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Abstract

Background: No well validated and contemporaneous tools for personalized prognostication of gastric adenocarcinoma exist. This
study aimed to derive and validate a prognostic model for overall survival after surgery for gastric adenocarcinoma using a large
national dataset.

Methods: National audit data from England and Wales were used to identify patients who underwent a potentially curative gastrec-
tomy for adenocarcinoma of the stomach. A total of 2931 patients were included and 29 clinical and pathological variables were
considered for their impact on survival. A non-linear random survival forest methodology was then trained and validated internally
using bootstrapping with calibration and discrimination (time-dependent area under the receiver operator curve (tAUC)) assessed.

Results: The median survival of the cohort was 69 months, with a 5-year survival of 53.2 per cent. Ten variables were found to
influence survival significantly and were included in the final model, with the most important being lymph node positivity, pT stage
and achieving an R0 resection. Patient characteristics including ASA grade and age were also influential. On validation the model
achieved excellent performance with a 5-year tAUC of 0.80 (95 per cent c.i. 0.78 to 0.82) and good agreement between observed and
predicted survival probabilities. A wide spread of predictions for 3-year (14.8–98.3 (i.q.r. 43.2–84.4) per cent) and 5-year (9.4–96.1 (i.q.r.
31.7–73.8) per cent) survival were seen.

Conclusions: A prognostic model for survival after a potentially curative resection for gastric adenocarcinoma was derived and
exhibited excellent discrimination and calibration of predictions.

Lay summary

In this study the authors used a large nationwide dataset from England and Wales and tried to make a predictive model that esti-
mated how long patients would survive after surgery for gastric cancer. They found that using a machine learning methodology
provided excellent results and accuracy in predictions, significantly in excess of any other published model and traditional staging
methods. The model will be useful to provide individualized prediction of survival to patients and in the future could be used to
stratify treatments.

Introduction
Gastric cancer is among the most common causes of cancer and
cancer mortality worldwide, with an estimated 1 000 000 cases
and 783 000 deaths in 20181. Similar to oesophageal cancer, gas-
tric cancer is more common among men than women, and the
majority of cases occur in East Asia, where an incidence of up to
32 per 100 000 is seen overall. In comparison, in Northern Europe,
the incidence is 6.2 per 100 000 in men and 3.1 per 100 000 in
women. In England and Wales there is a significant burden of dis-
ease, with 5972 cases of gastric adenocarcinoma diagnosed

between April 2017 and March 20192, and among those only
around one third suitable for curative treatment at presentation.

Among western populations, stratification of patient out-
comes is limited to TNM stage, with a lack of tools for personal-
ized prognostication which incorporate other variables known to
influence survival. In a recent systematic review of prognostic
tools in oesophageal and gastric cancer3 only one model suitable
for gastric cancer was considered to be methodologically sound4,
however this study was conducted in 2003 before the widespread
use of neoadjuvant treatment and was limited to patients
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undergoing R0 resection. A further review5 reached similar con-
clusions, identifying generally poor methodology and poor valida-
tion strategies among studies. Accurate postoperative
prognostication is important as it allows personalized planning
of both follow-up and potential adjuvant treatment in addition to
accurate comparison of different treatment regimens between
groups of patients. No such tool to achieve this exists to date.

It is likely that in the future in-depth analysis of patients’ can-
cers will allow for a high level of accuracy of prognostication both
in the pre- and post-treatment settings, however these methodol-
ogies are not yet widely available, are time consuming and ex-
pensive. Optimal use of clinical data is therefore key. Machine
learning techniques which incorporate non-linear effects, inter-
actions between variables and time-varying effects have the po-
tential to capture additional information from routine clinical
data that may be missed by traditional prognostic models such
as the Cox proportional hazards.

Recently, data from the England and Wales National
Oeosophago-Gastric Cancer Audit (NOGCA) has been used to de-
rive a random survival forest (RSF)6 model for prognosis after
oesophagectomy with considerable accuracy in excess of a Cox
proportional hazards model7. This study aims to apply a similar
methodology to patients diagnosed with gastric adenocarcinoma
in England and Wales from 2012–2018 with the goal of deriving
an accurate prediction tool for overall survival after surgery.

Methods
This study used a dataset of cases identified from the NOGCA as
has been described previously7. Data entry into the NOGCA has
been compulsory for all patients diagnosed with epithelial cancer
of the stomach or oesophagus since 2012, with named clinicians
responsible for its collection as part of the multidisciplinary
team. Each year, centres and surgeons are sent their results prior
to publication and are asked to update incomplete or inaccurate
data. Case ascertainment is evaluated using the national admin-
istrative hospital databases (Hospital Episode Statistics in
England and its Welsh equivalent), and is estimated to exceed 99
per cent for patients who undergo curative surgery. The dataset
used for this study included patients diagnosed between April
2012 and March 20188. Details of neoadjuvant and adjuvant
treatment were cross-referenced with the Systemic Anti-Cancer
Therapy (SACT) dataset. A total of 4238 patients who underwent
a gastrectomy for adenocarcinoma of the stomach or gastro-
oesophageal junction (Siewert III) were identified. Exclusion crite-
ria included overt metastatic disease at resection (pM1), death
prior to discharge from hospital or if fewer than 15 lymph nodes
were examined from the resection specimen (suggesting the

patient may have been incompletely staged)9. A comparison of
these patients with the main study cohort is provided in Table S1
and Fig. S1. A complete list and details of exclusions to reach the
final sample size of 2931 cases is given in Fig. S2. The primary
outcome was defined as overall survival from time of hospital
discharge, with survival confirmed using the Office for National
Statistics death register.

Variables collected in the audit were considered for inclusion
if there was a plausible relationship with survival, completeness
in excess of 50 per cent and a frequency of at least 1 per cent in
the cohort. For this study a total of 29 variables were identified as
potential predictors (Table S2), including patient characteristics,
preoperative tumour staging, complications of surgery, postoper-
ative pathology and neoadjuvant/adjuvant treatment. Type of
operation (for example, distal gastrectomy, total gastrectomy, ex-
tended total gastrectomy) was considered but omitted as it was
almost exclusively correlated with site of tumour. Anastomotic
leak was defined as severe disruption to the anastomosis
(detected clinically or radiologically) including those patients
managed actively and conservatively. An R0 resection was de-
fined as complete macro-/microscopic resection of tumour with
negative longitudinal and circumferential resection margins. The
authors considered unit volume as combination of major upper
gastrointestinal resections per year (major gastrectomy and oeso-
phagectomy) as per published research10 and in line with NHS
commissioning guidelines11 and also separately for gastrectomy
alone.

TNM staging was conducted using the 8th edition staging
manual12. There was at least one data point missing in 671 cases
(22.9 per cent). The most frequently missing characteristics were
return to theatre (15.1 per cent), cT stage (12.4 per cent) and dif-
ferentiation grade (6.5 per cent). All other variables had less than
5 per cent missing data. Missing data were assumed to be missing
at random and handled using multiple imputation by chained
equations13 with 10 imputed datasets.

In order to produce a more concise model with increased gen-
eralizability, a variable selection step was conducted using the
Boruta method14. Boruta identifies core variables by comparing
the importance of candidate variables in a random forest to a cor-
responding set of ‘shadow’ variables, which are versions of each
variable with their data randomized. Variables with importance
significantly greater than all of the shadow variables are selected
as important and retained, and variables with importance signifi-
cantly less than the highest shadow variable are selected as
unimportant and removed. This process is repeated with the de-
creasing number of uncertain variables until all are sorted into
important or unimportant. It has been found to be more accurate
than other approaches in variable selection in high-dimensional

Highlights

• No well validated contemporaneous prognostic model for gastric adenocarcinoma is in widespread clinical use
• This study describes the derivation of a random survival forest model using routine data from a large population dataset
• The model performed well on internal validation with a time-dependent area under the receiver operator curve of 0.80 and
excellent calibration
• A wide range of predictions were yielded for each TNM stage
• After appropriate external validation, it could provide utility in both prognostication for patients and for benchmarking of
treatment responses.
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data15, particularly in large datasets16, and has been used in a va-
riety of settings17–19. In this study variables were selected from
complete cases only (2304 patients).

Identified important variables were then used to train an RSF
using the Ranger20 package in R (R Foundation for Statistical
Computing, Vienna, Austria). A random forest here is comprised
of several hundred survival trees, each derived from different
subpopulations of the cohort. Within each tree the binary split
(for example, zero positive lymph nodes versus one or more posi-
tive lymph nodes) that gives the biggest difference in survival (as
measured by the log rank test) is identified. The tree undergoes
progressively more splits until a predetermined end point is
reached. The random forest is then the mean output of all the de-
cision trees. Parameters of the RSF that influence how it gener-
ates predictions, that is, number of trees, number of variables per
tree and minimum node size, were selected to minimize out-of-
sample error within the random forest. As multiple imputation
was employed to address missing data, a means of pooling the
outcomes from the imputed datasets is required. Here, as previ-
ously7, models were generated on each imputed dataset and pre-
dictions from each were combined after a log-log
transformation21,22.

As the model incorporates both variable interaction and non-
linear time effects, expressing the effect of individual variables is
difficult. The hazard ratio is less appropriate as it assumes an ex-
ponential survival distribution and proportional hazards (that is,
consistency of effect of variables over time)23. Use of the
restricted mean survival time (RMST) has been proposed to
address scenarios where the proportional hazards assumption
does not hold true24, allowing for comparisons by absolute differ-
ence or ratio25 and is increasingly thought to be a more appropri-
ate means of comparing survival outcomes and treatment
effects26–29. Survival curves are first generated for each variable
as the average predictions yielded for that variable. The RMST is
then the area under each survival curve, the absolute difference
in RMST between two factors (for example, R0 versus R1) is
termed the life expectancy difference (LED) and the ratio between
them the life expectancy ratio (LER). The LED and LER readily pro-
vide the absolute or relative gain/loss of life for each variable for
the period of follow-up.

The internal validity of the model was quantified using 1000
replications of the bootstrap with replacement and the 0.632 esti-
mator30. Discrimination was assessed using the time-dependent
area under the receiver operator curve (tAUC)31, which corre-
sponds to the proportion of random pairs of cases where one pa-
tient is alive and one dead at a specified time point where the
model has correctly ordered their probability of survival having
weighted for censoring. Calibration was assessed quantitatively
using the integrated Brier score32,33, as a measure of overall error
of predictions with a value closer to zero being better. Visual as-
sessment of calibration was conducted by comparing predicted
survival to observed (Kaplan–Meier) survival at specified time
points. All analyses were conducted in R34, and the study was
conducted to comply with the TRIPOD criteria35. Complete code
to reproduce the analysis is available on request, and instructions
for external validation are provided in the Supplementary material.

The study is exempt from UK National Research Ethics
Committee approval as it involved secondary analysis of an exist-
ing dataset of anonymized data. The NOGCA has approval for
processing health care information under Section 251 (reference
number: ECC 1–06 (c)/2011) for all National Health Service (NHS)
patients diagnosed with oesophagogastric cancer in England and
Wales. Data for this study are based on patient-level information

collected by the NHS, as part of the care and support of patients
with cancer. Patient consent for publication was not required.

Results
The study population included 2931 patients who underwent a
gastrectomy with a histologically proven diagnosis of adenocarci-
noma. Patients were followed up for a median of 44 months,
there were 1071 recorded deaths and the median survival was
69 months. At 3 and 5 years, survival was 63.5 and 53.2 per cent
respectively (Fig. 1).

A median of 27 (range 15–109) lymph nodes were examined
and at least one node contained tumour in the majority of
patients (1635 of 2931, 55.8 per cent). Extent of nodal dissection
was recorded as D2 in 2425 cases (82.7 per cent). Neoadjuvant
chemotherapy was used in 48.0 per cent. Demographics of the
population were as expected with 65.3 per cent males and a me-
dian age at diagnosis of 71 years. The vast majority of cases were
undertaken in high-volume centres, with 91.6 per cent occurring
in centres performing more than 30 major upper gastrointestinal
resections per year. These characteristics are summarized in
Table 1.

A total of 10 variables were identified as important and in-
cluded in the final model. These were age, cT stage, cN stage,
WHO performance status, ASA grade, pT/ypT, total number of
positive lymph nodes, grade of differentiation (good, moderate,
poor/anaplastic), completeness of resection (R0/R1) and neoadju-
vant treatment received (Fig. S3).

The model demonstrated excellent discrimination on internal
validation, with a tAUC of 0.80 (95 per cent c.i. 0.78 to 0.82) at
5 years and a C-index of 0.76 (95 per cent c.i. 0.75 to 0.77). The
tAUC using pTNM stage alone was 0.75. Agreement between pre-
dicted and observed survival was also excellent, with a wide
spread of predictions observed for both 3-year (14.8–98.3 (i.q.r.
43.2–84.4) per cent) and five-year (9.4–96.1 (i.q.r. 31.7–73.8) per
cent) survival (Fig. 2; Fig. S4). The integrated Brier score was 0.137
(95 per cent c.i. 0.133 to 0.140). Importantly, the discrimination of
the model exceeds that achieved using TNM stage (tAUC 0.81 ver-
sus 0.76 P< 0.001). A wide range of survival estimates are also
seen for each TNM stage group (Fig. S5).

The most important variables were number of positive lymph
nodes, pT stage and completeness of resection, as visualized in
survival curves shown in Fig. 3. The mean predicted survival
(across combinations of other variables) to 5 years (the RMST)
varied significantly for different characteristics, for example for
pN0 the RMST was 46.4 months compared with 29.3 months for
N3b patients. This corresponded to an LED of 17.1 months and an
LER of 0.63. Table S3, illustrates the RMST, LED and LER for all var-
iables. Although the magnitude of effect overall is small for sev-
eral of the variables, in individual cases this may not be the case
due to the nature of variable interactions. Advanced pN/pT (pN2/
3a/3b and pT3/4) and a R1 resection exhibited an LER that clearly
increases throughout the period of follow-up, indicating diverging
survival trajectories and a persistent effect on prognosis for at
least 4 years for pN/pT and the entirety of follow-up for R1 resec-
tion (Fig. S6). Notably, a Cox model trained using the same varia-
bles clearly violates the proportional hazards assumption
(P¼ 0.013). One limitation of traditional estimates of importance
is that variable interactions that are modelled in the RSF are ig-
nored. To address this, Fig. 4 gives an overview of the average pre-
dicted 5-year survival for combinations of the most important
variables in addition to patient age. The importance of age can be
seen to diminish with increasing tumour burden.
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Fig. 1 Kaplan–Meier survival of study cohort

. The vertical dotted line represents the median survival, 69 months

Table 1 Clinical and pathological characteristics of study cohort

Characteristic Count Survival at
5 years (%)

Characteristic Count Survival at
5 years (%)

Age (years) 18–50 263 (9.0) 64 Annual volume of
major upper gas-
trointestinal
resections*

1–30 245 (8.4) 50.5
51–60 417 (14.2) 55.9 31–60 1563 (53.3) 52.5
61–70 741 (25.3) 55.9 60þ 1123 (38.3) 54.6

71–80 1169 (39.9) 49.7 Annual volume of
major gastrec-
tomy

1–15 834 (28.1) 52.6
>80 341 (11.6) 48.3 16–30 1654 (55.7) 51.2

Gender Female 1017 (34.7) 55.8 30þ 383 (12.9) 60.9
Male 1914 (65.3) 51.7 Surgical approach Laparoscopic 439 (15.0) 60.2

Site of tumour Siewert III 416 (14.2) 41.1 Open 2492 (85.0) 52
Fundus 195 (6.7) 56.2 Surgical complica-

tion
No 2240 (76.4) 53.9

Body 1250 (42.6) 55.4 Yes 679 (23.2) 50.8
Antrum 689 (23.5) 56.9 Missing 12 (0.4) 37.5
Pylorus 381 (13.0) 50.7 Anastomotic leak† No 2826 (96.4) 53.5

cT T0/is/1 295 (10.1) 79.9 Yes 93 (3.2) 45.4
T2 579 (19.8) 59.1 Missing 12 (0.4) 37.5
T3 1218 (41.6) 46 pT/ypT stage T0 116 (4.0) 79.4
T4 476 (16.2) 44.6 T1 591 (20.2) 81.2

Missing 363 (12.4) 55.2 T2 454 (15.5) 66.7
cN N0 1460 (49.8) 59.8 T3 1004 (34.3) 47.4

N1 882 (30.1) 48.2 T4 766 (26.1) 27.5
N2 369 (12.6) 44.7 pN/ypN stage N0 1296 (44.2) 75.2
N3 108 (3.7) 28.7 N1 495 (16.9) 55.4

Missing 112 (3.8) 53.4 N2 513 (17.5) 38.6
WHO performance

status
0 1409 (48.1) 56.6 N3 627 (21.4) 19.4
1 1201 (41.0) 52.4 R0 resection Yes 2663 (90.1) 56.6
2 288 (9.8) 42.1 No 268 (9.1) 22
3 31 (1.1) 36.7 Grade of differentia-

tion (worst)
Well (G1) 69 (2.4) 70.6

ASA grade 1 359 (12.2) 56.9 Moderate (G2) 730 (24.9) 56.4
2 1604 (54.7) 55.9 Poor/anaplas-

tic (G3/G4)
1674 (57.1) 50.6

3 935 (31.9) 48.3 Unable to de-
termine (GX)

268 (9.1) 57.4

4 33 (1.1) 18.9 Missing 190 (6.5) 50.2
Neoadjuvant treat-

ment
None 1525 (52.0) 55.3 Adjuvant treatment No 2280 (77.8) 53.8

Chemotherapy 1406 (48.0) 50.5 Yes 651 (22.2) 51.5

Data given as absolute number with percentages in parentheses. *Major gastrointestinal resections including oesophagectomy and gastrectomy. †Anastomotic
leak defined as severe disruption to anastomosis, regardless of method of detection or intervention.
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a 3 years and b 5 years after surgery. The dotted line represents the ideal and the solid line the model’s performance on internal validation
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Average predicted survival is shown from 0–60 months for a pN stage, b pT stage and c resection margin
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Example cases
To illustrate the utility of the model, four example cases are de-
scribed below.

• Case 1. A 50-year-old female patient, ASA 1, with a cT3N1 tu-
mour, undergoes and completes neoadjuvant chemotherapy
followed by a gastrectomy. Postoperative pathology reveals a
pT4 well differentiated tumour with one positive lymph node
and a complete resection margin (R0).

• Case 2. A 60-year-old male patient, ASA 3, with a cT3N1 tu-
mour, undergoes but does not complete neoadjuvant chemo-
therapy followed by a gastrectomy. Postoperative pathology
reveals a pT4 poorly differentiated tumour with three positive
lymph nodes and an involved resection margin (R1).

• Case 3. A 50-year-old female patient, ASA 1, with a cT3N1 tu-
mour, undergoes and completes neoadjuvant chemotherapy
followed by a gastrectomy. Postoperative pathology reveals a
pT1 well differentiated tumour with no positive lymph nodes
and a complete resection margin (R0).

• Case 4. A 60-year-old male patient, ASA 3, with a cT3N1 tu-
mour, undergoes but does not complete neoadjuvant chemo-
therapy followed by a gastrectomy. Postoperative pathology
reveals a pT1 poorly differentiated tumour with no positive
lymph nodes and a complete resection margin (R0).

Both cases 1 and 2 fall into the same pTNM stage group (3a),
however their predicted survival trajectories show considerable
differences (Fig. 5) with 45.7 per cent 5-year survival for case 1
and 17.0 per cent for case 2 (compared with a stage average sur-
vival of 34.4 per cent at 5 years). Similarly, cases 3 and 4 are both
stage 1a, but exhibit substantial variation in 5-year survival at
88.7 and 66.5 per cent respectively.

Discussion
This study describes the derivation and validation of a robust
machine learning model for prediction of overall survival for sur-
gically treated non-metastatic gastric adenocarcinoma. The
model uses routine clinicopathological data which should be
available for every case without additional investigations, to de-
liver predictions of survival to 5 years. The model provides accu-
racy in excess of traditional TNM staging to enable the delivery of
personalized survival predictions, with a large spread of predic-
tions within each TNM staging group that allows discrimination
in excess of TNM staging.

Strengths of this study include the large population-based
dataset used to derive the model, which is larger than those used
in many previously published prognostication tools. The data are
reflective of modern practice, including only patients diagnosed
since 2012, with a high rate of neoadjuvant treatment (48 per
cent) and D2 nodal dissection (83 per cent), with surgery per-
formed in high-volume specialist centres. Observed overall sur-
vival exceeded recent trials, with more than one in two patients
surviving to 5 years36,37. A machine learning non-linear approach
(RSF) allowed more accuracy than otherwise could be achieved, is
technically novel and has generated insight into how the impor-
tance of variables varies over time. The TRIPOD criteria for pre-
dictive modelling were also adhered to. Limitations include the
retrospective nature of the study and lack of external validation
cohort. An internal validation process was conducted using a
bootstrap technique38 to assess the degree of optimism in the
model’s discrimination and calibration, and its performance was
maintained. External validation is still required to demonstrate
its generalizability, but the importance of the T stage and nodal
positive variables suggest the model is likely to be transportable

Lymph node status

Age
(years)

Age
(years)

Age
(years)pT

 st
ag

e

Age
(years)

Age
(years)

Fig. 4 Predicted 5-year survival for combinations of selected variables

Colours represent differing prognosis, with green more favourable, and red less favourable
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to other populations. There was a moderate amount of missing
data within the dataset which may introduce bias into the analy-
sis, however this effect was minimized using multiple imputa-
tion. Lauren histological classification39, a well recognised and
prognostic variable in gastric cancer40, was not available for this
study and may provide additional information above differentia-
tion grade if added in the future, although, as the diffuse type are
poorly differentiated by definition, there will be extensive overlap
with the classification employed here.

This model provides a broad range of survival estimates, with
substantially more variability than TNM stage both overall and
within each staging group, as is clearly illustrated in the example
cases. The precision facilitates use of the model in several clinical
settings. Firstly, more reliable information on long-term progno-
sis can be given to patients. Research to understand how best to
relay data to patients is ongoing and this is undoubtedly an ethi-
cally complex area, particularly when the prognosis is poor.
However, withholding accurate information from patients is un-
likely to be prudent. Secondly, targeting follow-up and/or addi-
tional treatment to those who most require it is vital to

improving outcomes and accurate prognostication with low bur-
den of data collection (as is the case with clinicopathological
models) is vital to achieve that. This is particularly important
when introducing novel agents or when effect sizes appear small,
as they are with current agents.

The most important variables identified (lymph node status,
pT stage, resection margin) are well recognised as highly prog-
nostic41–43. The demonstration of effects for these variables that
persist throughout follow-up is, however, novel and informative
in the context of a modelling strategy that allows for time-
varying effects. In this study, only a small overall magnitude of
effect of neoadjuvant treatment was identified, with no benefit
seen for cases where chemotherapy was not completed. This is in
contrast to the Medical Research Council Adjuvant Gastric
Infusional Chemotherapy (MAGIC)44 and Actions Concertées
dans les Cancer Colorectaux et Digestifs (ACCORD) trials45, which
demonstrated a substantial survival benefit of neoadjuvant treat-
ment, establishing the rationale for the widespread use of neoad-
juvant chemotherapy for gastric adenocarcinoma in western
countries. In reality, the effect of chemotherapy varies at an
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individual level, with some patients gaining a substantial benefit
from the treatment (those who respond) and the majority gaining
no benefit at all. The non-linear nature of the RSF which includes
interactions with other variables allows response (as reflected in,
for example, pT stage or the resection margin) to be accurately
incorporated into prognostication, which would be challenging in
a linear model and not assessed by TNM stage alone. This may
also be an explanation for the counterintuitive finding of pT0 tu-
mour having both a slightly worse observed prognosis than pT1
tumours (5-year survival 79.5 per cent pT0 versus 81.9 per cent
pT1, Table 1) and life expectancy difference of -1.65 months (Table
S2) although the number of patients with pT0 tumours was small
(116 patients).

Patients in whom fewer than 15 lymph nodes were examined
at resection were excluded. The purpose of this study was to de-
rive an accurate predictive model for the most common stages of
disease witnessed in clinical practice, rather than assess the
prognostic importance of lymph node harvest which is of suffi-
cient interest and complexity to warrant a separate study. After
discussion the authors elected to exclude patients with an ‘inade-
quate’ lymph node resection because including these patients
would introduce unreliable data into the model-derivation pro-
cess (due to possible under-staging) and make predictions on
patients who were treated as per national or international stand-
ards less reliable. The authors were also mindful that some
patients with an apparent ‘inadequate’ lymph node harvest
would have received a planned D1 dissection for early-stage dis-
ease. The model is not designed to be used in this patient group,
rather for the classical presentation of locally advanced gastric
cancer and limited to those patients with an adequate lymphade-
nectomy.

The variable selection method excluded variables that may
have been expected to influence survival significantly, notably
site of tumour and receipt of adjuvant therapy. It is reasonable to
extrapolate that the difference in survival observed for different
tumour sites (for example, 5-year survival 40.7 per cent for
pyloric tumours compared with 56.7 per cent for Siewert III gas-
tro-oesophageal junction tumours, Table 1) is largely due to differ-
ences in tumour stage at these sites, however it is surprising to
see no improvement of survival with the administration of adju-
vant treatment. There are several possible explanations for this,
including insensitivity of the modelling approach (particularly as
survival is worse after adjuvant treatment on univariable analy-
sis, as it is more often given only to cases with more advanced
disease). The margin of effect of adjuvant treatment seen in ran-
domized trials does appear modest46, however, particularly in the
context of a cohort in which the majority of patients underwent
neoadjuvant treatment47.

A robust tool for prediction of overall survival after gastrec-
tomy for adenocarcinoma has been derived using an RSF meth-
odology. It provides accurate predictions of outcome in excess of
TNM staging using routinely collected clinicopathological data. It
is available at: uoscancer.shinyapps.io/AugisSurvG. Future work
to validate the authors’ findings in external cohorts would be
beneficial, and prospective validation before use to stratify treat-
ment and follow-up is important.
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40. Jiménez Fonseca P, Carmona-Bayonas A, Hernández R, Custodio

A, Cano JM, Lacalle A et al. Lauren subtypes of advanced gastric

cancer influence survival and response to chemotherapy: real-

world data from the AGAMENON National Cancer Registry. Br J

Cancer 2017;117:775–782.
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