(7d,28d), q(28d), q(28d,12m), q(12m), q(12m,5y), and q(5y), pairs that are 
both on the same side of the 28 days (or 7 days) thresh old will most often not pro vide 
enough infor ma tion for esti mat ing the shape param e ter k. This includes, for exam ple, 
the q(28d,12m) and q(12m,5y) pair, which only cov ers mor tal ity infor ma tion above 
the 28 days thresh old, or the q(7d) and q(7d,28d) pair, which only cov ers mor tal ity 
infor ma tion below that thresh old. The same con clu sion applies when using three or 
more indi ca tors and solv ing for the model param e ters by min i miz ing RMSE: these 
mul ti ple indi ca tors need to com bine mor tal ity infor ma tion before and after the 28 
days (or 7 days) thresh old to have enough trac tion for esti mat ing k. When this is not 
the case, assum ing k = 0 will be the pre ferred solu tion.

How Does the Log-Quadratic Model Fit the U5MD?

We eval u ated model fit ting as the capac ity to make q(x) pre dic tions with min i mum 
RMSE for the coun try-years included in the final U5MD. In order to pre vent overfit-
ting, we split our set of coun try-years into two ran dom sam ples: one with 60% of the 
coun try-years for esti mat ing the coef fi cients of the model {ax ,  bx ,cx ,vx} and another 
with 40% for eval u at ing the error of the pre dic tion. We first esti mated pre dic tion 
errors tak ing q(5y) as the only entry param e ter in the model, assum ing k = 0. We then 
esti mated how model fit ting improves when using a sec ond entry point for esti mat ing 
the shape param e ter k, com par ing dif fer ent choices of entry points for that pur pose 
(q(7d), q(28d), q(3m), q(6m), and q(12m)). Finally, we exam ined model fit ting when 
k is esti mated on the basis of all  q(x) val ues, that is, using k* in Eq. (4).

Table 3 shows the RMSEs for both sexes com bined. We report means of the esti-
ma tes, after pre serv ing the selec tion 60–40 for a total of 10,000 ran dom sam ples 
(with out replace ment), along with 95% con fi dence inter vals. Global results from 0 to 
5 years were cal cu lated as the weighted aver age of the RMSEs at dif fer ent ages using 
the same age weights used in Eq. (4). The over all adjust ment of the model is sat is-
fac tory even if a value of k = 0  is assumed, with an RMSE of only 4.00%. Choosing 
a sec ond entry point and esti mat ing the cor re spond ing value of k improves fit sub-
stan tially, with the larg est improve ment occur ring with q(3m) as sec ond entry point 
(RMSE =1.88% for both sexes com bined). As expected, best results are obtained 
when esti mat ing k opti mally using k* based on all  observed q(x)’s. Interestingly, this 
opti mal solu tion is not sub stan tially dif fer ent, in terms of RMSE, from the one using 
q(3m) for esti mat ing k. Table 3 also shows RMSE when focus ing on spe cific q(x) 
out comes: neo na tal and infant mor tal ity, that is, q(28d) and q(12m), respec tively. The 
RMSEs are higher in that case, in part because the global RMSE esti ma tes include 
val ues of q(x) at higher ages, which have smaller rel a tive pre dic tion errors. Nonethe-
less, the results show that these indi ca tors are rel a tively well predicted, with pre dic-
tions that improve over all with the inclu sion of the sec ond param e ter k. (A ver sion of 
Table 3 show ing mean bias error (MBE) instead of RMSE is presented in the online 
Appendix Table A2. It shows that the struc ture of errors is sym met ric when ever q(5y) 
is used as entry point, alone or in com bi na tion with other entry points.)

We also eval u ated the per for mance of the model for predicting mor tal ity out comes 
based on q(28d,5y). As men tioned ear lier, this indi ca tor excludes mor tal ity infor ma-
tion dur ing the neo na tal period, mak ing it a use ful pre dic tor of neo na tal mor tal ity 
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and other under-5 mor tal ity indi ca tors when there are con cerns about under count of 
deaths at neo na tal ages in a given pop u la tion. Indeed, in such sit u a tions, the model’s 
entry point can not be q(5y), because that indi ca tor is itself affected by under count of 
neo na tal deaths. Also, esti mat ing k will be prob lem atic, because k is deter mined to a 
large extent by the con trast between mor tal ity before ver sus after 28 days, which is 
miss ing in this con fig u ra tion.

Predicting a full q(x) sched ule in this case can be done assum ing k = 0. This 
implies find ing the level of q(5y) that matches the observed level of q(28d,5y) when 
k = 0, using either sim ple iter a tion or the Lagrange option discussed in Appendix 2. 
The last row of Table 3 shows the RMSE of q(28d) and other mor tal ity out comes, 
here also selecting 60% of the coun try-years in the data base for esti ma tion and the 
remaining 40% for eval u a tion. Focusing on q(28d), RMSEs are sub stan tially higher 
than when using q(5y) as a pre dic tor (31.88% vs. 14.39%). This is expected given 
that q(5y) is to a large extent deter mined by the level of q(28d), mak ing it eas ier to 
pre dict q(28d) on the basis of q(5y) than on the basis of q(28d,5y). RMSEs for other 
mor tal ity out comes includ ing q(5y) are sub stan tially lower, because of the over lap 
in this case between pre dic tor (q(28d,5y)) and predicted (q(5y)) indi ca tors. A prac ti-
cal exam ple of using the log-qua dratic model for adjusting neo na tal mor tal ity based 
on VR data from Jordan is pro vided later in the arti cle. (MBE results presented in 
the online Appendix Table A2 show that when q(28d,5y) is used as a pre dic tor with  
k = 0, the model has a ten dency to pro duce a down ward bias in predicted esti ma tes. 

Table 3 Root-mean-square error (RMSE) of predicted q(x)’s using the log-qua dratic model applied to 
the final U5MD, with var i ous com bi na tions of out comes and entry points for esti mat ing k, for both sexes 
com bined

RMSE for the Following Outcomes:

Entry Point(s) All q(x) q(28d) q(12m) q(5y)

q(5y) only, k = 0 0.0400 0.1439 0.0459 0.0000
[0.038, 0.042] [0.1365, 0.1514] [0.0427, 0.0493] —

q(5y) and q(7d) 0.0242 0.0450 0.0380 0.0000
 [0.0231, 0.0253] [0.0415, 0.0488] [0.0360, 0.0400] —
 q(28d) 0.0222 0.0000 0.0372 0.0000
 [0.0210, 0.0234] — [0.0348, 0.0396] —
 q(3m) 0.0188 0.0523 0.0299 0.0000
 [0.0179, 0.0199] [0.0489, 0.0556] [0.0277, 0.0323] —
 q(6m) 0.0222 0.1081 0.0181 0.0000
 [0.0209, 0.0236] [0.1008, 0.1165] [0.0166, 0.0198] —
 q(12m) 0.0324 0.1628 0.0000 0.0000
 [0.0295, 0.036] [0.1477, 0.1821] — —
 all  q(x)a 0.0174 0.0558 0.0252 0.0000

[0.0165, 0.0184] [0.0524, 0.0594] [0.0233, 0.0274] —
q(28d, 5y) only, k = 0 0.1936 0.3188 0.2051 0.1711

[0.1795, 0.2086] [0.2971, 0.3419] [0.1899, 0.2213] [0.1584, 0.1845]

Notes: Reported val ues cor re spond to the mean of 10,000 ran dom sam ples; 60% of the life tables were 
used for esti ma tion and 40% for eval u a tion. RMSE was cal cu lated from the resid u als of 487 life tables 
(40% of sam ple). Figures in brack ets are 95% con fi dence inter vals.
a Using k = k* (Eq. (4)).
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However, this down ward bias is small, that is, less than 3% of the true value of 
q(28d). This slight lack of sym me try is addressed by using non sym met ri cal con fi-
dence inter vals, as shown in the next sec tion. Note that of all  mor tal ity indi ca tors 
between 28 days and 5 years, q(28d,5y) is the one that pro duces the smallest pre-
dic tion errors in q(28d) when assum ing k = 0. We thus rec om mend using it when 
avail  able. Alternatively, neo na tal mor tal ity can be predicted using other mor tal ity 
indi ca tors after 28 days, such as q(28d,12m) or q(12m,5y). In that case, pre dic tion 
errors will be slightly higher: 34.89% with q(28d,12m) and 32.31% with q(12m,5y) 
ver sus 31.88% with q(28d,5y).)

Estimating Uncertainty in Predicted q(x) Values

Given q(5y) and k, the log-qua dratic model pre dicts a series of q(x) val ues. These pre-
dic tions are not per fectly accu rate; the model will pre dict q(x) val ues with a cer tain 
degree of uncer tainty that needs to be quan ti fied.

Our strat egy for quan ti fy ing uncer tainty in predicted val ues of q(x) val ues is 
derived from our approach for esti mat ing ki*, the opti mal value of k for a given coun-
try i. Building on Eq. (4), we obtain in Eq. (5) an expres sion for the var i ance of ki*  in 
terms of the pre dic tion error ei  (when k = 0 ), the esti mated coef fi cients for mod el ing 
the mor tal ity pat tern vx, and the opti mal value of ki*  (see the online Appendix 1 for 
more details):

 
Var ki*⎡⎣ ⎤⎦ =

22
21

⋅
  x∈X∑ w(x) ⋅ei(x)2

 x∈X∑ w(x) ⋅v x2
− ki*2

⎡

⎣
⎢

⎤

⎦
⎥.

 
(5)

Equation (5) shows that the var i ance of ki*  is an increas ing func tion of the var-
i ance of the pre dic tion error but a decreas ing func tion of the abso lute value of ki* . 
In other words, the cer tainty in the value ki*will depend on the extent to which the 
coef fi cients of the model effec tively min i mize the RMSE of the pre dic tion. This esti-
mated var i ance around ki*  can then be used for cal cu lat ing 95% con fi dence inter vals 
around each q(x) value predicted by the log-qua dratic model. This involves cal cu lat-
ing predicted val ues of q(x) in the log-qua dratic model using ki* ±1.96 Var[ki*] .

An illus tra tion of this approach for cal cu lat ing con fi dence inter vals around pre-
dicted q(x) val ues is pro vided in Figure 5, using data from Belgium in 1949. We 
chose this exam ple because of its rel a tively large remaining pre dic tion errors after 
esti mat ing k* (RMSE = 3.4%), mak ing the cal cu la tion of con fi dence inter vals par tic-
u larly rel e vant. In Figure 5, each predicted q(x) value (panel a) or nMx value (panel b) 
is presented with its cor re spond ing 95% con fi dence inter val.

In one-dimen sional uses of the model (i.e., assum ing k = 0), only one mor tal ity 
indi ca tor is used as an entry point. Uncertainty in k for a given pop u la tion in that 
sit u a tion does not stem from var i a tions in ki (x) across age-groups, but instead from 
the over all lack of infor ma tion about k. In such cases we pro pose to build con fi dence 
inter vals around predicted val ues by exam in ing pat terns of pre dic tion errors in the 
data base when assum ing k = 0 instead of the best-fit ting value k*. We find that across 
all 1,219 coun try-years of the final U5MD, the cen tral 95% of the dis tri bu tion of 
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k* lies between −0.6300 and +0.9314. Confidence inter vals around predicted val ues 
of q(x) when k = 0 can be derived using these bounds for k. An appli ca tion of this 
approach is discussed in the next sec tion.

Using the Model for Adjusting Under-5 Mortality in Populations  
With Incomplete or Deficient Data

Our log-qua dratic model for under-5 mor tal ity has many prac ti cal appli ca tions. It 
can be used, for exam ple, to (1) smooth noisy age sched ules, (2) cor rect mor tal ity 
esti ma tes in the pres ence of age heaping or trans fer, or (3) adjust mor tal ity data for 
underreporting in spe cific age ranges.

For the first appli ca tion, we exam ine the case of age sched ules of mor tal ity esti-
mated using full birth his to ries col lected in the DHS. Mortality infor ma tion based on 
this type of infor ma tion is sub ject to more sam pling error than VR-based infor ma tion 
owing to small sam ple sizes. This sam pling error is par tic u larly vis i ble when exam in-
ing age-spe cific deaths rates (nMx) over nar row age inter vals. The flex i ble para met ric 
assump tions of the log-qua dratic model can be used to smooth this infor ma tion: one 
sim ply needs to solve for the model’s param e ters on the basis of the observed q(x) 
infor ma tion, and then use these param e ters to obtain predicted val ues of q(x) from 
which a smoothed nMx series can be derived.

An illus tra tion of this appli ca tion is pro vided in pan els a and b of Figure 6, with 
data from the 2011–2012 DHS in Honduras. Panel a shows observed q(x) val ues as 
well as q(x) val ues predicted using the log-qua dratic model given the observed q(5y) 
value of 29 per 1,000 and the best-fit ting k* value of 0.06, esti mated using Eq. (4). 
The model fits the q(x) series extremely well, with a RMSE value of 1.7% and nar-
row con fi dence inter vals. Panel b shows cor re spond ing observed ver sus predicted nMx 
val ues, illus trat ing the use of the log-qua dratic model for smooth ing pur poses. The 
con fi dence inter vals around predicted nMx val ues are narrower than suggested by the 

Fig. 5 Observed and predicted values of q(x) and nMx for Belgium, 1949, for both sexes combined, with  
95% confidence intervals

CORRECTED PROOFS

D
ow

nloaded from
 http://read.dukeupress.edu/dem

ography/article-pdf/doi/10.1215/00703370-9709538/1474032/9709538.pdf by guest on 25 January 2022



20 M. Guillot et al.

ran dom error in observed nMx val ues. This is explained by the fact that these con fi-
dence inter vals reflect uncer tainty in esti mat ing k, assum ing a known, fixed value of 
q(5y), while the observed val ues of nMx are affected by sam pling error aris ing from 
small sam ple sizes in each nar row age inter val.

The sec ond appli ca tion deals with age heaping cor rec tion. In birth his to ries col lected 
by DHS sur veys, ages at death tend to be reported with a cer tain amount of heaping, 
most nota bly at age 12 months. This raises con cerns about the qual ity of DHS-based 
IMR esti ma tes, since some infant deaths (i.e., at ages less than 12 months) may be mis-
reported as occur ring at 12 months and thus erro ne ously excluded from IMR cal cu la-
tions (Croft et al. 2018). In order to cor rect for this issue, we sug gest fit ting the model to 
observed q(x) points in a DHS sur vey after exclud ing ages most likely to be affected by 
heaping at 12 months because of their prox im ity, for exam ple, 9 to 21 months. The idea 
is to smooth out age heaping around 12 months while pre serv ing the observed value of 
q(5y), which is not expected to be affected by such age heaping.

Fig. 6 Observed and predicted values of q(x) and nMx for selected Demographic and Health Surveys, for  
both sexes combined. In panel c, k* is estimated on the basis of observed q(x) points, excluding ages  
9 months to 21 months.
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To illus trate this appli ca tion, we show in panel c of Figure 6 data from Bolivia’s 
1989 DHS. In this exam ple, the observed q(x) points dis play a large jump between 
q(12m) and q(13m), illus trat ing the extent of age heaping for deaths reported at age 
12 months. The observed data sug gest an IMR level of 90 per 1,000, but this value is 
ques tion able given the pres ence of such age heaping. This panel also shows predicted 
val ues of q(x) with the observed q(5y) value of 138 per 1,000 and k esti mated on 
the basis of observed q(x) val ues exclud ing the prob lem atic ages around 12 months. 
The model fits the retained points well (RMSE = 2.5%) and pre dicts an IMR value 
of 100 per 1,000, that is, 10 points higher than the observed one. In this exam ple, 
ages at death in the months pre ced ing 12 months appear to be grad u ally misreported 
as occur ring at 12 months, gen er at ing a sub stan tial down ward bias in the observed 
IMR value. (See Romero Prieto et al. (2021) for a more gen eral dis cus sion of this 
approach.)

In the third appli ca tion, we show how the model can be used to adjust mor tal ity 
infor ma tion in sit u a tions where mor tal ity may be underreported at some ages for rea-
sons other than age heaping, for exam ple, owing to under count of deaths. In this type 
of sit u a tion, it will not be pos si ble to use the reported value of q(5y) as one of the 
model’s entry points, because that value will itself be biased by such underreporting. 
However, as explained ear lier, the model’s param e ters can be esti mated using entry 
points over age ranges that may not start at zero and/or may not end at 5. This allows 
users to esti mate the model’s param e ters on the basis of indi ca tors within the 0–5 age 
range that may be less affected by underreporting issues.

We illus trate this type of appli ca tion using vital reg is tra tion data from Jordan, 
a coun try where VR-based under-5 mor tal ity infor ma tion appears largely under-
estimated (UN IGME 2019b). As is often the case, con cerns about under count are 
par tic u larly acute for neo na tal mor tal ity, as indi cated in the Jordan VR data by an 
unusu ally low level of neo na tal mor tal ity given the observed level of under-5 mor tal-
ity. We pro pose here to use the log-qua dratic model for adjusting under-5 mor tal ity 
in the coun try for the year 2015 using the observed value of q(28d,5y) for that year 
as the model’s entry point. As discussed ear lier, this choice is based on the fact that 
q(28d,5y) is an indi ca tor that remains unbi ased in the pres ence of underreporting 
of neo na tal deaths. Unlike the pre vi ous appli ca tions, it will not be pos si ble to solve 
for the model’s sec ond dimen sion k, because as we saw ear lier, the esti ma tion of k 
requires entry points situated on both sides of the 28 days thresh old. However, assum-
ing k = 0, it is pos si ble to solve for the value of q(5y) that cor re sponds to the observed 
value q(28d,5y) and then obtain a full series of predicted q(x) val ues, includ ing neo-
na tal, infant, and under-5 mor tal ity rates. We cal cu lated con fi dence inter vals around 
predicted val ues using bounds of k vary ing between −0.6300 and +0.9314 as dis-
cussed in the pre vi ous sec tion.

Results of this approach, shown in Figure 7, indi cate that the model adjusts the 
VR esti ma tes of neo na tal mor tal ity upward by a fac tor of more than 2, from 3.7 
to 9.9 per 1,000, pro duc ing adjusted lev els that are con sis tent with DHS esti ma tes 
for the same period. Figure 7 also shows how this adjust ment of neo na tal mor tal ity 
affects lev els of infant and under-5 mor tal ity. The adjusted level of q(5y) pro duced 
by the log-qua dratic model is 17.9 per 1,000, more than 50% higher than the unad-
justed level of 11.7 and on a par with the DHS esti mate. The con sis tency between our 
VR-adjusted esti ma tes and the DHS esti ma tes is reassuring about the abil ity of our 
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approach to cor rect for deficiencies in the VR data. Confidence inter vals between the 
two approaches have com pa ra ble sizes, although they arise from dif fer ent rea sons. In 
the case of DHS data, uncer tainty reflects sam pling error, while in the case of the VR 
cor rec tion, the con fi dence inter val reflects the model’s pre dic tion error in the neo na tal 
mor tal ity rate when k = 0.

In order to fur ther under stand the mechan ics of this adjust ment, we show in online 
Appendix Figure A1 observed ver sus predicted val ues of nMx in Jordan with a focus 
on the first 12 months. This fig ure shows that, while there is close agree ment between 
observed and predicted rates from the sec ond week of life onward, the model pre-
dicts much higher mor tal ity for the first week. This sug gests that underreporting in 
neo na tal mor tal ity in the VR data for Jordan comes pri mar ily from underreporting 
dur ing the first week, which is indeed the age range most sen si tive to data errors. 
Overall, this approach offers a prom is ing solu tion for adjusting VR-based esti ma tes 
of under-5 mor tal ity in sit u a tions where issues of under count are con cen trated at neo-
na tal ages. This solu tion is par tic u larly use ful given the renewed empha sis on using 
local vital reg is tra tion infor ma tion rather than inter na tional sur vey pro grams as a data 
source for esti mat ing mor tal ity.

Discussion

Mortality between 0 and 5 years has fea tures that make this age range unique over the 
human life course, includ ing a par tic u larly fast decline by age dur ing the first weeks 
and months of life that has been interpreted using evo lu tion ary and selec tion mod els 
(Chu et al. 2008; Lee 2003; Schöley 2019). Over the his tory of mor tal ity change, pop-
u la tions have expe ri enced large changes in both the level and shape of under-5 mor-
tal ity in response to epi de mi o log i cal changes, such as a shift from exog e nous causes 

Fig. 7 Levels of neonatal (q(28d)), infant (q(12m)), and under-5 (q(5y)) mortality rates for Jordan in 2015, 
for both sexes combined, with 95% confidence intervals. VR = vital registration; DHS = 2017–2018 Demo-
graphic and Health Survey, with mortality values centered in 2015; obs. = unadjusted VR values; adj. =  
adjusted VR values using the log-quadratic model with the observed VR-based value of q(28d,5y) and  
k = 0 as inputs.
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of under-5 death (e.g., infec tious and par a sitic dis eases) to endog e nous causes (e.g., 
con gen i tal malformations, birth injuries) (Drevenstedt et al. 2008; Galley and Woods 
1999; Liu et al. 2012; Rao et al. 2011). As a tool for describ ing and sum ma riz ing 
these reg u lar i ties, the new model devel oped in this arti cle has a num ber of strengths.

First, with 22 age-groups between ages 0 and 5, our model offers far more detailed 
age gran u lar ity than existing model life tables. This age detail is par tic u larly rel e vant 
given the fast changes in age-spe cific mor tal ity in that age range. Second, the model 
fits high-qual ity VR data remark ably well. Thus, the two-dimen sional log-qua dratic 
approach is well suited to describe changes in both the level and shape of under-5 
mor tal ity observed in the pop u la tions represented in our data base. Third, our model 
pro vi des a more flex i ble choice of pre dic tors, beyond the typ i cal infant ver sus child 
mor tal ity con trast embed ded in clas sic model life tables. This allows users to pre-
dict mor tal ity curves using var i ous com bi na tions of pre dic tors depending on data 
avail abil ity and qual ity. Fourth, our model can be used for var i ous data smooth ing 
and adjust ment appli ca tions, as shown in our empir i cal appli ca tions. Our appli ca-
tion of the model to data from Jordan, in par tic u lar, shows how the model can be 
used for correcting incom plete VR data in sit u a tions where underreporting is con cen-
trated dur ing the neo na tal period. Fifth, unlike most model life table approaches, our 
model pro vi des solu tions for esti mat ing con fi dence inter vals around predicted val ues. 
Finally, our model is sim ple and easy to use. The coef fi cients pro vided in Table 2 con-
tain all  the nec es sary infor ma tion for using the model, and most appli ca tions can be 
solved using sim ple for mu las such as Eqs. (3) and (4).

The model’s main lim i ta tion is that its empir i cal basis does not include mor tal ity 
data from low- and mid dle-income countries. This means that appli ca tions of the 
model to a low- and mid dle-income pop u la tion need to rely on the assump tion that 
the mor tal ity reg u lar i ties described by our model, representing mostly the expe ri ence 
of his tor i cal and con tem po rary Western countries, apply to that par tic u lar pop u la tion. 
Our exam ples from Honduras, Bolivia, and Jordan for recent peri ods sug gest that the 
model’s appli ca bil ity is broader than the geo graphic scope of the U5MD. Indeed, in 
all  three cases, there was a close fit between observed and predicted val ues of q(x) for 
the ages used as a basis for the pre dic tion.

There are cases, how ever, where the model is clearly not  able to repro duce the 
observed age pat terns for rea sons that appear unre lated to data qual ity issues in the 
observed data. The most extreme cases are pop u la tions that exhibit a large age-spe cific  
rever sal in mor tal ity around age 6 months, as was observed, for exam ple, in the 
Niakhar sur veil lance site in Senegal in the 1960s and 1970s (Abdullah et al. 2007; 
Cantrelle and Leridon 1971; Delaunay et al. 2001; Lalou and LeGrand 1996). This 
unusual age pat tern, which has been attrib uted to a com bi na tion of fac tors, includ ing 
inad e quate weaning foods (Cantrelle and Leridon 1971; Garenne 1982), is absent 
from the Western expe ri ence, and thus our log-qua dratic model is not  able to repro-
duce it. Outside these extreme cases, many sub-Saharan Afri can pop u la tions tend to 
dis play an unusu ally late age pat tern of under-5 mor tal ity (Guillot et al. 2012), which 
is not well fit ted by the log-qua dratic model (Romero Prieto et al. 2021). As an illus-
tra tion, we show in panel d of Figure 6 observed q(x) val ues from the 2010–2011 
DHS for Senegal against log-qua dratic pre dic tions given the same level of q(5y), with 
k vary ing between −1 and +1. Clearly the log-qua dratic model is not  able to repro-
duce this age pat tern, which com bines an unusu ally high level of neo na tal mor tal ity 
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(asso ci ated with an “early” pat tern of under-5 mor tal ity in the log-qua dratic model) 
with unusu ally low val ues of q(x) at later ages (asso ci ated with a “late” pat tern). 
This lack of fit shows that while the log-qua dratic model can be applied to var i ous 
non-Western pop u la tions, it can not be used indiscriminately every where.

In a recent paper, Mejía-Guevara et al. (2019) spe cifi  cally mod eled age pat terns 
of under-5 mor tal ity in sub-Saharan Africa using DHS data calibrated on esti ma tes 
from UN IGME (2019b). This study, like ours, rec og nizes the impor tance of age pat-
terns of mor tal ity as a device for mor tal ity esti ma tion, but it pur sues objec tives that 
are sub stan tially dif fer ent from ours, and thus is not directly com pa ra ble. Its goal 
is pri mar ily to smooth and fore cast existing data on under-5 mor tal ity by detailed 
age; by con trast, our study fol lows a model life table approach, which con sists of 
extracting reg u lar i ties from a ref er ence data set via coef fi cients that may then be 
used for eval u at ing and correcting data in pop u la tions not included in that data set. 
Nonetheless, Mejía-Guevara et al.’s (2019) study raises the ques tion of whether DHS 
data may be used as a source for mod el ing age pat terns in low- and mid dle-income 
countries, includ ing sub-Saharan Africa. In our study, we chose not to include DHS 
data because of data qual ity con cerns that are par tic u larly con se quen tial given the 
spe cific goals of our model, includ ing age heaping and con cerns about the qual ity 
of the reporting of neo na tal deaths (Helleringer et al. 2020). This does not mean that 
our model’s inabil ity to fit pat terns such as the one shown in panel d of Figure 6 for 
Senegal is indic a tive of data errors in the DHS. There are many rea sons to believe that 
age pat terns of under-5 mor tal ity in many sub-Saharan Afri can pop u la tions are truly 
dif fer ent from those observed in Western countries. However, we believe that the goal 
to derive a model that can be used as a ref er ence for data eval u a tion and cor rec tion in 
all  low- and mid dle-income countries requires a thor ough eval u a tion of all  the avail -
able sources of under-5 mor tal ity infor ma tion in those countries, an exer cise that is 
beyond the scope of this arti cle. We pro vide here a model that describes age pat terns 
based on gold-stan dard, newly com piled vital reg is tra tion data span ning a large num-
ber of countries and time peri ods. Nonetheless, more research is needed to aug ment 
the geo graph i cal scope and gen er al iz abil ity of this model.

Conclusion

This arti cle pro poses a new model for sum ma riz ing reg u lar i ties about how under-5 
mor tal ity is dis trib uted by detailed age. This model is based on a newly com piled 
data base that con tains under-5 mor tal ity infor ma tion by detailed age in countries with 
high-qual ity vital reg is tra tion sys tems, cov er ing a wide array of mor tal ity lev els and 
pat terns. The model uses a log-qua dratic approach, predicting a full mor tal ity sched-
ule between ages 0 and 5 on the basis of only one or two param e ters.

Results show that our model is  able to accu rately describe var i a tions in both the 
level and the shape of under-5 mor tal ity across a vari ety of con texts. We believe that 
our model, with its inno va tive fea tures rel a tive to existing mod els, con trib utes to bet-
ter esti mat ing and under stand ing lev els and age pat terns of under-5 mor tal ity. Future 
research should focus on increas ing the geo graphic scope of the model by gath er ing 
the best pos si ble data on under-5 mor tal ity by detailed age in low- and mid dle-income 
countries. ■
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