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Abstract 

Background: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of 
drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is 
needed in Africa to understand cholera dynamics in relation to drought.

Methods: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear 
models to publicly available national data, to test for associations with several indices of drought and make cholera 
outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of  CO2 emissions, 
socio-economic development, and population growth.

Results: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside 
positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projec-
tions show that following stringent emissions pathways and expanding sustainable development may reduce cholera 
outbreak occurrence in Africa, although these changes were spatially heterogeneous.

Conclusions: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the 
potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should 
build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear 
relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.
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Background
Vibrio cholerae is a water-borne bacterial pathogen, caus-
ing profuse watery diarrhoea and rapid dehydration in 
symptomatic cases. This can lead to death within 2 h of 
symptom onset and case fatality ranging from 3 to 40% 
[1, 2]. The seventh and ongoing cholera pandemic began 
in 1961, spreading to Africa by the 1970s, where it now 

shows signs of endemicity in several countries [3, 4]. 
Despite over 94% of World Health Organization (WHO) 
reported cholera cases occurring in Africa and some of 
the highest mortality rates [5], previous research has 
heavily focused on South America, the Indian subconti-
nent and more recently Haiti.

Cholera outbreak frequency is closely related to envi-
ronmental and climatic changes [6–8]. For instance, 
temperature and precipitation are considered impor-
tant in cholera outbreak occurrence, with tempera-
ture driving epidemics and precipitation acting as a 
dispersal mechanism [9]. These relationships have 
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implications for cholera outbreaks after natural haz-
ards, such as droughts.  Several links between drought 
and cholera outbreaks have been described [2, 10, 11] 
and it is hypothesised that increasing concentrations 
of infectious bacteria in more limited drinking water 
sources and increased risky drinking water behaviours 
are likely mechanisms for transmission [2, 12]. Despite 
this, drought and cholera in Africa are understudied in 
isolation and links have more commonly been made 
between flooding, despite droughts potentially posing a 
considerably greater risk than floods [11].

Cholera is considered a disease of inequity and sev-
eral socio-economic risk factors have been impli-
cated with cholera outbreaks, which may be further 
exacerbated by droughts. Some studies suggest that 
human-induced factors are more important for chol-
era dynamics than climate or environmental ones 
[13], including poverty [14], sanitation [15], drainage 
[16], water quality [17] and poor healthcare [9]. This 
supports the notion that outbreaks result from the 
breakdown of societal systems responses to a hazard, 
leading to a human–environment link and subsequent 
pathogen shedding [18]. Water, sanitation and hygiene 
(WASH) factors are considered particularly significant, 
as the importance of the water body reservoirs depends 
on the sanitary conditions of the community [19]. Eight 

hundred and forty-four million people worldwide lack 
access to basic drinking water and a further 2.4 billion 
are without basic sanitation [20], putting many peo-
ple at risk of water-borne disease outbreaks including 
cholera.

Here, we aim to address the research gap of drought-
related health outcomes by investigating its implications 
on cholera. The work fills an important research gap as 
few studies have investigated the link between drought 
and cholera outbreaks in Africa, or projected outbreak 
changes into the future, and investigating mechanisms 
through which global change might yield health impacts. 
Research in this area is particularly important due to 
a significant number of people at risk of both cholera 
and drought and the negative implications that climate 
change may have for these communities.

Methods
In this study, we aimed to understand the implications of 
drought for cholera outbreak occurrence at a continental 
scale across Africa, after accounting for important socio-
economic factors. We aim to use these results to further 
understand the hypothesis that droughts lead to cholera 
outbreaks through elevated pathogen concentrations 
in limited water and an increase in risky drinking water 
behaviours, Fig. 1 shows a schematic to help visualise this 

Fig. 1 Pathways from water shortages to cholera outbreaks: suggested mechanism through which drought can lead to cholera outbreaks in Africa 
[2, 12]



Page 3 of 12Charnley et al. BMC Infectious Diseases         (2021) 21:1177  

hypothesis and potential pathways. In addition, we aimed 
to evaluate how future changes in drought area and risk 
due to climate change [21, 22], alongside other develop-
ment factors, may impact future cholera outbreak occur-
rence. We thus developed several projection scenarios 
incorporating different greenhouse gas emissions and 
socio-economic development trajectories.

Datasets and study period
We compiled data on cholera outbreaks and a range of 
social and environmental covariates over the period 
1970–2019. Annual cholera cases were retrieved from 
the WHO’s Global Health Observatory [23], which pro-
vides reported annual cholera case for each country, 
which were confirmed either clinically, epidemiologically, 
or by laboratory investigation. For analysis, these num-
bers were transformed into a binary outcome to reflect 
outbreak occurrence [i.e., set at 0 for no outbreak and 1 
for an outbreak (> 1 case/death)], which was then used as 
the outcome variable in the models. We opted not to ana-
lyse raw case data to minimise the effect of unmeasured 
observations and reporting biases among countries. For 
years with no outbreak data, the outcome was set to 0, 
assuming if cholera cases/deaths occurred within a coun-
try then they would have been identified and reported 
(a sensitivity analysis for this assumption is presented in 
Additional file 1: Information 1).

In total, 19 environmental and socio-economic covari-
ates were selected for investigation based on prior 
hypotheses and previous results linking cholera out-
breaks to risk factors (summarised in Additional file  1: 
Table  S1). Environmental data were extracted from a 
variety of sources and included climate (temperature 
and precipitation) [24], meteorological drought (Palmer 
Drought Severity Index, PDSI) [25], agricultural drought 
(soil moisture and potential evapotranspiration (PET) 
[26, 27] and hydrological drought (runoff and freshwa-
ter withdrawal annually and per capita) [28, 29]. Where 
monthly or sub-national data were available, we calcu-
lated national yearly means. Climate data were miss-
ing for Côte d’Ivoire and drought data were missing for 
Rwanda, The Gambia, Guinea-Bissau, Djibouti, Burundi, 
Benin, Cabo Verde, São Tomé and Principe, Comoros, 
Mauritius and Seychelles. Environmental data for these 
countries were derived by taking the mean of their neigh-
bouring countries, whereas islands were excluded.

Socio-economic data including annual indicators of 
poverty and development, WASH, malnourishment, and 
population (on a logarithmic scale), were taken from the 
WorldBank [30] and the United Nations Development 
Programme [31] datasets. Where a country’s socio-eco-
nomic data were missing for some years, a national aver-
age was taken from the available data points and used for 

all years. If national data were missing for the full instru-
mental period, these countries were removed from the 
analysis.

After examining data completeness across the full data-
set, we designated the instrumental period for analysis to 
be 2000–2016 to limit omitting missing data and interpo-
lation. Summary figures of the climate and cholera data 
over the instrumental period are shown in Additional 
file 1: Fig. S1. Summary figures of the drought indices and 
their definitions are shown in Additional file  1: Fig. S2 
and Information 2.

Model structure and fitting
Generalised linear models (GLM) were fitted to the data-
set describing the cholera outbreak occurrence for the 
instrumental period (2000–2016), for all countries in 
mainland Africa and Madagascar, using maximum likeli-
hood estimation. Due to the binary outcome variable for 
cholera outbreak occurrence, a binomial likelihood with 
a log–log link function was used in all models. Rows with 
missing values were removed from the data frame.

From this initial dataset, a reduced pool of potential 
covariates was selected for model fitting using a covari-
ate selection process developed by Garske et al. [32] and 
Gaythorpe et al. [33]. In summary, univariate models for 
each potential variable were fitted to the binary outcome 
variable and any variables not significantly associated 
with the outcome at a 10% confidence limit (p < 0.1) were 
excluded. Of the remaining covariates, absolute pairwise 
correlations were calculated, and highly correlated varia-
bles (r > 0.75) were then clustered into groups, to prevent 
multilinearity. Parametric correlations were used here, as 
the data followed normal distributions. Parametric corre-
lations have more assumptions and therefore have more 
statistical power, meaning they are more likely to detect 
a significant difference when one truly exists (a correla-
tion matrix and correlation plots are shown in Addi-
tional file  1: Table  S2 and Fig. S3). The covariates from 
each cluster most strongly correlated with the outcome 
variable was then selected for inclusion in the multi-
variate models, fit using the function glm. Model fit was 
evaluated using Bayesian Information Criterion (BIC) 
and a single best-fit model was found using the stepAIC 
function. In addition, area under the receiver operator 
characteristic curve (AUC) was used to quantify model 
performance. All statistical analyses were carried out in 
R Studio version 3.6.2 (packages: tidyr, MASS, ggplot2, 
dplyr, magrittr, corrplot, caret, nlme, MuMIn, car, boot).

Testing for temporal and spatial effects
The inclusion of multiple years of data across multiple 
countries raises the possibility of spatial and temporal 
confounding (e.g., autocorrelation). To investigate the 
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potential influence on the covariate selection and subse-
quent model, separate analyses were run including year 
and ISO3 country code as predictor variables following 
the same step-wise covariate selection process and mul-
tivariate model approach as described above. Autocor-
relation diagnostics were run on selected spatial and 
temporal covariates by testing the significance of the 
linear relationship with and without consideration of 
AR1 (autoregressive model of order 1) autocorrelation 
and assessing evidence of autocorrelation in the residu-
als. Leave-one-out (LOO) cross validation using Akaike 
Information Criterion (AIC) was used to assess model 
performance of both the original (without year/ISO) and 
the updated (with year/ISO) multivariate models selected 
through the covariate selection process.

Projection scenarios
Three scenarios (S1, S2 and S3) were developed for 2020–
2070 (at decadal increments) as summarised in Table 1. 
Each scenario represents an alternative possible future 
trajectory of the variables retained in the best fit model, 
parameterised to varying degrees of climate mitigation 

and socio-economic development. Here, S1 represents a 
“best-case” scenario, loosely aligning to highly ambitious 
climate change mitigation and strong progress towards 
the Sustainable Development Goals (SDG), S2 represents 
an intermediate scenario, and S3 a “worst-case” scenario 
with slower progress towards emissions reductions and 
the SDGs.

Detailed descriptions and justifications of the projected 
changes for each variable are provided in full in Addi-
tional file 1: Information 3. Briefly, projected temperature 
data (for 2050 and 2070) were taken from WorldClim 
[34], as this was also used for historical data. The data 
is Coupled Model Intercomparison Project 6 (CMIP6) 
downscaled future climate projections, processed for 
nine global climate models using three Representative 
Concentration Pathways (RCP). We used RCP4.5, 6.0 
and 8.5 for scenarios S1, S2 and S3, respectively. This was 
projected for 2050 and 2070 and we used the instrumen-
tal period average (2000–2016) for 2020–2040 values. 
The average was used to account for interannual climate 
variability. Additional file  1: Fig. S4 summaries the data 
for each pathway and year.

Table 1 Cholera projection scenarios for 2020–2070 at decadal intervals: Scenario 1 (S1), a “best-case” scenario; Scenario 2 (S2), an 
intermediate scenario and Scenario 3 (S3), a “worst-case” scenario. The scenarios were projected over 50 years from 2020 to 2070. 
HWC = high withdraw countries including MDG, LBY, SDN, MRT and MAR

Year Drought Temperature Poverty Water withdrawal

Scenario 1 2020 2000–2016 average 2000–2016 average 2016 2016

2030 2000–2016 average Reduce 2016 by 50% 2016

2040 2000–2016 average Reduce 2016 by 50% 2016

2050 RCP4.5 2050 Medium value between 2030 & 
2070

20% increase and 20% decrease 
for HWC

2060 RCP4.5 2050 Medium value between 2030 and 
2070

20% increase and 20% decrease 
for HWC

2070 RCP4.5 2070 Poverty elimination (0%) 20% increase and 20% decrease 
for HWC

Scenario 2 2020 Median value between S1 and S2 2000–2016 average 2016 2016

2030 2000–2016 average 2016 2016

2040 2000–2016 average 2016 2016

2050 RCP6.0 2050 Reduce 2016 by 50% 10% increase and 10% decrease 
for HWC

2060 RCP6.0 2050 Medium value between 2050 and 
2070

10% increase and 10% decrease 
for HWC

2070 RCP6.0 207 Poverty elimination (0%) 10% increase and 10% decrease 
for HWC

Scenario 3 2020 [(Coefficient*4) + 2016 value] 2000–2016 average 2016 2016

2030 [(Coefficient*10) + 2020 value] 2000–2016 average 2016 2016

2040 [(Coefficient*10) + 2030 value] 2000–2016 average 2016 2016

2050 [(Coefficient*10) + 2040 value] RCP8.5 2050 2016 5% increase and 5% decrease for 
HWC

2060 [(Coefficient*10) + 2050 value] RCP8.5 2050 Medium value between 2050 and 
2070

5% increase and 5% decrease for 
HWC

2070 [(Coefficient*10) + 2060 value] RCP8.5 2070 Reduce 2016 value by 50% 5% increase and 5% decrease for 
HWC
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Projecting PDSI at a continental or national scale is 
contentious showing a range of projection outcomes, due 
to high spatial heterogeneity and between model uncer-
tainty/disagreement [21, 35], as well as computational 
discrepancies depending on the PET algorithm used [36]. 
Several PDSI modelling studies [36, 37] and paleoclimatic 
studies [38, 39] found that drought severity and durations 
remained constant despite periods of extreme dryness, 
over a range of time scales. We also observed this in our 
dataset for both the full data range and the instrumen-
tal period and our data accurately captured past drought 
as its changes tracked with soil moisture, a good index 
of drought (see Additional file  1: Figs. S5 and S6) [40]. 
Given these disagreements and following other drought 
projection studies [41], we opted to estimate future 
drought conditions for each scenario as follows: For S1, 
we included no change relative to a current “baseline” by 
fixing drought values to the instrumental period average 
(2000–2016), the average was used to account for inter-
annual climate variability. For S3 (representing “business-
as-usual”) we extrapolated the full historical data trends 
for each country (1850–2016) using univariate linear 
regression models (drought ~ year). The results of these 
models are available in Additional file 1: Table S3 and the 
coefficients then acted as a yearly multiplier (up until the 
extreme values of + 4 for extreme wetness and − 4 for 
extreme dryness). For S2, we took an intermediate value 
between S1 and S3. To account for uncertainty in the 
drought projections and to further examine how drought 
in isolation may alter future cholera outbreaks, a second 
sensitivity analysis was run, maintaining the other covari-
ates at the 2016 levels and altering drought in six analy-
ses ± 0.5, ± 1 and ± 2 (or until the extreme values, + 4 or 
− 4). Full details and results of this sensitivity analysis are 
shown in Additional file 1: Table S4 and Fig. S7.

Poverty changes were based on SDG 1 [42], despite the 
limitations of the SDGs (e.g., ambiguous terms), they are 
a globally recognised standard for sustainable develop-
ment. As such, S1 meets the goal of a 50% reduction in 
extreme (< $1.25/day) poverty by 2030 and poverty elimi-
nated by 2070. In S2, the 50% reduction goal is met by 
2050 and by 2070 for S3. The poverty setting used in the 
SDGs is slightly lower ($1.25) than the WorldBank data 
used in this analysis ($1.90), and it is difficult to distin-
guish the level of poverty within the data; therefore, the 
projected scenarios mainly aligned with the second part 
of the goal, to halve the population in poverty by 2030.

Projected changes in freshwater withdrawal are largely 
dependent on future human behaviour and adaptation 
to changing water security, which are highly uncertain. 
Therefore, freshwater withdrawal projections were based 
on SDG6.4 and either increased or decreased based on 
each country’s historical freshwater withdrawal relative 

to available water resources, taken from the same source 
used in the model [28]. This indicator of freshwater 
security for each country is plotted in Additional file  1: 
Fig. S8. Expanded freshwater withdrawal would likely 
increase peoples’ access but this must be done sustaina-
bly and in line with resources. Increased withdrawal may 
also be a sign of development as more people have access 
to wells, boreholes and piped water. As such, for S1 we 
increased sustainable freshwater availability by the mid-
dle of the projection period (2050) by 20% for countries 
with sufficient resources. For S2, we increased freshwater 
availability by 10% and for S3 by 5%.

For population projections, the United Nation’s World 
Population Prospectus [43] median variant was used 
for all three scenarios. Although population growth is 
expected to be more restricted under high attainment of 
the SDGs, we opted to use a single medium population 
size to isolate the effects of the other environmental and 
socio-economic covariates.

Results
Model fitting and covariate selection
The univariate model results (p-values, coefficients, BIC 
and AUC of the 19 tested covariates against cholera out-
break occurrence) are shown in Table 2. Six of these were 
not significantly associated with the data at the threshold 
of p < 0.1. Of the remaining 13, one cluster was formed 
containing two highly correlated variables (soil moisture 
and drought), while all other covariates were considered 
uncorrelated at the given threshold and therefore could 
be included in the full model.

Output from the best‑fit model
After model fitting, five covariates were retained in the 
best-fit model. These include population, mean meteoro-
logical drought (in PDSI), average temperature, poverty 
headcount and per capita freshwater withdrawal. Good-
ness of fit measures and outputs for the best-fit model 
are shown below in Table  3. Higher population num-
bers and more people living in poverty were associated 
with increased cholera outbreaks. For the environmental 
covariates, per capita freshwater withdrawal was nega-
tively associated with cholera, while higher temperatures 
and drier conditions (more negative PDSI) were both 
associated with increases in cholera outbreaks. These 
relationships are shown in the marginal effect plots in 
Fig. 2.

Temporal and spatial effects
Re-running the covariate selection process with year, 
ISO3 country code and the 19 original predictor vari-
ables, selected year but not ISO3 at the significance 
threshold (p = < 0.1). It also selected the same covariates 
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as the original model and additionally basic handwash-
ing and Human Development Index. The linear relation-
ship between year and cholera was visualised using loess 
curves for each country (shown in Additional file 1: Fig. 
S9) and when accounted for AR1 autocorrelation year 
was found to no longer be significant (p = < 0.05).

Out-of-sample validation using AIC and LOO found no 
appreciable difference between the two selected best-fit 
models. Therefore, the model selected without the inclu-
sion of year and country code in the selection process 

was thus chosen as the best-fit model (diagnostic results 
are shown in Additional file 1: Information 4).

Cholera outbreak occurrence appears conditionally 
independent of year given the other covariates in the 
model, as time does not cause cholera but instead the 
changes in covariates over time, making them good pre-
dictors of cholera outbreak occurrence. It is also thought 
that some temporal increases in cholera are due to global 
improvements for detection of all-pathogen outbreaks 
from the mid 1990s onwards, especially in low- and 

Table 2 Univariate model outputs and goodness-of-fit measures for the tested covariates against cholera outbreak occurrence, 
including p-values, coefficients, BIC and AUC 

*p < 0.1

Covariate p value Coefficient BIC AUC 

Potential evapotranspiration (mm/day) 0.961 0.011 785.323 0.5979

Annual freshwater withdrawal (billion  m3) 0.649 − 0.029 784.570 0.5279

Runoff (mm/year) 0.373 − 0.064 785.395 0.6068

Health expenditure (% GDP) 0.371 0.126 783.253 0.5389

Prevalence of malnourishment (% population) 0.139 − 0.169 784.014 0.5892

Gross domestic output (current $) 0.126 − 0.091 783.079 0.5148

Population density (people/km2) 0.051* − 0.145 781.802 0.5773

Water withdrawal per capita  (m3/person/year) 0.032* 0.151 762.801 0.6184

Average precipitation (mm) 0.021* − 0.263 780.742 0.6345

People with basic handwashing facilities (% population) 0.018* 0.189 766.430 0.5882

Percentage living in informal settlement (% urban population) 0.013* − 0.467 778.730 0.4903

Mean drought 0.003* − 0.199 768.863 0.5827

Human Development Index 0.0002* 1.014 767.927 0.6562

People using at least basic sanitation (% population) 0.0001* 0.384 757.283 0.6347

Poverty headcount (% population at < $1.90/day) 0.0001* − 0.583 768.649 0.7018

Average temperature (°C) 0.00005* − 1.715 765.124 0.5349

Soil moisture (%) 0.00003* − 0.706 768.044 0.6871

People with basic drinking water (% population) 0.00002* 0.906 762.312 0.6521

Population (log. population in thousands) 0.0000000004* − 3.064 741.192 0.6521

Table 3 Output and goodness of fit measures for the best-fit model

Coefficient Exp(coefficient) p value

Mean national drought (PDSI) − 0.0927813 0.9113928127 0.051172

Population, total (log) 1.3125412 3.7156036497 2.85 ×  10−13

Average temperature (°C) 0.0927423 1.0971789754 0.000113

Poverty headcount (at < $1.90/day) 0.0327487 1.0332908900 4.23 ×  10−16

Per capita freshwater withdrawal  (m3/person/year) − 0.0024225 0.9975804550 5.43 ×  10−7

Residuals Min 1Q Median 3Q Max

− 2.0286 − 0.7974 0.4069 0.8601 2.2564

R2: 0.276254

AUC: 0.7784
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middle-income countries, improving countries’ capacity 
for detection, response and therefore reporting [44, 45].

Cholera projections to 2070
Cholera projections from the best-fit model according 
to the parameter values for each of the three scenarios 
are shown in  Fig.  3. The cholera outbreak projections 
show several changes through to 2070 and spatial het-
erogeneity among countries over the continent. Most 
countries show a general decrease in cholera out-
breaks in S1 and S2, with few exceptions e.g., Tunisia. 
Although countries with the highest cholera levels saw 
little change, remaining at a high outbreak occurrence 
level throughout, including the Democratic Republic of 
Congo (DRC) and Nigeria.

Figure  4  shows the decadal continental average for 
the projected cholera outbreak occurrence, to help 
understand the general trend across the continent. 
Overall, S3 shows a slight increase throughout the 
projected period, whereas S1 and S2 exhibit declines. 

However, overlapping confidence intervals between S1 
and S2 mean it is difficult to distinguish meaningful 
differences, although by 2070 S3 projects significantly 
more outbreaks than S1 and S2.

The drought sensitivity analysis showed modest 
changes through the six different analyses, with more 
negative values of PDSI seeing higher cholera outbreak 
occurrence (Additional file  1: Table  S4 and Fig. S7). 
Despite this, these changes were not excessive with a 
0.06 average increase in continental cholera outbreak 
occurrence from the 2000 to 2016 averages to sensitivity 
analysis 6 (2016 value – 2). This suggests that while future 
drought is likely to continue to affect cholera in Africa, 
improved socio-economic conditions may counteract 
this effect, by reducing pathogen exposure.

Discussion
Cholera has well established environmental [6–8] and 
socio-economic links [9, 14, 15], such as poverty, poor 
WASH conditions, the Intertropical Convergence Zone 

Fig. 2 Marginal effect plots for the five selected covariates for the best-fit model, showing cholera outbreak occurrence probability
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and El Niño Southern Oscillation. Here, environmental 
variables were important covariates in the model. Mete-
orological drought (according to PDSI) was found to be a 
significant predictor of cholera outbreaks, with drier con-
ditions seeing higher cholera outbreak occurrence. While 
previous studies have implicated drought in cholera out-
breaks [2, 10, 11], our study models drought in isolation 
allowing a more in-depth investigation of its impacts, 
which have been largely understudied in comparison to 
flooding. In addition, we tested whether drought is likely 
to influence cholera outbreaks under scenarios of climatic 
change and socio-economic development (attainment of 

the SDGs). While we found drought will continue to be 
an important hazard for cholera outbreaks in the future, 
our results suggest that gains in sustainable development 
(reduction of poverty, increased water security) may off-
set cholera risk in the future.

Temperature was identified as a significant predic-
tor, providing another link between changing drought 
risk and increased cholera outbreak occurrence, as an 
increased temperature is important in both drought 
onset and duration. The positive relationship between 
temperature and cholera is expected, as cholera is con-
sidered a temperature-sensitive pathogen, with optimum 

Fig. 3 Projected cholera outbreak occurrence (0–1) for the three scenarios in 2030, 2050 and 2070. Grey represents countries where covariate data 
was missing (Botswana, Zimbabwe, Somalia, Egypt, Eswatini, Western Sahara, Algeria, Libya and Eritrea) and therefore could not be included in the 
model. The map is our own work and the shapefiles are taken from [46] under CC-BY SA, allowing them to be shared and adapted
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growth at elevated temperatures (up to a threshold) [47]. 
This may also represent an independent effect of tem-
perature from drought and why both variables are inde-
pendently selected in the model. For example, a 1 °C rise 
in temperature was associated with a twofold increase 
in cholera cases in Zanzibar [8]. Moreover, when run in 
the univariate models, precipitation had a slightly nega-
tive coefficient, again providing a potential link between 
drought, decreased water availability and cholera out-
breaks. Precipitation, however, was not selected in the 
final model, potentially suggesting that precipitation 
effects for cholera in Africa, may be less important than 
temperature.

The inclusion of more than one type of drought index 
in the best-fit model (PDSI and water withdrawal) shows 
the importance of considering several drought defini-
tions and measures when investigating its implications. 
Drought is a complex phenomenon involving climate, 
agriculture, water stress and societal response and there-
fore including additional drought variables can help cap-
ture the varying elements of the hazard, exposure and 
vulnerability. Water withdrawal per capita was a highly 
significant environmental variable in the model, link-
ing to the original hypothesis that a reduction in water 
availability leads to riskier water practices. More water 
withdrawal suggests higher water availability for drinking 
and washing and a reduction in risky behaviour such as 

with multi-use water. Better water management may help 
mitigate negative drought-related health outcomes, and 
when water is available, this should not be exploited to 
avoid times of scarcity.

Cholera is a disease of inequity and poverty and is often 
seen in combination with poor WASH facilities [14, 48]. 
Here, poverty was the most significant variable (accord-
ing to the p-values) included in the model and may sug-
gest that environmental determinants of cholera are 
only key drivers up to certain thresholds and then socio-
economic covariates are more appropriate predictors 
[13]. For example, droughts have been known to impact 
the US and Europe [49, 50], but large-scale cholera out-
breaks do not occur due to generally high levels of sani-
tation and hygiene. Several socio-economic covariates 
were expected to be important here but only poverty was 
selected in the final model and all socioeconomic covari-
ates were independently selected for model inclusion. A 
possible explanation is that other socio-economic covari-
ates such as, sanitation, hygiene, drinking water and 
people living in informal settlements is captured within 
the effects of poverty and possibly enhancing its impact. 
Even with the ideal environment for cholera to prolifer-
ate, social conditions allow the link to be made for patho-
gen exposure and spread. Poor access to WASH facilities 
means that large groups of people are at risk, not just 
for cholera, but for several other diseases. For example, 

Fig. 4 Mean continental cholera outbreak occurrence for the projected period (2020–2070) using the three scenario datasets
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nearly 90% of diarrhoeal disease has been attributed to 
sub-optimal WASH [51]. These findings highlight the 
need to meet or exceed the SDGs, lifting people out of 
poverty and providing basic sanitation and hygiene as a 
public health priority.

The scenario dataset and projections provide some 
insight into the future importance of climate and socio-
economic development on cholera outbreak occurrence 
in Africa. Historical and projected changes are spatially 
heterogenous but projected continental trends under S3 
slightly increased cholera outbreak occurrence to 2070. 
Whereas, under S2 and S1 cholera occurrence decreased 
to 2070, with S1 showing the lowest levels. The projected 
changes over the next 50 years show that reducing pov-
erty, expanding sustainable freshwater availability and 
striving for greater emissions reductions will be impor-
tant for achieving positive health outcomes. How socie-
ties will continue to respond and adapt to climate change 
and drought is difficult to determine in the future and 
therefore understanding future risks can be challenging. 
As with any projections and the creation of scenarios, 
uncertainty can be high, arising from theoretical, meth-
odological and computational challenges in projecting 
future climate change and its consequences. There are 
also the realities of meeting or exceeding the SDGs. Sev-
eral of the terms within the SDGs are ambiguous, con-
sequently the aims and roadmap to achieve them are 
not clearly defined. Finally, we did not consider that in a 
“worst-case” scenario poverty and water withdrawal may 
regress or the introduction of new strains and changing 
immunity could complicate cholera eradication efforts. 
Despite this, with decreasing poverty and the expansion 
of freshwater availability, even the introduction of new 
cholera cases and strains could be offset.

Climate, drought and socio-economic data were miss-
ing for several countries and years, meaning that data 
had to be averaged or omitted. This meant that data were 
then missing from the model, or assumptions had to be 
made both spatially and temporally about conditions in 
certain countries, potentially introducing error. Using 
annual national data also meant that changes on a finer 
spatial and temporal scale cannot be determined from 
the work presented here such as seasonal changes in 
cholera and the presence of waterbodies within countries 
facilitating transmission [5]. Cholera is largely under-
reported, and many people never seek formal medical 
assistance. The WHO’s most optimistic estimate suggests 
only 5–10% of cases are reported [52], possibly due to a 
spectrum of transmission dynamics and lulls in cases 
meaning focus on tracking the diseases can be lost [53]. 
Countries can be disincentivized to report outbreaks due 
to potential impact on tourism and trade [54].  Consid-
ering this underreporting, issues may have arisen from 

assigning the outcome variable to zero for missing years, 
as this could have led to the underrepresentation of chol-
era outbreaks. Given the results of the sensitivity analysis 
in Additional file  1: Information 1, however, we believe 
this is the best interpretation of missing values, as remov-
ing values created issues when trying to select covariates 
from small numbers of data points. Furthermore, the 
cholera data lack age and sex-disaggregation, meaning 
that demographic differences were not captured. GLMs 
assume a monotonic relationship and therefore non-
linear effects of several covariates might not be captured 
and evaluating these non-linear effects are a potential 
area of future work. This issue may also have been pre-
sent for the S3 drought projections as some countries fit 
the linear trend better than others.

Conclusions
In conclusion, the relationships between temperature, 
drought and water withdrawal help add further evidence 
to the original hypothesis that hotter and drier condi-
tions and a lack of freshwater availability increases chol-
era outbreak occurrence, potentially through risky water 
behaviours. Although elevated pathogen concentrations 
are difficult to distinguish from these results, the impor-
tance of elevated temperatures and its effect on cholera 
may be related to increases in pathogen concentrations. 
Socio-economic variables came out highly significant in 
the best-fit model, showing the impact of vulnerability in 
times of water shortage and the importance of lifting peo-
ple out of poverty to improve health and reduce mortality.

The work presented here offers additional insight into 
how climate change may yield health impacts in the 
future and work should build on these results, to under-
stand these relationships on a finer spatial scale. High 
burden countries such as the DRC and Nigeria saw very 
few changes in cholera over the projected period and 
scenarios, showing potential areas for further work to 
understand outbreak drivers and mitigators in the most 
at-risk countries.
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