
As of August 2021, coronavirus disease 
(COVID-19) had caused >199 million cases and 

>4.2 million deaths worldwide (1). Severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2), 
the virus that causes COVID-19, is being sequenced 
to document virus evolution and to inform vac-
cine efforts. In South Sudan, the COVID-19 index 
case was confi rmed on April 4, 2020 (2); it was fol-
lowed by 2 infection waves, in May–July 2020 and in 
February–March 2021 (Appendix Figure 1, https://
wwwnc.cdc.gov/EID/article/27/12/21-1488-App1.
pdf). As of August 3, 2021, a total of 11,063 cases and 
119 deaths (1) had been reported in South Sudan. An 
earlier study from South Sudan reported that, after 
the second wave, 28% of the population showed se-
rologic evidence of infection (3).

Chronic underdevelopment caused by prolonged 
confl icts has left South Sudan with a weak health 
system and population displacement. Large popula-
tions live in camps that may promote rapid spread 

and amplifi cation of SARS-CoV-2, and poor socioeco-
nomic conditions limit community-based COVID-19 
prevention efforts. Monitoring the circulating viral 
genomic lineages in South Sudan is crucial, especially 
as vaccination is implemented and novel virus vari-
ants appear globally.

The Study
As part of South Sudan COVID-19 surveillance, 
samples were collected from community surveil-
lance, point-of-entry screening, and sentinel site 
surveillance and tested for SARS-CoV-2 by real-time 
reverse transcription PCR (RT-PCR) at the National 
Public Health Laboratory (Juba, South Sudan) (4). 
During the second COVID-19 wave in February–
March 2021 (Appendix Figure 1), we tested 56,014 
samples for SARS-CoV-2; 6,645 samples tested posi-
tive (12% positivity). We selected a set of 70 (1%) of 
these positive samples for genomic sequencing with 
these inclusion criteria: diagnostic RT-PCR cycle 
threshold (Ct) values <31, from multiple locations 
(Figure 1), from new arrivals, from death cases, and 
from sites showing community transmission. We ex-
tracted nucleic acid from swab material and gener-
ated SARS-CoV-2 genome as previously described 
(5). A total of 45 complete genomes generated from 
samples collected in January–March 2021 showed 
a prevalence of 2 lineages: B.1.525 (Eta) and A.23.1 
(Figure 1). The A.23.1 lineage, which was observed 
in October 2020 in Uganda (6) and has now spread 
globally to 26 countries, was one we observed in 
Juba and Nimule in early January 2021. The A.23.1 
case-patients in Nimule, a South Sudan town on 
the border with Uganda (Figure 1), were travelers 
returning from Uganda. In Juba, the earliest-report-
ed A23.1 case was in a traveler returning to South 
Sudan from Uganda. We detected A23.1 for only a 
short period; from the end of January to the end of 
March, we detected only B.1.525 genomes (Appen-
dix Table). The B.1.525 lineage, reported earliest in 
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As	 the	 coronavirus	 pandemic	 continues,	 severe	 acute	
respiratory	 syndrome	 coronavirus	 2	 (SARS-CoV-2)	 se-
quence	data	are	 required	 to	 inform	vaccine	eff	orts.	We	
provide	SARS-CoV-2	sequence	data	from	South	Sudan	
and	 document	 the	 dominance	 of	 SARS-CoV-2	 lineage	
B.1.525	 (Eta	variant)	during	 the	country’s	second	wave	
of	infection.
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the United Kingdom and Nigeria, has spread to 44 
countries and is considered a variant of interest (7).

Phylogenetic analyses of the South Sudan ge-
nomes combined with the available global A.23.1 or 
B.1.525 genomes were performed to gain insight into 
the virus movement. The maximum-likelihood trees 
of both A.23.1 and B.1.525 genome sequences (Figure 
2) suggested multiple importations of the strains into 
South Sudan; South Sudan strains belonged to several 
sublineages, rather than a single sublineage.

Both A.23.1 and B.1.525 lineages encoded chang-
es in their spike protein (Appendix Figure 2) as well 
as other parts of the genome and substitutions or 
deletions in the nonstructural protein 6, open read-
ing frame 3a and 8, and nucleocapsid genes (data 
not shown), which might be associated with higher 
transmission or immune evasion. Especially relevant, 
the A.23.1 genomes encoded spike P681R, which is 
adjacent to the small (S) 1/S2 furin cleavage site and 
is also present in the variant of concern B.1.617.2 (Del-
ta) lineage, which is spreading in India and globally 
and may increase S1/S2 cleavage (10,11; B. Lubin-
ski et al., unpub. data. http://biorxiv.org/lookup/
doi/10.1101/2021.06.30.450632). A related P681H 
substitution is present in variants of concern B.1.1.7 

(Alpha) and P.1 (Beta). The South Sudan B.1.525 ge-
nomes encoded a deletion in the N-terminal domain 
(NTD) at spike positions 69 and 79, which is also pres-
ent in B.1.1.7 and many other global variants, and a 
deletion in the spike NTD in positions 141–146, which 
may help in evasion of host immune responses. The 
spike D614G substitution may alter the spike protein 
conformation; the Q677H substitution is near the 
furin cleavage site and may alter spike processing.

Conclusions
We describe the patterns of SARS-CoV-2 virus ge-
nomics in South Sudan in the second wave of infec-
tions during February–March 2021, showing circu-
lation of B.1.525 (Eta) as well as the variant A.23.1. 
South Sudan faced high transmission of SARS-CoV-2 
during this reporting period; our data suggest that 
the B.1.525 lineage spread widely and progressively 
increased in frequency in the country during the pe-
riod. Data from Uganda and Rwanda retrieved from 
GISAID (https://www.gisaid.org) also showed the 
appearance of B.1.525 at this time.

A limitation of our study is that sample num-
bers are low and were limited by the challenges of 
procurement, shipment, and testing in a harsh and 
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Figure 1. Locations of severe acute 
respiratory syndrome coronavirus 
2 infection case-patients from 
whom genomes were isolated, 
South Sudan. Red circles indicate 
viruses of lineage B.1.525; dark 
gray circles indicate lineage 
A.23.1. Circle size is proportional 
to number of genomes. Blue text 
shows the number of A.23.1 and 
B.1.525 genomes reported from 
neighboring countries. CAR, 
Central African Republic; DRC, 
Democratic Republic of the Congo. 
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resource-poor environment. Careful sample selection 
was performed to provide an unbiased description 
of the epidemic; however, not all positive samples 
yielded genome sequences. This lack of data could 
introduce bias in the reported genomes. Nonetheless, 
the study accurately describes SARS-CoV-2 lineages 
during the second wave of epidemic in South Sudan.

Substantial land-based traffic with neighboring 
countries makes it imperative to document the vi-
ruses circulating in this region. Careful monitoring 
of locally circulating viruses as vaccination becomes 
widespread is essential for interpreting vaccine 
function and for informing the healthcare systems 
whether the current vaccines are still a good match 
for the circulating viruses. We recommend continued 
genomic surveillance in South Sudan to help with 
public health responses, especially as new waves of 
infections come to the country and continent.
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aligned, and for the first genome, all genomes closer than 5 hamming distance were removed. This process was continued until the 
entire set was thinned. This global, thinned A.23.1 set was combined with all South Sudan A.23.1 genomes and used to infer the A.23.1 
maximum-likelihood tree. The tree was rooted with the A.23 strain (UG109/PR_Amuru|A.23|2020–08–14). B) Lineage B.1.525. The 
B.1.525 genome sequences were prepared in the same manner as those for A.23.1 except the hamming distance of 20. Maximum-
likelihood phylogenetic trees were constructed in RaxML-NG (8) under the general time reversible plus gamma 4 plus invariate sites 
model as the best-fit model of substitution according to the Akaike information criterion determined by modeltestNG (9) and run for 
100 pseudoreplicates and visualized using FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree). For B.1.525, the tree was 
midpoint rooted for clarity. Scale bar indicates nucleotide substitutions per site.
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