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Background.  Cerebral malaria in adults is associated with brain hypoxic changes on magnetic resonance (MR) images and has 
a high fatality rate. Findings of neuroimaging studies suggest that brain involvement also occurs in patients with uncomplicated ma-
laria (UM) or severe noncerebral malaria (SNCM) without coma, but such features were never rigorously characterized.

Methods.  Twenty patients with UM and 21 with SNCM underwent MR imaging on admission and 44–72 hours later, as well 
as plasma analysis. Apparent diffusion coefficient (ADC) maps were generated, with values from 5 healthy individuals serving as 
controls.

Results.  Patients with SNCM had a wide spectrum of cerebral ADC values, including both decreased and increased values com-
pared with controls. Patients with low ADC values, indicating cytotoxic edema, showed hypoxic patterns similar to cerebral malaria 
despite the absence of deep coma. Conversely, high ADC values, indicative of mild vasogenic edema, were observed in both patients 
with SNCM and patients with UM. Brain involvement was confirmed by elevated circulating levels of S100B. Creatinine was nega-
tively correlated with ADC in SNCM, suggesting an association between acute kidney injury and cytotoxic brain changes.

Conclusions.  Brain involvement is common in adults with SNCM and a subgroup of hospitalized patients with UM, which 
warrants closer neurological follow-up. Increased creatinine in SNCM may render the brain more susceptible to cytotoxic edema.

Keywords.  acute kidney injury; Brain; brain-kidney cross-talk; cytotoxic edema; MRI; Plasmodium falciparum infection; S100B; 
Severe malaria; vasogenic edema.

Plasmodium falciparum infections accounted for an estimated 
229 million clinical cases in 2019, resulting in 409 000 deaths 
[1]. Severe falciparum malaria is a life-threatening, multiorgan 
disease with a variety of clinical presentations, including cere-
bral malaria (CM), metabolic acidosis, hyperparasitemia, acute 
kidney injury (AKI), hepatic dysfunction, severe anemia, and 
hypoglycemia [2]. The pathogenesis of coma in CM is still in-
completely understood, but microvascular impairment in the 
brain by sequestration of infected erythrocytes (IEs) is a central 
feature [3]. Inflammation of brain parenchyma is minimal, al-
though intravascular leukocytes are more prominent in African 

children than in Asian adults who died of CM [4, 5]. There is 
a mild generalized increase in systemic vascular permeability, 
and imaging studies show only limited cerebral swelling in most 
adult patients, whereas cerebral edema is more prominent in 
African children, particularly in the agonal stages [6–9].

Over time, the World Health Organization–defined criteria 
for CM have broadened, allowing the identification of a sub-
stantial additional group of patients with mild cerebral involve-
ment and emphasizing that neurological involvement in severe 
malaria occurs on a gradual scale [10–13]. Our team previously 
reported the common presence of mild cerebral changes on 
magnetic resonance (MR) imaging in Indian patients with un-
complicated malaria (UM), suggesting that falciparum malaria 
infection affects the brain in the absence of coma [14]. A sep-
arate study from Bangladesh also described brain parenchymal 
changes on MR images of adult patients with severe malaria 
and without neurological symptoms presenting [15]. AKI, liver 
failure, and anemia are common in adults with severe falcip-
arum malaria [2, 16] and may independently contribute to 
these brain changes [17–19].

Here, we provide a first comprehensive assessment of brain 
MR imaging in adult patients with severe noncerebral malaria 
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(SNCM) [13]. We performed a systematic quantitative assess-
ment of apparent diffusion coefficient (ADC) maps, using MR 
imaging with diffusion-weighted imaging to allow the discrim-
ination between cytotoxic and vasogenic edema. This approach 
was complemented by measurement of parasite biomass and 
plasma S100B, a marker of brain injury, as well as correlation 
analyses between ADC values and laboratory parameters as-
sociated with AKI, hepatic dysfunction, and severe anemia, 
to assess their potential impact on brain changes observed in 
SNCM.

PATIENTS AND METHODS

Study Site

The study was carried out at Ispat General Hospital in Rourkela, 
India. Written consent was obtained from all enrolled subjects 
before inclusion in the study. Ethical approvals are listed in the 
Supplementary Material.

Patients and Controls

Adult patients with parasitologically proven UM or SNCM 
were enrolled in the study, using criteria described in the 
Supplementary Material. A group of 5 healthy adults underwent 
MR imaging of the brain and served as a control group.

MR Imaging and Analysis

Brain MR imaging was performed using a 1.5-T Siemens 
Symphony MR imager (Siemens). The degree of brain swelling 
was assessed on T2-weighted images and graded according 
to sulcal effacement and cortical swelling (Supplementary 
Material). Our group previously showed that subtle ADC 
alterations in patient with UM can be revealed by quantita-
tive analyses of ADC values [14]. ADC map–derived whole-
brain histograms were generated and used for differentiation 
between cytotoxic and vasogenic edema [14]. Normalized 
whole-brain ADC histograms were created, and the peak loca-
tion of those histograms corresponding to the most common 
ADC value in the brain tissue [20] was used for the analyses. 
The range of ADC values from 5 healthy controls was used as 
baseline.

Plasma Levels of S100B and P. falciparum Histidine-Rich Protein 2 

Plasma levels of S100B, a widely validated peripheral bio-
marker of blood-brain barrier permeability and central nervous 
system injury [21], and P. falciparum histidine-rich protein 2 
(PfHRP2), an indicator of the total parasite biomass [22], were 
assessed (Supplementary Material).

Statistical Analyses

We used χ2 tests to compare categorical variables. Depending 
on the normality distribution, unpaired Student t or Mann-
Whitney tests was used to compare 2 groups. Pearson corre-
lation coefficients were calculated for correlation analyses. 

Differences were considered statistically significant at P < .05 (2 
sided). All statistical analyses were performed using GraphPad 
Prism 8.3 (GraphPad Software).

RESULTS

Baseline Characteristics

Between October 2013 and November 2019, 21 adult pa-
tients with SNCM, 20 patients with UM, and 5 healthy control 
subjects were enrolled in the study. Baseline characteristics are 
summarized in Table 1. Two patients with SNCM had Glasgow 
Coma Scale (GCS) scores of 12 and 14, and the rest had a GCS 
score of 15. All patients survived. Brain imaging was carried out 
within 10 hours of admission. Follow-up MR imaging of the 
brain after a mean (standard deviation [SD]) of 52.95 (14.22) 
hours was feasible in 34 of 41 patients (83%).

Qualitative MR Findings in SNCM

Mild brain swelling was previously reported on MR images 
of adult patients with SNCM, and a high signal on diffusion-
weighted imaging was seen in 1 patient [15]. In contrast, healthy 
brains showed well-delineated outer cerebrospinal fluid spaces 
with no signs of volume increase in adjacent brain structures. 
In this study we observed mild brain swelling on T2-weighted 
images in 5 of 21 patients with SNCM (24%), without evident 
signal increase in brain structures (Figure 1A). We quantified 

Table 1.  Clinical and Laboratory Parameters in Patients With Uncomplicated 
or Severe Noncerebral Malaria

Parameter 
Patients With UM 

(n = 20) 
Patients With SNCM 

(n = 21) 

Demographics

  Age, mean (SD), y 40 (14) 38 (14)

  Sex, no. female; no. 
male

6; 14 3; 18 

 Parasite burden

  Parasitemia, no. 20 21

  Parasitemia, median 
(IQR), ×103 parasites/μL

2.31 (0.54–72.70) 4.72 (0.31–199.45)

  PfHRP2, no. 10 20

  PfHRP2, median (IQR), 
ng/mL

48.64 (8.55–640.75) 281.57 (21.73–960.43)

 Clinical parameters, mean (SD)

  Platelet count 61.23 (38.11) 46.95 (58.57)

  Hemoglobin, g/dL 10.50 (2.27) 8.63 (3.38)

  Bilirubin, mg/dL 1.44 (0.68) 7.19 (5.28)

  Creatinine, mg/dL 1.05 (0.27) 2.17 (1.75)

  S100B, pg/mL 826.2 (1027) 9213 (11 335)

  GCS score 14.95 (0.22) 14.86 (0.48)

 Other parameters

  Follow-up images, no. 15 19

  Follow-up time, mean 
(SD), h

50.37 (48.14–71.22) 47.38 (44.45–50.29)

Abbreviations: GCS, Glasgow Coma Scale; IQR, interquartile range; PfHRP2, Plasmodium 
falciparum histidine-rich protein 2; SD, standard deviation; SNCM, severe noncerebral ma-
laria; UM, uncomplicated malaria.
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Figure 1.  Qualitative assessment of apparent diffusion coefficient (ADC) alterations and brain swelling. A, B, Representative T2-weighted (T2w) images (A) and ADC maps 
(B) in 1 patient with uncomplicated malaria (UM) and 2 with severe noncerebral malaria (SNCM) at admission (left-hand images) and at follow-up (right-hand images). Top 
row of images, Patient with UM (patient MRIe53) shows neither visual brain swelling (A) nor ADC alterations (B). Middle row, In 1 patient with SNCM (patient MRIe51), mild 
brain swelling with sulci narrowing is visible (A, left-hand image [arrows]) and has normalized at follow-up imaging (A, right-hand image [arrows]). In the same patient, a 
slight ADC decrease is visible at admission (B, left-hand image [arrows]), which has resolved at follow-up (B, right-hand image). Bottom row, In contrast, patient MRIe123 
had mild brain swelling evidenced by sulci narrowing at admission (A, left-hand image [arrows]), which had normalized at follow-up (A, right-hand image [arrows]); ADC maps 
in this patient were comparable to those seen in cerebral malaria [14]: a clear ADC decrease is evident in the basal ganglia at admission (B, left-hand image [arrows]), with 
residual changes at follow-up (B, right-hand image [arrow]). C, Plasma levels of S100B in patients with UM or SNCM, shown as medians with interquartile range. ∗∗∗P < .005. 
D, S100B concentrations are plotted against plasma levels of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in patients with UM or SNCM.
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diffusion-weighted imaging in patients with SNCM and gen-
erated associated ADC maps. In healthy brains, all structures 
had similar ADC values without visually evident increase or de-
crease. An ADC decrease in the basal ganglia was observed in 
4 of 21 patients with SNCM (19%) (Figure 1B). One of these 4 
patients with SNCM had the lowest GCS score (12 of 15) and 
the strongest ADC alterations in the basal ganglia, accompanied 
by mild brain swelling. One patient had a small cytotoxic lesion 
of the corpus callosum (Supplementary Figure 1).

Elevated Plasma S100B Levels in Patients With SNCM 

To confirm brain involvement in SNCM, we measured plasma 
levels of S100B, which increases in a variety of pathological 
conditions of the nervous system [21]. Plasma samples were 
available for only 10 of 20 patients with UM (Table 1). Patients 
with SNCM had a significantly higher levels of S100B than pa-
tients with UM (P = .0002; Figure 1C), confirming a degree of 
brain injury in patients with severe falciparum malaria with or 
without mildly decreased GCS scores. Plasma levels of S100B, 
which is degraded by the kidneys, were not correlated with 
creatinine (Supplementary Figure 2). However, when UM and 
SNCM patients were combined, these levels were correlated 
positively with PfHRP2, a marker of parasite biomass (Figure 
1D).

Quantitative ADC Assessment to Identify Patient Subgroups With Cytotoxic 
or Vasogenic Edema

We performed analyses of ADC map–derived whole-brain 
histograms to determine the presence of cytotoxic (low ADC 
values) or vasogenic (high ADC values) edema (Figure 2A). 
Patients with SNCM showed a wide spectrum of ADC alter-
ations (mean [SD], 716.6 [35.2] × 10−6 mm2/s) compared with 
patients with UM (741.7 [20.8] × 10−6 mm2/s) and healthy con-
trols (704.3 [12.5] × 10−6 mm2/s) (Figure 2A). Patients with 
SNCM had ADC values on admission that were either lower (4 
of 21 patients; mean [SD], 667.1 [13.26] × 10−6 mm2/s), within 
the same range (8 of 21; 704.6 [9.418] × 10−6 mm2/s), or higher 
(9 of 21; 749.3 [19.81] × 10−6 mm2/s) than in the control group 
(Figure 2A). In line with the visual qualitative assessments, the 
patient with SNCM with the lowest GCS score (12 of 15) had 
the lowest whole-brain ADC value of 653 × 10−6 mm2/s, in the 
range of ADC values for adult CM [14]. In contrast, high ADC 
values in patients with SNCM were in the same range as those 
in patients with UM (Figure 2A). Most patients with UM (17 
of 20 [85%]) also had higher ADC values than healthy controls 
(mean [SD], 747.9 [14.8] × 10−6 mm2/s).

AKI Correlated With Whole-Brain ADC Values in Patients With SNCM 

Because parasite sequestration may contribute to cytotoxic 
edema, we assessed whether parasite biomass, measured by 
plasma levels of PfHRP2, influenced whole-brain ADC values. 
There was no linear correlation between ADC values and 

PfHRP2, but all 4 patients with SNCM with low ADC values 
(100%) showed higher parasite biomass than patients with 
normal-range ADC values (Figure 2B). In addition, 4 of 8 pa-
tients with SNCM with high ADC values (50%) also had high 
parasite biomass, indicating that high PfHRP2 may be associ-
ated with either low or high ADC values. Three of 9 patients 
with UM and high ADC values (33%) showed high parasite bi-
omass (Figure 2B). ADC values and S100B levels were strongly 
correlated in patients with UM (r = 0.92; P = .003) (Figure 2C). 
In patients with SNCM, no correlation was seen between S100B 
and ADC values, indicating that brain alterations in SNCM are 
likely multifactorial. To investigate whether ADC changes are 
potentially driven by noncerebral organ involvement, we cor-
related ADC values with plasma creatinine, bilirubin, and he-
moglobin levels and compared these laboratory measurements 
between UM and SNCM groups. Plasma creatinine concen-
trations were significantly increased in SNCM compared with 
UM, related to the high frequency of AKI in the former group 
(Supplementary Figure 3A). Moreover, creatinine values in pa-
tients with SNCM were negatively correlated with whole-brain 
ADC values (r2 = 0.37; P = .003) (Figure 2D). Bilirubin levels 
were also significantly higher in patients with SNCM than in 
those with UM but did not show any correlation with whole-
brain ADC values (Supplementary Figure 3B). Hemoglobin 
concentrations did not differ between UM and SNCM and were 
not related to ADC values (Supplementary Figure 3C).

ADC Values at 72-Hour Follow-up

A significant decrease in ADC values was observed in pa-
tients with UM after antimalarial treatment (P = .006; mean 
[SD], 717.3 [21.41] × 10−6 mm2/s). In 5 patients, these values 
returned to normal (mean [SD], 704.3 [12.5] × 10−6 mm2/s), 
while 6 patients still had values above the healthy range 48–71 
hours after admission. One patient with UM had ADC values 
below and 1 had values above the healthy range at follow-up 
MR imaging (Figure 3A). Similarly, in SNCM cases, most ADC 
values showed a reversal trend toward the healthy control range 
(mean [SD] ADC value in all patients with SNCM at follow-up, 
719.6 [25.61] × 10−6 mm2/s) (Figure 3B). 
ADC values increased significantly in all 4 patients 
with low ADC values at admission (mean value [SD], 
713.5 [25.96] × 10−6 mm2/s; P = .04) (Supplementary Figure 
4A), indicative of reversed cytotoxic edema. One patient had 
an ADC value above the healthy range on the second image, 
suggesting a shift from cytotoxic to mild vasogenic edema 
(Supplementary Figure 4A). Patients with SNCM with normal 
ADC values at admission showed either no change at follow-up 
(4 of 6 patients), ADC increase toward the range associated 
with vasogenic edema (1 of 6), or a decrease toward the cyto-
toxic edema range (1 of 7) (mean [SD], 704.3 [21.39] × 10−6 
mm2/s) (Supplementary Figure 4B). Most patients with high 
ADC values at admission showed a decrease in ADC values 
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at follow-up, but apart from 2 patients, values remained 
higher than at baseline, indicating an incomplete reversal of 
vasogenic edema (mean [SD], 734.2 [22.65] × 10−6 mm2/s; 
S3C). Two patients showed an increase in ADC values at fol-
low-up (Supplementary Figure 4C).

DISCUSSION

This study used MR imaging with quantitative ADC imaging to 
assess the presence of vasogenic and cytotoxic edema in patients 

with falciparum malaria without pronounced clinical neu-
rological involvement, including SNCM and UM. ADC values 
indicating mild vasogenic edema were observed in a subset of 
patients with SNCM and UM and were similar to the range ob-
served in UM cases from an earlier study [14]. In contrast, ADC 
values indicating cytotoxic edema were noted in a subset of pa-
tients, with ADC values like those reported in CM [14].

Increased ADC values can result from various conditions, in-
cluding increased cerebral vascular permeability [23], anemia 
[24, 25], or liver failure [26]. As we did not see a correlation 

Figure 2.  Quantitative apparent diffusion coefficient (ADC) changes and correlation with laboratory values. A, Quantitative whole-brain ADC values in healthy controls, 
patients with uncomplicated malaria (UM), and patients with severe noncerebral malaria (SNCM). Red-shaded area represents the range of ADC values described in pa-
tients with cerebral malaria (CM) [14]; blue-shaded area, the range of healthy control values. Patients with Glasgow coma scale (GCS) scores <15 are shown next to the 
corresponding ADC values. Most patients with UM have ADC values higher than those in healthy controls, while patients with SNCM had both higher and lower ADC values 
than controls, with values in the latter group similar to those reported in patients with CM. ∗P < .05; NS, not significant. B–D, Correlations between ADC values and levels 
of Plasmodium falciparum histidine-rich protein 2 (PfHRP2), S100B, and creatinine in patients with UM and or SNCM; red lines represent the lowest and the blue lines the 
highest healthy control ADC values. B, High PfHRP2 concentrations were noted in all patients with SNCM with low ADC values (red-outlined oval), whereas half of patients 
with SNCM and one-third of those with UM with high ADC values also had high parasite biomass (blue-outlined oval). C, In patients with UM, S100B levels were correlated 
positively with ADC values (r = 0.9; P = .003). D, In patients with SNCM, high creatinine levels were correlated with low ADC values (r = 0.43; P = .02); black dotted line rep-
resents World Health Organization cutoff value for acute kidney injury in P. falciparum infection.
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between hemoglobin or bilirubin levels and ADC values, mild 
endothelial dysfunction aggravated by a high parasite biomass 
in a subgroup of patients with SNCM or UM may cause the ob-
served increase in brain ADC values, which is consistent with 
both the endothelial activation [27, 28] and the sequestration 
of IEs described in falciparum malaria [3]. In an MR imaging 
study from Bangladesh of adults with severe malaria, mild brain 
swelling was noted by visual assessment in up to 50% of patients 
with SNCM, related at least in part to increased cerebral blood 
volume caused by high parasite biomass [15]. Using the same 
approach, we observed a lower rate of mild swelling in our co-
hort (24%). However, a quantitative assessment of whole-brain 
ADC values revealed an ADC increase in 43% of patients with 
SNCM, indicative of mild vasogenic edema and associated with 
brain swelling. 

An earlier computed tomography study from Ispat General 
Hospital showed that mild to moderate brain swelling was 
common in patients with severe malaria, both with and without 
CM [6]. In patients with CM, coma depth was not associ-
ated with the severity of brain swelling. At computed tomog-
raphy, however, the different contributors to brain swelling 
could not be distinguished. The present study shows that mild 
vasogenic edema is present in both patients with SNCM and 
patients with UM, usually normalizing after 72 hours. Neither 
of these patient groups have decreased GCS scores, suggesting 
that mild vasogenic cerebral edema does not cause prominent 

neurological symptoms during acute disease. However, longer-
term neurocognitive sequelae were not assessed, and high 
plasma levels of S100B in both the SNCM group and a sub-
group of patients with UM may indicate a degree of permanent 
damage, as reported in a broad range of diseases [29–31]. 

In severe malaria, high levels of S100B in the CSF were asso-
ciated with seizures in both Kenyan children and Vietnamese 
adults [32, 33]. Acute seizures are a major risk factor for neu-
rological sequelae after recovery in pediatric CM [34]. Our re-
sults indicate for the first time that additional studies evaluating 
the occurrence of long-term neurological sequelae are war-
ranted in SNCM, and possibly in UM.

In 4 of 21 patients with SNCM (19%), ADC values compat-
ible with cytotoxic edema were observed in the same areas of 
the brain as in patients with CM, including the basal ganglia. 
This is in line with an earlier study from Bangladesh, where ev-
idence of cytotoxic edema was found in 13% of patients with 
SNCM [15]. Follow-up imaging showed that in all 4 patients 
with cytotoxic edema, ADC values normalized after 72 hours, 
indicating reversibility of the process. In addition to the poten-
tial effect of microvascular sequestration of IEs, reversible cyto-
toxic lesions of the corpus callosum have been associated with 
increased levels of proinflammatory cytokines and extracellular 
glutamate [35]. However, it is impossible to identify neuronal 
cell loss after cytotoxic swelling in the follow-up images, and 
more permanent neurological damage cannot be excluded in 

Figure 3.  Temporal apparent diffusion coefficient (ADC) changes in patients with uncomplicated malaria (UM) or severe noncerebral malaria (SNCM). ADC values at ad-
mission and follow-up are presented. Red line represent the lowest and blue lines the highest healthy control ADC values. Blue symbols represent decreased ADC values 
at follow-up imaging; gray symbols, no change in ADC values; and red symbols, increased ADC values at follow-up. A, Patients with UM show a significant ADC decrease 
at follow-up compared with admission ADC values. ∗∗P < .005. B, Patients with SNCM show either increased or a decreased ADC values compared with healthy controls.
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these patients. In 1 patient with SNCM with a GCS score of 15, 
we noted a small cytotoxic lesion of the corpus callosum with 
diffusion-weighted imaging, a finding previously reported in 
both SNCM [36] and CM [37]. Another patient with SNCM 
with a slight reduction in GCS score had cytotoxic edema at MR 
imaging, a common feature of CM not observed in UM. These 
imaging findings indicate pathophysiological overlap of brain 
alteration between SNCM and CM.

Cytotoxic edema can be caused by hypoxia of the brain re-
lated to the compromised microcirculation in severe malaria. 
Contributing factors include IE sequestration, reduced erythro-
cyte deformability, adherence of IEs to uninfected erythrocytes 
(rosetting), and endothelial dysfunction [38]. In the current 
study, high parasite biomass was associated with both low and 
high ADC values in patients with SNCM. We thus explored 
whether additional factors were correlated with cytotoxic or 
vascular edema in this patient category.

While there were no significant associations between bil-
irubin or hemoglobin levels and ADC values, high creatinine 
levels were correlated with decreased whole-brain ADC values 
in patients with SNCM, suggesting a contribution of AKI to 
cytotoxic brain damage. Remarkably, the classic MR imaging 
pattern associated with AKI-induced uremic encephalopathy, 
characterized by increased ADC values in the basal ganglia, 
was not observed. In contrast, we detected a global decrease 
in whole-brain ADC values, with or without ADC decrease in 
the basal ganglia in patients with SNCM and high creatinine 
values. This imaging pattern is redolent of the findings we previ-
ously described in adult CM [14], and it suggests that impaired 
kidney function causes reduced cerebral blood flow, as has been 
shown in other conditions [39]. 

Further factors not assessed in this study may also contribute 
to cytotoxic brain edema. There is mounting evidence for the 
presence of kidney-brain cross talk in patients with AKI, leading 
to both direct and indirect cerebral insults [40]. Indeed, the 
central nervous system is vulnerable during AKI and chronic 
kidney disease [41], and potential contributing factors for brain 
involvement after AKI include the retention of nitrogenous end 
products (uremic toxins), osmolality disturbance, and inflam-
matory mechanisms, with resultant neutrophil migration, cy-
tokine production, and increased oxidative stress [42]. While 
AKI is a well-established complication of severe malaria in 
Asian adults [43], it has been identified as common in African 
pediatric cohorts. In the latter age group, AKI is associated 
with mortality risk [44] and, more remarkably, with short- and 
long-term impaired cognition in survivors [45]. Indeed, AKI 
has been linked to hippocampus inflammation, cytotoxicity, 
and apoptosis, resulting in long-term cognitive impairment 
[19]. Studies investigating the association between AKI, brain 
changes at MR imaging, and neurocognitive outcomes are cur-
rently lacking in adults with severe malaria.

Collectively, our findings indicate a wide spectrum of path-
ological changes in the brain during severe and nonsevere fal-
ciparum malaria, despite the lack of deep coma. Not all patients 
with SNCM showed complete reversal of ADC changes during 
hospitalization. These observations may explain the develop-
ment of postmalaria neurological syndrome, a rare self-limiting 
neurological syndrome after CM, but also sporadically after 
SNCM, is characterized by various neuropsychiatric manifest-
ations ranging from mild neurological deficit to severe enceph-
alopathy [46, 47].

Our study has limitations. First, logistical issues prevented 
us from using the Kidney Disease: Improving Global Outcomes 
guidelines to define AKI and stage kidney injury severity, which 
could have helped identify a broader range of kidney func-
tion impairment in our cohort [38, 44]. Correlations between 
ADC values and hyperlactatemia were not investigated owing 
to missing data points. Because both hypoxic lesions [48] and 
mild neurocognitive impairment [49] can be associated with 
hyperlactatemia, further analyses are needed to evaluate the ef-
fect of lactic acidosis on brain changes and long-term effects in 
SNCM. Finally, differences in retinopathy patterns between the 
high- and low-ADC groups were not assessed but are currently 
underway.

In conclusion, brain involvement is common in adults with 
SNCM and a subgroup of hospitalized patients with UM. Our 
findings suggest that severe malaria leads to a spectrum of neu-
rological findings, where CM is only defined by the presence of 
coma. AKI in patients with SNCM may render the brain more 
susceptible to local hypoxia induced by parasite sequestration 
and resultant cytotoxic edema, leading to MR imaging features 
seen in CM. Additional studies aimed at investigating potential 
long-term neurocognitive deficits in patients with SNCM are 
warranted, and the need for a change in diagnostic criteria to fa-
cilitate the identification of patients for neurological follow-up, 
rehabilitation, and recovery must be considered in the future.
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